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ABSTRACT

This paper presents a new fundamental technique for source

separation of single-channel audio signals. Although non-

negative matrix factorization (NMF) has recently become

very popular for music source separation, it deals only with

the amplitude or power of the spectrogram of a given mix-

ture signal and completely discards the phase. The compo-

nent spectrograms are typically estimated using a Wiener

filter that reuses the phase of the mixture spectrogram, but

such rough phase reconstruction makes it hard to recover

high-quality source signals because the estimated spectro-

grams are inconsistent, i.e., they do not correspond to any

real time-domain signals. To avoid the frequency-domain

phase reconstruction, we use positive semidefinite tensor

factorization (PSDTF) for directly estimating source sig-

nals from the mixture signal in the time domain. Since PS-

DTF is a natural extension of NMF, an efficient multiplica-

tive update algorithm for PSDTF can be derived. Experi-

mental results show that PSDTF outperforms conventional

NMF variants in terms of source separation quality.

1. INTRODUCTION

Source separation of music audio signals is a fundamental

task for music information retrieval (MIR). High-quality

source separation could help users find their favorite songs

according to the content (such as vocals or instruments) [1].

It would also let them enjoy active music listening [2] based

on the remixing of existing instrumental parts [1–4].

Nonnegative matrix factorization (NMF) [5] has recently

played a key role in the source separation of single-channel

audio signals. It can approximate a nonnegative matrix (the

amplitude or power spectrogram of a given mixture signal)

as the product of two nonnegative matrices— a set of basis

spectra and a set of the corresponding activations. Then the

complex spectrogram of the mixture signal is decomposed

into a sum of source spectrograms by using a Wiener filter

that simply reuses the original phase. However, we cannot

recover high-quality source signals from the decomposed

spectrograms having the unreal phase.
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Figure 1. PSDTF is a natural extension of NMF.

Considerable effort has been devoted to estimating con-

sistent complex spectrograms that correspond to real time-

domain signals. To reconstruct the phase of a given ampli-

tude spectrogram, Griffin and Lim [6] proposed an iterative

short-time Fourier transform (STFT) method that estimates

a time-domain signal such that its amplitude spectrogram

is closest to the given spectrogram. Le Roux et al. [7] pro-

posed a cost function that evaluates the inconsistency of

a complex spectrogram and derived an efficient algorithm

for minimizing the cost function [8]. Kameoka et al. [9],

on the other hand, formulated complex NMF for directly

factorizing a complex spectrogram. The cost function eval-

uating the inconsistency could be integrated into complex

NMF as suggested in [10]. Note that improved consistency

does not always result in improved sound quality.

To circumvent the phase reconstruction, we use positive

semidefinite tensor factorization (PSDTF) [11] for time-

domain separation of single-channel audio signals. Instead

of explicitly considering the wave shapes and phases of ba-

sis signals, we focus on the statistical characteristics (e.g.,

periodicity and whiteness) of those signals. More specifi-

cally, we assume that each basis signal follows a Gaussian

process (GP) having a stationary kernel. A given mixture

signal consisting of multiple basis signals is thus locally

modeled by a GP with a convex combination of the cor-

responding kernels. These kernels can be estimated from

a set of local covariances of the mixture signal by using a

multiplicative update algorithm.

We can show that the time-domain PSDTF has an equiv-

alent frequency-domain representation used for factorizing

a mixture spectrogram like NMF. As shown in Figure 1,

PSDTF deals with a set of Hermitian positive semidefinite

matrices (outer products of complex spectra) for consider-

ing the correlations between frequency components. This

is reasonable because the discrete Fourier transform (DFT)
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cannot perfectly decorrelate the frequency components of

the mixture signal. On the other hand, NMF focus only on

a set of the nonnegative diagonal elements of those matri-

ces (power spectra) by discarding the correlations between

frequency components. This indicates that PSDTF is a nat-

ural and elegant extension of NMF.

2. FREQUENCY-DOMAIN SOURCE SEPARATION

This section aims to reveal the theoretical basis underlying

nonnegative matrix factorization (NMF) in the context of

source separation. We review two popular variants of NMF

called KL-NMF [12] and IS-NMF [13] and how these vari-

ants can be used for source separation.

2.1 Nonnegative Matrix Factorization

The goal of NMF is to approximate a nonnegative matrix

X ∈ RM×N as the product of two nonnegative matrices

W ∈ RM×K and H ∈ RK×N as follows:

X ≈ WH
def
= Y , (1)

where W and H respectively represent a set of basis vec-

tors and a set of the corresponding weight vectors, K ≪
min(M,N) is the number of basis vectors, andY ∈ RM×N

represents a reconstruction matrix. Eq. (1) can be rewritten

in an element-wise manner as follows:

Xmn ≈
K
∑

k=1

WmkHkn
def
= Ymn. (2)

We here let Y k
mn = WmkHkn be a component reconstruc-

tion such that Ymn =
∑

k Y
k
mn. A popular way to evaluate

the reconstruction error C(Xmn|Ymn) between Xmn and

Ymn is to use the Bregman divergence [14] defined as

Cφ(Xmn|Ymn)

= φ(Xmn)− φ(Ymn)− φ′(Ymn)(Xmn − Ymn), (3)

where φ is a strictly convex function. This divergence is

no less than zero and is zero only when Xmn = Ymn. The

Kullback-Leibler (KL) divergence (φ(x) = x log x − x)

and the Itakura-Saito (IS) divergence (φ(x) = − log x) are

well-known special cases of the Bregman divergence. To

estimateW andH such that the cost function Cφ(X|Y ) =
∑

mn Cφ(Xmn|Ymn) is minimized, we can use an efficient

multiplicative update (MU) algorithm [15].

2.2 Application to Source Separation

The goal of source separation is to decompose a given mix-

ture signal into the sum of K source signals. NMF enables

us to perform source separation in the frequency domain.

We regard the nonnegative spectrogram of the mixture sig-

nal as an X for which M is the number of frequency bins

and N is the number of frames. We then factorize the given

spectrogram X as X ≈ WH , where W and H respec-

tively represent a set of basis nonnegative spectra and a set

of the corresponding temporal activations.

A probabilistic formulation of NMF enables us to esti-

mate latent source signals. Let S ∈ CM×N be the com-

plex spectrogram of the mixture signal and Sk ∈ CM×N

be that of the k-th source signal. If the mixture signal is an

instantaneous mixture of K source signals, we can say

S =

K
∑

k=1

Sk. (4)

Given the mixture spectrogramS (observed variable), each

component spectrogram Sk (latent variable) can be esti-

mated in a probabilistic manner as follows:

E[Sk
mn|Smn] =

Y k
mn

Ymn

Smn =
WmkHkn

∑

k WmkHkn

Smn. (5)

Eq. (5) is known as Wiener filtering in which the original

phase of S is directly attached to each Sk. The real-valued

source signal can then be recovered from E[Sk|S] by us-

ing the overlap-add synthesis method [16]. Note that the

complex spectrogram of the resulting source signal is un-

likely to be equal to E[Sk|S] because in general E[Sk|S]
is an inconsistent spectrogram that does not correspond to

any actual time-domain signals.

2.3 Source Separation based on KL-NMF

KL-NMF is used for factorizing the amplitude spectrogram

[12], i.e., Xmn = |Smn|. The cost function is given by

CKL(Xmn|Ymn) = Xmn log
Xmn

Ymn

−Xmn+Ymn. Note that

KL-NMF is not theoretically justified for source separation

because the cost function is scale-variant, i.e., CKL(X|Y ) �=
CKL(αX|αY ) for a positive number α.

The probabilistic model of KL-NMF can be formulated

by assuming that each latent component |Sk
mn| is Poisson

distributed with a mean parameter Y k
mn as follows:

|Sk
mn|

∣

∣Y k
mn ∼ Poisson(Y k

mn). (6)

We here assume that the condition for amplitude additivity

is satisfied, i.e., that the phase of each Sk is equal to that of

S. Eq. (4) can then be written as |Smn| =
∑

k |S
k
mn|. Us-

ing Xmn = |Smn| and Ymn =
∑

k Y
k
mn, the reproducing

property of the Poisson distribution gives

Xmn

∣

∣Ymn ∼ Poisson(Ymn). (7)

This probabilistic model based on superimposed Pois-

son variables {|Sk
mn|}

K
k=1

satisfying |Smn| =
∑

k |S
k
mn|

enables us to calculate the expectation of each latent vari-

able |Sk
mn| in a principled manner as follows:

E[|Sk
mn|

∣

∣|Smn|] = Y k
mnY

−1
mn |Smn|. (8)

Since the phase is assumed to be preserved, we get Eq. (5).

2.4 Source Separation based on IS-NMF

IS-NMF is used for factorizing the power spectrogram [13],

i.e., Xmn = |Smn|2. The cost function is CIS(Xmn|Ymn) =
Xmn

Ymn

− log Xmn

Ymn

− 1. IS-NMF is suitable for source sepa-

ration because the cost function is scale-invariant.

The probabilistic model of IS-NMF can be formulated

by assuming that each latent component Sk
mn is complex

Gaussian distributed with a variance Y k
mn as follows:

Sk
mn|Y

k
mn ∼ Nc(0, Y

k
mn). (9)
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Time
Sine wave with time-varying scale

Local signals extracted
by using a short window

Figure 2. Local signals xkn and xkn′ have different wave

shapes and phases, but share the same periodicity.

Using Smn =
∑

k S
k
mn and Ymn =

∑

k Y
k
mn, the repro-

ducing property of the Gaussian distribution gives

Smn|Ymn ∼ Nc(0, Ymn). (10)

Using Xmn = |Smn|
2, we get an exponential distribution:

Xmn|Ymn ∼ Exponential(Ymn). (11)

The probabilistic model based on superimposed Gaus-

sian variables {Sk
mn}

K
k=1

satisfying Smn =
∑

k S
k
mn en-

ables us to represent a posterior distribution of latent vari-

able Sk
mn as a Gaussian distribution whose mean and vari-

ance are given by Eq. (5) and

V[Sk
mn|Smn] = Y k

mn − Y k
mnY

−1
mnY

k
mn. (12)

3. TIME-DOMAIN SOURCE SEPARATION

This section recasts the problem of source separation in the

time domain. We propose a probabilistic model of source-

signal superimposition and show how latent source signals

can be estimated in a probabilistic manner.

3.1 Problem Specification

The goal of source separation is to decompose a given mix-

ture signal into the sum of K source signals. This decom-

position is performed on a frame-by-frame basis. Suppose

we have a set of N samples O=[x1, · · · ,xN ] ∈ RM×N ,

where xn ∈ RM is a local signal in the n-th frame ex-

tracted from the mixture signal by using a window of size

M . Each xn can be decomposed as follows:

xn =

K
∑

k=1

xkn, (13)

where xkn is a local signal extracted from the k-th source

signal. This time-domain formulation is equivalent to the

frequency-domain formulation given by Eq. (4). Although

{xkn}
N
n=1 are different, we assume that {xkn}

N
n=1 share

some characteristics. For example, suppose the k-th source

signal is a sine wave whose scale varies over time as shown

in Figure 2. Note that xkn and xkn′ (n �= n′) have differ-

ent scales but have the same period. We factorize xkn into

nonstationary and stationary factors as xkn = πknφkn,

where πkn is a coefficient (scale) of a local signal φkn ex-

tracted from the k-th stationary basis signal. Note that the

basis signal is assumed to vary over time according to sta-

tionary characteristics (e.g., periodicity and whiteness).

Given O as observed data, we aim to estimate a set of

latent signals {xkn}
N
n=1 for each k. The k-th source signal

can be obtained by the overlap-add synthesis method [16].

We do not need any frequency analysis such as short-term

Fourier transform (STFT) or inverse STFT.

3.2 Probabilistic Formulation

We formulate a probabilistic model of Eq. (13). A key fea-

ture is to focus on the stationary characteristics of the basis

signal. Since the stationarity means that {φkn}
N
n=1 are ex-

pected to have the same covariance, we put a multivariate

Gaussian prior shared over all frames as follows:

φkn ∼ N (0,V k), (14)

where V k∈R
M×M is a full covariance matrix. The mean

is set to a zero vector because an audio signal is recorded

as real numbers distributed on both sides of zero.

We can say that the k-th basis signal is Gaussian process

(GP) distributed with a stationary (shift-invariant) kernel

V k. Since in reality the signal exists over continuous time,

it is essential to consider a probability distribution of the

continuous signal. Such a distribution is a GP by definition

because its marginal over any M discrete time points is a

Gaussian distribution, as indicated by Eq. (14). If V k is a

periodic kernel, {φkn}
N
n=1 are expected to have a certain

period but their phases and wave shapes can be different.

We will derive a likelihood of the observed signal xn.

The linear relationship xkn = πknφkn and Eq. (14) lead

to a likelihood of xkn as follows:

xkn|π,V ∼ N (0, π2
knV k). (15)

Then, using the reproducing property of the Gaussian dis-

tribution and the linear relationship given by Eq. (13), we

get the likelihood of xn as follows:

xn|π,V ∼ N

(

0,

K
∑

k=1

π2
knV k

)

. (16)

Note that Eq. (16) does not include φkn, i.e., all possibili-

ties of φkn are taken into account. This formulation frees

us from explicitly considering the phase of φkn. We here

define some symbols as Hkn = π2
kn ≥ 0, Xn = xnx

T
n �

0, and Y n =
∑

k HknV k � 0, where Ψ � 0 means that

Ψ is a positive semidefinite (PSD) matrix. Then Eq. (16)

gives the log-likelihood of Xn as follows:

log p(Xn|Y n)
c
= −

1

2
log |Y n| −

1

2
tr(XnY

−1

n ), (17)

where
c
= represents equality except for the constant terms.

Given a tensor X = [X1, · · · ,XN ] ∈ RM×M×N , we

aim to estimate H ∈ R
K×N and V = [V 1, · · · ,V K ] ∈

RM×M×K such that the log-likelihood
∑

n log p(Xn|Y n)
is maximized. As shown in Section 4, this is a special case

of PSDTF in which each Xn is restricted to a rank-1 PSD

matrix (Xn =xnx
T
n ). We can therefore use a multiplica-

tive update algorithm described in Section 4.3.

3.3 Probabilistic Decomposition

After H and V are obtained, we can estimate a local signal

xkn = πknφkn in a probabilistic manner. Instead of esti-

mating φkn, we can directly calculate a Gaussian posterior

of xkn whose mean and covariance are given by

E[xkn|xn,H ,V ] =Y nkY
−1

n xn, (18)

V[xkn|xn,H ,V ] =Y nk − Y nkY
−1

n Y nk, (19)
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where Y nk=HknV k � 0 such that Y n=
∑

k Y nk � 0.

Eq. (18) works as a Wiener filter that passes only a com-

ponent signal of xn matching the characteristics of ker-

nel V k without explicitly considering the phase and wave

shape. Eqs. (18) and (19) formulated in the time domain

look similar in form to Eqs. (5) and (12) formulated in the

frequency domain. The key difference is that we consider

the covariance structure over frequency components (e.g.,

harmonic partials) when decomposing xn.

3.4 Frequency-Domain Representation

We discuss a frequency-domain representation (Figure 1).

Let F ∈ CM×M be the DFT matrix. Eq. (16) means that

the complex spectrum Fxn (linear transformation of xn)

is complex-Gaussian distributed as follows:

Fxn|H ,V ∼ Nc

(

0,

K
∑

k=1

HknFV kF
H

)

, (20)

where the full covariance structure between frequency bins

is considered. Note that FV kF
H becomes a diagonal ma-

trix if V k is a circulant matrix. A trivial example is a case

that V k is an identity matrix, i.e., φkn is stationary white

Gaussian noise. If V k is a periodic kernel and its size M
is much larger than its period, V k can be roughly viewed

as a circulant matrix. If FV kF
H is diagonal, Eq. (20) re-

duces to a probabilistic model of IS-NMF discarding the

covariance structure between frequency bins [13]. In real-

ity, however, V k is considerably different from a circulant

matrix as shown in Section 5 (Figure 4 and Figure 5).

4. POSITIVE SEMIDEFINITE TENSOR

FACTORIZATION

This section explains a new tensor factorization technique

called positive semidefinite tensor factorization (PSDTF),

in a general-purpose way. As NMF approximates N non-

negative vectors (a matrix) as the convex combinations of

K nonnegative vectors, PSDTF approximates N PSD ma-

trices (a tensor) as the convex combinations of K PSD ma-

trices. PSDTF is therefore a natural extension of NMF.

4.1 Problem Specification

We formalize the problem of PSDTF. Suppose we have as

observed data a three-mode tensor X = [X1, · · · ,XN ] ∈
RM×M×N , where each slice Xn ∈ RM×M is a real sym-

metric positive semidefinite (PSD) matrix. Note that a sim-

ilar discussion can be applied even if Xn ∈ CM×M is a

complex Hermitian PSD matrix such that Xn = XH
n .

The goal of PSDTF is to approximate each PSD matrix

Xn by a convex combination of PSD matrices {V k}Kk=1

(K basis matrices) as follows:

Xn ≈
K
∑

k=1

HknV k
def
= Y n, (21)

where Hkn ≥ 0 is a weight at the n-th slice. Eq. (21) can

also be represented as X ≈
∑

k hk ⊗ V k
def
= Y , where ⊗

indicates the Kronecker product.

To evaluate the reconstruction error between PSD ma-

trices Xn and Y n, we propose to use a Bregman matrix

divergence [14] defined as follows:

Cφ(Xn|Y n)

= φ(Xn)− φ(Y n)− tr
(

∇φ(Y n)
T (Xn − Y n)

)

, (22)

where φ is a strictly convex matrix function. In this paper

we focus on the log-determinant (LD) divergence (φ(Z) =
− log |Z|) [17] given by

CLD(Xn|Y n) = − log
∣

∣XnY
−1

n

∣

∣+ tr
(

XnY
−1

n

)

−M.(23)

This divergence is always nonnegative and is zero if and

only if Xn = Y n. The Itakura-Saito (IS) divergence over

nonnegative numbers given by CIS(x|y) = − log(x/y) +
x/y − 1 is a well-known special case when M = 1, and it

is often used for audio source separation.

Our goal is to estimate H = [h1, · · · ,hK ] ∈ RN×K

and V = [V 1, · · · ,V K ] ∈ RM×M×K such that the cost

function CLD(X|Y ) =
∑

n CLD(Xn|Y n) is minimized.

Note that our model imposes the nonnegativity constraint

on H and the positive semidefiniteness constraint on V .

This specific model is called LD-PSDTF.

4.2 Auxiliary Function Approach

We use the auxiliary function approach [15] for indirectly

maximizing the cost function CLD(X|Y ) with respect to Y

(i.e., H and V ) because of its analytical tractability. Let

F(θ) is an objective function to be minimized with respect

to a parameter θ. A function F+(θ,φ) satisfying

F(θ) ≤ F+(θ,φ) (24)

is an auxiliary function for F(θ), where φ is an auxiliary

parameter. It can be proved that F(θ) is non-increasing

through the following iterative update rules:

φnew ← argminφF
+(θold,φ), (25)

θnew ← argminθF
+(θ,φnew). (26)

This algorithm is theoretically guaranteed to converge and

in fact a similar idea was used for IS-NMF [18].

To derive an auxiliary function U(X|Y ) for CLD(X|Y ),
we need to use matrix-variate inequalities based on func-

tion concavity and convexity. First, since f(Z) = log |Z|
is concave, we calculate a tangent plane of f(Z) by using

a first-order Taylor expansion as follows:

log |Z| ≤ log |Ω|+ tr(Ω−1Z)−M, (27)

where Ω is an auxiliary PSD matrix (tangent point), M is

the size of Z, and the equality holds when Ω = Z. For

a convex function g(Z) = tr(Z−1A) for any PSD matrix

A, we can use a sophisticated inequality [19] as follows:

tr

(

(

∑K

k=1
Zk

)

−1

A

)

≤
K
∑

k=1

tr
(

Z−1

k ΦkAΦ
T
k

)

, (28)

where {Zk}
K
k=1

is a set of arbitrary PSD matrices, {Φk}
K
k=1

is a set of auxiliary matrices that sum to the identity ma-

trix (i.e.,
∑

k Φk = I), and the equality holds when Φk =
Zk(

∑

k′ Zk′)−1.
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Using Inequalities (27) and (28), we can derive an aux-

iliary function U(Xn|Y n) for Eq. (23) as follows:

CLD(Xn|Y n)
c
= log |Y n|+ tr

(

XnY
−1

n

)

≤ log |Ωn|+ tr
(

Y nΩ
−1

n

)

−M

+
∑

ktr
(

Y −1

nkΦnkXnΦ
T
nk

)

(29)

≤ log |Ωn|+
∑

ktr
(

HknV kΩ
−1

n

)

−M

+
∑

ktr
(

H−1

kn V
−1

k ΦnkXnΦ
T
nk

)

def
= U(Xn|Y n),

where Ωn is a PSD matrix and {Φnk}Kk=1
is a set of auxil-

iary matrices that sum to the identity matrix. The equality

holds, i.e., U(Xn|Y n) is minimized, when

Ωn = Y n, Φnk = Y nkY
−1

n . (30)

4.3 Multiplicative Update

We can derive multiplicative update (MU) rules that mono-

tonically decrease the total auxiliary function U(X|Y ) =
∑

n U(Xn|Y n). We here assume tr(V k) = 1 (unit trace)

to remove the scale arbitrariness. If tr(V k) = s, the scale

adjustments V k ← 1

s
V k and Hkn ← sHkn do not change

CLD(Xn|Y n) and U(Xn|Y n). Letting the partial deriva-

tive of Eq. (29) with respect to Hkn be equal to be zero and

using Eq. (30), we get the following update rule:

Hkn ← Hkn

√

tr
(

Y −1

n V kY
−1

n Xn

)

tr
(

Y −1

n V k

) . (31)

Then, letting the partial derivative with respect to V k be

equal to be zero and using Eq. (30), we get

V kP kV k = V old

k QkV
old

k , (32)

where P k and Qk are PSD matrices given by

P k =
N
∑

n=1

HknY
−1

n , Qk =
N
∑

n=1

HknY
−1

n XnY
−1

n . (33)

Eq. (32) can be solved analytically by using the Cholesky

decomposition Qk = LkL
T
k , where Lk is a lower triangu-

lar matrix. Finally, we get the following update rule:

V k ← V kLk(L
T
k V kP kV kLk)

−
1

2LT
k V k, (34)

where the positive semidefiniteness of V k is ensured. Note

that a real matrix A is said to be positive semidefinite if and

only if A = ZZT is satisfied for some real matrix Z.

4.4 Connection to IS-NMF and Source Separation

LD-PSDTF reduces to IS-NMF if PSD matrices Xn and

V k are restricted to diagonal matrices. Since the diagonal

elements of an arbitrary PSD matrix are always nonnega-

tive, the cost function given by Eq. (23) is decomposed as

CLD(Xn|Y n) =
∑

m CIS(Xnmm|Ynmm) and the MU rules

given by Eq. (31) and Eq. (34) thus reduce to the MU rules

of IS-NMF [15]. As described in [15], several algorithms

such as an expectation-maximization (EM) algorithm and

a convergence-guaranteed MU algorithm can be used for

IS-NMF. The same is true for LD-PSDTF, and for faster

convergence we derived the MU algorithm.

KL-NMF
KL-NMF with iterSTFT
IS-NMF
IS-NMF with iterSTFT
LD-PSDTF (proposed)

LD-PSDTF achieved the 
significant improvements
over KL-NMF and IS-NMF.
The iterative STFT method
degraded the quality.

SARSDR SIR

30

25

20
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[dB]
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1.3 dB

Figure 3. Source separation performance.

To use LD-PSDTF for source separation, we set Xn =
xnx

T
n (rank-1 matrix) as shown in Section 3.2. Since the

negative of the log-likelihood given by Eq. (17) is equal

to the cost function given by Eq. (23) except for constant

terms, the maximum-likelihood estimates of H and V can

be obtained by the MU algorithm for LD-PSDTF. Note that

general LD-PSDTF is formulated for any-rank matrix Xn.

5. EVALUATION

This section reports a comparative experiment evaluating

the source separation performance of LD-PSDTF.

5.1 Experimental Conditions

We used three mixture audio signals each of which was

synthesized using piano sounds (011PFNOM), electric gui-

tar sounds (131EGLPM), or clarinet sounds (311CLNOM)

recorded in the RWC Music Database: Musical Instrument

Sound [20]. Each mixture signal was made by concatenat-

ing seven 2.0-s isolated or mixture sounds (C4, E4, G4,

C4+E4, C4+G4, E4+G4, and C4+E4+G4). The resulting

14.0-s signals were sampled at 16kHz.

The task was to separate each mixture signal into three

source signals corresponding to C4, E4, and G4. The local

signals {xn}Nn=1 were extracted by using a Gaussian win-

dow with a width of 512 samples (M = 512) and a shifting

interval of 160 samples (N = 1400). The PSD matrices V

and their activations H were estimated by using the MU

algorithm with K = 3. For comparison, we used KL-

NMF for amplitude-spectrogram decomposition and IS-

NMF for power-spectrogram decomposition (Section 2.3

and Section 2.4). The number of iterations was 100 in each

method. We also tested the iterative STFT method [6] as

a phase reconstructor for NMF. We evaluated the quality

of separated signals in terms of source-to-distortion ratio

(SDR), source-to-interferences ratio (SIR), and sources-to-

artifacts ratio (SAR) using the BSS Eval toolbox [21].

5.2 Experimental Results

The experimental results showed the clear superiority of

LD-PSDTF for source separation (Figure 3). The average

SDR, SIR, and SAR were 17.7 dB, 22.2 dB, and 19.7 dB in

KL-NMF, 19.1 dB, 24.0 dB, and 21.0 dB in IS-NMF, and

23.0 dB, 27.7 dB, and 25.1 dB in LD-PSDTF.1 We found

that the iterative STFT method degraded the quality of sep-

arated signals. This implies that the spectrogram consis-

tency does not always lead to the perceived quality of au-

1 Audio files and a sample code are at the first author’s website.
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Figure 4. Factorization of a piano mixture signal.

dio signals, as suggested in [10]. We confirmed that LD-

PSDTF can appropriately estimate V and H from both de-

caying and sustained sounds (Figure 4 and Figure 5). The

reason that each Xn does not appear to be well approxi-

mated by Y n (a convex combination of {V k}Kk=1
) is that

the cost function based on the LD divergence allows Y n to

overestimate Xn with a smaller penalty. A main limitation

of LD-PSDTF is that its computational cost is O(KNM3)
while the computational cost of NMF is O(KNM). In this

experiment, LD-PSDTF spent several hours for analyzing

each mixture signal on Xeon X5492 (3.4 GHz). Therefore,

we think that initializing LD-PSDTF by using basis vec-

tors and their activations obtained by IS-NMF can reduce

the computational cost and help avoid local minima.

6. CONCLUSION

This paper presented log-determinant positive semidefinite

tensor factorization (LD-PSDTF) as a natural extension of

Itakura-Saito NMF (IS-NMF). We derived a convergence-

guaranteed multiplicative update algorithm and showed the

clear superiority of LD-PSDTF over NMF variants in terms

of source separation quality.

There are several interesting directions. To separate mu-

sic signals into instrument parts, we plan to fuse the source-

filter model into the framework of LD-PSDTF as in the

composite autoregressive system [22]. We also plan to in-

vestigate another variant of PSDTF based on the von Neu-

mann divergence (φ(Z) = tr(Z logZ − Z) in Eq. (22))

that can be viewed as an extension of KL-NMF.
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