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Abstract—Wideband analog signals push contemporary analog-
to-digital conversion (ADC) systems to their performance limits. In
many applications, however, sampling at the Nyquist rate is ineffi-
cient because the signals of interest contain only a small number of
significant frequencies relative to the band limit, although the lo-
cations of the frequencies may not be known a priori. For this type
of sparse signal, other sampling strategies are possible. This paper
describes a new type of data acquisition system, called a random de-
modulator, that is constructed from robust, readily available com-
ponents. Let &’ denote the total number of frequencies in the signal,
and let VW denote its band limit in hertz. Simulations suggest that
the random demodulator requires just O( K log(W/K)) samples
per second to stably reconstruct the signal. This sampling rate is
exponentially lower than the Nyquist rate of W hertz. In contrast to
Nyquist sampling, one must use nonlinear methods, such as convex
programming, to recover the signal from the samples taken by the
random demodulator. This paper provides a detailed theoretical
analysis of the system’s performance that supports the empirical
observations.

Index Terms—Analog-to-digital conversion, compressive sam-
pling, sampling theory, signal recovery, sparse approximation.

1. INTRODUCTION

HE Shannon sampling theorem is one of the foundations
of modern signal processing. For a continuous-time signal
f whose highest frequency is less than /2 hertz, the theorem
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suggests that we sample the signal uniformly at a rate of W
hertz. The values of the signal at intermediate points in time are
determined completely by the cardinal series

1t =3 1 (55 ) sine (Wt = n).

ne”z

ey

In practice, one typically samples the signal at a somewhat
higher rate and reconstructs with a kernel that decays faster
than the sinc function [1, Ch. 4].

This well-known approach becomes impractical when the
band limit W is large because it is challenging to build sam-
pling hardware that operates at a sufficient rate. The demands
of many modern applications already exceed the capabilities
of current technology. Even though recent developments in
analog-to-digital converter (ADC) technologies have increased
sampling speeds, state-of-the-art architectures are not yet ad-
equate for emerging applications, such as ultra-wideband and
radar systems because of the additional requirements on power
consumption [2]. The time has come to explore alternative
techniques [3].

A. The Random Demodulator

In the absence of extra information, Nyquist-rate sampling
is essentially optimal for bandlimited signals [4]. Therefore,
we must identify other properties that can provide additional
leverage. Fortunately, in many applications, signals are also
sparse. That is, the number of significant frequency compo-
nents is often much smaller than the band limit allows. We can
exploit this fact to design new kinds of sampling hardware.

This paper studies the performance of a new type of sam-
pling system—called a random demodulator—that can be used
to acquire sparse, bandlimited signals. Fig. 1 displays a block
diagram for the system, and Fig. 2 describes the intuition be-
hind the design. In summary, we demodulate the signal by mul-
tiplying it with a high-rate pseudonoise sequence, which smears
the tones across the entire spectrum. Then we apply a low-pass
antialiasing filter, and we capture the signal by sampling it at
a relatively low rate. As illustrated in Fig. 3, the demodulation
process ensures that each tone has a distinct signature within
the passband of the filter. Since there are few tones present, it
is possible to identify the tones and their amplitudes from the
low-rate samples.

The major advantage of the random demodulator is that it by-
passes the need for a high-rate ADC. Demodulation is typically
much easier to implement than sampling, yet it allows us to use
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Fig. 1. Block diagram for the random demodulator. The components include a
random number generator, a mixer, an accumulator, and a sampler.
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Fig. 2. Action of the demodulator on a pure tone. The demodulation process
multiplies the continuous-time input signal by a random square wave. The action
of the system on a single tone is illustrated in the time domain (left) and the
frequency domain (right). The dashed line indicates the frequency response of
the lowpass filter. See Fig. 3 for an enlargement of the filter’s passband.

Fig. 3. Signatures of two different tones. The random demodulator furnishes
each frequency with a unique signature that can be discerned by examining the
passband of the antialiasing filter. This image enlarges the pass region of the
demodulator’s output for two input tones (solid and dashed). The two signatures
are nearly orthogonal when their phases are taken into account.

alow-rate ADC. As aresult, the system can be constructed from
robust, low-power, readily available components even while it
can acquire higher band limit signals than traditional sampling
hardware.

We do pay a price for the slower sampling rate: It is no longer
possible to express the original signal f as a linear function of
the samples, a la the cardinal series (1). Rather, f is encoded
into the measurements in a more subtle manner. The reconstruc-
tion process is highly nonlinear, and must carefully take advan-
tage of the fact that the signal is sparse. As a result, signal re-
covery becomes more computationally intensive. In short, the
random demodulator uses additional digital processing to re-
duce the burden on the analog hardware. This tradeoff seems ac-
ceptable, as advances in digital computing have outpaced those
in ADC.

B. Results

Our simulations provide striking evidence that the random
demodulator performs. Consider a periodic signal with a
band limit of W/2 hertz, and suppose that it contains K

tones with random frequencies and phases. Our experiments
below show that, with high probability, the system acquires
enough information to reconstruct the signal after sampling
at just O(K log(W/K)) hertz. In words, the sampling rate
is proportional to the number K of tones and the logarithm
of the bandwidth W. In contrast, the usual approach requires
sampling at W hertz, regardless of K. In other words, the
random demodulator operates at an exponentially slower sam-
pling rate! We also demonstrate that the system is effective for
reconstructing simple communication signals.

Our theoretical work supports these empirical conclusions,
but it results in slightly weaker bounds on the sampling rate. We
have been able to prove that a sampling rate of O(K log W +
log® W) suffices for high-probability recovery of the random
signals we studied experimentally. This analysis also suggests
that there is a small startup cost when the number of tones is
small, but we did not observe this phenomenon in our experi-
ments. It remains an open problem to explain the computational
results in complete detail.

The random signal model arises naturally in numerical exper-
iments, but it does not provide an adequate description of real
signals, whose frequencies and phases are typically far from
random. To address this concern, we have established that the
random demodulator can acquire @/l K-tone signals—regard-
less of the frequencies, amplitudes, and phases—when the sam-
pling rate is O(K log® W). In fact, the system does not even
require the spectrum of the input signal to be sparse; the system
can successfully recover any signal whose spectrum is well-ap-
proximated by K tones. Moreover, our analysis shows that the
random demodulator is robust against noise and quantization
errors.

This work focuses on input signals drawn from a specific
mathematical model, framed in Section II. Many real signals
have sparse spectral occupancy, even though they do not meet
all of our formal assumptions. We propose a device, based on
the classical idea of windowing, that allows us to approximate
general signals by signals drawn from our model. Therefore, our
recovery results for the idealized signal class extend to signals
that we are likely to encounter in practice.

In summary, we believe that these empirical and theoretical
results, taken together, provide compelling evidence that the de-
modulator system is a powerful alternative to Nyquist-rate sam-
pling for sparse signals.

C. Outline

In Section II, we present a mathematical model for the class
of sparse, bandlimited signals. Section III describes the intu-
ition and architecture of the random demodulator, and it ad-
dresses the nonidealities that may affect its performance. In
Section IV, we model the action of the random demodulator as
a matrix. Section V describes computational algorithms for re-
constructing frequency-sparse signals from the coded samples
provided by the demodulator. We continue with an empirical
study of the system in Section VI, and we offer some theoret-
ical results in Section VII that partially explain the system’s per-
formance. Section VIII discusses a windowing technique that
allows the demodulator to capture nonperiodic signals. We con-
clude with a discussion of potential technological impact and
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related work in Sections IX and X. Appendices I-III contain
proofs of our signal reconstruction theorems.

II. THE SIGNAL MODEL

Our analysis focuses on a class of discrete, multitone signals
that have three distinguished properties.

¢ Bandlimited. The maximum frequency is bounded.

* Periodic. Each tone has an integral frequency in hertz.

* Sparse. The number of active tones is small in comparison

with the band limit.
Our work shows that the random demodulator can recover these
signals very efficiently. Indeed, the number of samples per unit
time scales directly with the sparsity, but it increases only loga-
rithmically in the band limit.

At first, these discrete multitone signals may appear simpler
than the signals that arise in most applications. For example, we
often encounter signals that contain nonharmonic tones or sig-
nals that contain continuous bands of active frequencies rather
than discrete tones. Nevertheless, these broader signal classes
can be approximated within our model by means of windowing
techniques. We address this point in Section VIIIL.

A. Mathematical Model

Consider the following mathematical model for a class of
discrete multitone signals. Let W/2 be a positive integer that
exceeds the highest frequency present in the continuous-time
signal f. Fix a number K that represents the number of active
tones. The model contains each signal of the form

f) = a,e™™ ! fort € [0,1). )

weN

Here, (2 is a set of K integer-valued frequencies that satisfies

QC{0,+1,£2,... £W/2-1),W/2}
and
{a, 1w € Q}

is a set of complex-valued amplitudes. We focus on the case
where the number K of active tones is much smaller than the
bandwidth W.

To summarize, the signals of interest are bandlimited because
they contain no frequencies above W/2 cycles per second; pe-
riodic because the frequencies are integral; and sparse because
the number of tones K < W. Let us emphasize several con-
ceptual points about this model.

* We have normalized the time interval to one second for
simplicity. Of course, it is possible to consider signals at
another time resolution.

* We have also normalized frequencies. To consider signals
whose frequencies are drawn from a set equally spaced by
A, we would change the effective band limit to W/A.

* The model also applies to signals that are sparse and
bandlimited in a single time interval. It can be extended
to signals where the model (2) holds with a different
set of frequencies and amplitudes in each time interval
[0,1),[1,2),[2,3),.... These signals are sparse not in the
Fourier domain but rather in the short-time Fourier domain
[5, Ch. IV].
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B. Information Content of Signals

According to the sampling theorem, we can identify signals
from the model (2) by sampling for one second at W hertz.
Yet these signals contain only R = O(K log(W/K)) bits of
information. In consequence, it is reasonable to expect that we
can acquire these signals using only R digital samples.

Here is one way to establish the information bound. Stirling’s
approximation shows that there are about exp{ K log(W/K) +
O(K)} ways to select K distinct integers in the range
{1,2,...,W}. Therefore, it takes O(K log(W/K)) bits to
encode the frequencies present in the signal. Each of the K
amplitudes can be approximated with a fixed number of bits, so
the cost of storing the frequencies dominates.

C. Examples

There are many situations in signal processing where we en-
counter signals that are sparse or locally sparse in frequency.
Here are some basic examples.

¢ Communications signals, such as transmissions with a
frequency-hopping modulation scheme that switches a
sinusoidal carrier among many frequency channels ac-
cording to a predefined (often pseudorandom) sequence.
Other examples include transmissions with narrowband
modulation where the carrier frequency is unknown but
could lie anywhere in a wide bandwidth.

* Acoustic signals, such as musical signals where each note
consists of a dominant sinusoid with a progression of sev-
eral harmonic overtones.

* Slowly varying chirps, as used in radar and geophysics,
that slowly increase or decrease the frequency of a sinusoid
over time.

* Smooth signals that require only a few Fourier coefficients
to represent.

» Piecewise smooth signals that are differentiable except for
a small number of step discontinuities.

We also note several concrete applications where sparse
wideband signals are manifest. Surveillance systems may
acquire a broad swath of Fourier bandwidth that contains
only a few communications signals. Similarly, cognitive radio
applications rely on the fact that parts of the spectrum are not
occupied [6], so the random demodulator could be used to
perform spectrum sensing in certain settings. Additional poten-
tial applications include geophysical imaging, where two- and
three-dimensional seismic data can be modeled as piecewise
smooth (hence, sparse in a local Fourier representation) [7], as
well as radar and sonar imaging [8], [9].

III. THE RANDOM DEMODULATOR

This section describes the random demodulator system that
we propose for signal acquisition. We first discuss the intuition
behind the system and its design. Then we address some imple-
mentation issues and nonidealities that impact its performance.

A. Intuition

The random demodulator performs three basic actions:
demodulation, lowpass filtering, and low-rate sampling. Refer
back to Fig. 1 for the block diagram. In this section, we offer
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a short explanation of why this approach allows us to acquire
sparse signals.

Consider the problem of acquiring a single high-frequency
tone that lies within a wide spectral band. Evidently, a low-rate
sampler with an antialiasing filter is oblivious to any tone whose
frequency exceeds the passband of the filter. The random de-
modulator deals with the problem by smearing the tone across
the entire spectrum so that it leaves a signature that can be de-
tected by a low-rate sampler.

More precisely, the random demodulator forms a (periodic)
square wave that randomly alternates at or above the Nyquist
rate. This random signal is a sort of periodic approximation
to white noise. When we multiply a pure tone by this random
square wave, we simply translate the spectrum of the noise, as
documented in Fig. 2. The key point is that translates of the noise
spectrum look completely different from each other, even when
restricted to a narrow frequency band, which Fig. 3 illustrates.

Now consider what happens when we multiply a frequency-
sparse signal by the random square wave. In the frequency do-
main, we obtain a superposition of translates of the noise spec-
trum, one translate for each tone. Since the translates are so
distinct, each tone has its own signature. The original signal
contains few tones, so we can disentangle them by examining
a small slice of the spectrum of the demodulated signal.

To that end, we perform lowpass filtering to prevent aliasing,
and we sample with a low-rate ADC. This process results in
coded samples that contain a complete representation of the
original sparse signal. We discuss methods for decoding the
samples in Section V.

B. System Design

Let us present a more formal description of the random
demodulator shown in Fig. 1. The first two components im-
plement the demodulation process. The first piece is a random
number generator, which produces a discrete-time sequence
€0, €1, €2, . - . of numbers that take values 1 with equal proba-
bility. We refer to this as the chipping sequence. The chipping
sequence is used to create a continuous-time demodulation
signal p.(t) via the formula

n n+1

(t)=¢€n, t€|—, ——
pe(t) = en, [W W
In words, the demodulation signal switches between the levels
+1 randomly at the Nyquist rate of W hertz. Next, the mixer
multiplies the continuous-time input f(¢) by the demodulation
signal p.(t) to obtain a continuous-time demodulated signal

y(t) = f(t) -pe(t), tE€]0,1).

Together these two steps smear the frequency spectrum of the
original signal via the convolution

Y(w) = (F * P.)(w).
See Fig. 2 for a visual.

The next two components behave the same way as a standard
ADC, which performs lowpass filtering to prevent aliasing and
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then samples the signal. Here, the lowpass filter is simply an ac-
cumulator that sums the demodulated signal y(¢) for 1/R sec-
onds. The filtered signal is sampled instantaneously every 1/R
seconds to obtain a sequence {y,, } of measurements. After each
sample is taken, the accumulator is reset. In summary

~(m+1)/R
?Jm:R/ y(t)dt, m=0,1,...,R—1.
m/R

This approach is called integrate-and-dump sampling. Finally,
the samples are quantized to a finite precision. (In this work, we
do not model the final quantization step.)

The fundamental point here is that the sampling rate R is
much lower than the Nyquist rate W. We will see that R de-
pends primarily on the number K of significant frequencies that
participate in the signal.

C. Implementation and Nonidealities

Any reasonable system for acquiring continuous-time signals
must be implementable in analog hardware. The system that we
propose is built from robust, readily available components. This
subsection briefly discusses some of the engineering issues.

In practice, we generate the chipping sequence with a pseudo-
random number generator. It is preferable to use pseudorandom
numbers for several reasons: they are easier to generate; they
are easier to store; and their structure can be exploited by dig-
ital algorithms. Many types of pseudorandom generators can be
fashioned from basic hardware components. For example, the
Mersenne twister [10] can be implemented with shift registers.
In some applications, it may suffice just to fix a chipping se-
quence in advance.

The performance of the random demodulator is unlikely to
suffer from the fact that the chipping sequence is not completely
random. We have been able to prove that if the chipping se-
quence consists of /-wise independent random variables (for
an appropriate value of £), then the demodulator still offers the
same guarantees. Alon et al. have demonstrated that shift regis-
ters can generate a related class of random variables [11].

The mixer must operate at the Nyquist rate W. Nevertheless,
the chipping sequence alternates between the levels £1, so the
mixer only needs to reverse the polarity of the signal. It is rela-
tively easy to perform this step using inverters and multiplexers.
Most conventional mixers trade speed for linearity, i.e., fast tran-
sitions may result in incorrect products. Since the random de-
modulator only needs to reverse polarity of the signal, nonlin-
earity is not the primary nonideality. Instead, the bottleneck for
the speed of the mixer is the settling times of inverters and mul-
tiplexors, which determine the length of time it takes for the
output of the mixer to reach steady state.

The sampler can be implemented with an off-the-shelf ADC.
It suffers the same types of nonidealities as any ADC, including
thermal noise, aperture jitter, comparator ambiguity, and so forth
[12]. Since the random demodulator operates at a relatively low
sampling rate, we can use high-quality ADCs, which exhibit
fewer problems.

In practice, a high-fidelity integrator is not required. It suffices
to perform lowpass filtering before the samples are taken. It is
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essential, however, that the impulse response of this filter can be
characterized very accurately.

The net effect of these nonidealities is much like the addi-
tion of noise to the signal. The signal reconstruction process is
very robust, so it performs well even in the presence of noise.
Nevertheless, we must emphasize that, as with any device that
employs mixed signal technologies, an end-to-end random de-
modulator system must be calibrated so that the digital algo-
rithms are aware of the nonidealities in the output of the analog
hardware.

IV. RANDOM DEMODULATION IN MATRIX FORM

In the ideal case, the random demodulator is a linear system
that maps a continuous-time signal to a discrete sequence of
samples. To understand its performance, we prefer to express
the system in matrix form. We can then study its properties using
tools from matrix analysis and functional analysis.

A. Discrete-Time Representation of Signals

The first step is to find an appropriate discrete representation
for the space of continuous-time input signals. To that end, note
that each (1/W)-second block of the signal is multiplied by a
random sign. Then these blocks are aggregated, summed, and
sampled. Therefore, part of the time-averaging performed by the
accumulator commutes with the demodulation process. In other
words, we can average the input signal over blocks of duration
1/W without affecting subsequent steps.

Fix a time instant of the form ¢,, = n/W for an integer n. Let
T, denote the average value of the signal f over a time interval
of length 1/W starting at ¢,,. Thus

t,+1/W
/ F(t)dt
t

e—ZWiw/VV -1
Ay | —

Ln

3)

Z 2miw

:| e—27x'iwtn
weR

with the convention that, for the frequency w = 0, the bracketed
term equals 1/W. Since |w| < W/2, the bracket never equals
zero. Absorbing the brackets into the amplitude coefficients, we
obtain a discrete-time representation x,, of the signal f(t)

Ty = E S e 2mme/W o forn =0,1,...,W —1
wEeN
where

e—27riw/VV -1
e [

In particular, a continuous-time signal that involves only the fre-
quencies in §2 can be viewed as a discrete-time signal comprised
of the same frequencies. We refer to the complex vector 8 as an
amplitude vector, with the understanding that it contains phase
information as well.

The nonzero components of the length-W vector s are listed
in the set {2. We may now express the discrete-time signal z as
a matrix—vector product. Define the W x W matrix

1

F=_—_ e—27rinw/VV where
! ]

n,w’
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n=0,1,....,W —1 and
w=0,%1,...,+ E—1 ,E.
' 2 2

The matrix F is a simply a permuted discrete Fourier transform
(DFT) matrix. In particular, F' is unitary and its entries share the
magnitude W—1/2,

In summary, we can work with a discrete representation

z=Fs
of the input signal.

B. Action of the Demodulator

We view the random demodulator as a linear system acting
on the discrete form z of the continuous-time signal f.

First, we consider the effect of random demodulation on the
discrete-time signal. Let €g, €1, ...,ew—1 be the chipping se-
quence. The demodulation step multiplies each x,,, which is
the average of f on the nth time interval, by the random sign
€n- Therefore, demodulation corresponds to the map £ — Dz
where

€0

EW -1

isa W x W diagonal matrix.

Next, we consider the action of the accumulate-and-dump
sampler. Suppose that the sampling rate is R, and assume that
R divides W. Then each sample is the sum of W/ R consecutive
entries of the demodulated signal. Therefore, the action of the
sampler can be treated as an R x W matrix H whose rth row
has W/ R consecutive unit entries starting in column rW/R+ 1
for each r = 0,1,..., R — 1. An example with R = 3 and
W =12is

H = 1 1 11

1 1 11

When R does not divide W, two samples may share contribu-
tions from a single element of the chipping sequence. We choose
to address this situation by allowing the matrix H to have frac-
tional elements in some of its columns. An example with R = 3
and W = 7is

11 1/3

H= 2/3 1 2/3

1/3 1 1

We have found that this device provides an adequate approxi-
mation to the true action of the system. For some applications,
it may be necessary to exercise more care.

In summary, the matrix M = HD describes the action of
the hardware system on the discrete signal . Each row of the
matrix yields a separate sample of the input signal.

The matrix ® = MF describes the overall action of the
system on the vector 8 of amplitudes. This matrix ® has a special
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place in our analysis, and we refer to it as a random demodulator
matrix.

C. Prewhitening

It is important to note that the bracket in (3) leads to a non-
linear attenuation of the amplitude coefficients. In a hardware
implementation of the random demodulator, it may be advis-
able to apply a prewhitening filter to preserve the magnitudes
of the amplitude coefficients. On the other hand, prewhitening
amplifies noise in the high frequencies. We leave this issue for
future work.

V. SIGNAL RECOVERY ALGORITHMS

The Shannon sampling theorem provides a simple linear
method for reconstructing a bandlimited signal from its time
samples. In contrast, there is no linear process for reconstructing
the input signal from the output of the random demodulator
because we must incorporate the highly nonlinear sparsity
constraint into the reconstruction process.

Suppose that 8 is a sparse amplitude vector, and let y = ®s
be the vector of samples acquired by the random demodulator.
Conceptually, the way to recover s is to solve the mathematical
program

8 =argmin|v||, subjectto Pv=y “4)
where the ¢ function ||-||, counts the number of nonzero entries
in a vector. In words, we seek the sparsest amplitude vector that
generates the samples we have observed. The presence of the
£y function gives the problem a combinatorial character, which
may make it computationally difficult to solve completely.

Instead, we resort to one of the signal recovery algorithms
from the sparse approximation or compressive sampling litera-
ture. These techniques fall in two rough classes: convex relax-
ation and greedy pursuit. We describe the advantages and dis-
advantages of each approach in the sequel.

This work concentrates on convex relaxation methods be-
cause they are more amenable to theoretical analysis. Our pur-
pose here is not to advocate a specific algorithm but rather to
argue that the random demodulator has genuine potential as a
method for acquiring signals that are spectrally sparse. Addi-
tional research on algorithms will be necessary to make the tech-
nology viable. See Section IX-C for discussion of how quickly
we can perform signal recovery with contemporary computing
architectures.

A. Convex Relaxation

The problem (4) is difficult because of the unfavorable prop-
erties of the £, function. A fundamental method for dealing with
this challenge is to relax the £y function to the ¢; norm, which
may be viewed as the convex function “closest” to /. Since the
/1 norm is convex, it can be minimized subject to convex con-
straints in polynomial time [13].

Let 8 be the unknown amplitude vector, and let y = ®s be
the vector of samples acquired by the random demodulator. We

525

attempt to identify the amplitude vector 8 by solving the convex
optimization problem

8§ =argmin|jv||; subjectto Pv=y. 3)
In words, we search for an amplitude vector that yields the same
samples and has the least /1 norm. On account of the geometry
of the /1 ball, this method promotes sparsity in the estimate 8.
The problem(5) can be recast as a second-order cone program.
In our work, we use an old method, iteratively re-weighted least
squares (IRLS), for performing the optimization [14, p. 173ff].
It is known that IRLS converges linearly for certain signal re-
covery problems [15]. It is also possible to use interior-point
methods, as proposed by Candes et al. [16].

Convex programming methods for sparse signal recovery
problems are very powerful. Second-order methods, in partic-
ular, seem capable of achieving very good reconstructions of
signals with wide dynamic range. Recent work suggests that
optimal first-order methods provide similar performance with
lower computational overhead [17].

B. Greedy Pursuits

To produce sparse approximate solutions to linear systems,
we can also use another class of methods based on greedy pur-
suit. Roughly, these algorithms build up a sparse solution one
step at a time by adding new components that yield the greatest
immediate improvement in the approximation error. An early
paper of Gilbert and Tropp analyzed the performance of an algo-
rithm called Orthogonal Matching Pursuit for simple compres-
sive sampling problems [18]. More recently, work of Needell
and Vershynin [19], [20] and work of Needell and Tropp [21]
has resulted in greedy-type algorithms whose theoretical perfor-
mance guarantees are analogous with those of convex relaxation
methods.

In practice, greedy pursuits tend to be effective for problems
where the solution is ultra-sparse. In other situations, convex
relaxation is usually more powerful. On the other hand, greedy
techniques have a favorable computational profile, which makes
them attractive for large-scale problems.

C. Impact of Noise

In applications, signals are more likely to be compressible
than to be sparse. (Compressible signals are not sparse but can
be approximated by sparse signals.) Nonidealities in the hard-
ware system lead to noise in the measurements. Furthermore,
the samples acquired by the random demodulator are quantized.
Modern convex relaxation methods and greedy pursuit methods
are robust against all these departures from the ideal model. We
discuss the impact of noise on signal reconstruction algorithms
in Section VII-B.

In fact, the major issue with all compressive sampling
methods is not the presence of noise per se. Rather, the process
of compressing the signal’s information into a small number of
samples inevitably decreases the signal-to-noise ratio (SNR).
In the design of compressive sampling systems, it is essential
to address this issue.
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VI. EMPIRICAL RESULTS

We continue with an empirical study of the minimum mea-
surement rate required to accurately reconstruct signals with
the random demodulator. Our results are phrased in terms of
the Nyquist rate W, the sampling rate R, and the sparsity
level K. It is also common to combine these parameters into
scale-free quantities. The compression factor R/W measures
the improvement in the sampling rate over the Nyquist rate,
and the sampling efficiency K/ R measures the number of tones
acquired per sample. Both these numbers range between zero
and one.

Our results lead us to an empirical rule for the sampling rate
necessary to recover random sparse signals using the demodu-
lator system

R~ 1.7Klog(W/K +1). (6)

The empirical rate is similar to the weak phase transition
threshold that Donoho and Tanner calculated for compressive
sensing problems with a Gaussian sampling matrix [22]. The
form of this relation also echoes the form of the information
bound developed in Section II-B.

A. Random Signal Model

We begin with a stochastic model for frequency-sparse dis-
crete signals. To that end, define the signum function

{0, r=20

9 r>0.
The model is described in the following table:

sgn (re'?) ef

e,

| Model (A) for a random amplitude vector s I
Q

Frequencies: is a uniformly random set
of K  frequencies from
{0,£1,...,£(W/2-1),W/2}
is arbitrary for each w € Q

for each w ¢ Q

is i.i.d. uniform on the unit cir-
cle for each w € Q

Amplitudes: [Sw]
S, =0

sgn (sw)

Phases:

In our experiments, we set the amplitude of each nonzero
coefficient equal to one because the success of £; minimization
does not depend on the amplitudes.

B. Experimental Design

Our experiments are intended to determine the minimum
sampling rate R that is necessary to identify a K -sparse signal
with a bandwidth of W hertz. In each trial, we perform the
following steps.

1) Input Signal. A new amplitude vector 8 is drawn at random
according to Model (A) in Section VI-A. The amplitudes
all have magnitude one.

2) Random demodulator. A new random demodulator ® is
drawn with parameters K, R, and W. The elements of
the chipping sequence are independent random variables,
equally likely to be £1.

3) Sampling. The vector of samples is computed using the
expression y = Ps.
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512 Hz. The solid discs mark the lowest sampling rate that achieves successful
reconstruction with probability 0.99. The solid line denotes the linear least-
squares fit R = 1.71K log(W/K + 1) 4+ 1.00 for the data.

4) Reconstruction. An estimate 8 of the amplitude vector is
computed with IRLS.

For each triple (K, R, W), we perform 500 trials. We declare
the experiment a success when 8 = 8 to machine precision, and
we report the smallest value of R for which the empirical failure
probability is less than 1%.

C. Performance Results

We begin by evaluating the relationship between the signal
bandwidth W and the sampling rate R required to achieve a
high probability of successful reconstruction. Fig. 4 shows the
experimental results for a fixed sparsity of K = 5 as W in-
creases from 128 to 2048 Hz, denoted by solid discs. The solid
line shows the result of a linear regression on the experimental
data, namely

R = 1.69K log(W/K + 1) + 4.51.

The variation about the regression line is probably due to arith-
metic effects that occur when the sampling rate does not divide
the band limit.

Next, we evaluate the relationship between the sparsity K and
the sampling rate R. Fig. 5 shows the experimental results for a
fixed chipping rate of W = 512 Hz as the sparsity K increases
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reconstruction for the corresponding combination of parameter values. The solid
line marks the theoretical threshold for a Gaussian matrix; the dashed line traces
the 99% success isocline.

from 1 to 64. The figure also shows that the linear regression
give a close fit for the data.

R = 1.71K log(W/K + 1) + 1.00

is the empirical trend.

The regression lines from these two experiments suggest that
successful reconstruction of signals from Model (A) occurs with
high probability when the sampling rate obeys the bound

R>1.7K log(W/K +1). ©)

Thus, for a fixed sparsity, the sampling rate grows only log-
arithmically as the Nyquist rate increases. We also note that
this bound is similar to those obtained for other measurement
schemes that require fully random, dense matrices [23].

Finally, we study the threshold that denotes a change from
high to low probability of successful reconstruction. This type
of phase transition is a common phenomenon in compressive
sampling. For this experiment, the chipping rate is fixed at
W = 512 Hz while the sparsity K and sampling R rate vary.
We record the probability of success as the compression factor
R/W and the sampling efficiency K /R vary.

The experimental results appear in Fig. 6. Each pixel in
this image represents the probability of success for the cor-
responding combination of system parameters. Lighter pixels
denote higher probability. The dashed line

K 068
R log(W/K +1)

describes the relationship among the parameters where the prob-
ability of success drops below 99%. The numerical parameter
was derived from a linear regression without intercept.

For reference, we compare the random demodulator with a
benchmark system that obtains measurements of the amplitude
vector 8 by applying a matrix ® whose entries are drawn inde-
pendently from the standard Gaussian distribution. As the di-
mensions of the matrix grow, {; minimization methods exhibit
a sharp phase transition from success to failure. The solid line
in Fig. 6 marks the location of the precipice, which can be com-
puted analytically with methods from [22].

D. Example: Analog Demodulation

We constructed these empirical performance trends using
signals drawn from a synthetic model. To narrow the gap
between theory and practice, we performed another experiment
to demonstrate that the random demodulator can successfully
recover a simple communication signal from samples taken
below the Nyquist rate.

In the amplitude modulation (AM) encoding scheme, the
transmitted signal fan(t) takes the form

fam(t) = Acos(2rwet) - (m(t) + C) 8)

where m(t) is the original message signal, w, is the carrier fre-
quency, and A, C are fixed values. When the original message
signal m(t) has K nonzero Fourier coefficients, then the cosine-
modulated signal has only 2K + 2 nonzero Fourier coefficients.

We consider an AM signal that encodes the message
appearing in Fig. 7(a). The signal was transmitted from a
communications device using carrier frequency w. = 8.2 kHz,
and the received signal was sampled by an ADC at a rate of
32 kHz. Both the transmitter and receiver were isolated in a
lab to produce a clean signal; however, noise is still present on
the sampled data due to hardware effects and environmental
conditions.

We feed the received signal into a simulated random demod-
ulator, where we take the Nyquist rate W = 32 kHz and we
attempt a variety of sampling rates R. We use IRLS to recon-
struct the signal from the random samples, and we perform AM
demodulation on the recovered signal to reconstruct the original
message. Fig. 7(b)-(d) displays reconstructions for a random
demodulator with sampling rates R = 16, 8, and 3.2 kHz, re-
spectively. To evaluate the quality of the reconstruction, we
measure the SNR between the message obtained from the re-
ceived signal fayr and the message obtained from the output of
the random demodulator. The reconstructions achieve SNRs of
27.8,22.3, and 20.9 dB, respectively.

These results demonstrate that the performance of the random
demodulator degrades gracefully as the SNR decreases. Note,
however, that the system will not function at all unless the sam-
pling rate is sufficiently high that we stand below the phase
transition.

VII. THEORETICAL RECOVERY RESULTS

We have been able to establish several theoretical guarantees
on the performance of the random demodulator system. First,
we focus on the setting described in the numerical experiments,
and we develop estimates for the sampling rate required to
recover the synthetic sparse signals featured in Section VI-C.
Qualitatively, these bounds almost match the system perfor-
mance we witnessed in our experiments. The second set of
results addresses the behavior of the system for a much wider
class of input signals. This theory establishes that, when the
sampling rate is slightly higher, the signal recovery process will
succeed—even if the spectrum is not perfectly sparse and the
samples collected by the random demodulator are contaminated
with noise.
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Fig. 7. Simulated acquisition and reconstruction of an AM signal. (a) Message reconstructed from signal sampled at Nyquist rate W = 32 kHz. (b) Message
reconstructed from the output of a simulated random demodulator running at sampling rate R = 16 kHz (SNR = 27.8 dB). (c) Reconstruction with R = 8 kHz

(SNR = 22.3 dB). (d) Reconstruction with R =3.2 kHz (SNR = 20.9 dB).

A. Recovery of Random Signals

First, we study when ¢; minimization can reconstruct
random, frequency-sparse signals that have been sampled with
the random demodulator. The setting of the following theorem
precisely matches our numerical experiments.

Theorem 1 (Recovery of Random Signals): Suppose that the
sampling rate

R>C[KlogW +log® W]

and that R divides W. The number C is a positive, universal
constant.

Let s be a random amplitude vector drawn according to
Model (A). Draw an R x W random demodulator matrix
P, and let y = Ps be the samples collected by the random
demodulator. Then the solution 8 to the convex program (5)
equals 8, except with probability O(W 1),

We have framed the unimportant technical assumption that R
divides W to simplify the lengthy argument. See Appendix II for
the proof. Our analysis demonstrates that the sampling rate R
scales linearly with the sparsity level K, while it is logarithmic
in the band limit W. In other words, the theorem supports our
empirical rule (6) for the sampling rate. Unfortunately, the anal-
ysis does not lead to reasonable estimates for the leading con-
stant. Still, we believe that this result offers an attractive theo-
retical justification for our claims about the sampling efficiency
of the random demodulator.

The theorem also suggests that there is a small startup cost.
That is, a minimal number of measurements is required before
the demodulator system is effective. Our experiments were not

refined enough to detect whether this startup cost actually exists
in practice.

B. Uniformity and Stability

Although the results described in the preceding section pro-
vide a satisfactory explanation of the numerical experiments,
they are less compelling as a vision of signal recovery in the real
world. Theorem 1 has three major shortcomings. First, it is un-
reasonable to assume that tones are located at random positions
in the spectrum, so Model (A) is somewhat artificial. Second,
typical signals are not spectrally sparse because they contain
background noise and, perhaps, irrelevant low-power frequen-
cies. Finally, the hardware system suffers from nonidealities, so
it only approximates the linear transformation described by the
matrix M. As a consequence, the samples are contaminated with
noise.

To address these problems, we need an algorithm that pro-
vides uniform and stable signal recovery. Uniformity means
that the approach works for all signals, irrespective of the fre-
quencies and phases that participate. Stability means that the
performance degrades gracefully when the signal’s spectrum is
not perfectly sparse and the samples are noisy. Fortunately, the
compressive sampling community has developed several pow-
erful signal recovery techniques that enjoy both these properties.
Conceptually, the simplest approach is to modify the convex
program (5) to account for the contamination in the samples
[24]. Suppose that s € C" is an arbitrary amplitude vector,
and let v € CP be an arbitrary noise vector that is known to
satisfy the bound ||v||, < 7. Assume that we have acquired the
dirty samples

y==®s+v.
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To produce an approximation of 8, it is natural to solve the noise-
aware optimization problem

$=argmin|jv||, subjectto [[®v—y|,<7n. (9)
As before, this problem can be formulated as a second-order
cone program, which can be optimized using various algorithms
[24].

We have established a theorem that describes how the opti-
mization-based recovery technique performs when the samples
are acquired using the random demodulator system. An analo-
gous result holds for the CoSaMP algorithm, a greedy pursuit

method with superb guarantees on its runtime [21].

Theorem 2 (Recovery of General Signals): Suppose that the
sampling rate

R>CKlog® W

and that R divides W. Draw an R x W random demodulator
matrix ®. Then the following statement holds, except with prob-
ability O(W 1),

Suppose that s is an arbitrary amplitude vector and ¥ is a noise
vector with |||, < 7. Let y = ®s + v be the noisy samples
collected by the random demodulator. Then every solution 8 to
the convex program (9) approximates the target vector 8

~ 1
|Is — s]|, < Cmax {7], 7R lls — 8K||1}

where s is a best K -sparse approximation to 8 with respect to
the ¢; norm.

(10)

The proof relies on the restricted isometry property (RIP) of
Candes-Tao [25]. To establish that the random demodulator ver-
ifies the RIP, we adapt ideas of Rudelson—Vershynin [26]. Turn
to Appendix III for the argument.

Theorem 2 is not as easy to grasp as Theorem 1, so we must
spend some time to unpack its meaning. First, observe that
the sampling rate has increased by several logarithmic factors.
Some of these factors are probably parasitic, a consequence of
the techniques used to prove the theorem. It seems plausible
that, in practice, the actual requirement on the sampling rate is
closer to

R > CK log> W.

This conjecture is beyond the power of current techniques.
The earlier result, Theorem 1, suggests that we should draw
a new random demodulator each time we want to acquire a
signal. In contrast, Theorem 2 shows that, with high proba-
bility, a particular instance of the random demodulator acquires
enough information to reconstruct any amplitude vector what-
soever. This aspect of Theorem 2 has the practical consequence
that a random chipping sequence can be chosen in advance and
fixed for all time. Theorem 2 does not place any specific require-
ments on the amplitude vector, nor does it model the noise con-
taminating the signal. Indeed, the approximation error bound
(10) holds generally. That said, the strength of the error bound
depends substantially on the structure of the amplitude vector.
When s happens to be K-sparse, then the second term in the
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maximum vanishes. So the convex programming method still
has the ability to recover sparse signals perfectly.

When s is not sparse, we may interpret the bound (10) as
saying that the computed approximation is comparable with the
best K -sparse approximation of the amplitude vector. When the
amplitude vector has a good sparse approximation, then the re-
covery succeeds well. When the amplitude vector does not have
a good approximation, then signal recovery may fail completely.
For this class of signal, the random demodulator is not an appro-
priate technology.

Initially, it may seem difficult to reconcile the two norms that
appear in the error bound (10). In fact, this type of mixed-norm
bound is structurally optimal [27], so we cannot hope to improve
the /1 norm to an /5 norm. Nevertheless, for an important class
of signals, the scaled ¢; norm of the tail is essentially equivalent
to the £5 norm of the tail.

Letp € (0,1). We say that a vector 8 is p-compressible when
its sorted components decay sufficiently fast

sy S KTVP, for k=1,2,3,.... (11)

Harmonic analysis shows that many natural signal classes
are compressible [28]. Moreover, the windowing scheme of
Section VIII results in compressible signals.

The critical fact is that compressible signals are well approx-
imated by sparse signals. Indeed, it is straightforward to check
that

lls —sxll, < KT

1/p—1

1
< -
2T /2fp—1
Note that the constants on the right-hand side depend only on

the level p of compressibility. For a p-compressible signal, the
error bound (10) reads

L KY/2-1/p,

lls — sx

|8 — 8|, < Cmax {7]7K1/2_1/p} .

We see that the right-hand side is comparable with the ¢ norm
of the tail of the signal. This quantitive conclusion reinforces
the intuition that the random demodulator is efficient when the
amplitude vector is well approximated by a sparse vector.

C. Extension to Bounded Orthobases

We have shown that the random demodulator is effective at
acquiring signals that are spectrally sparse or compressible. In
fact, the system can acquire a much more general class of sig-
nals. The proofs of Theorems 1 and 2 indicate that the crucial
feature of the sparsity basis F' is its incoherence with the Dirac
basis. In other words, we exploit the fact that the entries of the
matrix F' have small magnitude. This insight allows us to ex-
tend the recovery theory to other sparsity bases with the same
property. We avoid a detailed exposition. See [29] for more dis-
cussion of this type of result.

VIII. WINDOWING

We have shown that the random demodulator can acquire pe-
riodic multitone signals. The effectiveness of the system for a
general signal f depends on how closely we can approximate
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f on the time interval [0, 1) by a periodic multitone signal. In
this section, we argue that many common types of nonperiodic
signals can be approximated well using windowing techniques.
In particular, this approach allows us to capture nonharmonic
sinusoids and multiband signals with small total bandwidth. We
offer a brief overview of the ideas here, deferring a detailed anal-
ysis for a later publication.

A. Nonharmonic Tones

First, there is the question of capturing and reconstructing
nonharmonic sinusoids, signals of the form
Ft) = age 2tV ¢ 7,
It is notoriously hard to approximate f on [0, 1) using harmonic
sinusoids, because the coefficients a,, in (2) are essentially sam-
ples of a sinc function. Indeed, the signal fr, defined as the

best approximation of f using K harmonic frequencies, satis-
fies only

If = fx

Loy < K712, (12)
a painfully slow rate of decay.

There is a classical remedy to this problem. Instead of ac-
quiring f directly, we acquire a smoothly windowed version of
f. To fix ideas, suppose that ¢ is a window function that van-
ishes outside the interval [0, 1). Instead of measuring f, we mea-
sure g = v - f. The goal is now to reconstruct this windowed
signal g. As before, our ability to reconstruct the windowed
signal depends on how well we can approximate it using a pe-
riodic multitone signal. In fact, the approximation rate depends
on the smoothness of the window. When the continuous-time
Fourier transform ¢ decays like w™" for some r > 1, we have
that g, the best approximation of g using K harmonic frequen-
cies, satisfies

lg = grcllaoy = K717
which decays to zero much faster than the error bound
(12). Thus, to achieve a tolerance of £, we need only about
e~/ (r=1/2) terms.

In summary, windowing the input signal allows us to closely
approximate a nonharmonic sinusoid by a periodic multitone
signal; g will be compressible as in (11). If there are multiple
nonharmonic sinusoids present, then the number of harmonic
tones required to approximate the signal to a certain tolerance
scales linearly with the number of nonharmonic sinusoids.

B. Multiband Signals

Windowing also enables us to treat signals that occupy a small
band in frequency. Suppose that f is a signal whose continuous-
time Fourier transform f vanishes outside an interval of length
B. The Fourier transform of the windowed signal ¢ = ) - f
can be broken into two pieces. One part is nonzero only on the
support of f; the other part decays like w™" away from this
interval. As a result, we can approximate g to a tolerance of ¢
using a multitone signal with about B + ¢~1/("=1/2) terms.
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For a multiband signal, the same argument applies to each
band. Therefore, the number of tones required for the approxi-
mation scales linearly with the total bandwidth.

C. A Vista on Windows

To reconstruct the original signal f over a long period of
time, we must multiply the signal with overlapping shifts of a
window 1. The window needs to have additional properties for
this scheme to work. Suppose that the set of half-integer shifts
of 1) forms a partition of unity, i.e.,

S oy(t—k/2)=1, teR.
k

After measuring and reconstructing g (t) = ¥ (¢t — k/2) - f(¥)
on each subinterval, we simply add the reconstructions together
to obtain a complete reconstruction of f.

This windowing strategy relies on our ability to measure
the windowed signal v - f. To accomplish this, we require a
slightly more complicated system architecture. To perform the
windowing, we use an amplifier with a time-varying gain. Since
subsequent windows overlap, we will also need to measure
gr and gp41 simultaneously, which creates the need for two
random demodulator channels running in parallel. In principle,
none of these modifications diminishes the practicality of the
system.

IX. DISCUSSION

This section develops some additional themes that arise from
our work. First, we discuss the SNR performance and size,
weight, and power (SWAP) profile of the random demodulator
system. Afterward, we present a rough estimate of the time
required for signal recovery using contemporary computing
architectures. We conclude with some speculations about the
technological impact of the device.

A. SNR Performance

A significant benefit of the random demodulator is that we
can control the SNR performance of the reconstruction by opti-
mizing the sampling rate of the back-end ADC, as demonstrated
in Section VI-D. When input signals are spectrally sparse, the
random demodulator system can outperform a standard ADC by
a substantial margin.

To quantify the SNR performance of an ADC, we consider a
standard metric, the effective number of bits (ENOB), which is
roughly the actual number of quantization levels possible at a
given SNR. The ENOB is calculated as

ENOB = (SNR — 1.76)/6.02 (13)

where the SNR is expressed in decibels. We estimate the ENOB
of a modern ADC using the information in Walden’s 1999
survey [12]. When the input signal has sparsity K and band
limit W, we can acquire the signal using a random demodulator
running at rate R, which we estimate using the relation (7). As
noted, this rate is typically much lower than the Nyquist rate.
Since low-rate ADCs exhibit much better SNR performance
than high-rate ADCs, the demodulator can produce a higher
ENOB.
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Fig. 8 charts how much the random demodulator improves on
state-of-the-art ADCs when the input signals are assumed to be
sparse. The top panel, Fig. 8(a), compares the random demodu-
lator with a standard ADC for signals with the sparsity K = 105
as the Nyquist rate W varies up to 1012 hertz. In this setting, the
clear advantages of the random demodulator can be seen in the
slow decay of the curve. The bottom panel, Fig. 8(b), estimates
the ENOB as a function of the sparsity K when the band limit is
fixed at W = 108 hertz. Again, a distinct advantage is visible.
But we stress that this improvement is contingent on the sparsity
of the signal.

Although this discussion suggests that the SNR behavior of
the random demodulator represents a clear improvement over
traditional ADCs, we have neglected some important factors.
The estimated performance of the demodulator does not take
into account SNR degradations due to the chain of hardware
components upstream of the sampler. These degradations are
caused by factors such as the nonlinearity of the multiplier and
jitter of the pseudorandom modulation signal. Thus, it is critical
to choose high-quality components in the design. Even under
this constraint, the random demodulator may have a more at-
tractive feasibility and cost profile than a high-rate ADC.

B. Power Consumption

In some applications, the power consumption of the signal ac-
quisition system is of tantamount importance. One widely used
figure of merit for ADCs is the quantity

9ENOB ¢
S
P diss
where f; is the sampling rate and Pl;s; is the power dissipation

[30]. We propose a slightly modified version of this figure of
merit to compare compressive ADCs with conventional ones

2ENOB—1 w

FOM = ————,
Pdiss(R) '

where we simply replace the sampling rate with the acquisition
band limit W/2 and express the power dissipated as a function
of the actual sampling rate. For the random demodulator

2ENOB—1W
Pdiss(1~7K IOg(W/K))

FOM =~

on account of (7). The random demodulator incurs a penalty
in the effective number of bits for a given signal, but it may
require significantly less power to acquire the signal. This effect
becomes pronounced as the band limit W becomes large, which
is precisely where low-power ADCs start to fade.

C. Computational Resources Needed for Signal Recovery

Recovering randomly demodulated signals in real-time seems
like a daunting task. This section offers a back-of-the-envelope
calculation that supports our claim that current digital com-
puting technology is nearly adequate to achieve real-time re-
covery rates for signals with frequency components in the giga-
hertz range.

The computational cost of a sparse recovery algorithm is
dominated by repeated application of the system matrix ®
and its transpose, in both the case where the algorithm solves
a convex optimization problem (Section V-A) or performs a
greedy pursuit (Section V-B). Recently developed algorithms
[17], [21], [31]-[33] typically produce good solutions with a
few hundred applications of the system matrix.

For the random demodulator, the matrix @ is a composition
of three operations:

1) alength-W DFT, which requires O (W log W) multiplica-

tions and additions (via a fast Fourier transform (FFT));
2) a pointwise multiplication, which uses W multiplies; and

3) a calculation of block sums, which involves W additions.
Of these three steps, the FFT is by far the most expensive.
Roughly speaking, it takes several hundred FFTs to recover a
sparse signal with Nyquist rate W from measurements made
by the random demodulator.

Let us fix some numbers so we can estimate the amount of
computational time required. Suppose that we want the digital
back-end to output 22° (or, about 1 billion) samples per second.
Assume that we compute the samples in blocks of size 2'* =
16, 384 and that we use 200 FFTs for each block. Since we need
to recover 216 blocks per second, we have to perform about 13
million 16k-point FFTs in one second.
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This amount of computation is substantial, but it is not
entirely unrealistic. For example, a recent benchmark [34]
reports that the Cell processor performs a 16k-point FFT at
37.6 Gflops/s, which translates! to about 1.5 X 102 seconds.
The nominal time to recover a single block is around 3 ms,
so the total cost of processing 2'6 blocks is around 200 s. Of
course, the blocks can be recovered in parallel, so this factor
of 200 can be reduced significantly using parallel or multicore
architectures.

The random demodulator offers an additional benefit. The
samples collected by the system automatically compress a
sparse signal into a minimal amount of data. As a result,
the storage and communication requirements of the signal
acquisition system are also reduced. Furthermore, no extra
processing is required after sampling to compress the data,
which decreases the complexity of the required hardware and
its power consumption.

D. Technological Impact

The easiest conclusion to draw from the bounds on SNR per-
formance is that the random demodulator may allow us to ac-
quire high-bandwidth signals that are not accessible with current
technologies. These applications still require high-performance
analog and digital signal processing technology, so they may be
several years (or more) away.

A more subtle conclusion is that the random demodulator en-
ables us to perform certain signal processing tasks using devices
with a more favorable SWAP profile. We believe that these ap-
plications will be easier to achieve in the near future because
suitable ADC and digital signal processing (DSP) technology is
already available.

X. RELATED WORK

Finally, we describe connections between the random demod-
ulator and other approaches to sampling signals that contain lim-
ited information.

A. Origins of Random Demodulator

The random demodulator was introduced in two earlier pa-
pers [35], [36], which offer preliminary work on the system ar-
chitecture and experimental studies of the system’s behavior.
The current paper can be seen as an expansion of these articles,
because we offer detailed information on performance trends as
a function of the signal band limit, the sparsity, and the number
of samples. We have also developed theoretical foundations that
support the empirical results. This analysis was initially pre-
sented by the first author at SampTA 2007.

B. Compressive Sampling

The most direct precedent for this paper is the theory of com-
pressive sampling. This field, initiated in the papers [16], [37],
has shown that random measurements are an efficient and prac-
tical method for acquiring compressible signals. For the most

1A single n-point FFT requires around 2.5n log, n flops.
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part, compressive sampling has concentrated on finite-length,
discrete-time signals. One of the innovations in this work is to
transport the continuous-time signal acquisition problem into
a setting where established techniques apply. Indeed, our em-
pirical and theoretical estimates for the sampling rate of the
random demodulator echo established results from the compres-
sive sampling literature regarding the number of measurements
needed to acquire sparse signals.

C. Comparison With Nonuniform Sampling

Another line of research [16], [38] in compressive sampling
has shown that frequency-sparse, periodic, bandlimited signals
can be acquired by sampling nonuniformly in time at an av-
erage rate comparable with (15). This type of nonuniform sam-
pling can be implemented by changing the clock input to a stan-
dard ADC. Although the random demodulator system involves
more components, it has several advantages over nonuniform
sampling.

First, nonuniform samplers are extremely sensitive to timing
jitter. Consider the problem of acquiring a signal with high-fre-
quency components by means of nonuniform sampling. Since
the signal values change rapidly, a small error in the sampling
time can result in an erroneous sample value. The random de-
modulator, on the other hand, benefits from the integrator, which
effectively lowers the bandwidth of the input into the ADC.
Moreover, the random demodulator uses a uniform clock, which
is more stable to generate.

Second, the SNR in the measurements from a random demod-
ulator is much higher than the SNR in the measurements from
a nonuniform sampler. Suppose that we are acquiring a single
sinusoid with unit amplitude. On average, each sample has mag-
nitude 271/2, so if we take W samples at the Nyquist rate, the
total energy in the samples is W/2. If we take R nonuniform
samples, the total energy will be on average R/2. In contrast, if
we take R samples with the random demodulator, each sample
has an approximate magnitude of \/W/ R, so the total energy in
the samples is about W. In consequence, signal recovery using
samples from the random demodulator is more robust against
additive noise.

D. Relationship With Random Convolution

As illustrated in Fig. 2, the random demodulator can be
interpreted in the frequency domain as a convolution of a
sparse signal with a random waveform, followed by lowpass
filtering. An idea closely related to this—convolution with a
random waveform followed by subsampling—has appeared
in the compressed sensing literature [39]-[42]. In fact, if we
replace the integrator with an ideal lowpass filter, so that we
are in essence taking R consecutive samples of the Fourier
transform of the demodulated signal, the architecture would
be very similar to that analyzed in [40], with the roles of time
and frequency reversed. The main difference is that [40] relies
on the samples themselves being randomly chosen rather than
consecutive (this extra randomness allows the same sensing
architecture to be used with any sparsity basis).
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E. Multiband Sampling Theory

The classical approach to recovering bandlimited signals
from time samples is, of course, the well-known method
associated with the names of Shannon, Nyquist, Whittaker,
Kotel’nikov, and others. In the 1960s, Landau demonstrated
that stable reconstruction of a bandlimited signal demands a
sampling rate no less than the Nyquist rate [4]. Landau also
considered multiband signals, those bandlimited signals whose
spectrum is supported on a collection of frequency intervals.
Roughly speaking, he proved that a sequence of time samples
cannot stably determine a multiband signal unless the average
sampling rate exceeds the measure of the occupied part of the
spectrum [43].

In the 1990s, researchers began to consider practical sampling
schemes for acquiring multiband signals. The earliest effort is
probably a paper of Feng and Bresler, who assumed that the
band locations were known in advance [44]. See also the subse-
quent work [45]. Afterward, Mishali and Eldar showed that re-
lated methods can be used to acquire multiband signals without
knowledge of the band locations [46].

Researchers have also considered generalizations of the
multiband signal model. These approaches model signals as
arising from a union of subspaces. See, for example, [47], [48]
and their references.

FE. Parallel Demodulator System

Very recently, it has been shown that a bank of random de-
modulators can be used for blind acquisition of multiband sig-
nals [49], [50]. This system uses different parameter settings
from the system described here, and it processes samples in a
rather different fashion. This work is more closely connected
with multiband sampling theory than with compressive sam-
pling, so we refer the reader to the papers for details.

G. Finite Rate of Innovation

Vetterli and collaborators have developed an alternative
framework for sub-Nyquist sampling and reconstruction, called
finite rate of innovation sampling, that passes an analog signal
f having K degrees of freedom per second through a linear
time-invariant filter and then samples at a rate above 2K hertz.
Reconstruction is then performed by rooting a high-order
polynomial [51]-[54]. While this sampling rate is less than the
O(K log(W/K)) required by the random demodulator, a proof
of the numerical stability of this method remains elusive.

H. Sublinear FFTs

During the 1990s and the early years of the present decade,
a separate strand of work appeared in the literature on theo-
retical computer science. Researchers developed computation-
ally efficient algorithms for approximating the Fourier trans-
form of a signal, given a small number of random time samples
from a structured grid. The earliest work in this area was due to
Kushilevitz and Mansour [55], while the method was perfected
by Gilbert et al. [56], [57]. See [38] for a tutorial on these ideas.
These schemes provide an alternative approach to sub-Nyquist
ADC:s [58], [59] in certain settings.

533

APPENDIX [
THE RANDOM DEMODULATOR MATRIX

This appendix collects some facts about the random demod-
ulator matrix that we use to prove the recovery bounds.

A. Notation

Let us begin with some notation. First, we abbreviate [[W]] =
{1,2,...,W}. We write * for the complex conjugate transpose
of a scalar, vector, or matrix. The symbol ||-|| denotes the spec-
tral norm of a matrix, while ||| indicates the Frobenius norm.
We write ||-|| . for the maximum absolute entry of a matrix.
Other norms will be introduced as necessary. The probability of
an event is expressed as P {-}, and we use E for the expecta-
tion operator. For conditional expectation, we use the notation
E x Z, which represents integration with respect to X, holding
all other variables fixed. For a random variable Z, we define its
L, norm

E’(Z) = (E|Z]")"".

We sometimes omit the parentheses when there is no possibility
of confusion. Finally, we remind the reader of the analyst’s con-
vention that roman letters ¢, C, etc., denote universal constants
that may change at every appearance.

B. Background

This section contains a potpourri of basic results that will be
helpful to us.
We begin with a simple technique for bounding the moments

of a maximum. Consider an arbitrary set {Z1,...,Zn} of
random variables. It holds that
EP(max; Z;) < NY? max; EP(Z;). (14)

To check this claim, simply note that

1/p
1
[E max; | Z;']7 < [EY |2
J
1/p

=N E1Z;P| <IN-max;E|Z[]".
J

In many cases, this inequality yields essentially sharp results for
the appropriate choice of p.

The simplest probabilistic object is the Rademacher random
variable, which takes the two values +1 with equal likelihood.
A sequence of independent Rademacher variables is referred to
as a Rademacher sequence. A Rademacher series in a Banach
space X is a sum of the form

oo
Z %
j=1

where {z;} is a sequence of points in X and {¢;} is an (inde-
pendent) Rademacher sequence.
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For Rademacher series with scalar coefficients, the most im-
portant result is the inequality of Khintchine. The following
sharp version is due to Haagerup [60].

Proposition 3 (Khintchine): Letp > 2. For every sequence
{a;} of complex scalars

1/2

2
> laj]

J

EP Zﬁjaj SCP
J

where the optimal constant

p! r 1/2 0.5
_ - Pnr—VU.0
O = [2p/2(p/2>!] S 2TV

This inequality is typically established only for real scalars,
but the real case implies that the complex case holds with the
same constant.

Rademacher series appear as a basic tool for studying sums of
independent random variables in a Banach space, as illustrated
in the following proposition [61, Lemma 6.3].

Proposition 4 (Symmetrization): Let {Z;} be a finite
sequence of independent, zero-mean random variables taking
values in a Banach space X . Then

EP Y 7| <267 ||> ¢7

where {¢;} is a Rademacher sequence independent of {Z}.

In words, the moments of the sum are controlled by the mo-
ments of the associated Rademacher series. The advantage of
this approach is that we can condition on the choice of {Z;}
and apply sophisticated methods to estimate the moments of the
Rademacher series.

Finally, we need some facts about symmetrized random vari-
ables. Suppose that Z is a zero-mean random variable that takes
values in a Banach space X. We may define the symmetrized
variable Y = Z — Z’, where Z' is an independent copy of Z.
The tail of the symmetrized variable Y is closely related to the
tail of Z. Indeed

P{IZllx >2E[Z]x +u} <P{[Y|lx >u}. (15

This relation follows from [61, Eq. (6.2)] and the fact that
Med(Y') < 2EY for every nonnegative random variable Y.
C. The Random Demodulator Matrix

We continue with a review of the structure of the random
demodulator matrix, which is the central object of our affection.
Throughout the appendices, we assume that the sampling rate 12
divides the band limit W. That is,

W/R e Z.

Recall that the R x W random demodulator matrix ® is defined
via the product

® = HDF.
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We index the R rows of the matrix with the Roman letter r,
while we index the W columns with the Greek letters a, w. It is
convenient to summarize the properties of the three factors.

The matrix F' is a permutation of the W x W DFT matrix.
In particular, it is unitary, and each of its entries has magnitude
w12,

The matrix D is a random W x W diagonal matrix. The
entries of D are the elements €1, ...,ey of the chipping se-
quence, which we assume to be a Rademacher sequence. Since
the nonzero entries of D are £1, it follows that the matrix is
unitary.

The matrix H is an R x W matrix with 0-1 entries. Each of
its rows contains a block of W/ R contiguous ones, and the rows
are orthogonal. These facts imply that

|H| = VW/E.

To keep track of the locations of the ones, the following notation
is useful. We write

(16)

j~r when (r—1)W/R<j<rW/R.
Thus, each value of r is associated with W/ R values of j. The
entry h,; = 1 if and only if j ~ 7.

The spectral norm of ® is determined completely by its
structure

|®|| = |[HDF|| = [ H|| = VW/R

because F' and D are unitary.

Next, we present notations for the entries and columns of the
random demodulator. For an index w € [[W]], we write ¢, for
the wth column of ®. Expanding the matrix product, we can
express

a7)

w
b= cifiuh; (18)
j=1

where fj,, is the (j,w) entry of F' and h; is the jth column of
H. Similarly, we write ,., for the (r,w) entry of the matrix ®.
The entry can also be expanded as a sum

Pro = Zgjfjw-

Jrr

19)

Finally, given a set €2 of column indices, we define the column
submatrix @ of ® whose columns are listed in 2.
D. A Componentwise Bound

The first key property of the random demodulator matrix is
that its entries are small with high probability. We apply this
bound repeatedly in the subsequent arguments.

Lemma 5: Let ® be an R x W random demodulator matrix.
When 2 < p < 4log W, we have

6logW
E? ||® <3/ —.
1@l < /"
Furthermore

10log W
P {HQHmax > %} S W_1~
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Proof: As noted in (19), each entry of ® is a Rademacher
series

Observe that

because the entries of F' all share the magnitude W ~1/2, Khint-
chine’s inequality, Proposition 3, provides a bound on the mo-
ments of the Rademacher series

C
|Ep |§0rw| S R

VR

where C,, < 20-2%702 /p,
We now compute the moments of the maximum entry. Let

M = ||| oy = maxy o, [re -
Select ¢ = max{p, 4 log W}, and invoke Holder’s inequality
EPM < E?max, . |¢ro].
Inequality (14) yields
EPM < (RW)Y9max, , E? |p,.|.

Apply the moment bound for the individual entries to reach
C,(RW)/1
VR

Since R < W and g > 4log W, we have (RW)l/" < 05,
Simplify the constant to discover that

EPM <

log W

EPM < 2%
= R

A numerical bound yields the first conclusion.
To obtain a probability bound, we apply Markov’s inequality,
which is the standard device. Indeed

P{M >u} =P{M?>ul} <

EaM !
ik

Choose u = €%2°EYM to obtain

logW} <e logW _ pp/—1.

PL{ M 21.25 0.25
{ > e R

Another numerical bound completes the demonstration. O

E. The Gram Matrix

Next, we develop some information about the inner prod-
ucts between columns of the random demodulator. Let « and
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w be column indices in [[W]]. Using the expression (18) for the
columns, we find that

w
<¢a7 ¢w> = Z €j€k7]jkf;afkw

Jk=1

where we have abbreviated n;; = (hy, h;). Since ;; = 1, the
sum of the diagonal terms is

" L, a=w
S i ={y a2
J
because the columns of F' are orthonormal. Therefore

<¢a7 ¢w> = 5044.0 + Z Ejsknjkf;afkw
i#k
where 0., is the Kronecker delta.
The Gram matrix ®*® tabulates these inner products. As a
result, we can express the latter identity as

P=T+X
where

*
Tow = E €5€kNjk [ o frw-
7K

It is clear that EX = 0, so that

E®*® =1. (20)
We interpret this relation to mean that, on average, the columns
of @ form an orthonormal system. This ideal situation cannot
occur since ® has more columns than rows. The matrix X
measures the discrepancy between reality and this impossible
dream. Indeed, most of argument can be viewed as a collection
of norm bounds on X that quantify different aspects of this
deviation.

Our central result provides a uniform bound on the entries of
X that holds with high probability. In the sequel, we exploit this
fact to obtain estimates for several other quantities of interest.

Lemma 6: Suppose that R > 2log W. Then

log W _1
<W™.
R } -

P {IIXIImaX >0

Proof: The object of our attention is

M = | X ||y = max | ejentjn o)
T |i#k

A random variable of this form is called a second-order
Rademacher chaos, and there are sophisticated methods avail-
able for studying its distribution. We use these ideas to develop
a bound on EPM for p = 2logW. Afterward, we apply
Markov’s inequality to obtain the tail bound.

For technical reasons, we must rewrite the chaos before we
start making estimates. First, note that we can express the chaos
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in a more symmetric fashion

M = max Zfﬁk Nik -
J#k

(fjaf;;w + fkaf;w) -

It is also simpler to study the real and imaginary parts of the
chaos separately. To that end, define

gow — { ik s Re(fjafiy + fraffn), J#k
jk 07 j —k
aw _ ) ik - s Im(fjafiy, + frafln)s 1#Fk
jk 0/ J —k .

With this notation

We focus on the real part since the imaginary part receives an
identical treatment.

The next step toward obtaining a tail bound is to decouple the
chaos. Define

— / aw
Y = rgix E €5€LA5),
)k

where {¢’} is an independent copy of {¢;}. Standard decou-
pling results [62, Proposition 1.9] imply that

EP Mg. < 4EPY.

So it suffices to study the decoupled variable Y.

To approach this problem, we first bound the moments of
each random variable that participates in the maximum. Fix a
pair (o, w) of frequencies. We omit the superscript o and w to
simplify notations. Define the auxiliary random variable

§ : l
7 = Zaw = EjEkajk .
3k

Construct the matrix A = [a;z]. As we will see, the variation of
7 is controlled by spectral properties of the matrix A.

For that purpose, we compute the Frobenius norm and spec-
tral norm of A. Each of its entries satisfies

1 1,
lajk| < ik = W(H H);p,
owing to the fact that the entries of F' are uniformly bounded by
W—1/2_ The structure of H implies that H* H is a symmetric,
0-1 matrix with exactly W/ R nonzero entries in each of its W
rows. Therefore

. 1 W
[Alle < 5 1 Hlle = /W =
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The spectral norm of A is bounded by the spectral norm of
its entrywise absolute value abs(A). Applying the fact (16) that

|H|| = \/W/R, we obtain
4]l < llabs(A)] < oo |1 = < |1H]P?

Let us emphasize that the norm bounds are uniform over all pairs
(o, w) of frequencies. Moreover, the matrix B = [b;,] satisfies
identical bounds.

To continue, we estimate the mean of the variable Z. This
calculation is a simple consequence of Holder’s inequality

97 1/2
EZ < (EZ?)'/? = Zg (Zskajk>
k
97 1/2 1/2
= [EX D enajn = D lal’
ik Gk

1
VR
Chaos random variables, such as Z, concentrate sharply about
their mean. Deviations of Z from its mean are controlled by two

separate variances. The probability of large deviation is deter-
mined by

14l =

U = supy,=1 E UjUk Ak
Jk

while the probability of a moderate deviation depends on

V= [Esup”u”fl Zujakajk .
Jk
To compute the first variance U, observe that
1
U=|4| < =.
Al <

The second variance is not much harder. Using Jensen’s in-
equality, we find

97 1/2

E E Ekjk
7 k

o7 1/2
1

Nih

EkQjk

< |EY
J

We are prepared to appeal to the following theorem which
bounds the moments of a chaos variable [63, Corollary 2].

Theorem 7 (Moments of Chaos): Let Z be a decoupled,
symmetric, second-order chaos. Then

E?|Z —EZ| <K [/BV + pU]

for each p > 1.
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Substituting the values of the expectation and variances, we

reach
ol <[]

The content of this estimate is clearer, perhaps, if we split the
bound atp = R

L1 [T s
VR| ~ | 2Kp/R, p> R.

In words, the variable Z exhibits sub-Gaussian behavior in the
moderate deviation regime, but its tail is subexponential.

We are now prepared to bound the moments of the maximum
of the ensemble {Z,.,}. When p = 2logW < R, inequality
(14) yields

EP |:Z_

1
E?P max [Zaw — —} < W?2/? max E? {Zaw -
vV R a,w

p
<e-2K,/=,
s¢€ R’

Recalling the definitions of Y and Z,,, we reach

E’Y = EP max Z,., < Cy/ %.

In words, we have obtained a moment bound for the decoupled
version of the real chaos Mge.

To complete the proof, remember that EP M, < 4EPY.
Therefore

7l

logW

EP Mg, < 4C

An identical argument establishes that

log W
EP My, < ACy] &7

Since M < MR + M1y, it follows inexorably that

log W

EPM < 8C
- R

Finally, we invoke Markov’s inequality to obtain the tail
bound

P {M > e0%.8C @} <e 0P — w1

This endeth the lesson. O

F. Column Norms and Coherence

Lemma 6 has two important and immediate consequences.
First, it implies that the columns of ® essentially have unit norm.

Theorem 8 (Column Norms): Suppose the sampling rate

R>Cé6 2logW.

An R x W random demodulator ® satisfies

p {maxw ‘||¢w||§ - 1‘ > 5} <wL,

Lemma 6 also shows that the coherence of the random
demodulator is small. The coherence, which is denoted by u,
bounds the maximum inner product between distinct columns
of @, and it has emerged as a fundamental tool for establishing
the success of compressive sampling recovery algorithms.
Rigorously

p=max|(da; du)|-
We have the following probabilistic bound.

Theorem 9 (Coherence): Suppose the sampling rate

R > 2logW.

An R x W random demodulator ® satisfies

I
P{uz C OZW} <w-L.

For a general R x W matrix with unit-norm columns, we can
verify [64, Theorem 2.3] that its coherence

S 1 [1 R } 1
VRl T W T VR
Since the columns of the random demodulator are essentially

normalized, we conclude that its coherence is nearly as small as
possible.

APPENDIX II
RECOVERY FOR THE RANDOM PHASE MODEL

In this appendix, we establish Theorem 1, which shows that
£1 minimization is likely to recover a random signal drawn from
Model (A). Appendix III develops results for general signals.

The performance of ¢; minimization for random signals de-
pends on several subtle properties of the demodulator matrix.
We must discuss these ideas in some detail. In the next two sec-
tions, we use the bounds from Appendix I to check that the re-
quired conditions are in force. Afterward, we proceed with the
demonstration of Theorem 1.

A. Cumulative Coherence

The coherence measures only the inner product between a
single pair of columns. To develop accurate results on the per-
formance of ¢; minimization, we need to understand the total
correlation between a fixed column and a collection of distinct
columns.

Let ® be an R x W matrix, and let {2 be a subset of [[W]].
The local 2-cumulative coherence of the set {2 with respect to
the matrix ® is defined as

1/2
= max R 2 .
/1'2(9) - aéiQ [§2|<¢a, ¢w>| ]

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on January 15, 2010 at 17:24 from |IEEE Xplore. Restrictions apply.



538

The coherence p provides an immediate bound on the cumula-
tive coherence

12() < /19

Unfortunately, this bound is completely inadequate.

To develop a better estimate, we instate some additional nota-
tion. Consider the matrix norm ||-||,_, ,, which returns the max-
imum /5 norm of a column. Define the hollow Gram matrix

G = & — diag(®*®)

which tabulates the inner products between distinct columns of
®. Let R be the W x W orthogonal projector onto the coor-
dinates listed in 2. Elaborating on these definitions, we see that

p2(9) = [[RoG(I - Ra)ll,_,, < [RoGll; ., (2D)
In particular, the cumulative coherence o (§2) is dominated by
the maximum column norm of G.

When 2 is chosen at random, it turns out that we can use this
upper bound to improve our estimate of the cumulative coher-
ence p2(£2). To incorporate this effect, we need the following
result, which is a consequence of Theorem 3.2 of [65] combined
with a standard decoupling argument (e.g., see [66, Lemma 14]).

Proposition 10: Fix a W x W matrix G. Let R be an or-
thogonal projector onto K coordinates, chosen randomly from
[[W]]. For p = 2log W

K
EP[|IRG|;_; < 8V1og W [|G||nax + 24/ 357 Gl -

With these facts at hand, we can establish the following
bound.

Theorem 11 (Cumulative Coherence): Suppose the sam-
pling rate
R>C [KlogW—l—logSW] .
Draw an R x W random demodulator ®. Let 2 be a random set
of K coordinates in [[W]]. Then

1
P Q) > ——— 1 <3W L.
{M( )z \/1610gW} -
Proof: Under our hypothesis on the sampling rate, The-
orem 9 demonstrates that, except with probability W —!

¢
16 s < 107

where we can make c as small as we like by increasing the con-
stant in the sampling rate. Similarly, Theorem 8 ensures that

max ||y |l, <2
w

except with probability W 1. We condition on the event F' that
these two bounds hold. We have P { F} < 2W 1,
On account of the latter inequality and the fact (17) that

||®|| = /W/R, we obtain
Gl < [9°®],_, — max|[0" @e.|,

= max [ 8¢, < ]| - max||.|l, < 2v/W/R.

We have written e, for the wth standard basis vector in C".
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Let Rq be the (random) projector onto the K coordinates
listed in €. For p = 2log W, relation (21) and Proposition 10
c

yield
<
~ Vlog W

under our assumption on the sampling rate. Finally, we apply
Markov’s inequality to obtain

E?[12(Q) | F] S[EP[HRQGul—O | F]

log W

!/

/,0.
Vieg W |

By selecting the constant in the sampling rate sufficiently large,
we can ensure ¢’ is sufficiently small that

P {[LQ(Q) > F} <e 0% — WL,

Pl > sty 1} < W

We reach the conclusion

1
V16log W

when we remove the conditioning.

P {uz(ﬂ) > } <W 4 P{F}<3w!

O

B. Conditioning of a Random Submatrix

We also require information about the conditioning of a
random set of columns drawn from the random demodulator
matrix ®. To obtain this intelligence, we refer to the following
result, which is a consequence of [65, Theorem 1] and a decou-
pling argument.

Proposition 12: Let Abe a W x W Hermitian matrix, split
into its diagonal and off-diagonal parts: A = E + G. Draw an
orthogonal projector R onto K coordinates, chosen randomly
from [[W]]. For p = 2log W

max

E7 |RAR] < C [mgw A

KlogW

NV w

1Al o + 77 ||A|| +E]l.

Suppose that €2 is a subset of [[IW]]. Recall that @, is the
column submatrix of ® indexed by 2. We have the following
result.

Theorem 13 (Conditioning of a Random Submatrix): Sup-
pose the sampling rate

R>C [KlogW+log3W].

Draw an R x W random demodulator, and let €2 be a random
subset of [[W]] with cardinality K. Then

P {[|[®,®o — I|| > 0.5} <3W .
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Proof: Define the quantity of interest

Q= [|20%0 —I||.

Let Rg, be the random orthogonal projector onto the coordinates
listed in €2, and observe that

Q = [|[Ro(2°® - T)Rg|.

Define the matrix A = ®*® — T. Let us perform some back-
ground investigations so that we are fully prepared to apply
Proposition 12.

We split the matrix

A=FE +G,
where E = diag(®*®) — I and G = ®"® — diag(®"®) is
the hollow Gram matrix. Under our hypothesis on the sampling
rate, Theorem 8 provides that
|E| = max| 1.1 - 1] <015
except with probability W 1. It also follows that

|diag(®*®)|| = max ||d, |3 < 1.15.

We can bound ||G|,_,, by repeating our earlier calculation and
introducing the identity (17) that ||®|| = \/W/R. Thus

1.15W
Gl —2 < [[®f| max{|g[], < T
Since W/R > 1, it also holds that
% . % 2.15W
IG]| = [[®"® — diag(®*®)| < #]|° +1.15 < =—
Meanwhile, Theorem 9 ensures that
c
G <
€l < o7

except with probability W ~!. As before, we can make c as small
as we like by increasing the constant in the sampling rate. We
condition on the event F' that these estimates are in force. So
P{Fc} <2Ww-L

Now, invoke Proposition 12 to obtain

c

log W

+\/K10gW \/1.15W+K 1.15W 05
W R W R '

for p = 2log W. Simplifying this bound, we reach

- [C'Klog W
R

By choosing the constant in the sampling rate R sufficiently
large, we can guarantee that

E”[QIF]SC[IogW-

EP[Q|F] < C +0.15.

EP[Q | F] < 0.3.

539
Markov’s inequality now provides
P{Q >03e"°|F} <e %7 =W~
Note that 0.3¢%° < 0.5 to conclude that
P{Q>05} <W '+ P{F} <3W '
This is the advertised conclusion. O

C. Recovery of Random Signals

The literature contains powerful results on the performance of
£1 minimization for recovery of random signals that are sparse
with respect to an incoherent dictionary. We have finally ac-
quired the keys we need to start this machinery. Our major re-
sult for random signals, Theorem 1, is a consequence of the fol-
lowing result, which is an adaptation of [67, Theorem 14].

Proposition 14: Let ® be an R x W matrix, and let §2 be
a subset of [[W]] for which
o 12(Q) < (16logW)~1/2, and
. [[(@a20) || < 2.
Suppose that s is a vector that satisfies
* supp(8) C Q, and
* sgn (8,) are independent and identically distributed (i.i.d.)
uniform on the complex unit circle.
Then 8 is the unique solution to the optimization problem

subjectto Pv = Ps (22)

min v,

except with probability 2W 1,
Our main result, Theorem 1, is a corollary of this result.

Corollary 15: Suppose that the sampling rate satisfies
R>C[KlogW +log®> W].

Draw an R x W random demodulator ®. Let s be a random am-
plitude vector drawn according to Model (A). Then the solution
8 to the convex program (22) equals 8 except with probability
sW-L

Proof: Since the signal 8 is drawn from Model (A), its sup-
port 2 is a uniformly random set of K components from [[IW]].
Theorem 11 ensures that

1
<
H2() S ey

except with probability 3W 1.
guarantees

Likewise, Theorem 13

|[@o®0 —I| <05

except with probability 3W 1. This bound implies that all the
eigenvalues of ®,®q lie in the range [0.5, 1.5]. In particular

|(@6®0)7"|| < 2.

Meanwhile, Model (A) provides that the phases of the nonzero
entries of 8 are uniformly distributed on the complex unit
circle. We invoke Proposition 14 to see that the optimization
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problem(22) recovers the amplitude vector 8 from the obser-
vations ®s, except with probability 2W 1. The total failure
probability is 8W 1. O
APPENDIX III
STABLE RECOVERY

In this appendix, we establish much stronger recovery results
under a slightly stronger assumption on the sampling rate. This
work is based on the RIP, which enjoys the privilege of a detailed
theory.

A. Background

The RIP is a formalization of the statement that the sampling
matrix preserves the norm of all sparse vectors up to a small con-
stant factor. Geometrically, this property ensures that the sam-
pling matrix embeds the set of sparse vectors in a high-dimen-
sional space into the lower dimensional space of samples. Con-
sequently, it becomes possible to recover sparse vectors from a
small number of samples. Moreover, as we will see, this prop-
erty also allows us to approximate compressible vectors, given
relatively few samples.

Let us shift to rigorous discussion. We say that an R x W ma-
trix ® has the RIP of order NV with restricted isometry constant
dn € (0,1) when the following inequalities are in force:

2 2
@], — (1],

5 < 6y whenever
B4

< Iz, < N.  (23)

Recall that the function |[|-||, counts the number of nonzero en-
tries in a vector. In words, the definition states that the sampling
operator produces a small relative change in the squared /5 norm
of an V-sparse vector. The RIP was introduced by Candes and
Tao in an important paper [25].

For our purposes, it is more convenient to rephrase the RIP.
Observe that the inequalities (23) hold if and only if

z*(®"® — )z

< éx whenever
r*ex

2]y < N

The extreme value of this Rayleigh quotient is clearly the largest
magnitude eigenvalue of any N x N principal submatrix of
&P -1

Let us construct a norm that packages up this quantity. Define

Al = sup ||4]g,q|-
|QI<N

In words, the triple-bar norm returns the least upper bound on
the spectral norm of any N x N principal submatrix of A. There-
fore, the matrix ® has the RIP of order N with constant § if
and only if

7@ — T < on.

Referring back to (20), we may write this relation in the more
suggestive form

|°® - E&*®] < 5.

In the next section, we strive to achieve this estimate.
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B. RIP for Random Demodulator

Our major result is that the random demodulator matrix
has the restricted isometry property when the sampling rate is
chosen appropriately.

Theorem 16 (RIP for Random Demodulator): Fix 6 > 0.
Suppose that the sampling rate

R>C67% - Nlog®(W).

Then an R x W random demodulator matrix ® has the restricted
isometry property of order N with constant 6 ;y < 8, except with
probability O(W~1).

There are three basic reasons that the random demodulator
matrix satisfies the RIP. First, its Gram matrix averages to the
identity. Second, its rows are independent. Third, its entries are
uniformly bounded. The proof shows how these three factors
interact to produce the conclusion.

In the sequel, it is convenient to write 2 ® z for the rank-one
matrix zz*. We also number constants for clarity.

Most of the difficulty of argument is hidden in a lemma due
to Rudelson and Vershynin [26, Lemma 3.6].

Lemma 17 (Rudelson—Vershynin): Suppose that {z,.} is a
sequence of R vectors in C" where R < W, and assume that
each vector satisfies the bound ||z, ||, < B. Let {£.} be an
independent Rademacher series. Then

Y bz o2, PE-EE

1/2
E

y

where
B < CiBVN log?(W).
The next lemma employs this bound to show that, in expec-
tation, the random demodulator has the RIP.

Lemma 18: Fix § € (0,1). Suppose that the sampling rate
R > 03672 Nlog® W.

Let ® be an R x W random demodulator. Then
E&"® - I| <.

Proof: Let 2% denote the rth row of ®. Observe that the
rows are mutually independent random vectors, although their
distributions differ. Recall that the entries of each row are uni-
formly bounded, owing to Lemma 5 . We may now express the
Gram matrix of ® as

R
&P = er ® Zp.

r=1

We are interested in bounding the quantity

Zz,,@z,,—l

Z(z,n Rz —Ez, ®2.)

s

E=E||®'®—1| =E

=E

where {2!.} is an independent copy of {z,.}.
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The symmetrization result, Proposition 4, yields

Y bz oz

where {£,.} is a Rademacher series, independent of everything
else. Conditional on the choice of {z.}, the Rudelson—Ver-
shynin lemma results in

E < 2E

1/2
E < 2E ﬂ~‘

PE-ES

where
B < C1BVNlog®> W

and B = maxy, , |@kw| is a random variable.
According to Lemma 5

Nlog® (W)

(EF*)"2 < V6C1 | —

We may now apply the Cauchy—Schwarz inequality to our
bound on E to reach
) 1/2

[ N log® W
E < 2V6C; - — <[E ;zr ® 2,

Add and subtract an identity matrix inside the norm, and invoke
the triangle inequality. Note that ||I|| = 1, and identify a copy
Z 2,2z, —1

of E on the right-hand side
24C3N log® W i
0
R (E + |||I|||)
R
2 5
_ 24C7N log W(E +1)1e,
V R
Solutions to the relation £ < (E +1)'/2 obey E < 2y when-

ever v < 1.
‘We conclude that

CyN log® W
E<y 2=
= R

whenever the fraction is smaller than one. To guarantee that £ <
6, then, it suffices that

R > 672 . Nlog® W.

This point completes the argument. O

To finish proving the theorem, it remains to develop a large
deviation bound. Our method is the same as that of Rudelson
and Vershynin: We invoke a concentration inequality for sums
of independent random variables in a Banach space. See [26,
Theorem 3.8], which follows from [61, Theorem 6.17].

Proposition 19: Let Y1,...,Yr be independent, sym-
metric random variables in a Banach space X, and assume each

541

random variable satisfies the bound ||Y;|| y < B almost surely.
LetY = |3, Y|l Then

P{Y > C3[uEY +tB]} <e ™™ 47!

for all u,t > 1.

In words, the norm of a sum of independent, symmetric,
bounded random variables has a tail bound consisting of two
parts. The norm exhibits sub-Gaussian decay with “standard
deviation” comparable to its mean, and it exhibits subexponen-
tial decay controlled by the size of the summands.

Proof [Theorem 16]: We seek a tail bound for the random

variable
Z 2, 2z, —I|| = ‘

As before, 2} is the rth row of ® and 2/, is an independent copy
of z,.

To begin, we express the constant in the stated sampling rate
as C = Cy - ¢ 2, where ¢ will be adjusted at the end of the
argument. Therefore, the sampling rate may be written as

Z(zr ®z—Ez.®2)

r

Z:‘

ch
R>Cy ——m—
= 2(\/—10gW

Lemma 18 implies that

-2
) N log® W.

cod
EZ < <.
~ V0ogW — ¢

As described in the background section, we can produce a tail
bound for Z by studying the symmetrized random variable

Y bz -2 02) ‘
where {{,} is a Rademacher sequence independent of every-

thing. For future reference, use the first representation of Y to
see that

S0z -2 02)

r

Y:‘

~

2¢h
Vieg W

where the inequality follows from the triangle inequality and
identical distribution.

Observe that Y is the norm of a sum of independent, sym-
metric random variables in a Banach space. The tail bound of
Proposition 19 also requires the summands to be bounded in
norm. To that end, we must invoke a truncation argument. De-
fine the (independent) events

EY <2EZ <

2 2 10log W
o= {max {12} < o

F:ﬂF

and
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In other terms, F' is the event that two independent random de-

modulator matrices both have bounded entries. Therefore
P{F} <2w™!

after two applications of Lemma 5.
Under the event F', we have a hard bound on the triple-norm
of each summand in Y

B =max, ||z, ® 2, — 2. @ 2_||
< maxy ([lz» ® 2. + |12, ® z,])) -

For each r, we may compute

2, ®2,|| = sup H 2 Q2 H
Iz o2l = sup oo 2]
2 2 10N log W
= sup “zr|9||2 <Nzl < R
Q<N

where the last inequality follows from F'. An identical estimate
holds for the terms involving z... Therefore

20N log W
p< 80
=R

Our hypothesized lower bound for the sampling rate R gives

(c6/\/Tog W)? < ch
CoNlog® W~ logW

B <20NlogW -

where the second inequality certainly holds if c is a sufficiently
small constant.
Now, define the truncated variable

Yrtrunc = ‘

ZgT(zr ® 2z, — z{r & Z;,)IIFr

By construction, the triple-norm of each summand is bounded
by B. Since Y and Y;,yn. coincide on the event F', we have

P{Y >v} <P{Y >uv|F} P{F}+P{F}
=P {Virune > v | F} - P {F} + P {F°}
=P {Virune > v} + P {F°}

for each v > 0. According to the contraction principle [61,
Theorem 4.4], the bound

IEEYcrunc < lEEY
holds pointwise for each choice of {2,.} and {2/.}. Therefore
[EYtrunc = [Ezr,z’r IEEYcrunc S [Ezr,z’r [EEY =EY.

Recalling our estimate for EY’, we see that
2¢o
ViogW'

We now apply Proposition 19 to the symmetric variable
Yirunc. The bound reads

IEYtrunc S

P {Yirune > O3 (WEYirune + tB)} < e +e .
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Select u = /log W and t = log W, and recall the bounds on
EYi;unc and on B to obtain

P {Virune > C3(2c6 + ¢6)} < 2W L.

Using the relationship between the tails of Y and Yirunce, we
reach

P {Y > 303C6} <P {Ywunc > 30305} + P {F(}
<4aw L.

Finally, the tail bound for Y yields a tail bound for Z via
relation (15)

P{Z >2EZ + u} <2P{Y > u}.
Asnoted, EZ < ¢6 < Cscé. Therefore

P{Z > 5C3c6} <P{Z > 2EZ + 3Cscb}
<2P{Y > 3Czcb}
<sw~L.

To complete the proof, we select ¢ < (5C3)~L. d

C. Signal Recovery Under the RIP

When the sampling matrix has the restricted isometry prop-
erty, the samples contain enough information to approximate
general signals extremely well. Candeés, Romberg, and Tao
have shown that signal recovery can be performed by solving a
convex optimization problem. This approach produces excep-
tional results in theory and in practice [24].

Proposition 20: Suppose that ® is an R x W matrix that
verifies the RIP of order 2K with restricted isometry constant
02k < c. Then the following statement holds. Consider an ar-
bitrary vector 8 in C"V, and suppose we collect noisy samples

y=®s+v
where |||, < 7. Every solution 8 to the optimization problem

min |jv||, subjectto ||®Pv—yl, <7 (24)

approximates the target signal

~ 1
5 s, < CmaX{m L - sK||1}
vVK

where 8y is a best K -sparse approximation to 8 with respect to
the /; norm.

An equivalent guarantee holds when the approximation 8 is
computed using the CoSaMP algorithm [21, Theorem A].

Combining Proposition 20 with Theorem 16, we obtain our
major result, Theorem 2.

Corollary 21: Suppose that the sampling rate
R> CK log® W.

An R x W random demodulator matrix verifies the RIP of order
2K with constant d>5; < c, except with probability O(W 1),
Thus, the conclusions of Proposition 20 are in force.
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