
Beyond Modes: Building a Secure Record Protocol from

a Cryptographic Sponge Permutation

Markku-Juhani O. Saarinen

Kudelski Security, Switzerland

mjos@cblnk.com

Abstract. BLINKER is a light-weight cryptographic suite and record protocol

built from a single permutation. Its design is based on the Sponge construction

used by the SHA-3 algorithm KECCAK. We examine the SpongeWrap authen-

ticated encryption mode and expand its padding mechanism to offer explicit do-

main separation and enhanced security for our specific requirements: shared se-

cret half-duplex keying, encryption, and a MAC-and-continue mode. We motivate

these enhancements by showing that unlike legacy protocols, the resulting record

protocol is secure against a two-channel synchronization attack while also having

a significantly smaller implementation footprint. The design facilitates security

proofs directly from a single cryptographic primitive (a single security assump-

tion) rather than via idealization of multitude of algorithms, paddings and modes

of operation. The protocol is also uniquely suitable for an autonomous or semi-

autonomous hardware implementation of protocols where the secrets never leave

the module, making it attractive for smart card and HSM designs.

Keywords: Lightweight Security, Sponge-based Protocols, Sponge Construction, Au-

tonomous Hardware Encryption, Half-duplex security, BLINKER.

1 Introduction

The last decade has seen significant advances in encryption algorithm design for perva-

sive and low-resource platforms; PRESENT [1] (2007),Grain-128a [2, 3] (2006-2011),

Hummingbird-2 [4, 5] (2009-2011), and FIDES [6] (2013) are some notable examples,

each representing a different cipher design methodology; block ciphers, stream ciphers,

and authenticated encryption algorithms have been proposed [7]. However, there have

been few general-purpose security suite proposals that have been designed from ground

up for lightweight platforms.

In this work we forgo traditional ciphers and hashes and take a fresh look at design-

ing light-weight security protocols. We see that a single cryptographic sponge permu-

tation can fulfill all security requirements of such a protocol, leading to a reduction of

implementation footprint and facilitating straight-forward security proofs.

Our aim is to create a generic short-distance link layer security provider that can

function independently from upper layer application functions. Ideally this would be

realizable with autonomous hardware, without much CPU or MCU involvement.

Contributions and structure of this paper. After a brief introduction to resource-

hungry legacy record protocols (Section 2), we describe the two-channel synchroniza-

tion problem which affects most of them – the interwoven order of messages from two

communicating parties is left unauthenticated (Section 3).

Our design avoids much of the complexity of traditional security protocols by adopt-

ing a sequential state authentication mode (Section 4) which can better meet our security

and efficiency requirements while facilitating straight-forward security proofs.

In order to counter the synchronization problem and to reduce implementation foot-

print we adopt a half-duplex mode that utilizes a fully shared state between the two

parties (Section 5).

With the term half-duplex we are referring to a mode of communication where two

parties take turns on a single channel – the corresponding ITU-T term is “simplex cir-

cuit”. This is unrelated to the “Duplexing” primitive of SPONGEWRAP.

The “rolling” shared state will not only authenticate the current message but also

all previous messages and secrets sent and received during the session by both parties

together with their relative order.

We then recall basic facts about Sponge-based cryptography (Section 6), popular-

ized by the NIST SHA-3 algorithm KECCAK [8, 9] and expand its functionality to two-

party encryption and authentication with domain-separating multiplex padding (Section

6.1). This also addresses MAC truncation issues of the proposed authenticated encryp-

tion mode, SPONGEWRAP and the considerations expressed by NIST [10, 11].

After a brief technical description of authentication and (re)keying flow (Section 7),

we give implementation notes (Section 8), followed by Conclusions (Section 9).

2 Legacy Record and Transport Protocols

All of the standard networking security protocols - SSL3 [12], SSH2 [13, 14], TLS [15],

IPSEC [16–18], PPTP [19], and wireless WPA2 [20] together with its predecessors - can

be divided into two largely independent protocols: the handshake / authentication proto-

col and the transport / record protocol. In this work we concentrate on the latter protocol

which performs encryption and authentication of bulk data. We call these collectively

as “legacy record protocols”.

The record transport mechanisms of these protocols require that a diverse set of

binary strings are fed to various padding, wrapping, encryption and message authenti-

cation algorithms. We denote this compound operation by fcs for some “ciphersuite”

determined during the handshake phase of the protocol.

In addition to the plaintext P , data items required to perform authenticated encryp-

tion usually include at least the following:

S Incremental message sequence number for MACs.
IV Initialization vector for block ciphers.
Ke Secret key for the symmetric encryption algorithm.
Ka Secret key for the message authentication algorithm.

All of this state data is required to create a protected record C which contains plain-

text headers, encrypted headers, encrypted payload, padding, and the MAC.

C = fcs(P, S, IV ,Ke,Ka). (1)

The inverse typically yields either the plaintext or failure and closure of the channel:

f−1
cs (C, S, IV ,Ke,Ka) = P or FAIL. (2)

We note that this was not the original specified behavior of these legacy protocols;

various error messages were specified and implemented but these have been found to

act as oracles and leak secret information in cryptanalytic attacks [21–23].

Details of fcs process vary depending on the particular protocol and version, but

generally a header is appended to the message, followed by passes with a MAC algo-

rithm such as HMAC [24] and an encryption algorithm (typically AES [25] in CBC

[26] mode or the RC4 stream cipher [27]). In recent years the AES-GCM [28] authen-

ticated encryption mode has also been integrated with many of these protocols, but it

is not very popular in implementations. The Wireless Protected Access 802.11i (WPA

/ WPA2) protocol [20] requires AES in two-pass CCM [29] mode to implement its

CCMP protocol and SHA-1 [30] for key derivation. Furthermore TLS-based EAP-TLS

[31] authentication is recommended.

State and Algorithmic Complexity. At least two sets of data items (state) are required

since these protocols view the server-to-client and client-to-server channels as entirely

independent from each other. In IPSEC the two separate Security Associations (SAs)

may even theoretically utilize different algorithms.

Even if we ignore various error conditions, the security of legacy record protocols

depends upon the security of a large number of unrelated component designs, includ-

ing: Key derivation (PRF), HMAC and its Hash, padding, the cipher and its mode of

operation, and header encoding. Furthermore all data is processed at least twice – by

the encryption algorithm and the MAC algorithm, independently of each other. This is

why these protocols cannot be considered fully suitable for embedded and lightweight

applications or fully autonomous hardware implementations.

3 Two-Party Synchronization

As previously mentioned in Section 2, two independent channels are established by

legacy protocols, one from client to server (A → B) and another from server to client

(B → A). As these security protocols are often implemented as communication layers

(e.g. HTTPS is just HTTP over a TLS layer), typically no API interface is even available

to synchronize communications between the two channels.

Example: Consider the following three transcripts

T1 : B → A : M2, A→ B : M1, A→ B : M3

T2 : A→ B : M1, B → A : M2, A→ B : M3

T3 : A→ B : M1, A→ B : M3, B → A : M2

These three transcripts have precisely the same, valid, representation on the two

channels when sent over IPSEC, TLS, SSL, or SSH protocols. The same authentication

codes will match.

Therefore the upper protocol layers cannot determine whether M2 was sent spon-

taneously by B (T1) or as a response to M1 (T2) or to both M1 and M3 (T3). Such

ambiguity can significantly affect the interpretation of M2 in an upper layer application

such as a transaction protocol and lead to security failures.

The Synchronization Problem of Two-Channel Protocols. This illustrates a funda-

mental security issue; despite individual message authentication, the interwoven order

of the sequence of back-and-forth messages cannot be unambiguously determined and

authenticated with the legacy protocols, a fundamental requirement for reliable trans-

actions. This is why transaction records are often authenticated on the application level

as well, adding another layer of complexity.

This issue also affects basic end-user interactive security as portions of server mes-

saging can be maliciously delayed, encouraging the user to react to partial information.

We note this issue is already partially addressed by some national or regional pay-

ment terminal standards such as [32].

4 Rethinking Privacy and Authentication

Legacy record protocols apply authentication to each message individually; authentica-

tion of an individual message does not affect others any more than the A→ B channel

affects B → A channel. We note that such approach is not necessary as these proto-

cols are not generally fault tolerant and therefore require reliable rather than datagram

transport.

We simplify the abstraction of Equations 1 and 2 by defining an encoding transform

enc() that takes in a state variable Si, plaintext Pi, and padding, outputting a new state

Si+1 and ciphertext message Ci. The ciphertext message Ci may be longer than plain-

text Pi if it contains a t-bit authentication tag, which must be checked by the recipient.

(Si+1, Ci) = enc(Si, Pi, pad). (3)

The decoding function dec() produces the same Si+1 and Pi from the ciphertext

and equivalent Si and padding, synchronizing the state between sender and receiver –

or resulting in a failure in case of an authentication error:

(Si+1, Pi) = dec(Si, Ci, pad) or FAIL. (4)

Here the intended utility of legacy protocols’ MAC and Encryption secret keys and

algorithms (for encryption and message authentication), sequence numbers, and ini-

tialization vectors boils down to a singular synchronized state variable whose contents

depend on absorbed keying and initialization data together with all encrypted messag-

ing transmitted thus far. The new state Si+1 can be then used for transmitting an another

message; this is a “MAC-and-Continue” mode.

Our main security goals are largely compatible with those laid out for Authenticated

Encryption [33, 34] and Duplex Sponges in particular – proofs in [35, 36] are applicable

if appropriate domain-separating padding is used. See Section 6.1 for claimed security

bounds for the following security goals:

priv The ciphertext result C of enc(S, P, pad) must be indistinguishable from ran-

dom when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result

in a FAIL in dec(S,C, pad) without knowledge of S is bound by a function of

the authentication tag size t and number of trials.

We define an additional nonstandard, informal goal which relates to solving the

synchronization problem of actual two-party protocols described in Section 3. It can be

viewed as a direct extension of auth from an unidirectional communications channel to

bidirectional channels and multi-party protocols:

sync Each party can verify that all previous messages of the session have been cor-

rectly received and the absolute order in which messages were sent.

Our security argument for this goal is derived from the fact that an encoding exists

that effectively expresses each two-party session as a single, unique hash. However, it

may be possible to achieve such verifiability in a protocol which is not strictly syn-

chronous or has more than two parties, so we leave the formal definition of sync to

latter work.

Comparison with Legacy Protocols. Our requirements are stronger than those com-

monly expected from security protocols; for example all protocols of Section 2 are eas-

ily identifiable, a concern in the operation of Firewalls and Intrusion Detection Systems

(IDS) which try to profile and filter various protocols being used in a network.

Our design tries to avoid visible unencrypted sequence numbers and paddings that

would allow trivial protocol and protocol version identification as it is very difficult to

block something you cannot create an IDS signature for. 1

The third, informal requirement sync appears to be new and is not met by current

protocols as shown in Section 3. Here we are trying to address a real-world security

concern rather than adding a vehicle for theoretical research.

We find that with Sponge approach we do not have to over-simplify our protocol

when modeling it for security proofs. In analysis of a typical real world protocol, one is

faced with a combinatorial explosion of interplay between details such as: crypto algo-

rithms, message formatting and padding, modes of operation, hash constructions, MAC

constructions, error codes, and key derivation. Such complexity is the main reason why

“provably secure” protocols often fail in practice; the protocols have been be severely

simplified and idealized for analysis.

During the 10-15 years since the protocols of Section 2 largely took their present

form, a large number number of security proofs, counter-proofs and attacks have been

presented, starting with [38–40] and [23, 41–44] representing some of the more recent

work.

1 Our BLINKER implementation has its origins in the stealthy communications mechanisms

of an Academic RAT tool [37]. Here a HTTP port 80 channel was used and hence our traffic

could not be “picked up” amongst other random things that are transmitted during web surfing.

5 Half-duplex Security Protocols with a Shared State

In BLINKER, we implement communications security for the shared channel using a

single, synchronized state Si for both directions, saving resources and 50% of state

memory in the implementation. A domain separation padding mechanism distinguishes

between the two communicating parties as well as data input types. Figure 1 shows an

interchange of three messages with a synchronized state.

From security viewpoint, this setup has the advantage that the entire interchange or

“conversation” is continually authenticated as the evolving state includes full contents

of messages from both parties and the order they were sent. The security proofs interpret

the state Si as equivalent to a cryptographic hash of a full transcript of the session up to

message or input i; this is achieved with specific padding.

Asymmetrically Signed Sessions and Transactions. The entire session up to point

i can be cryptographically validated by signing a hash “squeezed” from the state Si.

Even if the initial session authentication is based on digital signatures, as is often the

case with legacy protocols, this does not mean that the session is signed. Without Alice’s

signature of the protocol transcript, Bob (who also knows all symmetric authentication

and encryption secrets) can easily forge a session transcript. It is rather difficult to sign

a session with a protocol such as TLS, SSH2, or IPSEC since application-level hashing

and processing is required. With a BLINKER-type protocol such final authentication is

relatively easy to implement, an excellent feature for transaction protocols.

Real-Life Prevalence of Half-Duplex Links. Half-duplex links may seem rare to a

software developer due to the widespread use of the socket programming paradigm.

This illusion is often achieved by time-division duplexing (TDD). However, half-duplex

is physically prevalent on sensor networks, IoT and last-hop radio links – Bluetooth and

IEEE 802.15.4 ZigBee being two notable examples.

Initial state: S0 Initial state: S0

A B

enc(S0,M1) = (S1, C1)

dec(S0, C1) = (S1,M1)

enc(S1,M2) = (S2, C2)

A → B : C1

dec(S1, C2) = (S2,M2)

enc(S2,M3) = (S3, C3)

B → A : C2

A → B : C3

dec(S2, C3) = (S3,M3)

Final state: S3 Final state: S3

Fig. 1. Simplified interchange of three messages whose plaintext equivalents are A → B : M1,

B → A : M2, A → B : M3, utilizing a synchronized secret state variables Si. The order of

messages cannot be modified and hence this exchange is sync - secure.

Half-duplex links can be established wirelessly with unpaired frequencies (same

frequency in both directions), a typical scenario in light-weight time-divide commu-

nications, our specific targets. An another example are embedded twisted-wire serial

links.

We note that in addition to wireless last-hop transports, most RFID, Smart Card,

and industrial control (MODBUS) communications are implemented under a query-

response model and are therefore effectively half-duplex [45–47].

6 Extending the Sponge Construction

Sponge constructions generally consist of a state S = (Sr || Sc) which has b = r + c

bits and a b-bit keyless cryptographic permutation π. The Sr component of the state has

r “rate” bits which interact with the input and the internal Sc component has c private

“capacity” bits.

These components, together with suitable padding and operating rules can be used

to build provable Sponge-based hashes [48], Tree Hashes [49], Message Authentication

Codes (MACs) [50], Authenticated Encryption (AE) algorithms [35], and pseudoran-

dom extractors (PRFs and PRNGs) [51].

Absorbing and Squeezing. We recall the basic Sponge hash [48] concepts of “absorb-

ing” and “squeezing” which intuitively correspond to insertion and extraction of data to

or from the sponge. Let Si and Si+1 be b-bit input and output states. For absorption of

padded data blocks Mi (of r bits each) we iterate:

Si+1 = π(Sr

i
⊕Mi || S

c

i
). (5)

This stage is followed by squeezing out the hash H = H(M) by consecutive iterations

of:

H = H || Sr

i

Si+1 = π(Si). (6)

These constructions may be transformed into a keyed MAC by considering the state

Si as secret (keyed) [50]. Keying is then equivalent to initial absorption of keying ma-

terial before the payload data. MAC is squeezed out exactly like a hash.

Duplexing. A further development is the Duplex construction [35] which allows us to

encrypt and decrypt data while also producing a MAC in the end with a single pass.

The state is first initialized by inserting secret keying material and non-secret ran-

domization data to the state via the absorption mechanism of Equation 5. To encrypt

plaintext blocks Pi to ciphertext blocks Ci we iterate:

Ci = Sr

i
⊕ Pi

Si+1 = π(Ci || S
c

i
). (7)

The effect on the state is the same as that of Equation 5. The inverse – decryption opera-

tion – is almost equivalent to encryption, which in itself has significant implementation

advantages:

Pi = Sr

i
⊕ Ci

Si+1 = π(Ci || S
c

i
). (8)

After encryption or decryption, a message authentication code for the message may

be squeezed out as in Equation 6 and verified. To simplify exposition, we have left some

key details regarding padding. We will come back to these in Section 6.1.

MAC-and-Continue. There is really no need to constrain the iteration to a single mes-

sage. With appropriate domain-separating padding the security proofs allow the sponge

states to be used for any number of consecutive authenticated messages (“MAC-and-

Continue”) without the need for sequence numbers, and re-keying. This is one of the

main observations which led to the present work and greatly reduces the latency of im-

plementation as “initialization rounds” are not required for each message. This was also

proposed as part of the original SPONGEWRAP construction.

6.1 Multiplex Padding

The SPONGEWRAP [35] and MONKEYDUPLEX [36] padding rules offer concrete Sponge-

based methods for performing authenticated encryption. Recent work on implementa-

tion of SPONGEWRAP and its variants on low-resource platforms is reported in [7].

The requirements laid out in [35] for the padding rule are that they are reversible,

non-empty and that the last block is non-zero. The padding rule in KECCAK is that a

single 1 bit is added after the last bit of the message and also at the end of the input

block.

In the Duplex construction of SPONGEWRAP additional padding is included for

each input block; a secondary information bit called frame bit is used for domain sepa-

ration. SAKURA [49] uses additional frame bits to facilitate tree hashing. It is essential

that the various bits of information such as the key, authenticated data, and authenticated

ciphertext can be exactly “decoded” from the Sponge input to avoid trivial padding col-

lisions. We use a more explicit padding mechanism but the following priv and auth

bounds proven in [35] (Section 5.2 on Page 332) and [50] also hold for enc():

Theorem 1 (Theorem 1 from [35]). The SPONGEWRAP and BLINKER authenticated

encryption modes satisfy the following privacy and authentication security bounds:

Advprivenc (A) < q2−k +
N(N + 1)

2c+1
(9)

Advauthenc (A) < q2−k + 2−t +
N(N + 1)

2c+1
(10)

against any single adversary A if K
$
← {0, 1}k, tags of l ≥ t bits are used, π is a

randomly chosen permutation, q is the number of queries and N is the number of times

π is called.

Note that even the Squeezing phase can utilize padding to mark the size of desired

output (as we do in Section 6.2). In KECCAK and SPONGEWRAP a convention has

been adopted to have a null Sr input to π during squeezing in order to separate it from

other phases (hence the requirement that padding rule does not produce null blocks).

However this may lead to problems in some applications where the MAC length is not

clear.

Context collision in KECCAK and SPONGEWRAP. There is no indicator for MAC

length in SPONGEWRAP construction – output is simply truncated. If the sender and

recipient have a different idea about the length, there is no way to detect truncation of

the MAC. Different length-variants of KECCAK give different outputs for the same data

simply because different data rates r are used and this affects the placing of the final

padding bit. Earlier members of the SHA standard avoid this issue by having different

IV values depending on the desired output length [30].

6.2 Multiplexing the Sponge

Our new padding rule is called Multiplex. Input and output blocks, encrypted and au-

thenticated data, keys, and nonces are all different input domains and must be encoded

unambiguously as Sponge inputs. Rather than using frame bits per block for domain

separation as in SPONGEWRAP, the data domains are explicitly encoded. This allows

many more data types to be entered into the sponge as well and clearer domain separa-

tion between them. It is essential in a shared-state two-party protocol that the originating

party of the block (Alice or Bob) is also used to mark domain separation between the

two.

We retain one d-bit word D in Sc for domain separation; Sc = (Sd || Sc
′

) with

c′ = c− d. The iteration for arbitrary absorption, squeezing, and encryption is now:

Si+1 = π(Sr

i
⊕Mi || S

d

i
⊕Di || S

c
′

i
). (11)

For decryption we have the following update function:

Si+1 = π(Ci || S
d

i
⊕Di || S

c
′

i
). (12)

In our implementation d = 16 bits. Table 1 gives a description of padding mask

word bits (which may be OR’ed together). Message blocks are always padded with a

single “1” bit and by zeros to fill r bits, followed by the multiplex padding word. If full

r bits are used in a block, the padding bit is the bit 0 in the multiplex word.

The effective information theoretic capacity is reduced by the Multiplex construc-

tion to no more than c− 3 rather than c′ = c− d if tree functions are not used.

Unlike message data, the domain separation word is always XORed with the S

state bits on all operations (Equations 11 and 12). Apart from few options, the domains

follow each other in application-specific predetermined order and hence two bits of

entropy is sufficient to mark that separation between block types in our protocol. In

addition there is a padding bit that may be located in the domain separation word if the

input block is full (bit 0).

Therefore the effective c for values bounds of Theorem 1 need to be modified only

by 3 bits when multiplex padding is used. We do this in order to remove the requirement

for additional message padding buffers and also to follow Horton’s Principle [40, 52],

“Authenticate what is being meant, not what is being said.”

The separation of the domain mask word from main input allows later expansions

of functionality without breaking interface designs; for example we may adopt tree-

based hashing - and by extension, tree MACs and encryption - by utilizing bits 14 and

15 of Di for this purpose rather than adding more frame bits as in SAKURA [49]. If

tree structure is used, the capacity should be reduced to c − 4 for security analysis.

Furthermore, increasing d > 16 will not break existing implementations.

Since the protocol exchange can be unambiguously decoded from the sponge input

(M1 ||D1) || (M2 ||D2) || .., and we do not reset the state between messages, the proofs

of Theorem 1 [35, 50] seem to apply to the protocol as a whole as well as individual

messages. If one can forge an individual message authentication code or (by induction)

a multi-message exchange, one can also break the Sponge in a SHA-3 - type hash

construction. However, we leave the formalization and proof machinery of our informal

sync goal for latter work.

Padding while Squeezing. In the squeezing phases of our construction the (inputless)

output blocks are virtually padded as if Mi = 0r in Equation 11. If s < r bits of the

block is begin squeezed out, a single “1” bit is XORed at state S after the location of last

output bit; Mi = 0s || 1 || 0r−s−1. This resolves the SPONGEWRAP context collision

described in Section 6.1 since at least the last output block will differ for different output

sizes.

We acknowledge that the solution is perhaps not ideal if the extracted hash is longer

than the block size; two hashes of different size from the same message are equivalent

except for the final blocks.

6.3 Sourcing π

BLINKER was originally designed together with the CBEAM algorithm [53] for inte-

grated use in low-resource and small-footprint applications.

However, the choice of π is arbitrary if it satisfies the required security properties.

KECCAK is a strong candidate as it has been selected as the NIST SHA-3 algorithm [9,

8, 54], albeit its 1600-bit state is often seen as too large for low-resource platforms and

short messages. However, there are nonstandard reduced-state variants KECCAK-f [b]
where b = 25× 2l for 1 ≤ l ≤ 6.

Other candidates as π donors include PHOTON [55]. QUARK [56, 57], and SPON-

GENT [58]. Each of these can be used to construct extremely lightweight protocols

based on our Multiplex / BLINKER construction.

Note that some clearly “non-hermetic” Sponge permutations such as FIDES [6]

are probably not secure enough. It may be possible to be somewhat flexible in this

requirement as we assume a randomized session S, as is done in the MONKEYDUPLEX

[36] construct.

Table 1. Proposed bits used in the Multiplex Padding Word which is XORed with the state.

Depending on protocol state and the intended usage of message block, multiple bits are set si-

multaneously.

Bit Mask When set

0 0x0001 This is a full input or output block (r bits).

1 0x0002 This is the final block of this data element.

4 0x0004 Block is an input to sponge (“absorption”).

3 0x0008 Block is output from sponge (“squeezing”).

4 0x0010 Associated Authenticated Data input.

5 0x0020 Secret key block.

6 0x0040 Nonce input block.

7 0x0080 Encryption / Decryption block.

8 0x0100 Hash block.

9 0x0200 Keyed Message Authentication Code (MAC) output block.

10 0x0400 Block for state storage or reloading.

11 0x0800 Pseudo Random Number Generator (PRNG) block.

12 0x1000 Originating from Alice (client / slave).

13 0x2000 Originating from Bob (server / master).

14 0x4000 Tree chaining Node.

15 0x8000 Tree final Node.

Comparison with AES-based Protocols. For most of these π permutations the work-

ing memory required to implement the entire two-way BLINKER protocol is only

slightly more than b bits for the state. It is difficult if not impossible to implement

AES in any reasonable authenticated mode of operation with such a small amount of

memory in a two-party protocol as additional storage is required for two round / nonce

counters, authenticators, and round keys.

7 Basic Shared Secret Authentication and Record Protocol Flow

We assume that the shared secret K is simply stored by both parties; however it may be

derived with a lightweight asymmetric key exchange method such as Curve25519 [59].

K may also be combined from passwords or composed in other ways.

We use the shorthand enc(state, input, pad) in the following for encoding opera-

tions. Corresponding synchronized decoding may result in FAIL and immediate closure

of channel. We do not explicitly describe these operations; see Sections 4 and 5. How-

ever, in order to clarify exposition, we are “writing out” the authentication tag genera-

tion phases.

We first absorb the identities Ia and Ib of Alice and Bob into the state. Note that

it may not be necessary to transmit the messages M1 and M2 if the identities are self-

evident. The key is never transmitted but simply mixed with the state. Let S0 be some

initialization value.

(S1,M1) = enc(S0, Ia, 0x108C) | A→ B : M1

(S2,M2) = enc(S1, Ib, 0x208C) | B → A : M2

S3 = enc(S2,K, 0x3024) |

Two random nonces Ra and Rb are required for challenge-response authentication

and to make the session unique.

(S4,M3) = enc(S3, Ra, 0x10CC) | A→ B : M3

(S5,M4) = enc(S4, Rb, 0x20CC) | B → A : M4

We may now perform mutual authentication with tags of t bits:

(S6,M5) = enc(S5, 0
t, 0x1208) | A→ B : M5

(S7,M6) = enc(S6, 0
t, 0x2208) | B → A : M6

Checking M5 and M6 completes mutual authentication. By an inductive process we

see that the session secret S7 is now dependent upon randomizers from both parties and

the original shared secret is not leaked if the Sponge satisfies our security axioms.

After this, plaintexts Pa (for A → B) and Pb (for B → A) can be encrypted,

transmitted and authenticated by repeathing the following exchange:

(Si+1,Ma) = enc(Si, Pa, 0x108C) | A→ B : Ma

(Si+2, Ta) = enc(Si+1, 0
t, 0x1208) | A→ B : Ta

(Si+3,Mb) = enc(Si+2, Pb, 0x208C) | B → A : Mb

(Si+4, Tb) = enc(Si+3, 0
t, 0x2208) | B → A : Tb

Due to explicit padding it is easy to show that the entire message flow is authenti-

cated if appropriate checks are made.

8 Implementation Notes

We have already fielded BLINKER in a tiny security application that communicates

with a server over a HTTP 1.1 stay-alive link [37]. Such a link is essentially half-duplex

as messages are sent and received over HTTP POST method within a single stay-alive

TCP session. On the target platform this proved to be an ideal method for communi-

cating with a server over the Internet; SSL is essentially unimplementable on the target

platform. The same is true for many low-end embedded devices that have only rudi-

mentary TCP stacks or use some non-TCP protocol for the initial hop.

Figure 2 shows a simplified interface for a module that implements BLINKER in

hardware. The mode of operation is determined by the domain separation padding word

PADDING IN (as specified in Table 1) together with the SEND / RECEIVE signal that

distinguishes between encryption and decryption, MAC generation and verification. It

is noteworthy that the Sc secret state bits never have to leave the module and can be

isolated from CPU with the interface provided.

BLOCK IN

PADDING IN

SEND/RECV IN

BLOCK OUT

CLK IN

RST IN

CLR STATE IN

r r

d
Logic and π

ERROR OUT

Fig. 2. A simplified interface architecture for a semi-autonomous hardware component imple-

menting BLINKER.

9 Conclusions

We have described the use of Sponge permutations to build complete lightweight two-

way communications links (record protocols). In terms of embedded RAM and ROM

our design has much smaller implementation footprint when compared to traditional ap-

proaches. Furthermore the “half-duplex” design is naturally suited for these platforms

and is resistant to synchronization flaws; each authentication tag essentially authenti-

cates the entire session up to that point.

In a hardware implementation the session secrets never have to leave (and cannot

leave) a specific hardware component, making the design attractive in HSM and smart

card applications. Such separation is very difficult (and costly) to achieve with SSL

and other legacy protocols which generally require CPU/MCU interaction to create

encryption and authentication keys from session secrets.

Our design is especially suitable for last-lap and autonomous hardware communica-

tions, such as those with sensors, Radio Frequency Identification (RFID) and Near Field

Communication (NFC) systems, smart cards, and Internet-of-Things applications.

Acknowledgements. The author wishes to thank Kudelski Security, University of

Haifa, and Nanyang Technological University for supporting his work. Program Com-

mittee members of CT-RSA 2014 provided invaluable suggestions for improving the

quality of this paper.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B.,

Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In Paillier, P.,

Verbauwhede, I., eds.: CHES 2007. Volume 4727 of LNCS., Springer (2007) 450–466

2. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained environments.

International Journal of Wireless and Mobile Computing, Special Issue on Security of Com-

puter Network and Mobile Systems 2(1) (2006) 86–93

3. gren, M.A., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-128

with optional authentication. International Journal of Wireless and Mobile Computing 5(1)

(2011) 48–59

4. Engels, D., Fan, X., Gong, G., Hu, H., Smith, E.M.: Ultra-lightweight cryptography for low-

cost RFID tags: Hummingbird algorithm and protocol. Technical Report CACR-2009-29,

University of Waterloo (2009)

5. Engels, D., Saarinen, M.J.O., Schweitzer, P., Smith, E.M.: The Hummingbird-2 lightweight

authenticated encryption algorithm. In Juels, A., Paar, C., eds.: RFIDSec ’11. Volume 7055

of LNCS., Springer (2011) 19–31

6. Bilgin, B., Bogdadov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: Lightweight authen-

ticated cipher with side-channel resistance for constrained hardware. In Bertoni, G., Coron,

J.S., eds.: CHES 2013. Volume 8086 of LNCS., Springer (2013) 142–158

7. Yalçın, T., Kavun, E.B.: On the implementation aspects of sponge-based authenticated en-

cryption for pervasive devices. In Mangard, S., ed.: CARDIS 2012. Volume 7771 of LNCS.,

Springer (2013) 141–157

8. NIST: NIST selects winner of secure hash algorithm (SHA-3) competition. NIST Tech Beat

Newsletter (2 October 2012)

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference, version 3.0. NIST

SHA3 Submission Document (January 2011)

10. Kelsey, J.: SHA3: Where we’ve been, where we’re going. Talk Given at RSA Security

Conference USA 2013 (February 2013)

11. Kelsey, J.: SHA3: Past, present, and future. Invited Talk Given at CHES 2013 (August 2013)

12. Freier, A., Karlton, P., Kocher, P.: The secure sockets layer (SSL) protocol version 3.0. IETF

RFC 6101 (Historic) (August 2011)

13. Ylönen, T., Lonvick, C.: The secure shell (SSH) protocol architecture. IETF RFC 4251

(Standards Track) (January 2006)

14. Ylönen, T., Lonvick, C.: The secure shell (SSH) transport layer protocol. IETF RFC 4253

(Standards Track) (January 2006)

15. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2. IETF RFC

5246 (Standards Track) (August 2008)

16. Kent, S., Seo, K.: Security architecture for the internet protocol. IETF RFC 4301 (Standards

Track) (December 2005)

17. Kent, S.: IP authentication header. IETF RFC 4302 (Standards Track) (December 2005)

18. Kent, S.: IP encapsulating security payload (ESP). IETF RFC 4303 (Standards Track)

(December 2005)

19. Hamzeh, K., Pall, G., Verthein, W., Taarud, J., Little, W., Zorn, G.: Point-to-point tunneling

protocol (PPTP). IETF RFC 2637 (July 1999)

20. IEEE: IEEE standard for information technology - telecommunications and information ex-

change between systems - local and metropolitan area networks - specific requirements. part

11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.

amendment 6: Medium access control (MAC) security enhancements (July 2004)

21. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryp-

tion standard PKCS #1. In Krawczyk, H., ed.: CRYPTO ’98. Volume 1462 of LNCS.,

Springer (1998) 1–12

22. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL, IPSEC, WTLS

... In Knudsen, L.R., ed.: EUROCRYPT 2002. Volume 2332 of LNCS., Springer (2002)

534–546

23. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS record proto-

cols. In: IEEE Symposium on Security and Privacy 2013. (2013) To Appear.

24. Bellare, M., Canetti, R., Krawczyk, H.: Message authentication using hash functions - the

HMAC construction. CryptoBytes 2(1) (1996)

25. NIST: Advanced Encryption Standard (AES). Federal Information Processing Standards

197 (2001)

26. Dworkin, M.: Recommendation for block cipher modes of operation. Special Publication

800-38A (December 2001)

27. Rivest, R.: The RC4 encryption algorithm (March 1992)

28. NIST: Recommendation for block cipher modes of operation: Galois/counter mode (GCM)

and GMAC. NIST Special Publication 800-38D (2007)

29. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). IETF RFC 3610

(September 2003)

30. NIST: Secure Hash Standard (SHS). Federal Information Processing Standards Publication

180-4 (March 2012)

31. Simon, D., Aboba, B., Hurst, R.: The EAP-TLS authentication protocol. IETF RFC 5216

(March 2008)

32. UKPA: Acquirers’ interface requirements for electronic data capture terminals. UKPA /

APACS Standard 40, incorporated into Standard 70 Book 2, 4 & 5 (2007)

33. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of operation for

efficient authenticated encryption. In Reiter, M.K., Samarati, P., eds.: CCS ’01: Proceedings

of the 8th ACM conference on Computer and Communications Security, ACM (2001) 196–

205

34. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for efficient

authenticated encryption. ACM Transactions on Information and System Security (TISSEC)

6(3) (August 2003) 365–403

35. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the sponge: Single-pass au-

thenticated encryption and other applications. In Miri, A., Vaudenay, S., eds.: SAC 2011.

Volume 7118 of LNCS., Springer (2011) 320–337

36. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based encryption, au-

thentication and authenticated encryption. In: DIAC 2012. (2012) http://keccak.

noekeon.org/KeccakDIAC2012.pdf.

37. Saarinen, M.J.O.: Developing a grey hat C2 and RAT for APT security training and assess-

ment. In: GreHack 2013 Hacking Conference, 15 November 2013, Grenoble, France. (2013)

To Appear.

38. Bellovin, S.M.: Problem areas for the IP security protocols. In: Proc. Sixth USENIX Security

Symposium. (1996) 205–214

39. Mitchell, J., Shmatikov, V., Stern, U.: Finite-state analysis of SSL 3.0. In: USENIX Security

Symposium 1998, USENIX (1998) 201–216

40. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: The Second USENIX

Workshop on Electronic Commerce Proceedings, USENIX Press (November 1996) 29–40

41. Degabriele, J.P., Paterson, K.G.: Attacking the IPsec standards in encryption-only config-

urations. In: IEEE Symposium on Security and Privacy, IEEE Computer Society (2007)

335–349

42. Degabriele, J.P., Paterson, K.G.: On the (in)security of IPsec in MAC-then-encrypt con-

figurations. In Al-Shaer, E., Keromytis, A.D., Shmatikov, V., eds.: ACM Conference on

Computer and Communications Security, ACM (2010) 493–504

43. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks and proofs for

the TLS record protocol. In Lee, D.H., Wang, X., eds.: ASIACRYPT 2011. Volume 7073 of

LNCS., Springer (2011) 372–389

44. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A systematic

analysis. In Canetti, R., Garay, J.A., eds.: CRYPTO 2013, Part I. Volume 8042 of LNCS.,

Springer (2013) 429–448

45. International Standardization Organization: ISO/IEC 7816-4:2013 Identification cards – In-

tegrated circuit cards – Part 4: Organization, security and commands for interchange. (2013)

46. International Standardization Organization: ISO/IEC 18000-63. Information technology –

Radio frequency identification for item management – Part 6: Parameters for air interface

communications at 860 MHz to 960 MHz Type C. (2012)

47. MODBUS: MODBUS Application Protocol Specification V1.1B. (April 2012) http://

www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf.

48. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: Ecrypt Hash

Workshop 2007. (May 2007)

49. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sakura: a flexible coding for tree hashing.

IACR ePrint 2013/213, http://eprint.iacr.org/2013/213 (April 2013)

50. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the security of the keyed sponge

construction. In: SKEW 2011 Symmetric Key Encryption Workshop. (February 2011)

51. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge-based pseudo-random number

generators. In Mangard, S., Standaert, F.X., eds.: CHES 2010. Volume 6225 of LNCS.,

Springer (2010) 33–47

52. Ferguson, N., Schneier, B.: Practical Cryptography. John Wiley & Sons (2003)

53. Saarinen, M.J.O.: CBEAM: Efficient authenticated encryption from feebly one-way phi

functions. In: CT-RSA 2014: Cryptographers’ Track, RSA Conference USA, 25–28 Febru-

ary 2014, San Francisco, USA, Springer (2014) To Appear.

54. Chang, S., R.Perlner, Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham, L.E.: Third-

round report of the SHA-3 cryptographic hash algorithm competition. Technical Report

NISTIR 7896, National Institute of Standards and Technology (November 2012)

55. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In

Rogaway, P., ed.: CRYPTO 2011. Volume 6841 of LNCS., Springer (2011) 222–239

56. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight hash. In

Mangard, S., Standaert, F.X., eds.: CHES 2010. Volume 6225 of LNCS., Springer (2010)

1–15

57. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight hash.

Journal of Cryptology (2012) To Appear – Slightly Different Parameters from the CHES

2010 Version.

58. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.: Spongent:

A lightweight hash function. In Preneel, B., Takagi, T., eds.: CHES 2011. Volume 6917 of

LNCS., Springer (2011) 312–325

59. Bernstein, D.: Curve25519: New Diffie-Hellman speed records. In Yung, M., Dodis, Y.,

Kiayias, A., Malkin, T., eds.: PKC 2006. Volume 3958 of LNCS., Springer (2006) 207–228

