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Abstract

Multilevel modeling is often treated as if it concerns only regression
analysis and growth modeling. Multilevel modeling, however, is rele-
vant for nested data not only with regression and growth analysis but
with all types of statistical analyses. This chapter has two aims. First,
it shows that already in the traditional multilevel analysis areas of re-
gression and growth there are several new modeling opportunities that
should be considered. Second, it gives an overview with examples of
multilevel modeling for path analysis, factor analysis, structural equa-
tion modeling, and growth mixture modeling. Examples include two
extensions of two-level regression analysis with measurement error in
the level 2 covariate and a level 1 mixture; two-level path analysis and
structural equation modeling; two-level exploratory factor analysis of
classroom misbehavior; two-level growth modeling using a two-part
model for heavy drinking development; an unconventional approach
to three-level growth modeling of math achievement; and multilevel
latent class mediation of high school dropout using multilevel growth
mixture modeling of math achievement development.
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1 Introduction

Multilevel modeling is often treated as if it concerns only regression
analysis and growth modeling (Raudenbush & Bryk, 2002; Snijders
& Bosker, 1999). Furthermore, growth modeling is merely seen as a
variation on the regression theme, regressing the outcome on a time-
related covariate. Multilevel modeling, however, is relevant for nested
data not only with regression analysis but with all types of statistical
analyses, including

• Regression analysis

• Path analysis

• Factor analysis

• Structural equation modeling

• Growth modeling

• Survival analysis

• Latent class analysis

• Latent transition analysis

• Growth mixture modeling

This chapter has two aims. First, it shows that already in the tradi-
tional multilevel analysis areas of regression and growth there are sev-
eral new modeling opportunities that should be considered. Second,
it gives an overview with examples of multilevel modeling for path
analysis, factor analysis, structural equation modeling, and growth
mixture modeling. Due to lack of space, survival, latent class, and
latent transition analysis are not covered. All of these topics, how-
ever, are covered within the latent variable framework of the Mplus
software, which is the basis for this chapter. A technical description
of this framework including not only multilevel features but also finite
mixtures is given in Muthén and Asparouhov (2008). Survival mixture
analysis is discussed in Asparouhov, Masyn and Muthén (2006). See
also examples in the Mplus User’s Guide (Muthén & Muthén, 2008).
The User’s Guide is available online at www.statmodel.com.

The outline of the chapter is as follows. Section 2 discusses two ex-
tensions of two-level regression analysis, Section 3 discusses two-level
path analysis and structural equation modeling, Section 4 presents an
example of two-level exploratory factor analysis, Section 5 discusses
two-level growth modeling using a two-part model, Section 6 discusses
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an unconventional approach to three-level growth modeling, and Sec-
tion 7 presents an example of multilevel growth mixture modeling.

2 Two-level regression

One may ask if there really is anything new that can be said about
multilevel regression. The answer, surprisingly, is yes. Two extensions
of conventional two-level regression analysis will be discussed here,
taking into account measurement error in covariates and taking into
account unobserved heterogeneity among level 1 subjects.

2.1 Measurement error in covariates

It is well known that measurement error in covariates creates biased
regression slopes. In multilevel regression a particularly critical covari-
ate is the level 2 covariate x̄.j , drawing on information from individuals
within clusters to reflect cluster characteristics, as for example with
students rating the school environment. Based on relatively few stu-
dents such covariates may contain a considerable amount of measure-
ment error, but this fact seems to not have gained widespread recogni-
tion in multilevel regression modeling. The following discussion draws
on Asparouhov and Muthén (2006) and Ludtke et al (2008). The topic
seems to be rediscovered every two decades given earlier contributions
by Schmidt (1969) and Muthén (1989).

Raudenbush and Bryk (2002; p. 140, Table 5.11) considered the
two-level, random intercept, group-centered regression model

yij = β0j + β1j (xij − x̄.j) + rij , (1)

β0j = γ00 + γ01 x̄.j + uj , (2)

β1j = γ10, (3)

defining the “contextual effect” as

βc = γ01 − γ10. (4)

Often, x̄.j can be seen as an estimate of a level 2 construct which has
not been directly measured. In fact, the covariates (xij − x̄.j) and x̄.j

may be seen as proxies for latent covariates (cf Asparouhov & Muthén,
2006),

xij − x̄.j ≈ xijw, (5)

x̄.j ≈ xjb, (6)
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where the latent covariates are obtained in line with the nested, ran-
dom effects ANOVA decomposition into uncorrelated components of
variation,

xij = xjb + xijw. (7)

Using the latent covariate approach, a two-level regression model may
be written as

yij = yjb + yijw (8)

= α+ βb xjb + ǫj (9)

+βw xijw + ǫij , (10)

defining the contextual effect as

βc = βb − βw. (11)

The latent covariate approach of (9) and (10) can be compared to
the observed covariate approach (1) - (3). Assuming the model of the
latent covariate approach of (9) and (10), Asparouhov and Muthén
(2006) and Ludtke et al (2008) show that the observed covariate ap-
proach introduces a bias in the estimation of the level 2 slope γ01 in
(3),

E(γ̂01) − βb =
(βw − βb)ψw/c

ψb + ψw/c
= (βw − βb)

1

c

1 − icc

icc+ (1 − icc)/c
, (12)

where c is the common cluster size and icc is the covariate intraclass
correlation (ψb/(ψb + ψw)). In contrast, there is no bias in the level
1 slope estimate γ̂10. It is clear from (12) that the between slope
bias increases for decreasing cluster size c and for decreasing icc. For
example, with c = 15, icc = 0.20, and βw − βb = 1.0, the bias is 0.21.

Similarly, it can be shown that the contextual effect for the ob-
served covariate approach γ̂01 − γ̂10 is a biased estimate of βb − βw

from the latent covariate approach. For a detailed discussion, see
Ludtke et al (2008), where the magnitudes of the biases are studied
under different conditions.

As a simple example, consider data from the German Third In-
ternational Mathematics and Science Study (TIMSS). Here there are
n = 1, 980 students in 98 schools with average cluster (school) size
= 20. The dependent variable is a math test score in grade 8 and
the covariate is student-reported disruptiveness level in the school.

5



The intraclass correlation for disruptiveness is 0.21. Using maximum-
likelihood (ML) estimation for the latent covariate approach to two-
level regression with a random intercept in line with (9) and (10)
results in β̂b = −1.35 (SE= 0.36), β̂w = −0.098 (SE= 0.03), and
contextual effect β̂c = −1.25 (SE = 0.36). The observed covariate ap-
proach results in the corresponding estimates γ̂01 = −1.18 (SE= 0.29),
γ̂10 = −0.097 (SE= 0.03), and contextual effect β̂c = −1.08 (SE
= 0.30).

Using the latent covariate approach in Mplus, the observed covari-
ate disrupt is automatically decomposed as disruptij = xjb + xijw.
The use of Mplus to analyze models under the latent covariate ap-
proach is described in Chapter 9 of the User’s Guide (Muthén &
Muthén, 2008).

2.2 Unobserved heterogeneity among level 1
subjects

This section reanalyzes the classic High School & Beyond (HSB) data
used as a key illustration in Raudenbush and Bryk (2002; RB from
now on). HSB is a nationally representative survey of U.S. public and
Catholic high schools. The data used in RB are a subsample with
7, 185 students from 160 schools, 90 public and 70 Catholic. The RB
model presented on pages 80-83 is considered here for individual i in
cluster (school) j:

yij = β0j + β1j (sesij −mean sesj) + rij , (13)

β0j = γ00 + γ01 sectorj + γ02 mean sesj + u0j , (14)

β1j = γ10 + γ11 sectorj + γ12 mean sesj + u1j , (15)

where mean ses is the school-averaged student ses and sector is a
0/1 dummy variable with 0 for public and 1 for Catholic schools. The
estimates are shown in Table 1. The results show for example that,
holding mean ses constant, Catholic schools have significantly higher
mean math achievement than public schools (see the γ02 estimate) and
that Catholic schools have significantly lower ses slope than public
schools (see the γ12 estimate).

What is overlooked in the above modeling is that a potentially
large source of unobserved heterogeneity resides in variation of the
regression coefficients between groups of individuals sharing similar
but unobserved background characteristics. It seems possible that this
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Table 1: High School & Beyond two-level regression estimates from Rauden-
bush & Bryk (2002)

Loglikelihood -23,248
Number of Parameters 10
BIC 46,585

Parameter Estimate S.E Est./S.E.
Two-Tailed

P-Value

Within level

Residual variance

math 36.720 0.721 50.944 0.000

Between level

math (β0j) ON

sector (γ01) 1.227 0.308 3.982 0.000
mean ses (γ02) 5.332 0.336 15.871 0.000

s ses (β1j) ON

sector (γ11) -1.640 0.238 -6.905 0.000
mean ses (γ12) 1.033 0.333 3.100 0.002

math WITH

s ses 0.200 0.192 1.041 0.298

Intercepts

math (γ00) 12.096 0.174 69.669 0.000
s ses (γ10) 2.938 0.147 19.986 0.000

Residual variances

math 2.316 0.414 5.591 0.000
s ses 0.071 0.201 0.352 0.725
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phenomenon is quite common due to heterogeneous sub-populations
in general population surveys. Such heterogeneity is captured by level
1 latent classes. Drawing on Muthén and Asparouhov (2009), these
ideas can be formalized as follows.

Consider a two-level regression mixture model where the random
intercept and slope of a linear regression of a continuous variable y
on a covariate x for individual i in cluster j vary across the latent
classes of an individual-level latent class variable C with K categories
labelled c = 1, 2, . . . ,K,

yij|Cij=c = β0cj + β1cj xij + rij , (16)

where the residual rij ∼ N(0, θc) and a single covariate is used for
simplicity. The probability of latent class membership varies as a two-
level multinomial logistic regression function of a covariate z,

P (Cij = c | zij) =
eacj+bc zij

∑K
s=1 e

asj+bs zij
. (17)

The corresponding level-2 equations are

β0cj = γ00c + γ01c w0j + u0j , (18)

β1cj = γ10c + γ11c w1j + u1j , (19)

acj = γ20c + γ21c w2j + u2cj . (20)

With K categories for the latent class variable there are K − 1 equa-
tions (20). Here, w0j , w1j , and w2j are level-2 covariates and the
residuals u0j , u1j , and u2cj are (2+K-1)-variate normally distributed
with means zero and covariance matrix Θ2 and are independent of rij .
In many cases z = x in (17). Also, the level 2 covariates in (18) - (20)
may be the same as is the case in the High School & Beyond example
considered below, where there is a common wj = w0j = w1j = w2j . To
reduce the dimensionality, a continuous factor f will represent the ran-
dom intercept variation of (20) in line with Muthén and Asparouhov
(2009).

Figure 1 shows a diagram of a two-level regression mixture model
applied to the High School & Beyond data. A four-class model is
chosen and obtains a loglikelihood value of 22, 812 with 30 parame-
ters, and BIC = 45, 891. This BIC value is considerably better than
the conventional two-level regression BIC value of 46, 585 reported in
Table 1 and the mixture model is therefore preferable. The mixture
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model and its ML estimates can be interpreted as follows. Because
this type of model is new to readers, Figure 1 will be used to under-
stand the estimates rather than reporting a table of the parameter
estimates for (16) - (20).

The latent class variable c in the level 1 part of Figure 1 has four
classes. As indicated by the arrows from c, the four classes are charac-
terized by having different intercepts for math and different slopes for
math regressed on ses. In particular, the math mean changes signifi-
cantly across the classes. An increasing value of the ses covariate gives
an increasing odds of being in the highest math class which contains
31% of the students. For three classes with lowest math intercept, ses
does not have a further, direct influence on math: the mean of the
random slope s is only significant in the class with the highest math
intercept, where it is positive.

The random intercepts of c, marked with filled circles on the circle
for c on level 1, are continuous latent variables on level 2, denoted
a1 − a3 (four classes gives three intercepts because the last one is
standardized to zero). The (co-)variation of the random intercepts is
for simplicity represented via a factor f . These random effects carry
information about the influence of the school context on the probabil-
ity of a student’s latent class membership. For example, the influence
of the level 2 covariate sector (public=0, Catholic = 1) is such that
Catholic schools are less likely to contribute to students being in the
lower math intercept classes relative to the highest math intercept
class. Similarly, a high value of the level 2 covariate mean ses causes
students to be less likely to be in the lower math intercept classes
relative to the highest math intercept class.

The influence of the level 2 covariates on the random slope s is
such that Catholic schools have lower values and higher mean ses
schools have higher values. The influence of the level 2 covariates on
the random intercept math is insignificant for sector while positive
significant for mean ses. The insignificant effect of sector does not
mean, however, that sector is unimportant to math performance given
that sector had a significant influence on the random effects of the
latent class variable c.

It is interesting to compare the mixture results to those of the
conventional two-level regression in Table 1. The key results for the
conventional analysis is that (1) Catholic schools show less influence
of ses on math, and (2) Catholic schools have higher mean math
achievement. Neither of these results are contradicted by the mix-
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Figure 1: Model diagram for two-level regression mixture analysis.

 

ture analysis. But using a model that has considerably better BIC,
the mixture model explains these results by a mediating latent class
variable on level 1. In other words, students’ latent class membership
is what influences math performance and latent class membership is
predicted by both student-level ses and school characteristics. The
Catholic school effect on math performance is not direct as an effect
on the level 2 math intercept (this path is insignificant), but indirect
via the student’s latent class membership. For more details on two-
level regression mixture modeling and a math achievement example
focusing on gender differences, see Muthén and Asparouhov (2009).

10



3 Two-level path analysis and struc-

tural equation modeling

Regression analysis is often only a small part of a researcher’s modeling
agenda. Frequently a system of regression equations is specified as in
path analysis and structural equation modeling (SEM). There have
been recent developments for path analysis and SEM in multilevel
data and a brief overview of new kinds of models will be presented in
this section. No data analysis is done, but focus is instead on modeling
ideas.

Consider the left part of Figure 2 where the binary dependent vari-
able hsdrop, representing dropping out by Grade 12, is related to a set
of covariates using logistic regression. A complication in this analysis
is that many of those who drop out by Grade 12 have missing data
on math10, the mathematics score in Grade 10, where the missing-
ness is not completely at random. Missingness among covariates can
be handled by adding a distributional assumption for the covariates,
either by multiple imputation or by not treating them as exogenous.
Either way, this complicates the analysis without learning more about
the relationships among the variables in the model. The right part
of Figure 2 shows an alternative approach using a path model that
acknowledges the temporal position of math10 as an intervening vari-
able that is predicted by the remaining covariates measured earlier. In
this path model, “missing at random” (MAR; Little & Rubin, 2002)
is reasonable in that the covariate may well predict the missingness in
math. The resulting path model has a combination of a linear regres-
sion for a continuous dependent variable and a logistic regression for
a binary dependent variable.

Figure 3 shows a two-level counterpart to the path model. The
top part of the figure shows the within-level part of the model for
the student relationships. Here, the filled circles at the end of the
arrows indicate random intercepts. On the between level these ran-
dom intercepts are continuous latent variables varying across schools.
The two random intercepts are not treated symmetrically, but it is
hypothesized that increasing math10 intercept decreases the hsdrop
intercept in that schools with good mean math performance in Grade
10 tend to have an environment less conducive to dropping out. Two
school-level covariates are used as predictors of the random intercepts,
lunch which is a dummy variable used as a poverty proxy and mstrat,
measuring math teacher workload as the ratio of students to full-time
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Figure 2: Model diagram for logistic regression path analysis

math teachers.
Another path analysis example is shown in Figure 4. Here, u is

again a categorical dependent variable and both u and the continu-
ous variable y have random intercepts. Figure 4 further illustrates
the flexibility of current two-level path analysis by adding an ob-
served between-level dependent variable z which intervenes between
the between-level covariate w and the random intercept of u. Between-
level variables that play a role as dependent variables are not used in
conventional multilevel modeling.

Figure 5 shows a path analysis example with random slopes aj , bj ,
and c′j . This illustrates a two-level mediational model. As described
in e.g. Bauer, Preacher and Gil (2006), the indirect effect is here
α×β+Cov(aj , bj), where α and β are the means of the corresponding
random slopes aj and bj .

Figure 6 specifies a MIMIC model with two factors fw1 and fw2
for students on the within level. The filled circles at the binary indi-
cators u1 − u6 indicate random intercepts that are continuous latent
variables on the between level. The between level has a single factor fb
describing the variation and covariation among the random intercepts.
The between level has the unique feature of also adding between-level
indicators y1 − y4 for a between-level factor f , another example of
between-level dependent variables. Two-level factor analysis will be
discussed in more detail in Section 4.

Figure 7 shows a structural equation model with an exogeneous
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Figure 3: Model diagram for two-level logistic regression path analysis

 

and an endogenous factor that has both within-level and between-
level variation. The special feature here is that the structural slope s
is random. The slope s is regressed on a between-level covariate x.

4 Two-level exploratory factor analy-

sis

A recent multilevel development concerns a practical alternative to ML
estimation in situations that would lead to heavy ML computations (cf
Asparouhov & Muthén, 2007). Heavy ML computations occur when
numerical integration is needed, as for instance with categorical out-
comes. Many models, including factor analysis models, involve many
random effects, each one of which adds a dimension of integration. The
new estimator uses limited information from first- and second-order
moments to formulate a weighted least squares approach that reduces
multidimensional integration into a series of one- and two-dimensional
integrations for the uni- and bivariate moments. This weighted least
squares approach is particularly useful in exploratory factor analysis
(EFA) where there are typically many random effects due to having
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Figure 4: Model diagram for path analysis with between-level dependent
variable

 

Figure 5: Model diagram for path analysis with mediation and random slopes
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Figure 6: Model diagram for two-level SEM
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many variables and many factors.
Consider the following EFA example. Table 2 shows the item dis-

tribution for a set of 13 items measuring aggressive-disruptive behav-
ior in the classroom among 363 boys in 27 classrooms in Baltimore
public schools. It is clear that the variables have very skewed distri-
butions with a strong floor effects so that 40%−80% are at the lowest
value. If treated as continuous outcomes, even non-normality robust
standard errors and χ2 tests of model fit would not give correct re-
sults in that a linear model is not suitable for data with such strong
floor effects. The variables will instead be treated as ordered polyto-
mous (ordinal). The 13-item instrument is hypothesized to capture
three aspects of aggressive-disruptive behavior: property, verbal, and
person. Figure 8 shows a model diagram with notation analogous to
two-level regression. On the within (student) level the three hypothe-
sized factors are denoted fw1−fw3. The filled circles at the observed
items indicate random measurement intercepts. On the between level
these random intercepts are continuous latent variables varying over
classrooms, where the variation and covariation is represented by the
classroom-level factors fb1 − fb3. The meaning of the student-level
factors fw1 − fw3 is in line with regular factor analysis. In con-
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Figure 7: Model diagram for two-level SEM with a random structural slope
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Figure 8: Two-level factor analysis model
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Table 2: Distributions for aggressive-disruptive items

Aggression Almost Never Rarely Sometimes Often Very Often Almost Always
Items (scored as 1) (scored as 2) (scored as 3) (scored as 4) (scored as 5) (scored as 6)

stubborn 42.5 21.3 18.5 7.2 6.4 4.1
breaks rules 37.6 16.0 22.7 7.5 8.3 8.0
harms others and
property

69.3 12.4 9.40 3.9 2.5 2.5

breaks things 79.8 6.60 5.20 3.9 3.6 0.8
yells at others 61.9 14.1 11.9 5.8 4.1 2.2
takes others’

72.9 9.70 10.8 2.5 2.2 1.9
property
fights 60.5 13.8 13.5 5.5 3.0 3.6
harms property 74.9 9.90 9.10 2.8 2.8 0.6
lies 72.4 12.4 8.00 2.8 3.3 1.1
talks back to
adults

79.6 9.70 7.80 1.4 0.8 1.4

teases classmates 55.0 14.4 17.7 7.2 4.4 1.4
fights with

67.4 12.4 10.2 5.0 3.3 1.7
classmates
loses temper 61.6 15.5 13.8 4.7 3.0 1.4

trast, the classroom-level factors fb1 − fb3 represent classroom-level
phenomena for which a researcher typically has less understanding.
These factors require new kinds of considerations as follows. If the
same set of three within-level factors (property, verbal, and person)
are to explain the (co-)variation on the between level, classroom teach-
ers must vary in their skills to manage their classrooms with respect
to all three of these aspects. That is, some teachers are good at con-
trolling property-oriented aggressive-disruptive behavior and some are
not, some teachers are good at controlling verbally-oriented aggressive-
disruptive behavior and some are not, etc. This is not very likely and
it is more likely that teachers simply vary in their ability to manage
their classrooms in all three respects fairly equally. This would lead
to a single factor fb on the between level instead of three factors.

As shown in Figure 8, ML estimation would require 19 dimensions
of numerical integration, which is currently an impossible task. A re-
duction is possible if the between-level, variable-specific residuals are
zero, which is often a good approximation. This makes for a reduc-
tion to 6 dimensions of integration which is still a very difficult task.
The Asparouhov and Muthén (2007) weighted least squares approach
is suitable for such a situation and will be used here. The approach
assumes that the factors are normally distributed and uses an ordered
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Table 3: Two-level EFA model test result for aggressive-disruptive items

Within-level Between-level
factors factors Df Chi-square CFI RMSEA

unrestricted 1 65 66 (p = 0.43) 1.000 0.007
1 1 130 670 0.991 0.107
2 1 118 430 0.995 0.084
3 1 107 258 0.997 0.062
4* 1 97 193 0.998 0.052

*4th factor has no significant loadings

probit link function for the item probabilities as functions of the fac-
tors. This amounts to assuming multivariate normality for continuous
latent response variables underlying the items in line with using poly-
choric correlations in single-level analysis. Rotation of loadings on
both levels is provided along with standard errors for rotated loadings
and resulting factor correlations.

Table 3 shows a series of analyses varying the number of factors on
the within and between levels. To better understand how many factors
are needed on a certain level, an unrestricted correlation model can
be used on the other level. Using an unrestricted within-level model it
is clear that a single between-level factor is sufficient. Adding within-
level factors shows an improvement in fit going up to 4 factors. The 4-
factor solution, however, has no significant loadings for the additional,
fourth factor. Also, the 3-factor solution captures the three hypoth-
esized factors. The factor solution is shown in Table 4 using Geomin
rotation (Asparouhov & Muthén, 2008) for the within level. Factor
loadings with asterisks represent loadings significant on the 5% level,
while bolded loadings are the more substantial ones. The loadings for
the single between-level factor are fairly homogeneous supporting the
idea that there is a single classroom management dimension.
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Table 4: Two-level EFA of aggressive-disruptive items using WLSM and
Geomin rotation

Aggression Items Within-Level Loadings Between-Level Loadings
Property Verbal Person General

stubborn 0.00 0.78* 0.01 0.65*

breaks rules 0.31* 0.25* 0.32* 0.61*

harms others and
property

0.64* 0.12 0.25* 0.68*

breaks things 0.98* 0.08 -0.12* 0.98*

yells at others 0.11 0.67* 0.10 0.93*

takes others’ 0.73* -0.15* 0.31* 0.80*

property
fights 0.10 0.03 0.86* 0.79*

harms property 0.81* 0.12 0.05 0.86*

lies 0.60* 0.25* 0.10 0.86*

talks back to
adults

0.09 0.78* 0.05 0.81*

teases classmates 0.12 0.16* 0.59* 0.83*

fights with -0.02 0.13 0.88* 0.84*

classmates
loses temper -0.02 0.85* 0.05 0.87*
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5 Growth modeling (two-level analy-

sis)

Growth modeling concerns repeated measurement data nested within
individuals and possibly also within higher-order units (clusters such
as schools). This will be referred to as two- and three-level growth
analysis, respectively. Often, two-level growth analysis can be per-
formed in a multivariate, wide data format fashion, letting the level
1 repeated measurement on y over T time points be represented by
a multivariate outcome vector y = (y1, y2, . . . , yT )′, reducing the two
levels to one. This reduction by one level is typically used in the la-
tent variable framework of Mplus. More common, however, is to view
growth modeling as a two-level model with features analogous to those
of two-level regression (see, e.g., Raudenbush & Bryk, 2002). In this
case, data are arranged in a univariate, long format.

Following is a simple example with linear growth, for simplicity
using the notation of Raudenbush and Bryk (2002). For time point t
and individual i, consider

yti : individual-level, outcome variable
ati : individual-level, time-related variable (age, grade)
xi : individual-level, time-invariant covariate

and the 2-level growth model

Level 1 : yti = π0i + π1i ati + eti, (21)

Level 2 :

{

π0i = γ00 + γ01 xi + r0i,
π1i = γ10 + γ11 xi + r1i,

(22)

where π0 is a random intercept and π1 is a random slope. One may
ask if there really is anything new that can be said about (two-level)
growth analysis. The answer, surprisingly, is again yes. Following is
a discussion of a relatively recent and still underutilized extension to
situations with very skewed outcomes similar to those studied in the
above EFA. Here, the example concerns frequency of heavy drinking
in the last 30 days from the National Longitudinal Survey of Youth
(NLSY), a U.S. national survey. The distribution of the outcome
at age 24 is shown in Figure 9, where a majority of individuals did
not engage in heavy drinking in the last 30 days. Olsen and Schafer
(2001) proposed a two-part or semicontinuous growth model for data
of this type, treating the outcome as continuous but adding a special
modeling feature to take into account the strong floor effect.
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Figure 9: Histogram for heavy drinking at age 24

The two-part growth modeling idea is shown in Figure 10, where
the outcome is split into two parts, a binary part and a continuous
part. Here, iy and iu represent random intercepts π0, whereas sy and
su represent random linear slopes π1. In addition, the model has ran-
dom quadratic slopes qy and qu. The binary part is a growth model
describing for each time point the probability of an individual experi-
encing the event, whereas for those who experienced it the continuous
part describes the amount, in this case the number of heavy drinking
occasions in the last 30 days. For an individual who does not expe-
rience the event, the continuous part is recorded as missing. A joint
growth model for the binary and the continuous process scored in this
way represents the likelihood given by Olsen and Schafer (2001).

Non-normally distributed outcomes can often be handled by ML
using a non-normality robust standard error approach, but this is not
sufficient for outcomes such as shown in Figure 9 given that a linear
model is unlikely to hold. To show the difference in results as com-
pared two-part growth modeling, Table 5 shows the Mplus output for
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Figure 10: Two-part growth model for heavy drinking
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the estimated growth model for frequency of heavy drinking ages 18 -
25. The results focus on the regression of the random intercept i on
the time-invariant covariates in the model. The time scores are cen-
tered at age 25 so that the random intercept refers to the systematic
part of the growth curve at age 25. It is seen that the regular growth
modeling finds all but the last two covariates significant. In contrast,
the two-level modeling finds several of the covariates insignificant in
one part or the other (the two parts are labeled iy ON for the con-
tinuous part and iu ON for the binary part. Consider as an example,
the covariate black. As is typically found being black has a signifi-
cant negative influence in the regular growth modeling, lowering the
frequency of heavy drinking. In the two-part modeling this covariate
is insignificant for the continuous part and significant only for the bi-
nary part. This implies that, holding other covariates constant, being
black significantly lowers the risk of engaging in heavy drinking, but
among blacks who are engaging in heavy drinking there is no differ-
ence in amount compared to other ethnic groups. These two paths of
influence are confounded in the regular growth modeling.

As shown in Figure 11, a distal outcome can also be added to
the growth model. In this example, the distal outcome is a DSM-
based classification into alcohol dependence or not by age 30. The
distal outcome is predicted by the age 25 random intercept using a
logistic regression model part. Table 6 shows that the distal outcome
is significantly influenced only by the age 25-defined random intercept
iu for the binary part, not by the random intercept for the continuous
part. In other words, if the probability of engaging in heavy drinking
at age 25 is high the probability of alcohol dependence by age 30
is high. But the alcohol dependence probability is not significantly
influenced by the frequency of heavy drinking at age 25. The results
also show that controlling for age 25 heavy drinking behavior, none of
the covariates has a significant influence on the distal outcome.

6 Growth modeling (three-level anal-

ysis)

This section considers growth modeling of individual- and cluster-level
data. A typical example is repeated measures over grades for students
nested within schools. One may again ask if there really is anything
new that can be said about growth modeling in cluster data. The
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Table 5: Two-part growth modeling of frequency of heavy drinking ages 18-25

Parameter Estimate S.E. Est./S.E. Std StdYX

Regular growth modeling, treating outcome as continuous.
Non-normality robust ML (MLR)

i ON

male 0.769 0.076 10.066 0.653 0.326
black -0.336 0.083 -4.034 -0.286 -0.127
hisp -0.227 0.103 -2.208 -0.193 -0.071
es 0.291 0.128 2.283 0.247 0.088
fh123 0.286 0.137 2.089 0.243 0.075
hsdrp -0.024 0.104 -0.232 -0.020 -0.008
coll -0.131 0.086 -1.527 -0.111 -0.052

Two-part growth modeling

iy ON

male 0.262 0.052 5.065 0.610 0.305
black -0.096 0.059 -1.619 -0.223 -0.099
hisp -0.130 0.066 -1.963 -0.301 -0.111
es 0.082 0.062 1.333 0.191 0.068
fh123 0.213 0.076 2.815 0.495 0.152
hsdrp 0.084 0.065 1.289 0.195 0.078
coll -0.015 0.053 -0.280 -0.035 -0.016

iu ON

male 2.041 0.176 11.594 0.949 0.474
black -1.072 0.203 -5.286 -0.499 -0.222
hisp -0.0545 0.234 -2.331 -0.254 -0.093
es 0.364 0.234 1.560 0.169 0.060
fh123 0.562 0.275 2.045 0.262 0.080
hsdrp -0.238 0.216 -1.103 -0.111 -0.044
coll -0.259 0.196 -1.317 -0.120 -0.056
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Figure 11: Two-part growth model for heavy drinking and a distal outcome

iu

iy sy

 

su

male
black
hisp
es
fh123
hsdrp
coll

qy

qu

y18 y19 y20 y24 y25

u18 u19 u20 u24 u25

dep30

26



Table 6: Two-part growth modeling of frequency of heavy drinking ages 18-25
with a distal outcome

Parameter Estimate S.E. Est./S.E. Std StdYX

dep30 ON

iu 0.440 0.141 3.120 0.949 0.427
iy 0.874 0.736 1.187 0.373 0.168

dep30 ON

male -0.098 0.291 -0.337 -0.098 -0.022
black 0.415 0.294 1.414 0.415 0.083
hisp 0.025 0.326 0.075 0.025 0.004
es 0.237 0.286 0.830 0.237 0.038
fh123 0.498 0.325 1.532 0.498 0.069
hsdrp 0.565 0.312 1.812 0.545 0.101
coll -0.384 0.276 -1.390 -0.384 -0.081
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answer, surprisingly, is once again yes. An important extension to
the conventional 3-level analysis becomes clear when viewed from a
general latent variable modeling perspective.

For simplicity, the notation will be chosen to coincide with that
of Raudenbush and Bryk (2002). Consider the observed variables for
time point t, individual i, and cluster j,

ytij : individual-level, outcome variable
a1tij : individual-level, time-related variable (age, grade)
a2tij : individual-level, time-varying covariate
xij : individual-level, time-invariant covariate
wj : cluster-level covariate

and the 3-level growth model

Level 1 : ytij = π0ij + π1ij a1tij + π2tij a2tij + etij , (23)

Level 2 :











π0ij = β00j + β01j xij + r0ij ,
π1ij = β10j + β11j xij + r1ij ,
π2tij = β20tj + β21tj xij + r2tij ,

(24)

Level 3 :



































β00j = γ000 + γ001 wj + u00j ,
β10j = γ100 + γ101 wj + u10j ,
β20tj = γ200t + γ201t wj + u20tj ,
β01j = γ010 + γ011 wj + u01j ,
β11j = γ110 + γ111 wj + u11j ,
β21tj = γ21t0 + γ21t1 wj + u21tj .

(25)

Here, the πs are random intercepts and slopes varying across individ-
uals and clusters, and the βs are random intercepts and slopes varying
across clusters. The residuals e, r and u are assumed normally dis-
tributed with zero means, uncorrelated with respective right-hand side
covariates, and uncorrelated across levels.

In Mplus, growth modeling in cluster data is represented in a sim-
ilar, but slightly different way that offers further modeling flexibility.
As mentioned in Section 5 the first difference arises from the level 1
repeated measurement on y over time being represented by a mul-
tivariate outcome vector y = (y1, y2, . . . , yT )′ so that the number of
levels is reduced from three to two. The second difference is that each
variable, with the exception of variables multiplied by random slopes,
is decomposed into uncorrelated within- and between-cluster compo-
nents. Using subscripts w and b to represent within- and between-
cluster variation, one may write the variables in (23) as

ytij = ybtj + ywtij , (26)
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π0ij = π0bj + π0wij , (27)

π1ij = π1bj + π1wij , (28)

π2tij = π2tbj + π2twij , (29)

etij = ebtj + ewtij , (30)

so that the level 1 equation (23) can be expressed as

ytij = π0bj+π0wij+(π1bj+π1wij) a1tij+(π2btj+π2wtij) a2tij+ebtj+ewtij .
(31)

The 3-level model of (23) - (25) can then be rewritten as a 2-level model
with levels corresponding to within- and between-cluster variation,

Within :



















ywtij = π0wij + π1wij a1tij + π2wtij a2tij + ewtij ,
π0wij = β01j xij + r0ij ,
π1wij = β11j xij + r1ij ,
π2wtij = β21tj xij + r2tij ,

(32)

Between :















































ybtj = π0bj + π1bj a1tij + π2btj a2tij + ebtj ,
π0bj = β00j = γ000 + γ001 wj + u00j ,
π1bj = β10j = γ100 + γ101 wj + u10j ,
π2btj = β20tj = γ200t + γ201t wj + u20tj ,
β01j = γ010 + γ011 wj + u01j ,
β11j = γ110 + γ111 wj + u11j ,
β21tj = γ21t0 + γ21t1 wj + u21tj .

(33)

From the latent variable perspective taken in Mplus, the first line of
the within level (32) and the first line of the between level (33) is the
measurement part of the model with growth factors π0, π1 measured
by multiple indicators yt. The next lines of each level contain the
structural part of the model. As is highlighted in (31), the rearrange-
ment of the 3-level model as (32), (33) shows that the 3-level model
typically assumes that the measurement part of the model is invariant
across within and between in that the same time scores a1tij are used
on both levels.

As seen in (32), (33) the decomposition into within and between
components also occurs for the residual etij = ewtij + ebtj . The ebtj
term is typically fixed at zero in conventional multilevel modeling, but
this is an important restriction. This restriction is not clear from the
way the model is written in (23). Time-specific, between-level variance
parameters for the residuals ebtj are often needed to represent across-
cluster variation in time-specific residuals.
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Figure 12: A two-level growth model (3-level analysis)
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Consider a simple example with no time-varying covariates and
where the time scores do not vary across individuals or clusters, a1tij =
a1t. To simplify notation in the actual Mplus analyses, and dropping
the ij and j subscripts, let iw = π0w, sw = π1w, ib = π0b, and
sb = π1b be the within-level and between-level growth factors, respec-
tively. Figure 12 shows the model diagram for four time points using
the within-level covariate x and the between-level covariate w. The
model diagram may be seen as analogous to the two-level factor anal-
ysis model, adding covariates. The between-level part of the model is
drawn with residual arrows pointing to the time-specific latent vari-
ables y1− y4. These are the residuals ebtj which conventional growth
analysis assumes are zero.

The model of Figure 12 is analyzed with and without the zero
residual restriction using mathematics scores in Grades 7 - 10 from
the Longitudinal Survey of American Youth (LSAY). Two between-
level covariates are added, lunch (a poverty index) and mstrat (math
teacher workload). The between-level Mplus ML results from the two
analyses are shown in Table 7. The χ2 model test of fit results show
a big improvement when adding the residual variances to the model.
The sb regression on mstrat also shows large differences between the
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two approaches with a smaller and insignificant effect in the conven-
tional approach. Given that the sb residual variance estimate is larger
for the conventional approach, it appears that the conventional model
tries to absorb the residual variances into the slope growth factor vari-
ance. The residual variance for Grade 10 has a negative insignificant
value which could be fixed at zero but does not change other results
much.

6.1 Further 3-level growth modeling extensions

Figure 13 shows a student-level regression of the random slope sw
regressed on the random intercept iw. With iw defined at the first
time point, the study investigates to which extent the initial status
influences the growth rate. The regression of the growth rate on the
initial status has a random slope s that varies across clusters. For
example, a researcher may be interested in how schools vary in their
ability to reduce the influence of initial status on growth rate. Seltzer,
Choi, and Thum (2002) studied this topic using Bayesian MCMC
estimation, but ML can be used in Mplus. Figure 13 shows how the
school variation in s can be explained by a school-level covariate w.
The rest of the school-level model is specified as in the previous section.

Figure 14 shows an example of a multiple-indicator, multilevel
growth model. In this case the growth model simply uses a ran-
dom intercept. The data have four levels in that the observations
are indicators nested within time points, time points nested within
individuals, and individuals nested within twin pairs. The model dia-
gram, however, shows how this case can be expressed as a single-level
model. This is accomplished using a triply multivariate representation
where the indicators (two in this case), time points (five in this case),
and twins (two) create a 20-variate observation vector. With cate-
gorical outcomes, ML estimation needs numerical integration which
is prohibitive given that there are 10 dimensions of integration, but
weighted least squares estimation is straightforward.

Figure 15 shows an alternative, two-level approach. The data vec-
tor is arranged as doubly multivariate with indicators and twins cre-
ating 4 outcomes. The two levels are time and person. This approach
assumes time-invariant measurement parameters and constant time-
specific factor variances. These assumptions can be tested using the
single-level approach in Figure 14 with weighted least squares esti-
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Table 7: Two-level growth modeling (three-level modeling) of LSAY math
achievement, Grades 7-10

Parameter Estimate S.E. Est./S.E. Std StdYX

Conventional growth modeling:
Chi-square (32) = 179.58. Between-level estimates and SEs:

sb ON

lunch -1.271 0.402 -3.160 -1.919 -0.397
mstrat 1.724 1.022 1.688 2.605 0.185

Residual variances

math7 0.000 0.000 0.000 0.000 0.000
math8 0.000 0.000 0.000 0.000 0.000
math9 0.000 0.000 0.000 0.000 0.000
math10 0.000 0.000 0.000 0.000 0.000
ib 5.866 1.401 4.186 0.736 0.736
sb 0.354 0.138 2.564 0.809 0.809

Allowing time-specific level 3 residual variances:
Chi-square (28) = 83.69. Between-level estimates and SEs:

sb ON

lunch -1.312 0.367 -3.576 -2.495 -0.516
mstrat 2.281 0.771 2.957 4.338 0.308

Residual variances

math7 1.396 0.749 1.863 1.396 0.159
math8 1.414 0.480 2.946 1.414 0.154
math9 0.382 0.381 1.002 0.382 0.042
math10 -0.121 0.518 -0.234 -0.121 -0.012
ib 5.211 1.410 3.694 0.704 0.704
sb 0.177 0.155 1.143 0.640 0.640
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Figure 13: Multilevel modeling of a random slope regressing growth rate on
initial status
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Figure 14: Multiple indicator multilevel growth
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Figure 15: Multiple indicator multilevel growth in long form
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mation. With categorical outcomes, the two-level formulation of Fig-
ure 15 leads to 4 dimensions of integration with ML, which is possible
but still quite heavy. A simple alternative is provided by the new
two-level weighted least squares approach discussed for multilevel ex-
ploratory factor analysis in Section 4.

7 Multilevel growth mixture modeling

The growth model of Section 5 assumes that all individuals come from
one and the same population. This is seen in (22) where there is only
one set of γ parameters. Similar to the two-level regression mixture
example of Section 2.2, however, there may be unobserved heterogene-
ity in the data corresponding to different types of trajectories. This
type of heterogeneity is captured by latent classes, i.e. finite mixture
modeling.

Consider the following example which was briefly discussed in
Muthén (2004), but is more fully presented here. Figure 16 shows the
results of growth mixture modeling (GMM) for mathematics achieve-
ment in Grades 7 - 10 from the LSAY data. The analysis provides a
sorting of the observed trajectories into three latent classes. The left-
most class with poor development also shows a significantly higher
percentage of students who drop out of high school, suggesting pre-
dictive validity for the classification.
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Figure 16: Growth mixture modeling with a distal outcome
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Figure 17 shows the model diagram for the two-level GMM for
the LSAY example. In the within (student-level) part of the model,
the latent class variable c is seen to influence the growth factors iw
and sw, as well as the binary distal outcome hsdrop. The broken
arrows from c to the arrows from the set of covariates to the growth
factors indicate that the covariate influence may also differ across the
latent classes. The filled circles for the dependent variables math7
- math10, hsdrop, and c indicate random intercepts. These random
intercepts are continuous latent variables which are modeled in the
between (school-level) part of the model. For the between part of the
growth model only the intercept is random, not the slope. In other
words, the slope varies only over students, not schools. Because there
are 3 latent classes, there are 2 random intercepts for c, labeled c#1
and c#2. On between there are two covariates discussed in earlier ex-
amples, lunch (a poverty index) and mstrat (math teacher workload).

Table 8 gives the estimates for the multinomial logistic regression
of c on the covariates. On the within level (student level), the es-
timates are logistic regression slopes, whereas on the between level
(school level), the estimates are linear regression slopes. The within
level results show that the odds of membership in class 1, the poorly
developing class, relative to the well developing reference class 3 are
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Figure 17: Two-level growth mixture modeling with a distal outcome
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significantly increased by being male, black, having dropout thoughts
in Grade 7, and having been expelled or arrested by Grade 7. The
odds are decreased by having high schooling expectations in Grade
7. The between level results pertain to how the school environment
influences the student’s latent class membership. The probability of
membership in the poorly developing class is significantly increased
by lunch, that is being in the poverty category, whereas mstrat has
no influence on this probability.

The top part of Table 9 shows the within-level logistic regression
results for the binary distal outcome hsdrop. It is seen that the proba-
bility of dropping out of high school is significantly increased by being
female, having dropout thoughts in Grade 7, and having been expelled
by Grade 7. The dropout probability is significantly decreased by hav-
ing high mother’s education and having high schooling expectations
in Grade 7.

The bottom part of Table 9 pertains to the between level and gives
results for the random intercept ib of the growth model and the ran-
dom intercept of the hsdrop logistic regression. These results concern
the influence of the school environment on the level of math perfor-
mance and on dropping out. For ib it is seen that increasing mstrat
(math teacher workload) lowers the school average math performance.
For hsdrop it is seen that poverty status increases the probability that
a student drops out of high school. The two random intercepts are
negatively correlated so that lower math performance in a school is
associated with a higher dropout probability.

It is interesting to study the effects of the school level poverty index
covariate lunch. The model says that poverty has both direct and
indirect effects on dropping out of high school. The direct, school-level
effect was just discussed in connection with the bottom part of Table 9.
The indirect effect can be seen by poverty increasing the probability of
being in the poorly developing math trajectory class as shown in the
between-level results of Table 8. As seen in Figure 16 and also in the
top part of the model diagram of Figure 17, the latent class variable
c influences the probability of dropping out on the student level. In
other words, poverty has an indirect, multilevel effect mediated by the
within-level latent class variable. This illustrates the richness of detail
that a multilevel growth mixture model can extract from the data.
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Table 8: Two-level GMM for LSAY math achievement: Latent class regres-
sion results

Parameter Estimate S.E. Est./S.E.

Within level

c#1 ON

female -0.751 0.188 -3.998
hisp 0.094 0.705 0.133
black 0.900 0.385 2.339
mothed -0.003 0.106 -0.028
homeres -0.060 0.069 0.864
expect -0.251 0.074 -3.406
droptht7 1.616 0.451 3.583
expel 0.698 0.337 2.068
arrest 1.093 0.384 2.842

Between level

c#1 ON

lunch 2.265 0.706 3.208
mstrat -2.876 2.909 -0.988

c#2 ON

lunch -0.088 1.343 -0.065
mstrat -0.608 2.324 -0.262
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Table 9: Two-level GMM for LSAY math achievement: Distal outcome and
school-level random intercept results

Parameter Estimate S.E. Est./S.E. Std StdYX

Within level

hsdrop ON

female 0.521 0.232 2.251
hisp 0.208 0.322 0.647
black -0.242 0.256 -0.944
mothed -0.434 0.121 -3.583
homeres -0.089 0.052 -1.716
expect -0.333 0.052 -6.417
droptht7 0.629 0.320 1.968
expel 1.212 0.195 6.225
arrest 0.157 0.263 0.597

Between level

ib ON

lunch -1.805 1.310 -1.378 -0.851 -0.176
mstrat -13.365 3.086 -4.331 -6.299 -0.448

hsdrop ON

lunch 1.087 0.543 2.004 1.087 0.290
mstrat -0.178 1.478 -0.120 -0.178 -0.016

ib WITH

hsdrop -0.416 0.328 -1.267 -0.196 -0.253
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8 Conclusions

This chapter has given an overview of latent variable techniques for
multilevel modeling that are more general than those commonly de-
scribed in text books. Most if not all of the models cannot be handled
by conventional multilevel modeling or software. If space permitted,
many more examples could have been given. For example, using com-
binations of model types, one may formulate a two-part growth model
with individuals nested within clusters, or a two-part growth mixture
model. Several multilevel models such as latent class analysis, latent
transition analysis, and discrete- and continuous-time survival analy-
sis can also be combined with the models discussed. All these model
types fit into the general latent variable modeling framework available
in the Mplus program.
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