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Abstract. Recent investigations have shown that the automated veri-
fication of continuous-time Markov chains (CTMCs) against CSL (Con-
tinuous Stochastic Logic) can be performed in a rather efficient manner.
The state holding time distributions in CTMCs are restricted to nega-
tive exponential distributions. This paper investigates model checking of
semi-Markov chains (SMCs), a model in which state holding times are
governed by general distributions. We report on the semantical issues
of adopting CSL for specifying properties of SMCs and present model
checking algorithms for this logic.

1 Introduction

Model checking is a technique that is more and more used to ascertain prop-
erties of computer software, hardware circuits, communication protocols, and
so forth. In this approach, properties are specified via an appropriate tempo-
ral logic, such as CTL or LTL, while systems are represented as (usually fi-
nite) state-transition diagrams. More recently, model checking techniques have
been extended to stochastic processes such as continuous-time Markov chains
(CTMCs, for short). In particular, efficient verification algorithms have been
developed for CSL (Continuous Stochastic Logic [3/4l5]), a stochastic variant
of CTL. CSL supports the specification of sophisticated steady-state and time-
dependent properties. CTMCs are widely used in practice, mainly because they
combine a reasonable modelling flexibility with well-established efficient analy-
sis techniques for transient and steady-state probabilities that form the basis for
determining performance measures such as throughput, utilisation and latencies.
The stochastic processes described by CTMCs are characterised by the fact that
the state holding times, indicating the amount of time the system stays in a
state, are restricted to negative exponential distributions. As a result of their so-
called memoryless property, the probability of moving from one state to another
is independent of the amount of time the system has spent in the current state.

Although exponential distributions appropriately model a significant number
of phenomena — related to mass effects — of random nature, in many occasions
they are inadequate to faithfully model the stochastic behaviour of the system
under consideration. For example, file sizes of documents transferred via the In-
ternet, cycle times in hardware circuits, timeouts in communication protocols,

L. de Alfaro and S. Gilmore (Eds.): PAPM-PROBMIV 2001, LNCS 2165, pp. 57-[Z0} 2001.
© Springer-Verlag Berlin Heidelberg 2001



58 G.G. Infante Lépez, H. Hermanns, and J.-P. Katoen

human behaviour, hardware failures, and jitter in multi-media communication
systems cannot be appropriately modelled. In order to model these phenom-
ena in an adequate manner, general distributions such as heavy-tail [10] (for
file sizes), deterministic (for cycle times and timeouts), log-normal (for human
response behaviour [21]), Weibull (for hardware failures [20]), and normal distri-
butions (for jitter [I3]) are used. To adopt the model checking approach to these
distributions, the simplest solution is to approximate general distributions by
the mean times to absorption of a CTMCs with an absorbing state, represent-
ing a so-called phase-type distribution. Although the resulting CTMC can be
analysed using the existing verification algorithms and prototype tools for CSL,
such approximations (i) easily give rise to a state-space explosion — the number
of states increases significantly with the accuracy of the approximation and the
degree of determinism of the desired distribution — are (ii) not easy to handle in
case of a choice between stochastic delays — a race condition between the entire
approximated distributions is decisive — and (iii) require the ability to fit the
desired distribution by an appropriate phase-type distribution — a non-trivial
problem in general, see e.g., [2].

Therefore as an alternative approach, this paper investigates direct model
checking of semi-Markov chains (SMCs, for short) [8I1§], a natural extension
of CTMCs in which state holding times are determined by general continuous
distributions. First, the semantics of CSL on SMCs is studied. In particular,
the formal characterisation of the CSL steady-state operator is adapted as limit
state probabilities are not guaranteed to exist for finite-state SMCs, in contrast
to finite-state CTMCs. Instead, the behaviour of SMCs on the long run is char-
acterised using the average fraction of time the system resides in a state. For
instance, the formula Scg 1 (error) is valid in state s iff on the long run for at
most 1% of the time on average the system is in an error state when starting
in state s. For finite CTMCs this interpretation is equal to the characterisation
using the limit state probabilities. Secondly, model checking algorithms are pro-
posed to verify CSL over finite-state SMCs. Although long-run properties are
semantically characterised in a slightly different way, they can be checked as for
CTMCs: a graph analysis to determine the bottom strongly connected compo-
nents and solving a linear system of equations for each such component suffice.
(In the literature, strongly connected SMCs are also known as irreducible SMCs.)
Time-bounded until formulas can be checked, like for CTMCs, by a reduction to
transient analysis of SMCs. These include probabilistic timed reachability prop-
erties such as: can the system reach a goal-state within a certain time-bound
with some minimal (or maximal) probability? Whereas such transient analysis
for CTMCs can be solved via stable and efficient numerical techniques such as
uniformisation, for SMCs it requires solving a set of non-trivial Volterra equa-
tions whose solution algorithms have a worst case time complexity of O(N?),
where N is the number of states of the SMC under consideration.

In the context of logical specification formalisms and automated verification,
stochastic processes with general distributions have received scant attention in
the literature so far. Three related works are known to the authors. Van Hung
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and Chaochen [17] have defined a probabilistic variant of the duration calculus
to express properties over SMCs, but did not report on any verification algo-
rithms. De Alfaro [12] discusses model checking of long-run average properties
and expected reachability times on semi-Markov decision processes. These mod-
els can be considered as SMCs extended with non-determinism. Time-bounded
formulas are not considered. Kwiatkowska et al. [19] have recently considered
the verification of a stochastic variant of timed automata, with clocks that are
governed by general distributions, against properties in probabilistic timed CTL.
They show that a finite-state semantics of such timed automata can be obtained
using the region-based technique [I] where regions are partitioned to cater for
the stochastic behaviour. Due to the intrinsic complexity of the model checking
algorithm, it seems practically infeasible.

Organisation of the paper. Section[Zintroduces the basic concepts of SMCs. Sec-
tion B recalls the logic CSL and defines the semantics of CSL over SMCs. Model
checking algorithms for long-run properties and time-bounded until formulas are
described in Section [ Section [§ concludes the paper.

2 Semi-Markov Chains

A semi-Markov chain (SMC) can be considered as a Kripke structure in which
the transitions are labelled by information about the speed at which the chain
evolves from one state to another. In a SMC, the delay between two successive
state changes can be generally distributed. This property has to be contrasted
with continuous-time Markov chains (CTMCs) where these delays need to be
governed by negative exponential distributions. In this section, we introduce the
basic concepts of SMCs. A more thorough treatment of SMCs can be found in
[8I18].

Semi-Markov chains. Let AP be a fixed, finite set of atomic propositions. A
(labelled) SMC M is a tuple (S,P,Q, L) where S is a finite set of states, P :
S x S —[0,1] is the transition probability matriz (satisfying ), s P(s,s') =1
for each s), Q : S x S x (IR>9 — [0,1]) is a matrix of continuous probability
distribution functions (such that P(s,s’) = 0 implies Q(s,s’,¢) = 1), and L :
S — 247 ig the labelling function. Function L assigns to each state s € S the
set L(s) of atomic propositions a € AP that are valid in s.

The intuitive interpretation of a SMC is as follows. There exists a transition
from state s to s’ (which possibly equals s) if and only if P(s, s’) > 0. Matrix P
determines the (discrete) probabilistic behaviour when changing from one state
to another, i.e., P(s,s’) is the probability to move from state s to state s’. Note
that this is identical to the probabilistic branching of a discrete-time Markov
chain (DTMC); (S, P, L) is often called the embedded DTMC of SMC M. Once
a next state s’ of state s has been selected, the state holding time of state s is
determined according to the probability distribution function Q(s,s’,t). Thus,
Q(s, s',t) denotes the probability to move from state s to s’ within at most
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Fig.1. A SMC describing a boiler.

t time-units, given that a transition from s to s’ will be taken. A state s is
absorbing if P(s,s) = 1 and Q(s,s) is some arbitrary nontrivial distribution.
The distribution function H of state s, defined by

H(Sat) = Z P(S, SI)'Q(Sa Slat)

s'esS

denotes the total holding time distribution in s regardless of which successor is
selected.

We assume that the system will stay in a state with at least some non-zero
probability, or more formally we demand for arbitrary s that there is some ¢’ > 0
and some ¢ > 0 such that H(s,¢') < 1 — e. We further require the mean of each
state holding time distribution to be finite, i.e., E[H(s)] # oo.

Ezxample 1. As a simple example of a SMC we model a boiler. The system can
be in four different states, state 0 where the boiler is working properly, state 1,
where the boiler has too much sediment that needs to be removed, state 2 where
a pipe is leaking that either needs to be fixed or needs to be replaced, and finally
state 3 where the system is waiting for a new pipe to arrive for replacement.
The model is schematically depicted in Fig. [l together with the matrices P
and Q ("E’ denotes an exponential distribution, U’ a uniform distribution, 'D’ a
deterministic distribution, and "W’ a Weibull distribution with appropriate pa-
rameters) and labelling L. The total holding time distributions can be computed
from the matrices. For instance

0 if t <2,
0.23¢t—0.46 if2<t <3,

H(l,t)=¢031t-0.7 if3<t<5
0.08¢t—0.24 if5<t<7,
1 otherwise.
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To describe how the system evolves from state to state, suppose that the boilers
starts in state 0. Matrix P immediately determines the probability to move to a
next state. State 2 is chosen, for instance with probability P(0,2) = 0.1. In this
case a sample is immediately drawn from distribution Q(0,2,¢) = 1 — e~ 07,
say 5.3. The system thus holds state 0 for 5.3 time units before moving to state
2. In state 2, again matrix P is used to determine the next successor, say state
0, whence a random sample is drawn from the distribution Q(2,0) to determine
the holding time in state 2 before moving back to state 0. O

Paths. Let M = (S,P,Q, L) be a SMC. A sequence sg -2+ 57 -1 55 125 ..
with s; € S and ¢; € IR>( such that P(s;,s,41) > 0 for all 4, is called a path
through M. For path ¢ and i € IN, let o[i] = s;, the (i+1)-st state of o, and
0(o,4) = t;, the time spent in s;. For ¢ € IR>¢ and ¢ the smallest index with
t <> otj let 0@t = ofi], the state in o occupied at time ¢.

Let Path™ denote the set of paths in the SMC M, and Path™(s) the set
of paths in M that start in s. The superscript M is omitted unless needed for
distinction purposes.

Borel space. A probability measure Pr on sets of paths through a SMC is defined
using the standard cylinder construction as follows. Let sg,...,sr € S with
P(s;,si+1) > 0, (0 < i < k), and Io,...,I,—1 non-empty intervals in IR>.
Then, C(sg, lo, .. ,Ix—1, k) denotes the cylinder set consisting of all paths o €
Path(sg) such that o[i] = s; (i < k), and §(0,i) € I; (i < k). Let F(Path)
be the smallest o-algebra on Path which contains all sets C(s, Iy, ..., Ix—1, Sk)
where sq,...,s, ranges over all state-sequences with s = sg, P(s;,8;41) > 0
(0 <i<k),and Iy,..., I3 ranges over all sequences of non-empty intervals in
IR>¢. The probability measure Pr on F(Path(s)) is the unique measure defined
by induction on k by Pr(C(sp)) =1 and for k£ > 0:

PI‘(C(So, IO7 s 7Sk7I/a 8/)) = PT(C(SO, IO) s ask))'
P(Sk‘,a S/)'(Q(Slw S/a b) - Q(Ska 8170’))

where a = inf I’ and b = sup I’. With this definition, a path sy 2+ s, 355 ..
corresponds to a sequence (sg,0), (s1,%0), (s2,t0 + t1),... of bivariate random
variables satisfying the properties of Markov renewal sequences [I8]. This ob-
servation links our definition of SMCs to the standard definition found in the
literature.

On the basis of the probability measure Pr, we can define various measures
determining the behaviour of a SMC as time passes. For instance,

7(s,s',t) = Pr{o € Path(s) | cQt = s’}

defines the probability distribution on S (ranged over by s’) at time ¢ if starting
in state s at time 0. We are particularly interested in two specific measures
discussed below.
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Fig.2. A SMC without steady-state.

First passage time analysis. We are interested in a measure that describes the
probability

F(s,s',t) = Pr{o € Path(s) | 3t' € [§(c,0),t] . cQt' = s’}

of reaching state s’ for the first time within ¢ time units when starting in state
s. Note that even if s = s’ only paths are considered that leave the state s, since
t' has to be at least §(o,0) which is the time needed to leave s. From [I8] we
have that F(s,s',t) (with s,s’ € S) satisfies the following system of equations:

t

F(s,s',t) =P(s,5) Q(s,s", ) + Y _ /P(s,s/)

S”#S’ 0

1
7dQ(SC;; .7) F(s",s'  t—x)dx
Intuitively, the probability to reach state s’ from state s for the first time within
t time units equals the sum of the probability of taking a direct transition from
s to s (within ¢ time units) and the probability of moving via some intermediate
state s” at time x, yet reaching state s’ in the remaining time interval ¢ — z.
It can be proven that this equation system has a unique solution if the state
holding time for any state in the SMC is positive with nonzero probability (as
we have assumed) [I§].

Long-run average analysis. The long-run average behaviour of a SMC is not
as homogeneous as it is for CTMCs. In particular the steady-state behaviour
(usually defined as the limit of (s, s’,t) for t — c0) may not exist.

Ezample 2. Consider for instance, the SMC depicted in Figure[2l For any ¢t > 0
the probability (s, s’,t) does not equal m(s,s’,t + 1), because the probability
mass alternates between the two states. Thus, a limit for ¢ — oo of 7(s,s’,t)
does not exist. O

However, we can define a related measure based on the average amount of
time spent in some state, similar to [I2]. For this purpose, we fix a state s, and let
o5 be a path taken randomly from the set Path(s). Then, the quantity 14 (o,Qt)
is a random variable, indicating whether the state s’ is occupied at time ¢ when
starting in s. Here we use the characteristic function 14 (s”) =1 if s’ = " and
0 otherwise.

On the basis of this, we can define a random variable that cumulates the
time spent in some state s’ up to time ¢ (starting in s) by fg 1, (0sQx) dx, and
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normalise it by the time ¢ in order to obtain a measure of the fraction of time
spent in state s’ up to time ¢. Since this is still a random variable, we can derive
its expected value. This value corresponds to the average fraction of time spent
in state s’ in the time frame up to t. For the long-run average fraction of time,
we consider the limit ¢ — oo, as in [23].

Definition 1. The average fraction of time T (s,s’) spent in state s on the long
run when starting in state s is given by:

T(s,s")

- t—o00

t
1
lim F g/lsf(as@x) dx
0

where o ranges randomly over Path(s).

This measure exists for SMCs whenever the expected values of all the distribu-
tions Q(s, ") are finite (as we have assumed). Note that for finite CTMCs the
measure T(s,s’) agrees with the usual steady-state limit lim; o (s, s’,t). In
this sense, T' conservatively extends the steady-state measure of CTMCs.

3 CSL on Semi-Markov Chains

This section recalls the syntax of the continuous stochastic logic CSL, and defines
its semantics in terms of semi-Markov chains.

Syntaz. CSL is a branching-time temporal logic & la CTL [9] with state- and
path-formulas based on [5/4].

Definition 2. Let p € [0,1], < € {<,>}, t € R>o, and a € AP. The syntaz
of CSL state-formulas is defined by the following grammar:

& ::= true ’ a ‘ DND ‘ —P ‘ Sap(P) ) Pap(p)
where for t € IR>( path-formulas are defined by
o= X ‘ SU D ‘ PUS P,

Other boolean connectives are derived in the usual way, i.e. false = —true,
@1 vV @2 = _\(_\431 A _\¢2), and 451 — @2 = _‘451 \/@2.

The intended meaning of the temporal operators ¢ (“until”) and X (“next
step”) is standard. We recall from [5] the intuitive meaning of ¢ <!, P and S:
The path-formula @ U<t @y is satisfied iff there is some = € [0,¢] such that &;
continuously holds during the interval [0, 2[ and ®2 becomes true at time instant
z. Pap(p) asserts that the probability measure of the paths satisfying ¢ falls
in the interval Iq,. The state formula Sq,(®) asserts that the long-run average
fraction of time for a @-state falls in the interval Iq, = {¢ € [0,1] | ¢ <p}.
Temporal operators like &, O and their real-time variants <! or OS¢ can be
derived, e.g. P<p(OSt @) = P, (trueld =t @) and Py, (0 P) = Pagi_p(O D).
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Semantics. The state-formulas are interpreted over the states of a SMC. Let
M = (5,P,Q, L) with proposition labels in AP. The definition of the satisfac-
tion relation = C S x CSL is as follows. Let Sat(®) ={sec S|sE=P}.

s = true for all s € S, sEPLADy iff s = Dy,0 € {1,2},
ska  iffaeL(s), 5 = Sap(®) I Tauian(s) € Loy
sE-® iff sED, s = Pap(p) iff Prob(s,¢) € I<p.

Here, Ts/(s) denotes the average fraction of time spent in S’ C S with respect
to state s, i.e.

Toi(s) = Y T(s,s).

s'eS’

Recall that T'(s,s’) conservatively extends the definition of a steady-state dis-
tribution for CTMCs. Prob(s,¢) denotes the probability measure of all paths
o € Path(s) satisfying ¢, i.e.

Prob(s,p) = Pr{o € Path(s) |oc =¢}.

The fact that, for each state s, the set { o € Path(s) | o |= ¢} is measurable,
follows by easy verification. The satisfaction relation (also denoted ) for the
path-formulas is defined as usual:

oE X iff o[1] is defined and o[1] = &,
ol P UP,  iff 3k > 0. (olk] £ o AVO < i < k.oli] £ P1),
o= & US Dy iff 3z € [0,t]. (0Qz =Py AVy € [0,2]. cQy = Py).

4 Model Checking SMCs against CSL

Model checking SMCs against CSL follows the usual strategy: Given a model
M = (5,P,Q, L) and a state-formula @, the set Sat(¥) is recursively computed
for the sub-formulas of @. This can proceed via well studied means [T65] (on the
embedded DTMC (S, P, L)) except for the time-bounded until operator U<t
and for the long-run operator S. These two operators require specific care.

Time-bounded until. For computing the probability of satisfying a time-bounded
until formula, we closely follow the strategy of [6], and reduce the problem to
a well studied transient measure. More precisely, it will turn out that we can
compute the time-bounded until probabilities via a first passage time analysis
in a derived SMC, where certain subsets of states are made absorbing. To this
end, we let M[P] (for SMC M and state formula @) denote the SMC obtained
from M by making all ®-states absorbing. We have:

Theorem 1. Let M = (S,P,Q, L) be a SMC, and &1 and ®5 be CSL state-
formulas. Then
Prob™M (s, & U Py) = ProbMI?1Ve:l(s O<tg,)

D5y FMEPVel (5 o 1) otherwise.
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Fig. 3. Satisfaction of P>, (leakingf S*working) for state 2 and 3 of the boiler example.

Proof: The proof of the first equality is based on a bijection between the paths
in M satisfying &;U=!®, and the paths in M|~ V @] satisfying O=!{®,, up
to the state where @5 becomes satisfied, and hence over the whole path-prefixes
contributing to the two probability measures Pr{ o € Path™ | o | &,U<'®, )
and Pr{ o € Path™M"®1V%2] | 5 = ©<t@, }. With respect to the second equality
we only consider the case s = ®,. In this case o = O<!@; can be shown to hold
if and only if 3’ € [§(0,0),t] . cQt' = Py, since o[0] = P2. The proof follows
from the definition of F' and the fact that ®,-states are absorbing, justifying the
summation over all @o-states. O

Ezxample 3. Returning to the boiler example of Fig, [[l let us check the time-
bounded until formula P>, (leaking U Stworking). First, we observe that state 1
does neither satisfy leaking nor working, and hence state 1 does not satisfy the
path-formula leaking U/ <*working with positive probability. In contrast, according
to Theorem [I state 0 satisfies the path formula with probability 1, because
0 |= working.

The remaining states 2 and 3 are more interesting. Following Theorem [ we
need to investigate a SMC where state 0 and 1 are made absorbing, and com-
pute the probability of satisfying leakingd *working via the values of F(2,0,1),
respectively F(3,0,t) in this SMC. The values of these functions are plotted in
Fig. Bl One can see that for pairs (p,t) above the plot the formula is invalid,
while it is valid for pairs below the plot (and for the plot itself). O

While in the above example the values of F' can be calculated directly, the
situation is more involved in general. Recall that F(s, s’, ) is the unique solution
of the system of equations

¢
F(s,s',t) =P(s,s) Q(s,8',t) + Z /P(s,s’)w F(s", 8 t—x) da.

s #S/ 0 dx

This system of equations can be classified as a system of Volterra equations of the
second type. In principle it is possible to solve them by appropriate numerical
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methods, such as Volterra-Runge-Kutta methods. A complete guide for these
methods can be found in [7]. A solution of the equations can also be obtained in
the Laplace domain. This approach works good for small systems and sometimes
even allows a closed-form solution to be found by hand. For larger systems one
is faced with two problems. One has to invert a matrix of functions in a complex
variable, and to reverse the transform to the time domain.

As described in [14]15], the asymptotic space complexity of the latter method
is O(N?) and the asymptotic time complexity is O(N?) where N = |S] is the
number of states. It is therefore not applicable to larger systems. Moreover, the
numerical Laplace transform inversion can encounter numerical problems under
some conditions. It is also possible to solve this Volterra system by transforming
it to a system of partial differential equation, a system of ordinary differential
equation, initial and boundary conditions, and a system of integral equations.
[I4] contains a comparison of these two approaches together with numerical
considerations.

Long-run average. For model checking the operator S<,(®) one needs to accumu-
late the average fraction of time quantities T'(s, s") for each state s’ satisfying .
If M is a strongly connected] SMC, T'(s, s') can be obtained via the equilibrium
probability vector 7 of the embedded DTMC (S, P, L), which in turn is given as
the unique solution of the linear equation system

7(s) = Z P(s',s) - m(s’) such that ZTI’(S) =1

s'eS ses

Theorem 2. [§] Let M = (S,P,Q, L) be a strongly connected SMC, and m be
as above. Then

R COTI D)
T( ’ ) Es"es /,L(S”)W(S”)

where p(s") is the expected holding time in state, i.e., u(s"”) = E[H(s")].

Notice that T'(s, ) is independent of the starting state s in this case. If otherwise
M is not strongly connected, we proceed as in [5], and isolate the bottom strongly
connected subsets of S via a graph algorithm [22]. Whenever state s’ is not a
member of any bottom strongly connected subset of S, we have T'(s,s’) = 0. The
following result allows model checking the S operator in the other cases. We let
Prob(s,<©B) denote the probability of eventually reaching the set B C S from
state s. This quantity can be computed via the embedded DTMC (S, P, L) [16].

Theorem 3. Let M = (S,P,Q, L) be a SMC, B a bottom strongly connected
subset of S, and s’ € B. Then:

T(s,s') = Prob(s,& B)-T?(s',s)
where the superscript B refers to the strongly connected SMC MP spanned by B.
L' A SMC is strongly connected if there is some k such that Pk(s, s') > 0 for each s,

/
S .
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Proof: We only consider the case where s ¢ B can reach B with positive prob-
ability. The idea of the proof is to count the average time that the SMC M
spends in class B. Once we have isolated this quantity we are able to compute
the fraction of time M spends in a particular state of this class. Let 15(s") =1
if s € B and 0 otherwise. We shall calculate the exact value for

t

1
E g/lB(as@x)dx
0

where o ranges over Path(s). Let £ be the time of absorption in B (if o, touches
B otherwise t = o), t is be a random variable and depends on the path o,
drawn from Path(s). The distribution of # is given by Pr{t < #'} = F(s, B,t') =
> oep F(s,8,t") where the latter is the first passage time distribution mentioned
earlier.

Since B is bottom strongly connected, the function 15(cs@z) will be constant
1 from ¢ on. So, for ¢ > ¢ we have that

t .

t—t
/lBas@x :T
0

and otherwise (i.e., t < #) the integral equals 0. So, for fixed ¢ the above integral
describes a random variable R; as follows:

N t—1t . :
Rt(t) — 7 if ¢ Z t,
0 otherwise.

The distribution of R; is
Pr{R; <z} =Pr{(t—1)/t<z}+Pr{R; =0}

which can be rewritten, using that F(s, B,x) is the distribution of #, to
Pr{Ry<z}=1-F(s,B,t —at)+Pr{ R, =0}.

Now, the expected value E[R;] is obviously

u.

1 1
/ud th u t)) du+0d(Pr{Rt:0}) :/utdF(s,B,t—ut)d
du du
0

0
Substituting u = ¥ we get
1/t dF (s, B,y)
E|\Ry| = - t—y) ———22% dy.
R = [ (=) T2 gy

What we are looking for is the limit of this quantity as ¢ — co given by

' dF(s,B Elt
Y dF(s, B,y) dy = Prob(s, <>B)—l Elf]

1
lim F(s,B,t) — lim —
t—00 t=oo b Jo dy t—oo ¢
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where Elf] is the expected value of #. Recall that # is distributed according
to F (s, B,t). Also note that lim; ., F(s, B,t) = Prob(s,<& B). Since we have
assumed that state s can reach B with positive probability (and all distributions
have finite means) E[f] needs to be finite and hence

t
lim FE {1/ 15(0sQx) dx] = Prob(s,®B).
t—00 t 0

The proof of the theorem follows from this result by two observations. First,
the time of entering B is a renewal point, i.e., a time instant where the future
behaviour of the stochastic process does only depend on the currently occupied
state. Second, the fraction of time spent in a particular state inside B is indepen-
dent of the starting state — due to strong connectedness — if assuming to start
inside B. a

Ezxample 4. Let us check a long-run average property for the example boiler sys-
tem, such as S<,(working). We first observe that the SMC in Fig. [lis strongly
connected. Theorem [ requires the computation of the expected holding times
for each state of the SMC, resulting from weighted sums of the involved distribu-
tions. We get 1(0) = 70.319, pu(1) = 3.95, 14(2) = 3.2, and p(3) = 0.887. Next, we
solve the embedded DTMC, and obtain a vector = = [0.686,0.1373,0.109, 0.065].
Finally we compute T's,¢(working) (S) = 0.981. Since the SMC is strongly connected,
this value is independent of the state s chosen, and hence S<,(working) is satis-
fied (for all states) whenever 0.981 < p. O

Apart from the need to derive expected values of general distributed ran-
dom variables, the numerical algorithms needed for model checking the long-run
average operator are the same as the ones needed for checking CTMCs [5].

5 Concluding Remarks

In this paper, we investigated adapting CSL model checking to semi-Markov
chains, an extension of CTMCs in which state holding times are governed by
general distributions. To achieve a smooth extension of the theory we developed
an enhanced definition of long-run properties and proved novel results required
for model checking not strongly connected SMCs. On the practical side, the
conclusion we draw from our investigation is partially negative: verifying a CSL-
formula can become numerically very complex when dropping the memoryless
property. This is caused by the involved procedure needed for checking time-
bounded formulas such as timed probabilistic reachability properties. We proved
that long-run properties and (untimed) eventualities can be checked without an
increase in complexity compared to the CTMC case, though.

The SMC model considered in this paper incorporates general distributions,
but is known to be of limited use to model concurrent delays. Compositional
extensions of SMCs — such as generalised semi-Markov chains or stochastic au-
tomata [II]- are more elegant to apply in this context. It is worth to high-
light that our practically negative result concerning the model checking of time-
bounded formulas carries over to these models. Further research is needed to
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investigate whether abstraction techniques or weaker temporal properties — like
expected time properties — yield a practical solution for such models.
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