
Under consideration for publication in Theory and Practice of Logic Programming 1

Beyond NP: Quantifying over Answer Sets

GIOVANNI AMENDOLA1

FRANCESCO RICCA1

MIREK TRUSZCZYNSKI2

1University of Calabria, Rende, Italy

(e-mail: {amendola,ricca}@mat.unical.it)
2University of Kentucky, KY, USA

(e-mail: mirek@cs.uky.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Answer Set Programming (ASP) is a logic programming paradigm featuring a purely declarative language

with comparatively high modeling capabilities. Indeed, ASP can model problems in NP in a compact and

elegant way. However, modeling problems beyond NP with ASP is known to be complicated, on the one

hand, and limited to problems in Σ
P
2 on the other. Inspired by the way Quantified Boolean Formulas extend

SAT formulas to model problems beyond NP, we propose an extension of ASP that introduces quantifiers

over stable models of programs. We name the new language ASP with Quantifiers (ASP(Q)). In the paper

we identify computational properties of ASP(Q); we highlight its modeling capabilities by reporting natu-

ral encodings of several complex problems with applications in artificial intelligence and number theory;

and we compare ASP(Q) with related languages. Arguably, ASP(Q) allows one to model problems in the

Polynomial Hierarchy in a direct way, providing an elegant expansion of ASP beyond the class NP.

KEYWORDS: ASP, Quantified Logics, Polynomial Hierarchy

1 Introduction

Answer Set Programming (ASP) (Brewka et al. 2011) is a logic programming paradigm for mod-

eling and solving search and optimization problems. It is supported by a purely declarative for-

malism of logic programs with the semantics of stable models (Gelfond and Lifschitz 1991) (also

known as answer sets (Lifschitz 2002)), and by several systems able to compute them (Gebser

et al. 2018). ASP was primarily aimed at problems whose decision versions are in the class NP.

Indeed, ASP can model problems in NP in a compact and elegant way by means of an intuitive

and easy to follow methodology known as generate-define-test (Lifschitz 2002) (also known as

guess and check (Eiter et al. 2000)). Furthermore, implementations such as clasp (Gebser et al.

2015), and wasp (Alviano et al. 2015; Alviano et al. 2019) have been shown to be effective in

solving problems of practical interest (Gebser et al. 2017) on industrial-grade instances (Dodaro

et al. 2016; Gebser et al. 2018; Erdem et al. 2016).

Modeling problems beyond the class NP with ASP is possible to some extent. Namely, when

disjunctions are allowed in the heads of rules, every decision problem in the class Σ
P
2 can be

modeled in a uniform way by a finite program (Dantsin et al. 2001). However, modeling problems

beyond NP with ASP is complicated and the generate-define-test approach is no longer sufficient

2 G. Amendola, F. Ricca, M. Truszczynski

in general. Additional techniques such as saturation (Eiter and Gottlob 1995) are needed but they

are difficult to use, and may introduce constraints that have no direct relation to constraints of the

problem being modeled. As stated explicitly in (Gebser et al. 2011) “unlike the ease of common

ASP modeling, [...] these techniques are rather involved and hardly usable by ASP laymen.”

The primary goal of our work is to address the shortcomings of ASP in modeling problems

beyond NP. Building on the way Quantified Boolean formulas (QBFs) extend SAT formulas to

model problems from PSPACE, we propose a generalization of ASP that introduces quantifiers

over stable models of programs. We name the new language ASP with Quantifiers (ASP(Q)) and

refer to programs in that language as quantified programs.

In the paper we formally introduce the language ASP(Q) and its semantics. We identify com-

putational properties of ASP(Q). In particular, we show that every problem in the Polynomial

Hierarchy can be uniformly modeled by a quantified program. Moreover, we show that no loss of

expressivity results if we restrict programs defining quantifiers to be normal. An important con-

sequence of that observation is that when using ASP(Q) to model problems, one can resort to the

generate-define-test approach to specify these “quantifying” programs. This typically simplifies

modeling and verifying correctness. We illustrate these claims by presenting natural encodings

of several complex problems with applications in artificial intelligence and mathematics.

In the last part of the paper, we compare ASP(Q) with alternative approaches for modeling

problems beyond NP. Earlier efforts in this direction include: the stable-unstable formalism (Bo-

gaerts et al. 2016), various program transformations (Eiter and Polleres 2006; Redl 2017; Faber

and Woltran 2011), applications of meta-programming (Redl 2017; Gebser et al. 2011) and

more.1 In particular, we deepen the comparison with disjunctive programs and the stable-unstable

formalism, indicating key differences and their implications by means of additional modeling

examples. We also extensively compare ASP(Q) with the language of QBFs, which served as a

direct inspiration for our work. A single sentence summary of our work is: ASP(Q) allows one

to model problems in the Polynomial Hierarchy in a direct way, providing an elegant expansion

of ASP beyond the class NP.

2 Formal Framework

We start by recalling syntax and semantics of Answer Set Programming (ASP). We then introduce

syntax and semantics of ASP with Quantifiers (ASP(Q)).

2.1 Answer Set Programming

Let R be a set of predicates, C a set of constants, and V a set of variables. A term is a constant

or a variable. An atom a of arity n ∈ N is of the form p(t1, ..., tn), where p is a predicate from R

and t1, ..., tn are terms. A disjunctive rule r is of the form

a1∨ . . .∨al ← b1, . . . ,bm, not c1, . . . , not cn, (1)

where all ai, b j, and ck are atoms; l,m,n≥ 0 and l+m+n> 0; not represents negation-as-failure,

also known as default negation. The set H(r) = {a1, ...,al} is the head of r; the sets B+(r) =

{b1, ...,bm} and B−(r)= {c1, . . . ,cn} are the sets of the positive body and the negative body atoms

of r, respectively. A rule r is safe if each of its variables occurs in some positive body atom. We

1 For example, weak constraints allow to model decision problems that are ∆
P
3 -complete (Buccafurri et al. 2000).

Beyond NP: Quantifying over Answer Sets 3

restrict attention to programs built of safe rules only. A rule r is a fact, if B+(r)∪B−(r) = /0 (we

then omit← from the notation); a constraint, if H(r) = /0; normal, if |H(r)| ≤ 1; and positive, if

B−(r) = /0. A (disjunctive logic) program P is a finite set of disjunctive rules. P is called normal

[resp. positive] if each r ∈ P is normal [resp. positive]. We define At(P) =
⋃

r∈P At(r), that At(P)

is the set of all atoms occurring in the program P. A program P is stratified if there is a level

mapping ‖.‖s of P such that for every rule r of P: (i) For any predicate p occurring in B+(r), and

for any p′ occurring in H(r), ‖p‖s ≤ ‖p′‖s, and (ii) For any predicate p occurring in B−(r), and

for any p′ occurring in H(r), ‖p‖s < ‖p′‖s.

The Herbrand universe of P, denoted by UP, is the set of all constants appearing in P, except

that when no constants appear in P, we take UP = {a}, where a is an arbitrary constant. The

Herbrand base of P, denoted as BP, is the set of all ground atoms that can be obtained from

the predicate symbols appearing in P and the constants of UP. Given a rule r occurring in a

program P, a ground instance of r is a rule obtained from r by replacing every variable X in r

by σ(X), where σ is a substitution mapping the variables occurring in r to constants in UP. The

ground instantiation of P, denoted by ground(P), is the set of all the ground instances of the rules

occurring in P. Any set I ⊆ BP is an interpretation; it is a model of a program P (denoted I |= P) if

for each rule r ∈ ground(P), we have I∩H(r) 6= /0 whenever B+(r)⊆ I and B−(r)∩I = /0 (in such

case, I is a model of r, denoted I |= r). A model M of P is minimal if no model M′⊂M of P exists.

We denote by MM(P) the set of all minimal models of P. For a program P without constraints we

write PI for the well-known Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1991) with respect

to interpretation I, that is, the set of rules H(r)← B+(r), obtained from rules r ∈ ground(P)

such that B−(r)∩ I = /0. An answer set (or stable model) of a program P without constraints is an

interpretation I such that I ∈MM(PI). For the general case, we write P← for the set of constraints

of a disjunctive logic program P. We denote by AS(P) the set of all answer sets (or stable models)

of such programs P, that is, the set of all answer sets of P\P← that are models for P←.

We say that a program P is coherent, if it has at least one answer set (that is, AS(P) 6= /0),

otherwise, P is incoherent.

2.2 Answer Set Programming with Quantifiers

An ASP with Quantifiers (ASP(Q)) program Π is an expression of the form:

�1P1 �2P2 · · · �nPn : C, (2)

where, for each i = 1, . . . ,n, �i ∈ {∃
st ,∀st}, Pi is an ASP program, and C is a stratified normal

ASP program.2 Symbols ∃st and ∀st are named existential and universal answer set quantifiers,

respectively. An ASP(Q) program Π of the form (2) is existential (universal, respectively) if

�1 = ∃st (= ∀st , respectively). If for each i = 1, . . . ,n the ASP program Pi is normal, then Π

is called a normal ASP(Q) program. Given a logic program P and an intepretation I over BP,

and an ASP(Q) program Π the form (2), we denote by f ixP(I) the set of facts and constraints

{a | a ∈ I}∪{← a | a ∈ BP \ I}, and by ΠP,I the ASP(Q) program of the form (2), where P1 is

replaced by P1∪ f ixP(I), that is, ΠP,I = �1(P1∪ f ixP(I)) · · ·�nPn : C. We now define coherence

of ASP(Q) programs by induction on the number of quantifiers in the program.

2 This condition is sufficient to model compactly constraints by exploiting the modeling advantages of inductive defini-
tions. C is contemplated in the definition of ASP(Q) just because it makes more natural the modeling of problems.

4 G. Amendola, F. Ricca, M. Truszczynski

• ∃stP : C is coherent, if there exists M ∈ AS(P) such that C∪ f ixP(M) is coherent;

• ∀stP : C is coherent, if for every M ∈ AS(P), C∪ f ixP(M) is coherent;

• ∃stP Π is coherent, if there exists M ∈ AS(P) such that ΠP,M is coherent;

• ∀stP Π is coherent, if for every M ∈ AS(P), ΠP,M is coherent.

For instance, an ASP(Q) program Π = ∃stP1∀
stP2 · · ·∃

stPn−1∀
stPn : C is coherent if there exists

an answer set M1 of P′1 such that for each answer set M2 of P′2 there is an answer set M3 of P′3, . . . ,

there is an answer set Mn−1 of P′n−1 such that for each answer set Mn of P′n, there is an answer set

of C∪ f ixP′n
(Mn), where P′1 = P1, and P′i = Pi∪ f ixP′i−1

(Mi−1), if i≥ 2.

For an ASP(Q) program Π of the form (2) such that �1 = ∃st , we say that M ∈ AS(P1) is a

quantified answer set of Π, whenever (�2P2 · · ·�nPn : C)P1,M is coherent, in case of n > 1, and

whenever C∪ f ixP1
(M) is coherent, in case of n = 1. We denote by QAS(Π) the set of all quan-

tified answer sets of Π. Finally, note that the definition of quantified answer set can be naturally

extended to programs with strong negation, choice rules, aggregates and other extensions (Geb-

ser and Schaub 2016). Thus, in the examples we resort also to these extensions that are part of

the ASPCore standard input language (Gebser et al. 2018).

Example 1

Consider the ASP(Q) program Π= ∃stP1∀
stP2 :C, where P1 = {a(1)∨a(2)}, P2 = {b(1)∨b(2)←

a(1); b(2)← a(2)}, and C = {← b(1), not b(2)}. The program P1 has two answer sets {a(1)}

and {a(2)}. Hence, to establish the coherence of Π, we have to check if at least one of {a(1)} and

{a(2)} is a quantified answer set of Π. Considering {a(1)}, we have f ixP1
({a(1)}) = {a(1);←

a(2)}. Under the notation used above, P′2 = P2∪ f ixP1
({a(1)}). Thus, AS(P2∪ f ixP1

({a(1)})) =

{{a(1),b(1)},{a(1),b(2)}}. For M = {a(1),b(1)}we have f ixP′2
(M) = {a(1); b(1);← a(2);←

b(2)}, and it is clear that the program C∪ f ixP′2
(M) is not coherent. Therefore, {a(1)} is not a

quantified answer set of Π. On the other hand, a similar analysis for the other answer set of P1,

{a(2)}, shows that it is a quantified answer set of Π.

ASP(Q) is a straightforward generalization of ASP in a sense made formal in the following

theorem.3

Theorem 1

Let P be an ASP program, and let Π be the ASP(Q) program of the form (2), where n = 1,

�1 = ∃
st , P1 = P, and C = /0. Then, AS(P) = QAS(Π).

3 Complexity issues

We now study the computational properties of the ASP(Q) language. As it is customary in the

literature we focus on the ground case, that is we assume that no variable occurs in programs.

Because it is possible to alternate universal and existential answer set quantifiers, it is clear that

ASP(Q) can model probelms beyond NP. In particular, each problem in PSPACE can be modeled

by using an ASP(Q) program. Formally, we define the COHERENCE problem as follows: Given

an ASP(Q) program Π as input, decide whether Π is coherent.

3 The proof of this result and of some other theorems are given in the appendix available as supplemental materials
published with the paper.

Beyond NP: Quantifying over Answer Sets 5

Theorem 2

The COHERENCE problem is PSPACE-complete, even under the restriction to normal ASP(Q)

programs.

As for QBFs, there is a direct correspondence between the number of alternating quantifiers

and the level of the Polynomial Hierarchy (PH) for which we have competeness of the coherence

problem.

Theorem 3

The COHERENCE problem is (i) Σ
P
n -complete for normal existential ASP(Q) programs with n

quantifiers in the prefix; and (ii) Π
P
n -complete for normal universal ASP(Q) programs with n

quantifiers in the prefix.

We note that, for classes of disjunctive programs that can be translated in polynomial time to

normal ones, such as Head-Cycle Free (HCF) (Ben-Eliyahu and Dechter 1996), the correspon-

dence between quantifier alternations and the level of the Polynomial Hierarchy is preserved.

We also note that the theorem concerns, in each of the two cases, the corresponding class of

all ASP(Q) programs with n quantifiers. In particular, the membership part is proved for that

class. The proof of hardness explicitly usues special programs in that class, the ones in which

quantifiers alternate.

4 Modeling in ASP(Q)

In this section, we focus on the modeling capabilities of our language. Thus, we study some well-

known problems that are computationally beyond NP, and show how to solve them in ASP(Q).

4.1 Minmax Clique

Minmax problems play a key role in various fields of research, including game theory, combina-

torial optimization and computational complexity (Cao et al. 1995). A minimax problem can be

formulated as minx∈X maxy∈Y f (x,y), where f (x,y) is a function defined on the product set of X

and Y . Here, we focus on the so-called Minmax Clique problem (Ko 1995), but our approach can

be easily adapted to model other minmax problems.

Let G = 〈N,E〉 be a graph, I and J two finite sets of indices, and (Ai, j)i∈I, j∈J a partition of

N. We write JI for the set of all total functions from I to J. For every total function f : I→ J we

denote by G f the subgraph of G induced by
⋃

i∈I Ai, f (i). We define the MINMAX CLIQUE problem

as follows: Given a graph G, sets of indices I and J, a partition (Ai, j)i∈I, j∈J (all as above), and an

integer k, decide whether

min
f∈JI

max{|Q| : Q is a clique of G f } ≥ k.

It is known that this problem is Π
p
2 -complete (Ko 1995).

Consider the following ASP(Q) program Π = ∀stP1∃
stP2 : C. The ASP program P1 is given by:

P1 =

edge(a,b) ∀(a,b) ∈ E

node(a) ∀a ∈ N

v(i, j,a) ∀i ∈ I, j ∈ J, a ∈ Ai, j

setI(X) ← v(X , ,)

setJ(X) ← v(,X ,)

1{ f (X ,Y) : setJ(Y)}1 ← setI(X)

6 G. Amendola, F. Ricca, M. Truszczynski

Informally, the role of P1 is to specify the input graph, the sets I and J of indices, a partition

(Ai, j), and the search space of all total functions from I to J. Specifically, the first two sets of

facts encode the graph by using two predicates: a binary one named edge, collecting all edges of

the graph; and a unary one named node collecting all nodes of the graph. Then, the third set of

facts encodes the partition (Ai, j) by using a ternary predicate v. Projections applied to v (rules

four and five) define elements of the sets I and J, respectively. Finally, the last rule defines the

space of all total functions f from I to J. The ASP program P2 is defined as follows:

P2 =

inInduced(Z) ← v(X ,Y,Z), f (X ,Y)

edgeP(X ,Y) ← edge(X ,Y), inInduced(X), inInduced(Y)

{inClique(X) : inInduced(X)}

← inClique(X), inClique(Y), not edgeP(X ,Y)

Its role is to define the subgraph G f of G determined by a total function f , and to select a clique

in this subgraph. In particular, the first rule defines the set of nodes of the subgraph G f (whenever

a node Z belongs to the set AX ,Y , and the function f maps X to Y , then Z is a node of G f). The

second rule ensures that whenever there is an edge from X to Y , and both X and Y are nodes of

G f , then the edge (X ,Y) is an edge of G f (G f is the induced subgraph). The third rule allows to

select nodes of the partition as candidates for a clique. The final constraint requires that it is not

possible that two nodes X and Y are in a clique and there is no edge in the subgraph G f from X

to Y . Finally, the program C is defined as follows.

C =
{

← #count{X : inClique(X)}< k
}

The constraint forces the number of nodes in a clique to be greater or equal to k.

Intuitively, we check if for each answer set of P1, that is for each total function f from I to J,

there exists an answer set of P2, that is a clique in the subgraph of G induced by f , such that its

cardinality is not less than k. If so, a quantified answer set of Π exists.

Theorem 4

Let I = 〈G,(Ai, j)i∈I, j∈J ,k〉 be an instance of the MINMAX CLIQUE problem. Then,

min
f∈JI

max{|Q| : Q is a clique of G f } ≥ k

if and only if the ASP(Q) program Π, defined as above, has a quantified answer set.

4.2 Pebbling Number

Graph pebbling is a well-known mathematical game (Hurlbert 1999). It was first suggested as

a tool for solving a particular problem in number theory (Chung 1989). The game consists of a

graph with pebbles placed on (some of) its nodes. The goal is to place a pebble on a target node

by performing a sequence of pebbling moves. More formally, let G = 〈N,E〉 be a directed graph

whose nodes may contain pebbles. A pebbling move along an edge (a,b) ∈ E requires that node

a contains at least two pebbles; the move removes two pebbles from a and adds one pebble to

b. The pebbling number, denoted by π(G), is the smallest number of pebbles such that for every

assignment of k pebbles to nodes of G and for every node w ∈ N (the target), some sequence

(possibly empty) of pebbling moves results in a pebble on w. The PEBBLING NUMBER problem

asks whether π(G) is less than or equal to k. This problem is Π
p
2 -complete, and it remains so

also when the target node is part of the input (Milans and Clark 2006). (For the latter version,we

redefine π(G) accordingly.)

Beyond NP: Quantifying over Answer Sets 7

To capture the definition of the PEBBLING NUMBER problem we construct an ASP(Q) pro-

gram Π = ∀stP1∃
stP2 : C. Its program P1 is defined as follows:

P1 =

edge(a,b) ∀(a,b) ∈ E

node(a) ∀a ∈ N

pebble(i) ∀i = 0,1, . . . ,k

1{onNode(X ,N) : pebble(N)}1 ← node(X)

← #sum{N,X : onNode(X ,N)} 6= k

1{target(X) : node(X)}1

The first two sets of facts encode the input graph, and the third one the set of integers that can

serve as the number of pebbles a node can have. The first rule of the program (line 4) selects, for

each node X , the number N of pebbles on X . The second rule (line 5) ensures the total number of

pebbles on all nodes of G is k. The last rule selects exactly one node as the target allowing any

node to be selected. Thus, answer sets of P1 capture all possible “input configurations” for G,

each configuration defined by a distribution of k pebbles among nodes of G and the target node.

The ASP program P2 in Π is defined as follows:

P2 =

step(i) ∀i = 0,1, . . . ,k−1

1{endstep(S) : step(S)}1

onNode(X ,N,0) ← onNode(X ,N)

1{move(X ,Y,S) : edge(X ,Y)}1 ← step(S),endstep(T),1≤ S, S≤ T

← move(X ,Y,S), onNode(X ,N,S), N < 2

affected(X ,S) ← move(X ,Y,S)

affected(Y,S) ← move(X ,Y,S)

onNode(X ,N−2,S) ← onNode(X ,N,S−1),move(X ,Y,S)

onNode(Y,M+1,S) ← onNode(Y,M,S−1),move(X ,Y,S)

onNode(X ,N,S) ← onNode(X ,N,S−1),not affected(X ,S)

The first set of facts (line 1) encodes all integers i that can serve as the number of pebbling moves.

Since each pebbling move removes one pebble, any successful sequence of pebbling moves has

length at most k−1. Consequently, we may (and do) restrict these integers to 0,1, . . . ,k−1. The

first rule of P2 (line 2) selects a single integer to represent the number of pebbling moves. The

second rule of P2 (the next line) defines the initial state of the graph (before any pebbling moves).

It is given by the initial distribution of pebbles obtained from an answer set of the program P1 (we

overload the notation here; the predicate onNode defining the initial configuration in P1 is binary,

while the predicate onNode defined in P2 is ternary; it has an additional argument to represent the

step). The third rule selects an edge for the pebbling move step S = 1,2, . . . ,T , where T is the end

step (defined via endstep). The constraint that follows imposes the pebbling move precondition:

there must be at least two pebbles on the node where the pebbling move originates. The next two

rules define the two nodes affected by the move. The last three rules define the state of the graph

after the pebbling move in step S (applied to the graph after S−1 pebbling moves). The first two

of these three rules describe how the number of pebbles change on the nodes that are involved

in the move. The last rule is the inertia rule that keeps the number of pebbles unchanged on all

nodes unaffected by the move. Informally, answer sets of P2 correspond to all valid sequences of

pebbling moves that do not eliminate all pebbles and start in the initial state of the graph, together

with the corresponding sequence of states of the graph.

Finally, the program C in Π is defined as follows.

8 G. Amendola, F. Ricca, M. Truszczynski

C =

{

ok(W) ← onNode(W,N,S), target(W),endstep(T) N > 0

← target(W), not ok(W)

}

First rule defines ok(W) to hold whenever W is a target node and there is a pebble on it after the

last pebbling move T . The constraint ensures no answer set if ok(W) has not been inferred.

Intuitively then, Π is coherent precisely when for each assignment of k pebbles to nodes of a

given graph and for every choice of a target node (that is, for every answer set M1 of P1) there

is a sequence of pebbling moves of length at most k− 1 (that is, there is an answer set M2 for

P2 ∪ f ixP1
(M1) = P′1) such that the target node has a pebble on it (that is, C∪ f ixP′1

(M2) has an

answer set).

Theorem 5

Let I = 〈G,k〉 be an instance of the Pebbling Number Problem. Then, π(G) ≤ k if and only if

the ASP(Q) program Π, defined as above, is coherent.

4.3 Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis dimension (VC dimension) is a fundamental concept in machine learn-

ing theory (Vapnik and Chervonenkis 2015). The VC dimension is a measure of the capacity of

a space of functions that can be learned by a statistical classification algorithm (Blumer et al.

1989). In particular, it is the cardinality of the largest set of points that the algorithm can shatter.

In statistical learning theory, the VC dimension can predict probabilistic upper bounds on the

test error of a classification model (Vapnik 1998). Further applications include finite automata,

complexity theory, computability theory, and computational geometry.

Here, we focus on the so-called discrete VC dimension problem, where the considered uni-

verse is finite. The problem concerns families of subsets that are represented by Boolean circuits.

However, we assume that the representation is given by a logic program capturing the corre-

sponding formula. Specifically, we assume that a program PC representing a family C of subsets

of U contains a unary predicate true, and that extensions of the predicate true in answer sets of

PC are precisely the elements of C . Constructing a program PC from a Boolean circuit repre-

senting C is a matter of routine and can be accomplished in linear time. Let k be an integer, U a

finite set, and C = {S1, . . . ,Sn} ⊆ 2U a collection of subsets of U represented by a program PC .

The VC DIMENSION problem asks whether there is a subset X of U of size at least k, such that

for each subset S of X , there exists Si such that S = Si∩X . The VC dimension of C is defined as

maximum size of such a set X and is denoted by VC(C). Hence, the VC DIMENSION problem

asks whether VC(C) ≥ k. It is known that this problem (assuming a circuit or a program repre-

sentation of C) is Σ
p
3 -complete (Schaefer 1999). We will show that the problem can be described

by an ASP(Q) program Π = ∃stP1∀
stP2∃

stP3 : C. The ASP program P1 is defined as follows:

P1 =

{

inU(x) ∀x ∈U

k{inX(X) : inU(X)}

}

The set of facts in line 1 encodes the elements of the set U , while the choice rule in line 2 selects

a subset X of U with at least k elements. It is clear that answer sets of P1 are all subsets of U with

at least k elements.

The ASP program P2 consists of a single choice rule:

P2 =
{

{inS(X) : inX(X)}
}

Beyond NP: Quantifying over Answer Sets 9

Thus, answer sets of P2 are subsets of a set X (determined by a selected answer set of P1).

For P3 we simply take PC . Wlog, we may assume that PC shares no vocabulary elements with

P1 and P2. Thus, for every possible “input” from P1 and P2, answer sets of P′3, that is, P3 extended

with the input from P1 and P2, determine elements of C via extensions of the predicate true.

Finally, the program C is defined as follows (understanding true as defined above):

C =

inIntersection(X) ← true(X), inX(X)

← inIntersection(X), not inS(X)

← not inIntersection(X), inS(X)

The first rule collects into predicate inIntersection, the intersection of the selected set Si from C

(represented by an answer set of P′3 by means of the predicate true) and X , a subset of U selected

via an answer set of P1. The two constraints force this intersection to coincide with the subset S

of X (an answer set of P2 extended with a selected answer set of P1 as input representing X).

Intuitively, the program Π is coherent when there exists an answer set M1 of P1 (that is, a

subset X of U of size at least k) such that for each answer set M2 of P′2 = P2∪ f ixP1
(M1) (that is,

for each subset S of X), there exists an answer set M3 of P′3 = P3∪ f ixP′2
(M2) (that is, an element

Si of C), such that C∪ f ixP′3
(M3) is coherent (that is, Si∩X is equal to S).

Theorem 6

Let I = 〈U,C ,k〉 be an instance of the VC dimension problem. Then, VC(C)≥ k if and only if

the ASP(Q) program Π defined as above has a quantified answer set.

5 Related Work and Discussion

We now compare ASP(Q) with related work discussing pros and cons of the various approaches.

ASP(Q) vs QBF. We first compare our proposal with Quantified Boolean Formulas (QBF) (Biere

et al. 2009). QBF is a natural extension of propositional formulas with quantifiers ∃ (existential)

and ∀ (universal) operating on propositional variables. QFB was motivated by questions aris-

ing from computational complexity (Stockmeyer and Meyer 1973). The problem of checking

the satisfiability of a propositional formula (SAT) is the canonical problem for the complexity

class NP. The addition of quantifiers increases the complexity of satisfiability problem (QSAT)

to PSPACE (Stockmeyer 1976), and prefixes of k alternating quantifiers yield problems that are

complete for each complexity class of the Polynomial Hierarchy. For this reason the satisfiability

problem of QBF formulas with prefixes of alternating k quantifiers (k-QSAT becomes the canon-

ical problem for the k-th level of the Polynomial Hierarchy). More precisely, k-QSAT restricted

to prefixes of length k starting with an existential (resp. universal) quantifier is complete for Σ
P
k

(resp. Π
P
k). ASP(Q) and QBF share the same motivation and intuition, indeed ASP(Q) extends

ASP with quantifiers (as QBF extends SAT) to increase the modeling capabilities of the language

beyond NP. As studied in Section 3, propositional ASP(Q) and QBF have similar computational

properties. In particular, the coherence problem for both is PSPACE-complete and an even tighter

correspondence holds between propositional normal ASP(Q) and QSAT. Nonetheless, there are

important differences among the two languages, some inherited form the relation between SAT

and ASP, and other concerning the semantics of quantifiers.

First, ASP(Q) supports variables, which gives a modeling advantage, and supports rapid proto-

typing, program optimization and maintenance of problem solution. Indeed, variables allow one

to encode uniform compact representation of a problem over varying instances, while in QBF (as

10 G. Amendola, F. Ricca, M. Truszczynski

in SAT) each instance of a problem needs to be encoded in a specific formula by means of an en-

coding procedure. Second, even if in general QBF and ASP(Q) can solve the same computational

problems, ASP(Q) inherits from ASP the possibility of encoding inductive definitions (Denecker

and Vennekens 2014), which are useful in modeling properties such as reachability in graphs

(inductive definitions require larger instances in SAT and QBF that slow down modeling and

solving). Next, ASP supports modeling extensions such as aggregates, choice rules, strong nega-

tion, and disjunction in rule heads that significantly simplify encodings used in SAT (Brewka

et al. 2011). We have made extensive use of inductive definitions and aggregates in our examples

in Section 4. Finally, we note that in QBF quantifiers range over variable assignments, whereas

in ASP(Q) they quantify over the answer sets of each subprogram. This is yet another difference

and a reason that ASP(Q) cannot be seen as a straightforward porting of the ideas behind QBF.

ASP(Q) vs ASP. One of the distinguishing features of ASP is the capability of modeling prob-

lems in Σ
P
2 . This is possible because of the additional expressive power provided by disjunctive

rules. Modeling in Σ
P
2 problems with ASP is rather natural if one can use only positive rules. For

example, let us consider the strategic companies problem (Cadoli et al. 1997). In that problem,

one has to compute a set of companies that cover the production of a set of goods also controlling

other companies. A set of companies S is said to be strategic if it: (i) covers the productions of

all goods; (ii) is subset-minimal; and, (iii) every company c controlled by at most three strate-

gic companies is also strategic. In the setting in which each product is produced by at most two

companies the problem is Σ
P
2 -complete and can be modeled as follows (Leone et al. 2006):

strat(Y)∨ strat(X) ← prod by(P,X ,Y)

strat(W) ← contr by(W,X ,Y,Z),strat(X),strat(Y),strat(Z)

The first rule models condition (i), the second rule models condition (iii), and the minimality of

answer sets ensures (ii). It is clear that this encoding of the problem can be directly translated to

a single-quantifier disjunctive ASP(Q).

When problem constraints to be modeled involve negation, ASP modeling becomes less intu-

itive. In particular one has to resort to an encoding technique called saturation (Eiter and Gottlob

1995). It allows one to simulate a co-NP check in the program reduct. Saturation is at the basis

of the celebrated encoding of 2-QBF by Eiter and Gottlob (1995) used to prove the complexity

of checking existence of answer sets in presence of disjunction in rule heads. Given a 2-QBF

formula Φ = ∃X∀Y G, where G = D1 ∨ . . .∨Dh is a DNF, and Di = Li,1 ∧ . . .∧Li,ki
and Li, j are

literals over X ∪Y , we encode Φ in an ASP program as follows. First introduce a fresh atom

sat modeling satisfiability, and a fresh atom nz for every atom z ∈ X ∪Y ; and set σ(z) = z and

σ(¬z) = nz for every z∈X∪Y . Then write the program PΦ = {z∨nz|∀z∈X∪Y}∪{y← sat|∀y∈

Y}∪{ny← sat|∀y ∈ Y}∪{sat← σ(Li,1), . . . ,σ(Li,ki
)|i = 1, . . . ,m}∪{sat← not sat}.

Here the atoms corresponding to universally quantified variables Y are “saturated” (i.e., they

are forced to be true in any answer set), and since the last rule is always removed while com-

puting the reduct, sat must be derived for all assignments of truth values to Y to have an answer

set. This trick ensures that Φ is satisfiable if and only if PΦ has an answers set. Again, one could

reformulate the program above into a disjunctive program with a single quantifier. However,

using saturation in modeling is considered difficult. ASP(Q) offers an alternative and more intu-

itive approach, It uses normal quantified programs with two quantifiers that also capture Σ
P
2 (see

Theorem 3). Indeed, let us consider a normal quantified program ΠΦ = ∃stP1∀
stP2 : C where

P1 = {{x1, . . . ,xn}}, P2 = {{y1, . . . ,ym}},

Beyond NP: Quantifying over Answer Sets 11

C = {sat← σ(Li,1), . . . ,σ(Li,ki
) | ∀i = 1, . . . ,m}∪{← not sat}.

Here, a satisfiability of an existential 2-QBF is encoded directly. Indeed P1 guesses an assignment

to X s.t. for all assignments to Y generated by P2, sat must be derived by satisfying at least one

conjunct in ϕ , i.e., ΠΦ is satisfiable iff Φ is. This discussion suggests that ASP(Q) improves on

ASP modeling capabilities. It keeps the advantages of ASP in modeling concisely Σ
P
2 problems

with positive programs, as for strategic companies, but also allows us to model other problems

without resorting to difficult to use encoding techniques.

ASP(Q) vs Stable-Unstable. To handle problems beyond NP, Bogaerts et al. (2016) proposed

an extension of ASP inspired by an internal working principle of ASP solvers (Gebser et al.

2018). Usually, in ASP solvers designed for problems in Σ
P
2 one procedure generates model can-

didates and another one, acting as an oracle, tests minimality of the candidates produced by the

first procedure. It does so by verifying that a certain subprogram (in some cases, a SAT formula)

has no stable models (is not satisfiable). Following this principle, Bogaerts et al. (2016) intro-

duced combined logic programs, in which two normal logic programs play a role analogous to

the one of the two procedures of ASP solvers mentioned above. A combined logic program is a

pair Π = (Pg,Pt) of normal logic programs. Its semantics is given by parameterized stable mod-

els (Oikarinen and Janhunen 2006; Denecker et al. 2012); a stable-unstable model of a combined

program Π is a parameterized stable model of Pg, say I, such that no parameterized stable model

of Pt exists that coincides with I in the intersection of the signatures of the two programs.

Comparing ASP(Q) programs with combined programs, we first note that combined programs

involve the concept of parameters. In applications, the parameters of the generator program are

used to represent problem instances (are “extensional”). This use of parameters is quite natural to

ASP programmers and does not pose a conceptual difficulty. It is also used implicitly in ASP(Q)

(stable models from each quantifier are passed on as “input” parameters to the next one).4 How-

ever, the stable-unstable approach applies the notion of a parameterized stable model also in the

checking phase using “negation,” that is, referring to non-existence of a certain parameterized

stable model. This, arguably, makes the formalism much less direct than ASP(Q). It is especially

clear when we move beyond the second level of the PH and the non-existence conditions become

nested (incidentally, the stable-unstable paper contains no examples of modeling such problems).

If we factor out the issue of parameters, and limit ourselves to problems in Σ
P
2 , combined

programs and ASP(Q) are closely related. Indeed, in ASP(Q) one has direct means to model

“testing” conditions of the form “for all stable models (answer sets) of some program, a certain

property holds.” In contrast, combined programs provide direct means to model “testing” con-

ditions of the form “there exists no stable model of some program such that a certain property

holds.” Switching between ASP(Q) and combined programs amounts then to simulating condi-

tions of one form with conditions of the other and vice versa (effectively, negating constraints

in a program). Such simulations are easy to design with the use of a small number of auxiliary

variables (often one such new variable suffices). Consequently, both formalisms are on par for

modeling problems that are complete for Σ
P
2 . However, for problem in Π

P
2 , the difference between

ASP(Q) and combined programs becomes evident. As an example, let us consider a 2-QBF for-

mula Ψ = ∀X∃Y ψ , where ψ is a 3-CNF formula. This problem can be naturally represented in

ASP(Q) by using the encoding employed in the proof of Theorem 2. However once we try to

4 We could also distinguish extensional predicates to specify “parameters,” that is, input instances, That would allow us
to keep instance specification separate from the program. We decided not to do so here to simplify our presentation.

12 G. Amendola, F. Ricca, M. Truszczynski

encode it using a combined logic program (for well-known complexity reasons) we have either

to adopt an exponential encoding, something analogous to quantifier expansion in QBF, or we

have to use an additional nesting of programs (i.e., we are have to push the entire computation in

the oracle). In both cases, the modeling would not result in a solution as natural and direct as the

one provided by ASP(Q). The reason is that combined programs (as well as their generalizations

beyond the second level) represent existential statements. Hence, they model complements of Π
P
2

problems and not the problems themselves. In contrast, ASP(Q) can be used for such problems

in a direct way providing representations closely following original problem descriptions (our

examples illustrate this).

A related aspect concerns modeling itself, the process of mapping natural language specifica-

tions to formal expressions, which surfaces when one considers problems that require more than

one quantifier alternation. It is important to note that combined logic programs were extended to

deal with problems from any level of the PH in (Bogaerts et al. 2016) by resorting to a recursive

definition. This definition forces the programmer to think in terms of “nested oracles”, instead

of translating problem description directly into a formal expression. Whereas for problems at the

second level of the polynomial hierarchy it roughly corresponds to searching for a counterexam-

ple, for problems at higher levels, the recursion and the negation (needed because of the absence

of direct means to represent universal statements), makes it harder to maintain the connection

between problem description and oracles forming nested combined programs. In contrast, the

interface between natural language problem description and ASP(Q) programs is transparent (in

the same way as it is for QBF), as it is explicitly supported by the quantifiers, which may be

existential or universal, as needed. In particular, the difficulty of modeling problems in Π
P
2 , noted

above, appears in the general setting of problems in Π
P
k , for k≥ 2: the stable-unstable formalism

is not designed to directly express universal statements that characterize problems in Π
P
k .

The discussion above compares at an intuitive informal level the modeling features of the two

formalism. It also suggests how the two are formally related. In the statement specifying the

relation, the depth of the basic combined program is defined as 2. Each next level of nesting

increments the depth by 1.

Theorem 7

(i) There is a polynomial-time reduction that assigns to every propositional nested combined

program Π of depth n, a normal existential ASP(Q) program Πq with n≥ 2 quantifiers such that

answer sets of Π and Πq, correspond to each other.

(ii) There is a polynomial-time reduction that assigns to every propositional normal existential

ASP(Q) program Π with n≥ 2 quantifiers in the prefix, a propositional nested combined program

Πc of depth n such that answer sets of Π and Πc correspond to each other.

Thus, at the level of expressive power, combined programs of depth n and existential ASP(Q)

programs with n quantifiers are formally equivalent, even if from the modeling point of view, as

we argued, ASP(Q) programs seem to have an advantage. However, unless the polynomial hier-

archy collapses, no reduction from universal ASP(Q) programs with n quantifiers to combined

nested programs of depth n is possible. The following proposition specifies this property for the

particular case of the validity of 2-QBFs, which we discussed above.

Proposition 1

Unless the polynomial hierarchy collapses, there exists no polynomial reduction that encodes

formulas Ψ = ∀X∃Y ψ , where ψ is a 3-CNF formula, as a combined program P = (P1,P2), where

P1 and P2 are normal logic programs, such that Ψ is valid iff P admits stable unstable models.

Beyond NP: Quantifying over Answer Sets 13

A trivial consequence of Theorem 2 is that this limitation is absent from ASP(Q).

Finally, we note that combined programs under stable-unstable semantics have been imple-

mented in a proof of concept prototype (Bogaerts et al. 2016) that can only handle problems at

the second level of the polynomial hierarchy. A similar prototype implementation for ASP(Q)

(programs with at most two quantifiers) is possible, too. However, devising efficient implemen-

tations for either formalism in their full generality remains a non-trivial open research problem.

Further related work. The problem of modeling in a natural way Σ
P
2 problems with ASP was

also addressed by Eiter and Polleres (2006). They model problems combining “guess” program

Psolve and “check” program Pcheck, which are transformed into a single disjunctive ASP program

such that its answer sets encode the solutions of the original problem by means of a polynomial-

time transformation. The programs Psolve and Pcheck must be HCF and propositional, thus limiting

this approach to the modeling capabilities of propositional ASP. An idea analogous to that devel-

oped by Eiter and Polleres (2006) was also proposed by Redl (2017). Redl’s proposal appears to

be conceptually simpler than the earlier one because of the use of conditional literals but suffers

from the same limitations. A general technique to reuse existing ASP systems to evaluate prob-

lems of higher complexity (such as various forms of qualitative preferences among answer sets)

was proposed by Gebser et al. (2011). The idea there was to use a meta program encoding the

saturation technique which, in this way, became transparent to the user. As in the approach by

Eiter and Polleres (2006), the resulting program is a plain ASP program which can be evaluated

by a standard ASP system. Thus, the approach of Gebser et al. (2011) cannot be used to model

problems beyond the second level of the polynomial hierarchy. Another solution that allows for

reasoning within a program over the answer sets of another program, and thus encode reasoning

tasks beyond NP, is provided by manifold programs (Faber and Woltran 2011; Faber and Woltran

2009). In manifold programs the calling and the called program are encoded into a single pro-

gram using weak constrains. The answer sets of the called program are thus represented within

each answer set of the calling program. Also this approach is limited to the second level of the

polynomial hierarchy, and might generate large specifications.

HEX-programs are an extension of ASP with external sources such as description logic ontolo-

gies and Web resources (Eiter et al. 2008). In HEX-programs external atoms can exchange infor-

mation from the logic program to eternal theories in terms of predicate extensions and constants.

Redl (2017) studied a way to avoid saturation for modeling Σ
P
2 problems with HEX-programs.

In particular, the author proposes the modeling technique of query answering over subprograms.

While encoding a problem on the second level of the polynomial hierarchy, one has to provide

two components. A first program Pguess modeling the NP part, and a second one Pcheck modeling

the co-NP check. The first program, Pguess, is a HEX program that can query on the answer sets of

the normal ordinary ASP program Pcheck using specific external atoms. This modeling approach

avoids saturation without introducing quantifiers, but this nice modeling behavior is limited to

Σ
P
2 problems. Indeed, the focus of query answering over subprograms is on overcoming satura-

tion and not on reaching high expressibility (Redl 2017). A recent proposal of an extension of

propositional ASP to model planning problems was described in (Romero et al. 2017; Amendola

2018). The main difference with ASP(Q) is on the nature of quantifiers allowed in the two spec-

ifications. Indeed, the proposal of (Romero et al. 2017), mimicking 2QBF, allows quantifiers

over propositional atoms, whereas in ASP(Q) quantifiers are over answer sets.

As a final mention, we observe that the idea of extending the base language with quantifiers

14 G. Amendola, F. Ricca, M. Truszczynski

has been applied also in the neighboring area of Constraint Satisfaction Problems (CSP) (Rossi

et al. 2006), obtaining Quantified CSP (QCSP) (Bordeaux and Monfroy 2002).

6 Conclusions

In this paper we approached the modeling of problems beyond NP with ASP programs. Inspired

by the way QBFs extend SAT formulas, we have introduced ASP(Q), which extends ASP via

quantifiers over stable models of programs. We have studied the computational properties of the

language, provided a number of examples to demonstrate its modeling capabilities, and compared

alternative approaches to the same problem. The analysis provided in the paper suggests that

ASP(Q) is able to model uniformly problems in the Polynomial Hierarchy in the same compact

and elegant way as ASP models problems in NP.

The definition of ASP(Q) allows for disjunctive programs, thus all the features of the basic

language are retained. However, by limiting to normal (or HCF) programs (extended with ag-

gregates and other useful modeling constructs) in ASP(Q), one can take advantage of the classic

generate-define-test modular programming methodology and other modeling techniques devel-

oped for these best understood classes of programs to model any problem in the Polynomial

Hierarchy. Indeed, the presence of quantifiers allows one to model complex properties in a direct

way, without the need of recasting them in terms of checking the minimality of a model, e.g.,

using saturation. The examples provided in the paper, indeed, employ normal programs, and the

solutions follow directly from the definition in natural language of the problem at hand.

The key task for the future is to implement ASP(Q). In this respect many possible solutions are

possible, from encoding ASP(Q) in QBF and resorting to QBF solvers, to evolving ASP solvers

to handle quantifiers over stable models.

Acknowledgements

The work of the third author has been partially supported by the NSF grant IIS-1707371. This

work has been partially supported by MIUR under PRIN 2017 project n. 2017M9C25L 001

(CUP H24I17000080001).

References

ALVIANO, M., AMENDOLA, G., DODARO, C., LEONE, N., MARATEA, M., AND RICCA, F. 2019. Eval-

uation of disjunctive programs in WASP. In LPNMR. Lecture Notes in Computer Science, vol. 11481.

Springer, 241–255.

ALVIANO, M., DODARO, C., LEONE, N., AND RICCA, F. 2015. Advances in WASP. In LPNMR. LNCS,

vol. 9345. Springer, 40–54.

AMENDOLA, G. 2018. Towards quantified answer set programming. In RCRA@FLoC. CEUR Workshop

Proceedings, vol. 2271. CEUR-WS.org.

BEN-ELIYAHU, R. AND DECHTER, R. 1996. On computing minimal models. Ann. Math. Artif. In-

tell. 18, 1, 3–27.

BIERE, A., HEULE, M., VAN MAAREN, H., AND WALSH, T., Eds. 2009. Handbook of Satisfiability.

Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press.

BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. K. 1989. Learnability and the

Vapnik-Chervonenkis dimension. J. ACM 36, 4, 929–965.

BOGAERTS, B., JANHUNEN, T., AND TASHARROFI, S. 2016. Stable-unstable semantics: Beyond NP with

normal logic programs. TPLP 16, 5-6, 570–586.

Beyond NP: Quantifying over Answer Sets 15

BORDEAUX, L. AND MONFROY, E. 2002. Beyond NP: arc-consistency for quantified constraints. In CP.

LNCS, vol. 2470. Springer, 371–386.

BREWKA, G., EITER, T., AND TRUSZCZYNSKI, M. 2011. Answer set programming at a glance. Commun.

ACM 54, 12, 92–103.

BUCCAFURRI, F., LEONE, N., AND RULLO, P. 2000. Enhancing disjunctive datalog by constraints. IEEE

Trans. Knowl. Data Eng. 12, 5, 845–860.

CADOLI, M., EITER, T., AND GOTTLOB, G. 1997. Default logic as a query language. IEEE Trans. Knowl.

Data Eng. 9, 3, 448–463.

CAO, F., DU, D.-Z., GAO, B., WAN, P.-J., AND PARDALOS, P. M. 1995. Minimax Problems in Combi-

natorial Optimization. Springer US, Boston, MA, 269–292.

CHUNG, F. R. 1989. Pebbling in hypercubes. SIAM J. Discret. Math. 2, 4 (Nov.), 467–472.

DANTSIN, E., EITER, T., GOTTLOB, G., AND VORONKOV, A. 2001. Complexity and expressive power of

logic programming. ACM Comput. Surv. 33, 3, 374–425.

DENECKER, M., LIERLER, Y., TRUSZCZYNSKI, M., AND VENNEKENS, J. 2012. A Tarskian informal

semantics for answer set programming. In ICLP-TC. LIPIcs, vol. 17. 277–289.

DENECKER, M. AND VENNEKENS, J. 2014. The well-founded semantics is the principle of inductive

definition, revisited. In KR. AAAI Press.

DODARO, C., GASTEIGER, P., LEONE, N., MUSITSCH, B., RICCA, F., AND SCHEKOTIHIN, K. 2016.

Combining answer set programming and domain heuristics for solving hard industrial problems (appli-

cation paper). TPLP 16, 5-6, 653–669.

EITER, T., FABER, W., LEONE, N., AND PFEIFER, G. 2000. Declarative problem-solving using the dlv

system. In Logic-based Artificial Intelligence. 79–103.

EITER, T. AND GOTTLOB, G. 1995. On the computational cost of disjunctive logic programming: Propo-

sitional case. Ann. Math. Artif. Intell. 15, 3-4, 289–323.

EITER, T., IANNI, G., LUKASIEWICZ, T., SCHINDLAUER, R., AND TOMPITS, H. 2008. Combining

answer set programming with description logics for the semantic web. Artif. Intell. 172, 12-13, 1495–

1539.

EITER, T. AND POLLERES, A. 2006. Towards automated integration of guess and check programs in

answer set programming: a meta-interpreter and applications. TPLP 6, 1-2, 23–60.

ERDEM, E., GELFOND, M., AND LEONE, N. 2016. Applications of answer set programming. AI Maga-

zine 37, 3, 53–68.

FABER, W. AND WOLTRAN, S. 2009. A framework for programming with module consequences. In SEA.

CEUR Workshop Proceedings, vol. 546. CEUR-WS.org, 34–48.

FABER, W. AND WOLTRAN, S. 2011. Manifold answer-set programs and their applications. In Logic

Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565. 44–63.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., ROMERO, J., AND SCHAUB, T. 2015. Progress in clasp

series 3. In LPNMR. LNCS, vol. 9345. Springer, 368–383.

GEBSER, M., KAMINSKI, R., AND SCHAUB, T. 2011. Complex optimization in answer set programming.

TPLP 11, 4-5, 821–839.

GEBSER, M., LEONE, N., MARATEA, M., PERRI, S., RICCA, F., AND SCHAUB, T. 2018. Evaluation

techniques and systems for answer set programming: a survey. In IJCAI. ijcai.org, 5450–5456.

GEBSER, M., MARATEA, M., AND RICCA, F. 2017. The sixth answer set programming competition. J.

Artif. Intell. Res. 60, 41–95.

GEBSER, M., OBERMEIER, P., SCHAUB, T., RATSCH-HEITMANN, M., AND RUNGE, M. 2018. Routing

driverless transport vehicles in car assembly with answer set programming. TPLP 18, 3-4, 520–534.

GEBSER, M. AND SCHAUB, T. 2016. Modeling and language extensions. AI Magazine 37, 3, 33–44.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases.

New Generation Comput. 9, 3/4, 365–386.

HURLBERT, G. 1999. A Survey of Graph Pebbling. Congr. Num. 139, math.CO/0406024, 41–64.

16 G. Amendola, F. Ricca, M. Truszczynski

KO, KER-IAND LIN, C.-L. 1995. On the Complexity of Min-Max Optimization Problems and their Ap-

proximation. Springer US, Boston, MA, 219–239.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO, F. 2006.

The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7, 3, 499–562.

LIFSCHITZ, V. 2002. Answer set programming and plan generation. Artif. Intell. 138, 1-2, 39–54.

MILANS, K. AND CLARK, B. 2006. The complexity of graph pebbling. SIAM J. Discret. Math. 20, 3

(Mar.), 769–798.

OIKARINEN, E. AND JANHUNEN, T. 2006. Modular equivalence for normal logic programs. In ECAI.

Frontiers in Artificial Intelligence and Applications, vol. 141. IOS Press, 412–416.

REDL, C. 2017. Explaining inconsistency in answer set programs and extensions. In LPNMR. LNCS, vol.

10377. Springer, 176–190.

ROMERO, J., SCHAUB, T., AND SON, T. C. 2017. Generalized answer set planning with incomplete

information. CEUR Workshop Proceedings 1868.

ROSSI, F., VAN BEEK, P., AND WALSH, T. 2006. Introduction. In Handbook of Constraint Programming.

Foundations of Artificial Intelligence, vol. 2. Elsevier, 3–12.

SCHAEFER, M. 1999. Deciding the Vapnik-Chervonenkis dimension in Σ
p
3 -complete. J. Comput. Syst.

Sci. 58, 1, 177–182.

STOCKMEYER, L. J. 1976. The polynomial-time hierarchy. Theor. Comput. Sci. 3, 1, 1–22.

STOCKMEYER, L. J. AND MEYER, A. R. 1973. Word problems requiring exponential time: Preliminary

report. In STOC. ACM, 1–9.

VAPNIK, V. 1998. Statistical learning theory. Wiley.

VAPNIK, V. N. AND CHERVONENKIS, A. Y. 2015. On the Uniform Convergence of Relative Frequencies

of Events to Their Probabilities. Springer International Publishing, Cham, 11–30.

