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We theoretically investigate various beyond mean-field effects on Bose gases at zero temperature featuring

the anisotropic and long-range dipole-dipole interaction in addition to the isotropic and short-range contact

interaction. Within the realm of the Bogoliubov–de Gennes theory, we consider static properties and low-lying

excitations of both homogeneous and harmonically trapped dipolar bosonic gases. For the homogeneous system,

the condensate depletion, the ground-state energy, the equation of state, and the speed of sound are discussed in

detail. Making use of the local density approximation, we extend these results in order to study the properties

of a dipolar Bose gas in a harmonic trap and in the regime of large particle numbers. After deriving the

equations of motion for the general case of a triaxial trap, we analyze the influence of quantum fluctuations on

important properties of the gas, such as the equilibrium configuration and the low-lying excitations in the case

of a cylinder-symmetric trap. In addition to the monopole and quadrupole oscillation modes, we also discuss

the radial quadrupole mode. We find that the latter acquires a quantum correction exclusively due to the dipole-

dipole interaction. As a result, we identify the radial quadrupole as a reasonably accessible source for the

signature of dipolar many-body effects and stress the enhancing character that dipolar interactions have for

quantum fluctuations in the other oscillation modes.

DOI: 10.1103/PhysRevA.86.063609 PACS number(s): 67.85.Lm, 21.60.Jz

I. INTRODUCTION

The experimental realization of Bose-Einstein condensa-

tion in a 52Cr sample by the group of Tilman Pfau in 2005

triggered much experimental and theoretical work in the

field of dipolar quantum gases [1]. Chromium atoms possess

magnetic moments of 6 bohrs magnetons (μB) so that the

anisotropic and long-range dipole-dipole interaction (DDI)

between them is 36 times larger than the one between alkali-

metal atoms. Therefore, taking the influence of the DDI into

account besides that of the isotropic and short-range contact

interaction is essential for the correct physical description

of chromium Bose-Einstein condensates (BECs). To date,

a few experimental signatures of the DDI in BECs have

been identified. The most striking ones have been found in

chromium, such as the modified time-of-flight dynamics [2],

the strongly dipolar nature of a quantum ferrofluid [3], the

d-wave Bose nova explosion [4], and the modified low-lying

excitations [5]. In addition, the DDI has also been observed in

rubidium [6] and lithium [7] samples. For recent reviews on

the physics of dipolar Bose gases see Refs. [8–10].

In the case of the chromium experiments, careful compar-

isons with mean-field theory [11,12] were carried out and

brought remarkable agreement as a result. It is important

to note that the dipolar mean-field theory is based on the

construction of the corresponding pseudopotential [13,14].

Among the strongly magnetic atoms, an important place

is occupied by dysprosium, which possesses the unsurpassed

magnetic dipole moment of 10μB. Recently, two major ex-

perimental achievements could be obtained with the trapping

[15] and the subsequent Bose-Einstein condensation [16] of
164Dy by the group of Benjamin Lev. At present, Feshbach

resonances are being searched for in dysprosium, which would

provide a tuning knob for the relative strength of the DDI with

respect to the contact interaction. It is also worth mentioning

the possibility of using erbium as a strong magnetic atom.

With a magnetic dipole moment of 7μB and a mass of 164

atomic mass units, erbium represents a promising candidate for

studying dipolar physics [17], especially after the achievement

of the erbium-BEC [18].

However, atomic systems are not the only dipolar quantum

systems under current investigation. Indeed, the recent suc-

cesses in producing and cooling heteronuclear polar molecules

down to their rovibrational ground state by means of stimulated

Raman adiabatic passage [10], especially the cooling of KRb

molecules [19] and the manipulation of their internal degrees

of freedom [20], let us hope that quantum degenerate heteronu-

clear molecular systems will soon be available experimentally;

and this is not all. By means of applied electric fields,

laboratory-frame electric dipole moments can be induced

in these molecules, thereby tuning the electric DDI over

various orders of magnitude [21]. Typically, the DDI in polar

molecules can be up to 104 times larger than in atomic systems.

As a natural consequence of the many important experi-

mental successes, much theoretical effort has been dedicated

recently to the investigation of strongly dipolar quantum gases.

In the case of fermions, one should mention at least the

studies involving zero sound [22,23] and the Berezinskii-

Kosterlitz-Thouless phase transition [24] in homogeneous

systems, superfluidity in trapped gases [25], and Wigner

crystallization in rotating two-dimensional ones [26]. There

have also been recent important studies involving bosonic

dipoles considering, for example, finite-temperature effects

[27], exotic density profiles [28], and the possibility of spin-

orbit coupling [29]. Moreover, it was found that loading the

system into an optical lattice leads to novel quantum phases

for both bosonic [30,31] and fermionic [32] dipoles. In the

meantime, the first experiments with chromium loaded into an

optical lattice have been carried out [33].
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In view of the wide-range tunability of the DDI, polar

molecules offer the possibility of testing dipolar mean-field

theories all over and beyond their range of validity. For

this reason, it is important to analyze theoretically dipolar

systems beyond the mean-field approximation. Recently, we

have briefly discussed the influence of quantum fluctuations

on trapped dipolar Bose gases [34]. In the present paper, we

present in detail the corresponding Bogoliubov–de Gennes

(BdG) theory and apply it to both homogeneous and harmon-

ically trapped gases, thereby emphasizing the importance of

quantum fluctuations in strongly dipolar systems.

This paper is organized as follows. In Sec. II, we briefly

discuss the BdG theory of a Bose gas at zero temperature con-

taining a large number N of polarized point dipoles. Section III

is dedicated to homogeneous dipolar Bose gases, where we

solve, at first, the Bogoliubov equations algebraically. Then

we use this solution to study key properties of the system

such as the condensate depletion and the beyond mean-field

speed of sound. In Sec. IV, we concentrate on harmonically

trapped systems. By means of the local density approximation

(LDA), we solve the BdG equations and derive the dependence

of the condensate depletion and the ground-state energy on

the system quantities such as the relative dipolar interaction

strength and the contact gas parameter. With these results

at hand, we work out a variational approach to superfluid

dipolar hydrodynamics, which allows for deriving equations

of motion for the Thomas-Fermi radii of the gas in the case

of a triaxial harmonic trap. Section V is specialized to the

case of a cylinder-symmetric trap and contains the solution

of the equations of motion as well as discussions about

beyond mean-field effects on both the static properties and the

hydrodynamic excitations. Finally, in Sec. VI, we summarize

our findings and present the conclusions and perspectives of

this work in view of future experiments.

II. BOGOLIUBOV–DE GENNES THEORY FOR LARGE

PARTICLE NUMBERS

In this section we briefly present the most striking aspects

of the BdG theory, which shall be applied to dipolar Bose

gases in the following sections. Thereby, we emphasize the

peculiarities which come about due to the nonlocal and

anisotropic character of the DDI.

A. General formalism

Consider a gas of N bosonic particles with mass M

possessing a finite dipole moment at zero temperature. For

definiteness, we consider the dipoles to be aligned along

the z axis. In this case, the interaction potential has a

contact component Vδ(x) = gδ(x), with the coupling constant

g being related to the s-wave scattering length as through

g = 4πh̄2as/M , and a DDI component which reads

Vdd(x) =
Cdd

4π |x|3

(

1 − 3
z2

|x|2

)

. (1)

In the case of magnetic dipoles, the dipolar interaction strength

Cdd is characterized by Cdd = μ0m
2, with μ0 being the

magnetic permeability in vacuum and m the magnetic dipole

moment, whereas for electric dipoles we have Cdd = d2/ǫ0

with the electric dipole moment d (in Debyes) and the vacuum

permittivity ǫ0. As a whole, it is convenient to write the

resulting interaction potential as

Vint(x) = g

[

δ(x) +
3ǫdd

4π |x|3

(

1 − 3
z2

|x|2

)]

, (2)

with ǫdd = Cdd/3g denoting the relative interaction strength.

It is also convenient to introduce the dipolar length add =
CddM/12πh̄2 as a measure of the absolute dipolar strength, so

that the relative interaction strength reads ǫdd = add/as.

To study the dipolar system within the BdG theory, we

consider the total Hamiltonian Ĥ = Ĥ0 + Ĥint, which consists

of a free and an interaction contribution. In general, the

noninteracting part contains the kinetic and the trapping energy

Ĥ0 =
∫

d3x �̂†(x)h0(x)�̂ (x), (3)

where �̂†(x) and �̂ (x) denote the usual bosonic creation and

annihilation operators, respectively, and we have introduced

the abbreviation

h0(x) = −
h̄2∇2

2M
+ Utr(x). (4)

Moreover, the interaction is included through

Ĥint =
1

2

∫

d3x

∫

d3x ′�̂†(x)�̂†(x′)Vint(x − x′)�̂ (x′)�̂ (x),

(5)

where Vint(x) is given explicitly by Eq. (2). We imple-

ment the BdG theory by diagonalizing the grand-canonical

Hamiltonian Ĥ ′ = Ĥ − μN̂ , with the number operator N̂ =
∫

d3x �̂†(x)�̂ (x) and the chemical potential μ. This is done by

means of the Bogoliubov prescription �̂ (x) = �(x) + δψ̂ (x),

where the classical field �(x) represents the number N0

of condensate particles via N0 =
∫

d3x �†(x)� (x), and the

operator δψ̂ (x) accounts for the quantum fluctuations.

By inserting the Bogoliubov prescription into the grand-

canonical Hamiltonian, one can separate the contribution of the

condensate and that of the quantum fluctuations order by order

in the fluctuation operator δψ̂ (x). Restricting the expansion to

the zeroth order leads to the Gross-Pitaevskii equation

�(x) μ = [h0(x) + g|� (x)|2 + �dd(x)]�(x), (6)

where the dipolar mean-field potential reads

�dd(x) =
∫

d3x ′ Vdd(x − x′)|� (x′)|2. (7)

The Gross-Pitaevskii equation (6) is the main tool in order

to investigate mean-field properties of BECs. Although it

can only be applied at very low temperatures and weak

interactions, to date it has been able to account for all

experimental results obtained with dipolar BECs.

As the interaction becomes stronger, one has to include the

effects of quantum fluctuations. In order to do so, one first

carries out the expansion of the grand-canonical Hamiltonian

up to the second order in the fluctuations. Then, following

de Gennes [35], one introduces the expansion of the quantum
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fluctuations

δψ̂ (x) =
∑

ν

′
[Uν(x)α̂ν + V∗

ν (x)α̂†
ν], (8)

where the creation and annihilation operators α̂†
ν and α̂ν also

satisfy bosonic commutation relations and the Bogoliubov

modes are denoted through the index ν. Here, it is important

to exclude the ground state |0〉, which is defined by α̂ν |0〉 = 0,

from the sum. This is denoted by the prime after the summation

sign. Moreover, it is worth noting that this expansion represents

a canonical transformation if the Bogoliubov amplitudes Uν(x)

and Vν(x) satisfy the condition
∫

d3x[U∗
ν (x)Uν ′(x) − V∗

ν (x)Vν ′ (x)] = δν,ν ′ , (9)

which we shall, therefore, impose. Then, the resulting Hamilto-

nian will be diagonal, if the functions satisfy the BdG equations

[εν − HFl(x)]Uν(x) =
∫

d3y Vint(x − y)[� (y)� (x)Vν(y)

+�∗(y)� (x)Uν(y)],

−[εν + HFl(x)]Vν(x) =
∫

d3yVint(x − y)[�∗(y)�∗(x)Uν(y)

+� (y)�∗(x)Vν(y)], (10)

where εν denotes the excitation energy of mode ν. In the

equations above, we have introduced the definition of the

fluctuation Hamiltonian density according to

HFl(x) = h0(x) − μ +
∫

d3y �∗(y)Vint(x − y)� (y). (11)

After diagonalizing the Hamiltonian, one can determine

the number of particles in the many-body ground state |0〉 via

N = 〈0|N̂ |0〉, which decomposes according to

N = N0 +
∑

ν

′
∫

d3x V∗
ν (x)Vν(x). (12)

Thus, the total number of particles is a sum of the condensed

and excited particles. The latter are moved from the one-

particle ground state to one-particle excited states due to the

interaction, thereby depleting the condensate.

Due to the depletion of the condensate, we have N �= N0

and the chemical potential in Eq. (6) must be corrected in

order to assure the conservation of N . This correction will be

discussed later on for both homogeneous and harmonically

trapped gases. For the moment, let us note that including such

a correction in Eq. (10) through Eq. (11), is not necessary, as

it would amount to higher order terms in the fluctuations.

It should be also noted, that the ground state obtained under

consideration of the quantum fluctuations differs from that

of the Gross-Pitaevskii theory. More precisely, evaluating the

expectation value of the Hamiltonian 〈Ĥ 〉 = E by taking into

account the condensate depletion rule (12), one finds that the

ground-state energy is shifted to

E =
∫

d3x
√

n(x)

{

h0(x) +
1

2

∫

d3x ′ Vint(x − x′)n(x′)

}

√

n(x)

+�E, (13)

where the first term is identical with the GP mean-field

energy but with the condensate density n0(x) = �∗(x)� (x)

being replaced by the total number density n(x) = n0(x) +
∑

νV
∗
ν (x)Vν(x). The energy shift reads

�E =
1

2

∑

ν

′
{

εν −
∫

d3x[U∗
ν (x)HFl(x)Uν(x)

−V∗
ν (x)HFl(x)Vν(x)] −

∫

d3x ′
∫

d3x Vint(x − x′)

×�∗(x′)� (x)[U∗
ν (x)Uν(x′) − V∗

ν (x)Vν(x′)]

}

. (14)

Later on, we will use this correction to the ground-state energy

(14) as the starting point to determine the effects of quantum

fluctuations upon BECs.

In the general form presented here, the BdG theory is

difficult to apply as the BdG equations are complicated to solve

even numerically for a dipolar Bose gas due to the nonlocality

of the DDI [36]. Nevertheless, it is possible to find analytic

approximate solutions in cases of special experimental interest.

B. Thomas-Fermi regime

The BdG equations can be used to investigate the excitations

of a Bose gas all the way from the harmonic oscillator regime,

where interactions play no role, up to the Thomas-Fermi

regime, where the interaction energy is much larger than the

kinetic energy. In this paper, we are interested in the latter

regime of a large number of particles and strong interactions,

where the kinetic energy of the condensate can be neglected

in comparison with the interaction and trapping energies.

Thus, inside the condensed region, the time-independent

Gross-Pitaevskii equation (6) assumes the following form:

μ = Utr(x) + gn0(x) + �dd(x). (15)

Indeed, the BdG equations (10) must be considered separately

inside and outside the condensate. However, the solution for

the external region implies Vν(x) = 0. As a consequence of

that, both the depletion and the correction to the ground-state

energy vanish identically in this region. For this reason,

we restrict our study to the condensate region. Under these

circumstances, the BdG equations (10) reduce with (15) to
[

εν +
h̄2∇2

2M

]

Uν(x) =
∫

d3y Vint(x − y)[� (y)� (x)Vν(y)

+�∗(y)� (x)Uν(y)],

−
[

εν +
h̄2∇2

2M

]

Vν(x) =
∫

d3y Vint(x − y)[�∗(y)�∗(x)Uν(y)

+� (y)�∗(x)Vν(y)]. (16)

In the following sections, we will solve this set of coupled

equations analytically for the case of a homogeneous dipolar

Bose gas and that of harmonically trapped gas within the

semiclassical approximation.

III. HOMOGENEOUS DIPOLAR BOSE GASES

Even though homogeneous cold atomic systems cannot be

realized experimentally, their study is of large importance.

The reason for this is that these systems serve as a prototype
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for the experimentally relevant trapped cold atomic systems

and often lead to the correct physical intuition with respect to

their properties. Therefore, we start the application of the BdG

theory by considering that the gas is enclosed in a volume V

and that the field � is independent of position x. Therefore, the

mean-field value of the chemical potential is given according

to Eq. (15) by

μ = n0 lim
k→0

Ṽint (k) , (17)

where the Fourier transform of the interaction potential (2) is

written as [37]

Ṽint(k) = g[1 + ǫdd(3 cos2 θ − 1)] (18)

with θ being the angle between the vector k and the

polarization direction. Thus, in the present approximation,

the chemical potential for a homogeneous dipolar Bose gas

is not uniquely defined due to the anisotropy of the DDI in

three spatial dimensions. We argue that this nonuniqueness

of the chemical potential represents a real physical property

of the system. To this end we recall that the chemical

potential corresponds to the energy which is needed to bring

an additional particle from infinity to the already existing

particle ensemble. For a homogeneous polarized dipolar Bose

gas it physically matters whether this additional particle is

transported from infinity parallel or perpendicular to the

polarized dipoles. This particular angular dependence of the

chemical dependence in (17) and (18) has even observable

consequences, which we will discuss below. For the moment,

let us note that, for a quasi-two-dimensional dipolar system

with the dipoles oriented perpendicular to the plane, the dipolar

potential has a well-defined value at the origin k = 0 [38].

Moreover, notice that, for an inhomogeneous gas, the issue

concerning the chemical potential is not present, as it is

unambiguously fixed by Eq. (6).

A. Bogoliubov spectrum and amplitudes

Due to translation invariance, momentum is a good quantum

number, so the excitations can be labeled with the wave vector

k. In this case, the Bogoliubov equations (16) turn out to be

algebraic in Fourier space and read

εkUk =
h̄2k2

2M
Uk + n0Ṽint (k) [Uk + Vk] ,

−εkVk =
h̄2k2

2M
Vk + n0Ṽint (k) [Uk + Vk] . (19)

Suitable algebraic manipulations allow one to solve for both

the Bogoliubov amplitudes

V2
k =

1

2εk

[

h̄2k2

2M
+ n0Ṽint (k) − εk

]

(20)

and the Bogoliubov spectrum [39]

εk =

√

h̄2k2

2M

{

h̄2k2

2M
+ 2gn0[1 + ǫdd(3 cos2 θ − 1)]

}

.

(21)

Notice that, due to the condition (9), the amplitudes are

completely characterized by Eq. (20).

The Bogoliubov spectrum allows one to immediately study

the low-momenta properties of the system. Indeed, the sound

velocity can be obtained by taking the limit k → 0 of the

spectrum. Again, the anisotropy of the DDI renders the limit

dependent on the direction of the vector k, as its modulus

tends to zero. For this reason, the sound velocity acquires a

dependence on the propagation direction, which is fixed by

the angle θ between the propagation direction and the dipolar

orientation, and reads

c(θ ) =
√

gn0

M

√

1 + ǫdd(3 cos2 θ − 1). (22)

This anisotropy of the sound velocity in dipolar Bose gases

has recently been addressed and confirmed experimentally by

the Paris group led by Gorceix [40]. By means of a Bragg-

spectroscopy analysis, the Paris group was able to measure

the sound velocity for a chromium condensate in two different

configurations: one with θ = 0 and another one having θ =
π/2. As their BEC is not homogenous, they had to rely on the

LDA to interpret their experimental results and found good

agreement with the predictions of a linear response theory

based on the Bogoliubov approach.

Result (22) for the speed of sound represents the physics of

the k = 0 mode as obtained from the Bogoliubov theory. At

this point, it is important to note that, for ǫdd > 1, the sound

velocity may become imaginary depending on the direction

of propagation. This instability of the system is an important

characteristic of dipolar Bose gases which resembles the case

of isotropic systems with attractive interactions [39].

B. Condensate depletion

Let us now study the number of particles expelled from

the ground state by the interactions, i.e., the condensate

depletion. As we are concerned with the thermodynamic limit,

the quantum numbers become continuous variables and the

summations can be replaced by integrals according to the

prescription [41]

∑

k

′
→ V

∫

d3k

(2π )3
. (23)

Under these conditions, one finds that the condensate depletion

is proportional to the square root of the gas parameter na3
s , and

recalling Eq. (12), one finds [42]

N − N0

N
=

8

3
√

π

(

na3
s

)1/2
Q3(ǫdd). (24)

The contribution of the DDI is expressed by the functionQ3(x),

which, for 0 � x � 1, is the special case l = 3 of

Ql(x) = (1 − x)l/2
2F1

(

−
l

2
,
1

2
;

3

2
;

3x

x − 1

)

. (25)

Here, 2F1(α,β; γ ; z) represents the hypergeometric function

[43]. In Fig. 1 we plot the functions Ql(x) for l = 3 and l = 5

against x. It is worth noting that the functionsQ3(x) andQ5(x)

become imaginary for x > 1. Indeed, for ǫdd > 1 the dipolar

interaction, which is partially attractive, dominates over the

repulsive contact interaction leading to the collapse of the

condensate [4].
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Ql(x)

x

FIG. 1. (Color online) Functions Q3(x) (lower, red curve) and

Q5(x) (upper, blue curve), which govern the dependence of the

condensate depletion and the ground-state energy correction on the

relative dipolar interaction strength x = ǫdd, respectively.

For a condensate with pure contact interaction, this quantum

depletion has never been observed due to difficulties in

measuring the condensate density with sufficient accuracy

and at low enough temperature. Including the dipole-dipole

interaction only slightly increases the condensate depletion

as given by formula (24). Indeed, for the maximal relative

interaction strength ǫdd ≈ 1, the condensate depletion can be

about 30% larger than in the case of pure contact interaction, so

that the most important quantity remains the s-wave scattering

length as . Nonetheless, the establishment of Eq. (24) is an

important result from the theoretical point of view as it

clarifies how the condensate depletion depends on the relative

interaction strength ǫdd.

C. Ground-state energy and equation of state

Correspondingly, the presence of quantum fluctuations also

leads to a correction of the ground-state energy of a dipolar

Bose gas. Indeed, the total energy is now

E =
1

2
n2Ṽint (|k| = 0) +

1

2
V

∫

d3q

(2π )3

[

εq −
h̄2q2

2M

− nṼint (q)

]

, (26)

which cannot be calculated immediately, as the last integral

is ultraviolet divergent. However, this can be repaired by

calculating the scattering amplitude at low momenta up to

second order in the scattering potential Ṽint (k) according

to [44]

4πh̄2a (|k| = 0)

M
= Ṽint (|k| = 0)

−
M

h̄2

∫

d3q

(2π )3

Ṽint (−q) Ṽint (q)

q2
+ · · · .

(27)

Notice that the scattering length a (|k| = 0) may be

anisotropic, as is the case for the DDI, as its value may depend

on the direction in which the momentum vector goes to zero.

Setting this direction by the angle θ between the momentum

and the z direction and rewriting the total energy in terms of

the scattering length a (θ ) one has

E =
1

2
n2 4πh̄2as

M
[1 + ǫdd(3 cos2 θ − 1)] + �E, (28)

where the s-wave scattering length as has been renormalized

by the isotropic result of the integral in Eq. (27) and the θ -

dependent part contains all partial waves [45]. The correction

to the ground-state energy �E is now given by

�E =
1

2
V

∫

d3q

(2π )3

[

εq −
h̄2q2

2M
− nṼint (q)

+
Ṽ 2

int (q)

q2

2Mn2

h̄2

]

. (29)

The last term in the integral above has the property of removing

the divergent part of the energy shift (14), so that the final result

reads

�E = V
2πh̄2asn

2

M

128

15

√

a3
s n

π
Q5(ǫdd), (30)

with the auxiliary function Q5(ǫdd) describing the dipolar

enhancement of the correction (see Fig. 1). Notice from Fig. 1

that Q5(x) varies from Q5(0) = 1 up to Q5(1) ≈ 2.60, so

that the effect of the DDI is more significant for the energy

correction (30) than for the condensate depletion (24) and

offers, therefore, better chances for experimental observation.

By differentiating the energy correction (30) with respect

to the particle number, one obtains the beyond mean-field

equation of state

μ = n
4πh̄2as

M
[1 + ǫdd(3 cos2 θ − 1)]

+
32gn

3

√

a3
s n

π
Q5(ǫdd). (31)

In the case of a Bose gas with pure contact interaction, i.e., for

ǫdd = 0, this equation reduces to the seminal Lee-Huang-Yang

quantum corrected equation of state [47].

It is worth noting that, while the leading term in Eq. (31) is

anisotropic, in the sense that its value depends on the direction

in which the limit k → 0 is carried out, the subleading

contribution from the quantum fluctuations is isotropic. The

reason for this is as follows. As it accounts for the condensate,

the leading term is evaluated at k → 0 and is, therefore, subject

to the anisotropy in Ṽint (k), which is peculiar to the DDI.

The second term, however, accounts for excitations with all

k �= 0 wave vectors. Therefore, it contains an integral over all

the k modes, which removes any possible dependence on the

momentum direction.

D. Dipolar superfluid hydrodynamics

Now that we have calculated the quantum correction to the

equation of state, the corresponding correction to the sound

velocity can be obtained by linearizing the superfluid hydro-

dynamic equations [48] around the equilibrium configuration.

Consider, to this end, the continuity equation

∂n(x,t)

∂t
+ ∇ · [n(x,t)v(x,t)] = 0, (32)
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where v(x,t) is the velocity field, together with the Euler

equation

M
∂v(x,t)

∂t
= −∇

[

M

2
v(x,t)2 + μ(n(x,t))

]

. (33)

Linearizing these equations according to n(x,t) = n + δn(x,t)

and assuming that the density oscillations have the plane-wave

form δn(x,t) ∝ ei(k·x−�t), one obtains the corrected sound

velocity

c(θ )

cδ

=

√

1 + ǫdd(3 cos2 θ − 1) +
16

√

a3
s nQ5(ǫdd)
√

π
, (34)

with cδ =
√

gn/M . Notice that (34) represents the extension

of the Beliaev result for the sound velocity of Bose gases with

short-range interactions [49] in order to include the DDI. The

Beliaev sound velocity is usually displayed by expanding the

square root with ǫdd = 0 in powers of the gas parameter a3
s n.

Here, we prefer the form (34) because it is well defined for all

directions and for all values of the relative interaction strength

satisfying ǫdd � 1.

Notice that, in order to recover the mean-field sound

velocity (22) as it was given within the Bogoliubov theory,

the limit involved in deriving Eq. (31) was taken along the

direction of the sound propagation. Indeed, the linearized

hydrodynamic equations do capture the low-momenta physics

and must, therefore, match the Bogoliubov result at k → 0.

Without this mechanism, one could not retrieve the now

experimentally confirmed anisotropy of the mean-field sound

velocity [40].

Let us discuss the sound propagation for typical experimen-

tal values of the gas parameter a3
s n ≈ 10−4 of dipolar systems

such as chromium [3]. The sound velocity as a function of

the angle between the propagating wave and the dipole axis is

plotted in units of cδ in Fig. 2 for ǫdd = 0.6 in light gray (red)

and ǫdd = 1 in dark gray (blue). The continuous and dashed

curves denote the quantum corrected and the mean-field

velocities, respectively. The mean-field sound velocity for

ǫdd = 1 vanishes at θ = π/2. This is the signature of the

instability of the system, as the partially attractive dipolar

c(θ)
cδ

θ
π

2

π

FIG. 2. (Color online) Comparison between the sound velocities

in the mean-field approximation (22), plotted in dashed curves, and

its quantum corrected version (34), represented here in solid curves.

The light gray (red) and the dark gray (blue) curves are for ǫdd = 0.6

and ǫdd = 1, respectively.

interaction dominates over the repulsive contact interaction

for ǫdd � 1. Including quantum fluctuations renders the sound

velocity nonvanishing at this value of the interaction strength

and propagation angle. The stability limit remains, however,

unaltered due to the fact that the function Q5(ǫdd) becomes

imaginary for ǫdd > 1.

Let us note that, for ǫdd = 1 and θ approaching the value

π/2, the quantum corrections dominate over the mean-field

contribution, and the present theory becomes less accurate. As

this point marks the instability of the system, this behavior is

a natural one. For values of either ǫdd or θ departing from this

instability threshold, the mean-field contribution dominates

and the theory becomes accurate again. This is reminiscent

of the Bogoliubov theory for a gas with contact interaction,

which breaks down for negative s-wave scattering lengths.

IV. HARMONICALLY TRAPPED DIPOLAR BOSE GASES

In this section we discuss the case of a harmonically trapped

dipolar Bose gas, i.e., particles under the influence of the

potential

Utr(x) =
M

2

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

, (35)

where ωi denotes the trapping frequency in the i direction. Due

to the spatial dependence of the trapping potential (35), the

system is no longer translationally invariant and momentum is

not a good quantum number anymore. Nonetheless, by means

of the semiclassical and LDAs, we will be able to derive

analytical expressions for the physical quantities of interest

such as, for instance, the condensate depletion and the equation

of state. On top of that, we will investigate the influence of the

quantum fluctuations upon the equilibrium configuration and

the low-lying excitations of the system.

A. Semiclassical and local density approximations

Let us start by implementing the semiclassical approxima-

tion to the nonlocal BdG theory. This can be done through the

substitutions [41,50]

εν → ε (x,k) ,

Uν → U (x,k) eik·x,

Vν → V (x,k) eik·x, (36)

where the functions U (x,k) and V (x,k) are slowly varying

functions of the position x.

Within this semiclassical approximation, the BdG equations

(16) become

[

ε (x,k) −
h̄2k2

2M

]

U (x,k)

=
√

n0(x)

∫

d3x ′ Vint(x − x′)
√

n0(x′)[V (x′,k)

+U (x′,k)]eik·(x′−x),

−
[

ε (x,k) +
h̄2k2

2M

]

V (x,k)

=
√

n0(x)

∫

d3x ′ Vint(x − x′)
√

n0(x′)[V (x′,k)

+U (x′,k)]eik·(x′−x). (37)
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The next step in order to solve the BdG equations (37) is to

use the LDA for deriving a local term for the nonlocal dipolar

interaction between the condensate and the excited particles.

Denoting either Bogoliubov amplitude U (x,k) or V (x,k) by

q (x,k), the nonlocal term can be written in the semiclassical

approximation according to

Inl(x,k) =
√

n0(x)

∫

d3x ′ Vint(x − x′)
√

n0(x′)q(x′,k)eik·(x−x′).

(38)

Under the LDA, this term reduces to

Inl (x,k) ≈ ξ (x,k) q (x,k) , (39)

together with the abbreviation

ξ (x,k) = gn0(x)[1 + ǫdd(3 cos2 θ − 1)]. (40)

It is important to point out that the semiclassical procedure

applied here can be justified within a systematic gradient

expansion in the Wigner representation, where the local

density approximation is shown to be the leading contribution

[50]. This has the important consequence that systematic

quantum corrections to the leading semiclassical term can be

implemented, as in the case of the Thomas-Fermi model for

heavy atoms [51]. Moreover, it also allows for estimating the

range of validity of the LDA as explained in the Appendix.

By means of the LDA, the BdG equations (16) become

simple algebraic ones, as in the homogeneous case. Therefore,

the Bogoliubov spectrum can be obtained in the usual way and

reads

ε2 (x,k) = ε2
LDA (x,k) − ξ 2 (x,k) , (41)

together with the definition of the LDA energy

εLDA (x,k) =
h̄2k2

2M
+ ξ (x,k) . (42)

Moreover, the semiclassical Bogoliubov amplitudes are given

by

V2 (x,k) =
1

2

[

εLDA (x,k)

ε (x,k)
− 1

]

. (43)

We can now explore the effects of quantum fluctuations

on interesting physical quantities such as the Bogoliubov

depletion, the corrections to the ground-state energy, and the

chemical potential.

B. Condensate depletion, ground-state energy,

and equation of state

Under the LDA, the depletion density reads

�n(x) =
8

3

√

n(x)3a3
s

π
Q3(ǫdd). (44)

Notice that the DDI enters this equation both directly, through

the function Q3(ǫdd), and indirectly, as it also determines the

gas density n(x). Let us assume that the gas takes the shape of

an inverted parabola with Thomas-Fermi radii Rx , Ry , and Rz,

which represents the mean-field solution in the Thomas-Fermi

regime [11,12], i.e., that the gas density is given by

n(x) = n(0)

[

1 −
x2

R2
x

−
y2

R2
y

−
z2

R2
z

]

, (45)

wherever this expression is positive and vanishes otherwise.

In this case, the total depletion reads

�N

N
=

5
√

π

8

√

n(0)a3
sQ3(ǫdd). (46)

From Eq. (46) one identifies the gas parameter at the trap

center, i.e., n(0)a3
s , as being decisive for the observation of

the depletion in Bose gases. As for the dipolar contribution

to the depletion, one should notice that increasing ǫdd up to

the limit of stability of the ground state might increase the

condensate depletion by only about 30% (see Fig 1). Thus,

any experimental observation seems quite difficult.

Better prospects for an experimental observation of beyond

mean-field effects are provided by the dipolar quantum

correction to the ground-state energy. Indeed, the dipolar

dependence of the energy density correction

�E(x) =
64

15
gn(x)2

√

n(x)a3
s

π
Q5(ǫdd) (47)

is controlled directly by the function Q5(ǫdd) (see Fig. 1).

For the sake of completeness, we shall also present the total

correction for a parabolic condensate

�E =
5
√

π

8
gn(0)

√

n(0)a3
sQ5(ǫdd). (48)

In the following we shall see that the energy correction (48)

can be used for studying both the static and the dynamic

properties of the system beyond the mean-field approximation.

Equivalently, one can also use the quantum corrected equation

of state of a dipolar Bose gas for this purpose. It can be obtained

by differentiating the energy density with respect to the number

density and reads

μ = Utr(x) + gn(x) + �dd(x)

+
32

3
gn(x)

√

n(x)a3
s

π
Q5(ǫdd). (49)

This equation obviously reduces to (31) in the case of a

homogeneous system. It also shows that there is no ambiguity

in the chemical potential of a trapped system due to lack

of translational invariance. Nonetheless, as in the case of

a homogeneous system, only the mean-field contribution is

anisotropic owing to the dipolar potential �dd(x), whereas

the quantum correction, given by the last term in (49), is

isotropic. The quantum correction remaining isotropic for a

trapped system is an artifact of the LDA, as is explained in

detail in the Appendix.

C. Variational approach to dipolar superfluid hydrodynamics

Superfluidity is characterized by the existence of an

order parameter � =
√

neiχ whose modulus accounts for

the superfluid density n and whose phase χ accounts for the

superfluid velocity. Therefore, it is possible to write down an

063609-7



A. R. P. LIMA AND A. PELSTER PHYSICAL REVIEW A 86, 063609 (2012)

action in the form [52]

A[n,χ ] = −
∫

dt d3x n

{

M

[

χ̇ +
1

2
∇χ2

]

+ e[n]

}

,

(50)

if one identifies the velocity with the gradient of the phase χ

according to v = ∇χ . In our case, the energy density e [n] is

composed of a mean-field energy density

eMF = Utr(x) +
g

2
n(x,t) +

∫

d3x ′

2
Vdd(x − x′)n(x′,t) (51)

and a quantum correction

eQ =
64

15
gn(x,t)

√

n(x,t)a3
s

π
Q5(ǫdd). (52)

As a matter of fact, extremizing the action (50) with respect

to the phase χ (x,t) and the density n(x,t) leads to the

continuity and the Euler equations (32) and (33), respectively.

Therefore, this action contains all the elements that one needs

in order to investigate the hydrodynamic properties of the

system. However, there is a simpler and more efficient way

of performing these studies than solving the aforementioned

equations. Indeed, by choosing a special Ansatz for the

superfluid phase and density, one can address the physical

properties of interest. This technique, slightly modified to

include the Fock exchange term, has been applied before

to study the hydrodynamics of dipolar Fermi gases both in

cylinder-symmetric [53] and in triaxial traps [54].

We proceed with the extremization of the action by adopting

a harmonic Ansatz for the velocity potential

χ (x,t) = 1
2
αx(t)x2 + 1

2
αy(t)y2 + 1

2
αz(t)z

2, (53)

where the parameter αi controls the expansion velocity of

the cloud in the ith direction. Moreover, we use an inverted

parabola as an Ansatz for the particle density, which is given

by

n(x,t) = ñ0(t)

[

1 −
x2

R2
x(t)

−
y2

R2
y(t)

−
z2

R2
z (t)

]

, (54)

wherever the right-hand side is positive and vanishes other-

wise. Due to normalization, the Thomas-Fermi radii are related

to the quantity ñ0(t) through

ñ0(t) =
15N

8πR
3
(t)

, (55)

with the geometrical mean R
3 = RxRyRz. In order to render

the notation more concise, the arguments of the functions are

sometimes omitted, as long as no confusion can arise.

By inserting the Ansätze (53) and (54) into the action

(50), one obtains the action as a function of the variational

parameters, which allows one to derive the corresponding

Euler-Lagrange equations of motion. First, we obtain the

equations for the phase parameters to be αi(t) = Ṙi(t)/Ri(t).

Then, with their help, we derive the equations of motion for

the Thomas-Fermi radii of a dipolar Bose gas beyond the

mean-field approximation. In the general case of a triaxial trap

the equation for the Thomas-Fermi radius in the ith direction

reads

R̈i = −ω2
i Ri +

15gN

4πMRiR
3

{

di(Rx,Ry,Rz,ǫdd)

+
β(ǫdd)

R
3/2

}

. (56)

Here, we have introduced the abbreviation

di = 1 − ǫdd

[

1 − Ri∂Ri

]

f

(

Rx

Rz

,
Ry

Rz

)

. (57)

It includes the anisotropy of the DDI as expressed through the

function

f (x,y) = 1 + 3xy
E (ϕ,k) − F (ϕ,k)

(1 − y2)
√

1 − x2
, (58)

where F (ϕ,k) and E (ϕ,k) are the elliptic integrals of the

first and second kind, respectively, with the arguments k2 =
(1 − y2)/(1 − x2) and ϕ = arcsin

√
1 − x2 [43]. It is worth

noting that the representation (58) is valid for 0 � x � y � 1.

For other regions of the Cartesian plane, it has to be analytically

continued [55]. For more information on the anisotropy

function (58), see Refs. [2,53,56].

The quantum fluctuations are accounted for by the last term

in Eq. (56) and their influence is characterized by the function

β(ǫdd) = γQ5(ǫdd)a3/2
s N1/2, (59)

where the numerical constant γ reads

γ =
√

33 × 53 × 72

213
≈ 4.49. (60)

In their absence, the mean-field triaxial equations of motion

of Ref. [2], which were first derived in cylinder-symmetric

form [11], are recovered from (56).

The beyond mean-field equations of motion (56) represent

the main result of the present paper. They allow us to

investigate the effects of quantum fluctuations in a dipolar

condensate in a triaxial harmonic trap. Indeed, solving these

equations exactly is both difficult and unnecessary, due to

the fact that the quantum corrections only have the particular

form presented here, if they are small. For this reason, in the

following, we will treat all the β terms as small and calculate

the physical quantities perturbatively only up to first order in

β.

V. CYLINDER-SYMMETRIC TRAPPING POTENTIAL

In practice, most experiments are carried out with the

dipoles aligned along one of the symmetry axes, which we

take to be the z axis. In the following we only consider traps

which can be taken as cylinder symmetric to a very good

approximation with respect to the orientation of the dipoles.

For this reason, it is important to study this case carefully. To

this end, we notice that the symmetry of the problem yields

Ry = Rx and we have to take into account the properties of the

anisotropy function (58) in the particular case f (x,x) = fs(x),

which is given by [12,54,57]

fs(x) =
1 + 2x2

1 − x2
−

3x2 tanh−1
√

1 − x2

(1 − x2)3/2
. (61)
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We note that (61) is valid for 0 � x � 1 and must be

analytically continued for x > 1.

The corresponding equations of motion (56), in this case,

reduce to

R̈x = −ω2
xRx +

15gN

4πMR3
xRz

[

1 − ǫddA

(

Rx

Rz

)

+
β(ǫdd)

RxR
1/2
z

]

,

R̈z = −ω2
zRz +

15gN

4πMR2
xR

2
z

[

1 + 2ǫddB

(

Rx

Rz

)

+
β(ǫdd)

RxR
1/2
z

]

, (62)

where we have introduced the auxiliary functions A and B.

They depend only on the aspect ratio Rx/Rz and read

A (x) = 1 +
3

2

x2fs (x)

x2 − 1
, B (x) = 1 +

3

2

fs (x)

x2 − 1
. (63)

A. Static properties

Let us first consider the effects of the beyond mean-field

corrections on the stability of the system. It has been shown

some time ago by means of a thorough mean-field analysis

that a stable ground state only exists for trapped dipolar

condensates if the value of the relative interaction strength lies

within the range 0 � ǫdd � 1 [12]. For values of ǫdd larger than

1, the ground state is, at best, metastable. Quantum fluctuations

cannot alter this as their calculation within the Bogoliubov

theory amounts to performing an expansion up to second order

in the fluctuations of the field operators around their mean-field

values. Such an expansion can only be carried out if the

corresponding ground state is stable. Therefore, the effects of

quantum fluctuations on the properties of a dipolar condensate

are only physically meaningful as long as 0 � ǫdd � 1, and this

is clearly pointed out by the fact that both functions Q3(ǫdd)

and Q5(ǫdd) become imaginary for ǫdd > 1.

As we discussed above, the most appropriate manner to

study the effects of beyond mean-field corrections in Eq. (62)

is to perform an expansion around the mean-field solution in

powers of β. To that end, we adopt the Ansatz

Rx = R0
x + δRx, Rz = R0

z + δRz, (64)

with R0
i being the mean-field Thomas-Fermi radius and δRi

being a correction of the order β, which is obtained by

solving the static versions of (62) to first order in β. Since

all the quantities involved are functions of the Thomas-Fermi

radii, the static properties of the system can be investigated

by evaluating the corresponding correction. Consider, for

example, the beyond mean-field aspect ratio

κ ≡
Rx

Rz

= κ0 (1 + δκ) . (65)

Using (62) with the left-hand side set to zero, one first obtains

for the mean-field aspect ratio the following transcendental

equation [12]

(κ0)2 = λ2 1 − ǫddA(κ0)

1 + 2ǫddB(κ0)
. (66)

Then, by proceeding in the same way with (62) up to first order

in β, the beyond mean-field correction of the aspect ratio is

found:

δκ =
δ̃κ(λ2 − κ2)(1 − ǫddA)Q5(ǫdd)

2 + ǫdd[2(2 − Rz∂Rz
)B − (2 + Rz∂Rz

)A] − 2ǫdd
2[A(1 − Rz∂Rz

)B + B(1 + Rz∂Rz
)A]

∣

∣

∣

∣

κ=κ0

, (67)

where the right-hand side is a function of the aspect ratio eval-

uated at its mean-field value. Moreover, we have introduced

the quantity

δ̃κ =
105

√
π

32

√

a3
s n(0), (68)

which sets the scale for the correction δκ of the aspect ratio.

From (67) one recognizes that in the case of a nondipolar

Bose gas, for which κ0 = λ holds according to (66), the aspect

ratio is not altered by the quantum corrections: Though both

Thomas-Fermi radii Rx and Rz are affected by the quantum

corrections, owing to the isotropy of the contact interaction,

one has δRx/R
0
x = δRz/R

0
z , so that δκ vanishes. In Fig. 3, we

plot the same correction as a function on the relative interaction

strength ǫdd at a fixed trap aspect ratio λ. The lower (blue)

curve is for λ = 1.00, the middle (red) one for λ = 0.75, and

the upper (green) one for λ = 0.50. For a vanishing dipolar

interaction, the condensate aspect ratio is not affected by

δκ

δ̃κ

dd

FIG. 3. (Color online) Relative correction to the aspect ratio δκ

in units of δ̃κ as a function of ǫdd. The lower (blue) curve corresponds

to λ = 1.00, while the middle (red) one stands for λ = 0.75 and the

upper (green) curve is for λ = 0.5.
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δκ

δ̃κ

λ

FIG. 4. (Color online) Relative correction to the aspect ratio δκ

in units of δ̃κ as a function of λ. The lower (green) curve corresponds

to ǫdd = 0.89, while the middle (blue) one represents ǫdd = 0.95, and

the upper (red) curve is for ǫdd = 0.97.

the quantum fluctuations, as we have discussed above. For

increasing relative interaction strength ǫdd, however, a nonva-

nishing correction shows up. When approaching the critical

value ǫdd = 1, above which the correction to the ground-state

energy due to quantum fluctuations becomes imaginary, the

correction to the aspect ratio remains finite though very large.

This is a signal of the system becoming unstable.

Due to the presence of the dipole-dipole interaction, the role

played by the trap anisotropy becomes an important feature of

the aspect ratio correction. To exemplify this, we show in

Fig. 4 the correction to the gas aspect ratio δκ/δ̃κ as a function

of the trap aspect ratio λ for different values of the relative

interaction strength ǫdd. Notice that the effect is larger for

prolate (cigarlike) traps and becomes smaller and smaller for

oblate (pancakelike) traps.

In order to estimate the importance of the quantum correc-

tion to the aspect ratio, let us adopt the experimental values

of the average trap frequencies and number of condensed

particles from the 52Cr experiment reported in Ref. [3]. In

that case, the gas parameter at the center of the trap is such

that the unit of the variation of the aspect ratio is δ̃κ ≈ 0.05.

This renders the observation quite difficult, as the aspect ratio

variation would only become appreciable at large values of

ǫdd. For stronger magnetic systems, the situation is different.

The s-wave scattering length of dysprosium, for example, is

presently under investigation and there is evidence that it could

be smaller than add = 133a0 [16]. In this case, one would

have ǫdd > 1 and the present theory could not be applied,

as this configuration would be, at best, metastable. Suppose

that, by means of a Feshbach resonance, the scattering length

of dysprosium could be set to as = 150a0. Then, one would

have ǫdd ≈ 0.89 and, for the same number of particles and trap

frequencies of the recently achieved dysprosium BEC [16] one

would have δ̃κ ≈ 0.11, leading to much better prospects for

observing these beyond mean-field corrections.

B. Hydrodynamic excitations

In this section, we address the question of how the pres-

ence of dipolar interactions modifies the impact of quantum

fluctuations on the low-lying excitations of a Bose gas. We

proceed to calculate the shift in the excitation frequencies

due to quantum fluctuations by separating each of the three

Thomas-Fermi radii as a function of time in two contributions

Ri(t) = Ri(0) + ηi sin(�t + ϕ), (69)

where Ri(0) is the equilibrium value of the radius, ηi represents

a small oscillation amplitude of oscillation, and � is the

oscillation frequency. In addition, ϕ denotes a phase which

is determined by the initial conditions. Notice that, instead of

using from the cylinder-symmetric equations (62), we actually

go back to the triaxial equations (56) and, later on, evaluate

the cylinder-symmetric limit. This procedure is necessary in

order to study the radial quadrupole mode in addition to the

monopole and the quadrupole modes. Then, one arrives at the

eigenvalue problem

∑

j

Oijηj = �2ηi . (70)

In general, the matrix elements satisfy Oij = Oji . Moreover,

since we are only interested in the cylinder-symmetric limit,

we also have Oxx = Oyy and Oxz = Oyz. Thus, we are left

only with the following four independent matrix elements:

Oxx

ω2
x

= lim
y→x

3 +
15gN

4πMω2
x

β

2R2
xR

9/2
−

Rx∂Rx
dx

dx + β

R
3/2

,

Ozz

ω2
z

= lim
y→x

3 +
15gN

4πMω2
z

β

2R2
zR

9/2
−

Rz∂Rz
dz

dz + β

R
3/2

,

Oxy

ω2
x

= lim
y→x

Rx

Ry

+
15gN

4πMω2
x

β

2RxRyR
9/2

−
Rx∂Ry

dx

dx + β

R
3/2

, (71)

Oxz

ω2
x

= lim
y→x

Rx

λRz

+
15gN

4πMω2
x

β

2RxRzλR
9/2

−
Rx∂Rz

dx

dx + β

R
3/2

.

According to prescription (64), the matrix elements Oij in

(70) are also corrected by terms of order β. Therefore, we

write them as

Oij = O0
ij + δOij , (72)

with δOij ∝ β. To obtain the corrected oscillation frequencies

we proceed as before and treat the terms of the order β as a

perturbation. Expanding the corresponding frequencies up to

first order in that term leads, at first, to corrected oscillation

frequencies in the form

� = �0(1 + δ�). (73)

Requiring (70) to have nontrivial solutions leads to three

values of the eigenvalue �2 which correspond to the radial

quadrupole, the quadrupole, and the monopole oscillation

frequencies. In the following, we study the oscillation modes

and discuss the perspectives for observing their corrections

with respect to the mean-field values.

1. Radial quadrupole mode

Let us consider, at first, the eigenvalue of (70) which

corresponds to the radial quadrupole mode. For this mode,

one has ηx = −ηy and ηz = 0. The oscillation frequency of
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this mode is given according to

�rq =
√

Oxx − Oxy . (74)

By evaluating these matrix elements from (71), one obtains the

mean-field radial quadrupole frequency which can be written

as

�0
rq = ωx

√

2 + ǫddhrq(κ0) (75)

with the abbreviation

hrq(κ) =
3

4
κ2 [2(1 − κ2) − (4 + κ2)fs(κ)]

(1 − κ2)2[1 − ǫddA(κ)]
. (76)

Previous studies of the radial quadrupole mode of dipolar

Bose gases have been carried out perturbatively [58] and

also at the mean-field level [59]. Notice that in the case of

a pure contact interaction, i.e., for ǫdd = 0, the mean-field

radial quadrupole frequency does not depend on the geometry

of the system at all. Correspondingly, a quantum correction

can only have its origin at the presence of the DDI. Indeed,

the anisotropy of the dipolar interaction is responsible for

modifying the radial quadrupole frequency according to the

expression

δ�rq =
ǫddω

2
x

2�0
rq

2

{

κδκ
∂

∂κ
−

β

[1 − ǫddA(κ)] R0
3/2

}

hrq(κ)

∣

∣

∣

∣

κ=κ0

,

(77)

which immediately vanishes for nondipolar Bose gases. This

can also be clearly seen from Fig. 5, where the correction δ�rq

is shown in units of

˜δ� =
63

√
π

128

√

a3
s n(0) (78)

as a function of the trap aspect ratio λ. Here, we consider,

for instance, erbium, which has a magnetic dipole moment of

m = 7μB and assume it to have an s-wave scattering length

δΩ
δ̃Ω

λ

FIG. 5. (Color online) Quantum correction to the frequencies of

the low-lying excitations in units of ˜δ� as a function of the trap

aspect ratio λ. The curves displayed in black, light gray (red), and

dark gray (blue) correspond, in turn, to the monopole, quadrupole,

and radial quadrupole oscillations. Moreover, continuous curves are

for the parameter values as = 100a0 and ǫdd = 0.69, whereas dashed

curves represent ǫdd = 0 [60]. In the latter case, the curves do not

depend on as .

about the same as in 52Cr, i.e., as = 100a0, yielding ǫdd ≈ 0.69.

Moreover, we have adopted realistic values for the particle

number and the average trap frequency from Ref. [3], for which

one obtains ˜δ� ≈ 1%. In the absence of the DDI (dashed

curve), the quantum correction to the frequency vanishes,

whereas it is nonzero in its presence (solid curve) and might

amount up to 1% or 2%. This represents a clear signal for

detecting many-body effects stemming from the DDI in cold

atomic systems.

2. Monopole and quadrupole modes

Let us now turn our attention to the other two modes.

They correspond to oscillations in which the radial and axial

coordinates vibrate either in phase, as in the case of the

monopole mode (ηx = ηy ∼ ηz), or out of phase, as in the

case of the quadrupole mode (ηx = ηy ∼ −ηz). Therefore,

these modes are denoted with a plus and a minus index,

respectively. In accordance with the previous reasoning, we

write the oscillation frequencies in the form

�± = �0
± (1 + δ�±) , (79)

where �0
± denote the exact mean-field monopole (+) and

quadrupole (−) frequencies and δ�± denotes the relative

quantum correction of order β.

The mean-field frequencies have been investigated by

O’Dell et al. [11]. Adapting our triaxial notation to their

cylinder-symmetric one, the mean-field frequencies can be

written as

�0
± =

√

√

√

√h0
xx + h0

zz

2
±

√

(

h0
xx − h0

zz

)2 + 4h0
zxh

0
xz

2
(80)

with the mean-field matrix elements

h0
xx = O0

xx + O0
xy

= ω2
x + 3ω2

x

1 + ǫdd

[

2κ2−1
1−κ2 − κ2(1+4κ2)fs (κ)

2(1−κ2)2

]

1 − ǫddA(κ)

∣

∣

∣

∣

κ=κ0

,

h0
zz = O0

zz

= λ2ω2
x + 2ω2

xκ
2

1 + ǫdd

[

5−2κ2

1−κ2 − 3(4+κ2)fs (κ)

2(1−κ2)2

]

1 − ǫddA(κ)

∣

∣

∣

∣

κ=κ0

,

h0
zx = 2h0

xz = 2O0
xz

= 2ω2
xκ

1 + ǫdd

[

− 1+2κ2

1−κ2 + 15κ2fs (κ)

2(1−κ2)2

]

1 − ǫddA(κ)

∣

∣

∣

∣

κ=κ0

. (81)

We now take advantage of the fact that the mean-field matrix

elements are functions of the aspect ratio κ = Rx/Rz alone

and not of the radii individually. This allows us to calculate

the contribution to the corrected eigenvalue problem due to

the change in the aspect ratio. In addition, there is a further

contribution coming from the fact that the equations of motion

have themselves been corrected. Together, both contributions
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are given by

δhxx = κ
∂hxx

∂κ

∣

∣

∣

∣

κ=κ0

δκ +
βω2

x

R0
xR

0
z

1/2

[

1 − ǫdd

(

1 − Rz∂Rz

)

A
]

(1 − ǫddA)2

∣

∣

∣

∣

κ=κ0

,

δhzz = κ
∂hzz

∂κ

∣

∣

∣

∣

κ=κ0

δκ +
βω2

x

2R0
xR

0
z

1/2
κ2

[

1 − ǫdd

(

5A + 8B − Rz∂Rz
B

)]

(1 − ǫddA)2

∣

∣

∣

∣

κ=κ0

,

δhxz = κ
∂hxz

∂κ

∣

∣

∣

∣

κ=κ0

δκ +
βω2

x

2R0
xR

0
z

1/2

[

1 − ǫdd

(

1 + 2Rz∂Rz

)

Az

]

(1 − ǫddA)2

∣

∣

∣

∣

κ=κ0

. (82)

Finally, for the relative correction to the frequencies, we obtain

δ�± =
1

4�0
±

2

⎡

⎣δhxx + δhzz ±
2
(

h0
xzδhzx + h0

zxδhxz

)

+
(

h0
xx − h0

zz

)

(δhxx − δhzz)
√

4h0
xzh

0
zx +

(

h0
xx − h0

zz

)2

⎤

⎦ . (83)

In order to appreciate the effect of the quantum corrections

on realistic experimental systems, we plot in Fig. 5 the

corrections of the monopole and quadrupole frequencies as

functions of the trap aspect ratio λ in units of ˜δ�. As we noted

in the discussion about the radial quadrupole mode, typical

experiments have ˜δ� ≈ 1%. Thus, for example, the quantum

correction for the monopole oscillation frequency (shown in

black) of a moderate cigar-shaped trapped gas could amount

to as much as 5%, so that one can realistically expect this

effect to be measurable. In Fig. 5, the dashed lines correspond

to nondipolar Bose gases, i.e., to ǫdd = 0. It is interesting to

observe that the presence of the DDI changes these curves

qualitatively. For the monopole and quadrupole curves, the

DDI leads to a crossing of the corrections at some value of λ,

which depends on the relative interaction strength ǫdd. The fact

that, for given values of ǫdd and λ the quantum correction of

the monopole frequency becomes smaller than the correction

of the quadrupole frequency is absent for nondipolar Bose

gases and represents, therefore, a clear signature of the DDI.

We note that this feature is present even for weakly dipolar

systems such as chromium.

In view of the recent important experiment, in which

Bose-Einstein condensation of dysprosium was achieved [16],

we plot the Thomas-Fermi radii as a function of time for

monopole oscillations in Figs. 6 and in 7, as well as for

quadrupole oscillations in Fig. 8 in units of the nondipolar

radius in the Ox direction R
0,g
x . Thereby, we have adopted the

values of the number of particles and trap frequencies from

Ref. [16], which give a trap aspect ratio λ = 3.8. Moreover,

by choosing the s-wave scattering length of as = 150a0, we

have a relative interaction strength of ǫdd = 0.89. As a matter

of fact, the amplitudes if the oscillation for Rx and Rz are not

independent from each other. Instead, their ratio is an intricate

function of the system parameters. However, this is irrelevant

for the effect that we aim for and we take each of the amplitudes

to be 10% of the corresponding radius, i.e., ηi ≈ 10%R0
i .

To analyze the monopole oscillations, consider the Thomas-

Fermi radii Rx and Rz as functions of time from ωx t = 0 to

ωx t = 5, shown in Fig. 6, and from ωx t = 40 to ωx t = 45,

which appear in Fig. 7. The only difference, which is initially

visible, is the fact that Rx becomes larger due to quantum

fluctuations. For Rz, for example, the correction is too small to

be seen here. Moreover, the valleys and hills do seem to match

very well. In the course of time, however, the mean-field and

the quantum-corrected oscillations do depart from each other.

In the case of the quadrupole oscillation, which is depicted

in Fig. 8, the curves can be distinguished from each other at

much smaller times even for Rz, which possesses very small

amplitude corrections. The reason for that lies in the values

of the trap aspect ratio λ = 3.8. As one can see in Fig. 5,

for this particular value of λ, the correction of the quadrupole

frequency is much larger than that of the monopole frequency.

It is also important to point out, that the time necessary

T
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u
ri

n
g
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e
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R
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Rz(t)

R
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x

FIG. 6. (Color online) Thomas-Fermi radii in units of the

nondipolar radius in the Ox direction R
0,g
x as functions of time in

units of ω−1
x during monopole oscillations. The dark gray (blue) and

the light gray (red) curves correspond to Rx and Rz, respectively. We

adopt the values ǫdd = 0.89 and as = 100a0. Dashed curves represent

mean-field, while full curves represent quantum-corrected results.

Here we show the oscillations from ωx t = 0 until ωx t = 5.
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FIG. 7. (Color online) Thomas-Fermi radii in units of the

nondipolar radius in the Ox direction R
0,g
x as functions of time in

units of ω−1
x during monopole oscillations. The dark gray (blue) and

the light gray (red) curves correspond to Rx and Rz, respectively. We

adopt the values ǫdd = 0.89 and as = 100a0. Dashed curves represent

mean-field, while full curves represent quantum-corrected results.

Here the plots go from ωx t = 40 to ωx t = 45.

to observe the effects above is of the order of only a few

hundredths of a second in a typical experiment such as that of

Ref. [16]. This is a much shorter time scale than the lifetime
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FIG. 8. (Color online) Thomas-Fermi radii in units of the

nondipolar radius in the Ox direction R
0,g
x as functions of time in

units of ω−1
x during quadrupole oscillations. The dark gray (blue) and

the light gray (red) curves correspond to Rx and Rz, respectively. We

adopt the values ǫdd = 0.89 and as = 100a0. Dashed curves represent

mean-field, while full curves represent quantum-corrected results.

of the condensate, making the observation experimentally

possible. Thus, as we have just demonstrated, in order to

achieve the detection of many-body effects on the low-lying

excitations of dipolar Bose gases, it might be more adequate

to consider monopole or quadrupole oscillations depending on

the trap aspect ratio λ.

VI. CONCLUSIONS

We have theoretically investigated beyond mean-field

properties of both homogeneous and harmonically trapped

dipolar Bose gases, focusing on the low-lying excitations.

After having studied the Bogoliubov–de Gennes theory, we

have characterized the influence of the DDI on the condensate

depletion, on the equation of state, and on the sound velocity

of homogeneous Bose gases. With the help of the local

density approximation, these results could be generalized to

the case of a harmonically trapped gas. Then, within the

framework of superfluid hydrodynamics, we have variationally

derived equations of motion for the Thomas-Fermi radii and

used them to investigate the case of a cylinder symmetric

trap. While difficulties in performing precision measurements

of the particle density represent a hurdle for identifying

dipolar beyond mean-field effects in static properties, the

oscillation frequencies offer much better perspectives. The

radial quadrupole mode, for example, acquires a finite quantum

correction which clearly has its origins in the DDI. The

frequencies of the other two modes are also modified both

quantitatively and qualitatively by the inclusion of the DDI

in the beyond mean-field regime. As a result, the low-lying

oscillations of Bose gases offer an important possibility for

observing many-body dipolar physics.

The beyond mean-field theory in the form presented here

could be directly applied to verify the importance of quantum

fluctuations on the time-of-flight expansion of a triaxially

trapped Bose gas, by means of Eq. (56) or be adapted to study

a variety of other important problems. An obvious suggestion

is a systematic investigation including, e.g., the scissors mode

beyond mean-field approximation [59]. Moreover, presently

available studies of the dipolar dirty boson problem, for

example, concentrate on homogeneous systems [61] and on

the equilibrium in harmonic traps [62], but nothing is yet

known about the dynamical aspects of the trapped system.

Also, the nonlinear dynamics induced by means of modulation

of the s-wave scattering length [63–65] would for sure have a

nontrivial interplay with dipolar interactions which is still to

be investigated. In addition, it would be interesting to clarify

how quantum fluctuations can alter the character of dipolar

systems with the dipoles not aligned along the main axis [66]

or set to rotate [67].
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APPENDIX: VALIDITY OF THE LOCAL DENSITY

APPROXIMATION

In this Appendix we will clarify under which circumstances

the LDA can be used for long-range interactions such as

the DDI. To this end, we will use the next order of the

corresponding gradient expansion in order to estimate the error

brought about by neglecting terms of higher order than the

LDA term.

Consider the nonlocal term in Eq. (16):

Iν,nl(x) ≡ n0(x)1/2

∫

d3x ′ Vint(x − x′)n0(x′)
1/2

qν(x′), (A1)

where qν (x) stands for either Bogoliubov amplitude Uν (x)

or Vν (x), and recall that ν is a discrete quantum number

while n0(x) denotes the condensate density. In this case, the

semiclassical approximation is obtained under the substitution

(36) with q(x,k) being a continuous and slowly varying

function of x and k. Then, Iν,nl(x) is written as

Inl(x,k)

n0(x)1/2
=

∫

d3x ′ Vint(x − x′)F (x′,k)eik·(x−x′), (A2)

with F (x,k) =
√

n0(x)q (x,k). Performing the variable trans-

formation x′ → x′ + x, one has

Inl(x,k)

n0(x)1/2
= F (x,k)

[

1 +
←−∇ x · −→∇ k

i
+ · · ·

]

Ṽint(k), (A3)

where the gradients act in the direction of the arrows.

Moreover, the dots replace higher order terms which are

neglected consistently with the Thomas-Fermi approximation.

For a contact interaction, we have ∇kṼint(k) = 0, so that the

LDA is immediately justified. In the case of the DDI, however,

this is not the case. First, notice that the leading order of the

gradient expansion is isotropic, but the next-to-leading term

is not, as the spatial variation of the density is coupled to

the k space. This explains why the anisotropy of Ṽint(k) does

not directly affect the quantum corrections at the LDA level.

Notice that, in the usual experimental case of large particle

numbers in which we are interested, the next-to-leading term

can be neglected. Indeed, its ratio to the LDA term can be esti-

mated by the substitution ∇x → 1/RTF,∇k → 1/Kc, with RTF

the mean Thomas-Fermi radius and Kc the momentum scale

defined by the speed of sound. These are more conveniently

expressed in terms of the condensate density at the trap center:

RTF =
[

15N

8πn0(0)

]1/3

, h̄Kc =
√

MṼint(k)n0(0).

(A4)

Then, one finds that the LDA is valid as long as

cLDA
[

N2a3
s n0(0)

]1/6

1
√

1 + ǫdd(3 cos2 θ − 1)
≪ 1 (A5)

with the constant cLDA = (3252π )−1/6 ≈ 0.335.
The decisive point for the above reasoning is the length

scale, in which the condensate density varies. In order to ana-
lyze this length scale in more detail, let us first consider typical
experimental situations for the case of a dominant contact
interaction. Even for very prolate, cigarlike configurations,
the system can be considered to be in the one-dimensional
mean-field regime and the density variation is slow, having
the form of an inverted parabola [68]. This would provide
good suppression of the variation of the interaction potential
in momentum space, as can be seen from the next-to-leading
term in (A3). If, however, the system has a Gaussian density
profile, density variations are much faster, ultimately leading
to a breakdown of the LDA. A similar argument is valid in
the case of a strongly oblate, pancakelike system, where one
may consider the z direction as frozen out. The application of
the LDA in the plane, then, requires a slow variation of the
condensate density in the plane. That is commonly achieved
experimentally such that the density profile is an inverted
parabola as a function of the radial length [69]. In view of
strongly dipolar systems, it is important to notice that the
criteria for the crossover between the different dimensional
regimes might themselves depend on ǫdd. This, however,
does alter the arguments above, since the density profiles in
both regimes retain the form of inverted parabolas both in
one-dimensional and in two-dimensional cases [70].

The relation of the LDA to the Thomas-Fermi approxima-
tion is, indeed, intimate; however, one can show that both are
valid under quite similar assumptions. As one would expect,
for a large enough particle number N , the LDA is valid as long
as the system is stable, i.e., for relative interaction strengths
satisfying ǫdd < 1. Indeed, the factor cLDA[N2a3

s n0(0)]−1/6

in Eq. (A5) can be expressed as
√

2(aho/15Nas)
2/5 with

the average oscillator length aho. For typical experimental
situations with nondipolar gases the Thomas-Fermi parameter
fulfills Nas/aho ≫ 1, this being the condition of validity
of the hydrodynamic description. Moreover, even in dipolar
experiments with chromium (see Ref. [3]), in which the s-wave
scattering length is decreased on purpose in order to enhance
the relative dipolar interaction strength, one might have
Nas/aho ∼ 60 for the smallest particle numbers and scattering
lengths. One would then obtain cLDA[N2a3

s n0(0)]−1/6 ≈ 0.09,
so that even in this case the LDA could be used for a wide
range of values of ǫdd. Thus, we conclude that the LDA is an
applicable approximation in many situations of interest for the
physics of dipolar Bose gases.
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