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ABSTRACT 
Since the publication of Brin and Page’s paper on PageRank, 
many in the Web community have depended on PageRank for the 
static (query-independent) ordering of Web pages. We show that 
we can significantly outperform PageRank using features that are 
independent of the link structure of the Web. We gain a further 
boost in accuracy by using data on the frequency at which users 
visit Web pages. We use RankNet, a ranking machine learning 
algorithm, to combine these and other static features based on 
anchor text and domain characteristics. The resulting model 
achieves a static ranking pairwise accuracy of 67.3% (vs. 56.7% 
for PageRank or 50% for random). 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning. H.3.3 [Information 
Storage and Retrieval]: Information Search and Retrieval. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Static ranking, search engines, PageRank, RankNet, relevance 

1. INTRODUCTION 
Over the past decade, the Web has grown exponentially in size. 
Unfortunately, this growth has not been isolated to good-quality 
pages. The number of incorrect, spamming, and malicious (e.g., 
phishing) sites has also grown rapidly. The sheer number of both 
good and bad pages on the Web has led to an increasing reliance 
on search engines for the discovery of useful information. Users 
rely on search engines not only to return pages related to their 
search query, but also to separate the good from the bad, and 
order results so that the best pages are suggested first.  

To date, most work on Web page ranking has focused on 
improving the ordering of the results returned to the user (query-
dependent ranking, or dynamic ranking). However, having a good 
query-independent ranking (static ranking) is also crucially 
important for a search engine. A good static ranking algorithm 
provides numerous benefits: 

• Relevance: The static rank of a page provides a general 
indicator to the overall quality of the page. This is a 
useful input to the dynamic ranking algorithm. 

• Efficiency: Typically, the search engine’s index is 
ordered by static rank. By traversing the index from high-
quality to low-quality pages, the dynamic ranker may 
abort the search when it determines that no later page 
will have as high of a dynamic rank as those already 
found. The more accurate the static rank, the better this 
early-stopping ability, and hence the quicker the search 
engine may respond to queries. 

• Crawl Priority: The Web grows and changes as quickly 
as search engines can crawl it. Search engines need a way 
to prioritize their crawl—to determine which pages to re-
crawl, how frequently, and how often to seek out new 
pages. Among other factors, the static rank of a page is 
used to determine this prioritization. A better static rank 
thus provides the engine with a higher quality, more up-
to-date index. 

Google is often regarded as the first commercially successful 
search engine. Their ranking was originally based on the 
PageRank algorithm [5][27]. Due to this (and possibly due to 
Google’s promotion of PageRank to the public), PageRank is 
widely regarded as the best method for the static ranking of Web 
pages. 

Though PageRank has historically been thought to perform quite 
well, there has yet been little academic evidence to support this 
claim. Even worse, there has recently been work showing that 
PageRank may not perform any better than other simple measures 
on certain tasks. Upstill et al. have found that for the task of 
finding home pages, the number of pages linking to a page and the 
type of URL were as, or more, effective than PageRank [32]. They 
found similar results for the task of finding high quality 
companies [31]. PageRank has also been used in systems for 
TREC’s “very large collection” and “Web track” competitions, 
but with much less success than had been expected [17]. Finally, 
Amento et al. [1] found that simple features, such as the number 
of pages on a site, performed as well as PageRank. 

Despite these, the general belief remains among many, both 
academic and in the public, that PageRank is an essential factor 
for a good static rank. Failing this, it is still assumed that using the 
link structure is crucial, in the form of the number of inlinks or the 
amount of anchor text. 

In this paper, we show there are a number of simple url- or page- 
based features that significantly outperform PageRank (for the 
purposes of statically ranking Web pages) despite ignoring the 
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structure of the Web. We combine these and other static features 
using machine learning to achieve a ranking system that is 
significantly better than PageRank (in pairwise agreement with 
human labels). 

A machine learning approach for static ranking has other 
advantages besides the quality of the ranking. Because the 
measure consists of many features, it is harder for malicious users 
to manipulate it (i.e., to raise their page’s static rank to an 
undeserved level through questionable techniques, also known as 
Web spamming). This is particularly true if the feature set is not 
known. In contrast, a single measure like PageRank can be easier 
to manipulate because spammers need only concentrate on one 
goal: how to cause more pages to point to their page. With an 
algorithm that learns, a feature that becomes unusable due to 
spammer manipulation will simply be reduced or removed from 
the final computation of rank. This flexibility allows a ranking 
system to rapidly react to new spamming techniques. 

A machine learning approach to static ranking is also able to take 
advantage of any advances in the machine learning field. For 
example, recent work on adversarial classification [12] suggests 
that it may be possible to explicitly model the Web page 
spammer’s (the adversary) actions, adjusting the ranking model in 
advance of the spammer’s attempts to circumvent it. Another 
example is the elimination of outliers in constructing the model, 
which helps reduce the effect that unique sites may have on the 
overall quality of the static rank. By moving static ranking to a 
machine learning framework, we not only gain in accuracy, but 
also gain in the ability to react to spammer’s actions, to rapidly 
add new features to the ranking algorithm, and to leverage 
advances in the rapidly growing field of machine learning. 

Finally, we believe there will be significant advantages to using 
this technique for other domains, such as searching a local hard 
drive or a corporation’s intranet. These are domains where the 
link structure is particularly weak (or non-existent), but there are 
other domain-specific features that could be just as powerful. For 
example, the author of an intranet page and his/her position in the 
organization (e.g., CEO, manager, or developer) could provide 
significant clues as to the importance of that page. A machine 
learning approach thus allows rapid development of a good static 
algorithm in new domains. 

This paper’s contribution is a systematic study of static features, 
including PageRank, for the purposes of (statically) ranking Web 
pages. Previous studies on PageRank typically used subsets of the 
Web that are significantly smaller (e.g., the TREC VLC2 corpus, 
used by many, contains only 19 million pages). Also, the 
performance of PageRank and other static features has typically 
been evaluated in the context of a complete system for dynamic 
ranking, or for other tasks such as question answering. In contrast, 
we explore the use of PageRank and other features for the direct 
task of statically ranking Web pages. 

We first briefly describe the PageRank algorithm. In Section 3 we 
introduce RankNet, the machine learning technique used to 
combine static features into a final ranking. Section 4 describes 
the static features. The heart of the paper is in Section 5, which 
presents our experiments and results. We conclude with a 
discussion of related and future work. 

2. PAGERANK 
The basic idea behind PageRank is simple: a link from a Web 
page to another can be seen as an endorsement of that page. In 

general, links are made by people. As such, they are indicative of 
the quality of the pages to which they point – when creating a 
page, an author presumably chooses to link to pages deemed to be 
of good quality. We can take advantage of this linkage 
information to order Web pages according to their perceived 
quality. 

Imagine a Web surfer who jumps from Web page to Web page, 
choosing with uniform probability which link to follow at each 
step. In order to reduce the effect of dead-ends or endless cycles 
the surfer will occasionally jump to a random page with some 
small probability α, or when on a page with no out-links. If 
averaged over a sufficient number of steps, the probability the 
surfer is on page j at some point in time is given by the formula: 
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Where Fi is the set of pages that page i links to, and Bj is the set of 
pages that link to page j. The PageRank score for node j is defined 
as this probability: PR(j)=P(j). Because equation (1) is recursive, 
it must be iteratively evaluated until P(j) converges (typically, the 
initial distribution for P(j) is uniform). The intuition is, because a 
random surfer would end up at the page more frequently, it is 
likely a better page. An alternative view for equation (1) is that 
each page is assigned a quality, P(j). A page “gives” an equal 
share of its quality to each page it points to.  

PageRank is computationally expensive. Our collection of 5 
billion pages contains approximately 370 billion links. Computing 
PageRank requires iterating over these billions of links multiple 
times (until convergence). It requires large amounts of memory 
(or very smart caching schemes that slow the computation down 
even further), and if spread across multiple machines, requires 
significant communication between them. Though much work has 
been done on optimizing the PageRank computation (see e.g., 
[25] and [6]), it remains a relatively slow, computationally 
expensive property to compute. 

3. RANKNET 
Much work in machine learning has been done on the problems of 
classification and regression. Let X={ xi} be a collection of feature 
vectors (typically, a feature is any real valued number), and 
Y={yi} be a collection of associated classes, where yi is the class 
of the object described by feature vector xi. The classification 
problem is to learn a function f that maps yi=f(xi), for all i. When 
yi is real-valued as well, this is called regression. 

Static ranking can be seen as a regression problem. If we let xi 
represent features of page i, and yi be a value (say, the rank) for 
each page, we could learn a regression function that mapped each 
page’s features to their rank. However, this over-constrains the 
problem we wish to solve. All we really care about is the order of 
the pages, not the actual value assigned to them. 

Recent work on this ranking problem [7][13][18] directly 
attempts to optimize the ordering of the objects, rather than the 
value assigned to them. For these, let Z={< i,j>} be a collection of 
pairs of items, where item i should be assigned a higher value than 
item j. The goal of the ranking problem, then, is to learn a 
function f such that,  

)()(,, ji ffji xxZ >∈∀  
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Note that, as with learning a regression function, the result of this 
process is a function (f) that maps feature vectors to real values. 
This function can still be applied anywhere that a regression-
learned function could be applied. The only difference is the 
technique used to learn the function. By directly optimizing the 
ordering of objects, these methods are able to learn a function that 
does a better job of ranking than do regression techniques. 

We used RankNet [7], one of the aforementioned techniques for 
learning ranking functions, to learn our static rank function. 
RankNet is a straightforward modification to the standard neural 
network back-prop algorithm. As with back-prop, RankNet 
attempts to minimize the value of a cost function by adjusting 
each weight in the network according to the gradient of the cost 
function with respect to that weight. The difference is that, while a 
typical neural network cost function is based on the difference 
between the network output and the desired output, the RankNet 
cost function is based on the difference between a pair of network 
outputs. That is, for each pair of feature vectors <i,j> in the 
training set, RankNet computes the network outputs oi and oj. 
Since vector i is supposed to be ranked higher than vector j, the 
larger is oj-oi, the larger the cost.  

RankNet also allows the pairs in Z to be weighted with a 
confidence (posed as the probability that the pair satisfies the 
ordering induced by the ranking function). In this paper, we used 
a probability of one for all pairs. In the next section, we will 
discuss the features used in our feature vectors, xi. 

4. FEATURES 
To apply RankNet (or other machine learning techniques) to the 
ranking problem, we needed to extract a set of features from each 
page. We divided our feature set into four, mutually exclusive, 
categories: page-level (Page), domain-level (Domain), anchor text 
and inlinks (Anchor), and popularity (Popularity). We also 
optionally used the PageRank of a page as a feature. Below, we 
describe each of these feature categories in more detail. 

PageRank 

We computed PageRank on a Web graph of 5 billion crawled 
pages (and 20 billion known URLs linked to by these pages). 
This represents a significant portion of the Web, and is 
approximately the same number of pages as are used by 
Google, Yahoo, and MSN for their search engines.  

Because PageRank is a graph-based algorithm, it is important 
that it be run on as large a subset of the Web as possible. Most 
previous studies on PageRank used subsets of the Web that are 
significantly smaller (e.g. the TREC VLC2 corpus, used by 
many, contains only 19 million pages) 

We computed PageRank using the standard value of 0.85 for α. 

Popularity 

Another feature we used is the actual popularity of a Web page, 
measured as the number of times that it has been visited by 
users over some period of time. We have access to such data 
from users who have installed the MSN toolbar and have opted 
to provide it to MSN. The data is aggregated into a count, for 
each Web page, of the number of users who viewed that page. 

Though popularity data is generally unavailable, there are two 
other sources for it. The first is from proxy logs. For example, a 
university that requires its students to use a proxy has a record 
of all the pages they have visited while on campus. 
Unfortunately, proxy data is quite biased and relatively small. 

Another source, internal to search engines, are records of which 
results their users clicked on. Such data was used by the search 
engine “Direct Hit”, and has recently been explored for 
dynamic ranking purposes [20]. An advantage of the toolbar 
data over this is that it contains information about URL visits 
that are not just the result of a search. 

The raw popularity is processed into a number of features such 
as the number of times a page was viewed and the number of 
times any page in the domain was viewed. More details are 
provided in section 5.5.  

Anchor text and inlinks 

These features are based on the information associated with 
links to the page in question. It includes features such as the 
total amount of text in links pointing to the page (“anchor 
text”), the number of unique words in that text, etc. 

Page  

This category consists of features which may be determined by 
looking at the page (and its URL) alone. We used only eight, 
simple features such as the number of words in the body, the 
frequency of the most common term, etc. 

Domain 

This category contains features that are computed as averages 
across all pages in the domain. For example, the average 
number of outlinks on any page and the average PageRank. 

Many of these features have been used by others for ranking Web 
pages, particularly the anchor and page features. As mentioned, 
the evaluation is typically for dynamic ranking, and we wish to 
evaluate the use of them for static ranking. Also, to our 
knowledge, this is the first study on the use of actual page 
visitation popularity for static ranking. The closest similar work is 
on using click-through behavior (that is, which search engine 
results the users click on) to affect dynamic ranking (see e.g., 
[20]). 

Because we use a wide variety of features to come up with a static 
ranking, we refer to this as fRank (for feature-based ranking). 
fRank uses RankNet and the set of features described in this 
section to learn a ranking function for Web pages. Unless 
otherwise specified, fRank was trained with all of the features. 

5. EXPERIMENTS  
In this section, we will demonstrate that we can out perform 
PageRank by applying machine learning to a straightforward set 
of features. Before the results, we first discuss the data, the 
performance metric, and the training method. 

5.1 Data 
In order to evaluate the quality of a static ranking, we needed a 
“gold standard” defining the correct ordering for a set of pages. 
For this, we employed a dataset which contains human judgments 
for 28000 queries. For each query, a number of results are 
manually assigned a rating, from 0 to 4, by human judges. The 
rating is meant to be a measure of how relevant the result is for 
the query, where 0 means “poor” and 4 means “excellent”. There 
are approximately 500k judgments in all, or an average of 18 
ratings per query. 

The queries are selected by randomly choosing queries from 
among those issued to the MSN search engine. The probability 
that a query is selected is proportional to its frequency among all 
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of the queries. As a result, common queries are more likely to be 
judged than uncommon queries. As an example of how diverse 
the queries are, the first four queries in the training set are “chef 
schools”, “chicagoland speedway”, “eagles fan club”, and 
“Turkish culture”. The documents selected for judging are those 
that we expected would, on average, be reasonably relevant (for 
example, the top ten documents returned by MSN’s search 
engine). This provides significantly more information than 
randomly selecting documents on the Web, the vast majority of 
which would be irrelevant to a given query.  

Because of this process, the judged pages tend to be of higher 
quality than the average page on the Web, and tend to be pages 
that will be returned for common search queries. This bias is good 
when evaluating the quality of static ranking for the purposes of 
index ordering and returning relevant documents. This is because 
the most important portion of the index to be well-ordered and 
relevant is the portion that is frequently returned for search 
queries. Because of this bias, however, the results in this paper are 
not applicable to crawl prioritization. In order to obtain 
experimental results on crawl prioritization, we would need 
ratings on a random sample of Web pages. 

To convert the data from query-dependent to query-independent, 
we simply removed the query, taking the maximum over 
judgments for a URL that appears in more than one query. The 
reasoning behind this is that a page that is relevant for some query 
and irrelevant for another is probably a decent page and should 
have a high static rank. Because we evaluated the pages on 
queries that occur frequently, our data indicates the correct index 
ordering, and assigns high value to pages that are likely to be 
relevant to a common query. 

We randomly assigned queries to a training, validation, or test set, 
such that they contained 84%, 8%, and 8% of the queries, 
respectively. Each set contains all of the ratings for a given query, 
and no query appears in more than one set. The training set was 
used to train fRank. The validation set was used to select the 
model that had the highest performance. The test set was used for 
the final results. 

This data gives us a query-independent ordering of pages. The 
goal for a static ranking algorithm will be to reproduce this 
ordering as closely as possible. In the next section, we describe 
the measure we used to evaluate this. 

5.2 Measure 
We chose to use pairwise accuracy to evaluate the quality of a 
static ranking. The pairwise accuracy is the fraction of time that 
the ranking algorithm and human judges agree on the ordering of 
a pair of Web pages. 

If S(x) is the static ranking assigned to page x, and H(x) is the 
human judgment of relevance for x, then consider the following 
sets: 

)}()(:,{ yHxHyx >=pH  and )}()(:,{ ySxSyx >=pS  

The pairwise accuracy is the portion of Hp that is also contained 
in Sp: 

p

pp

H

SH ∩
=accuracy pairwise  

This measure was chosen for two reasons. First, the discrete 
human judgments provide only a partial ordering over Web pages, 

making it difficult to apply a measure such as the Spearman rank 
order correlation coefficient (in the pairwise accuracy measure,  a 
pair of documents with the same human judgment does not affect 
the score). Second, the pairwise accuracy has an intuitive 
meaning: it is the fraction of pairs of documents that, when the 
humans claim one is better than the other, the static rank 
algorithm orders them correctly. 

5.3 Method 
We trained fRank (a RankNet based neural network) using the 
following parameters. We used a fully connected 2 layer network. 
The hidden layer had 10 hidden nodes. The input weights to this 
layer were all initialized to be zero. The output “layer” (just a 
single node) weights were initialized using a uniform random 
distribution in the range [-0.1, 0.1]. We used tanh as the transfer 
function from the inputs to the hidden layer, and a linear function 
from the hidden layer to the output. The cost function is the 
pairwise cross entropy cost function as discussed in section 3. 

The features in the training set were normalized to have zero mean 
and unit standard deviation. The same linear transformation was 
then applied to the features in the validation and test sets.  

For training, we presented the network with 5 million pairings of 
pages, where one page had a higher rating than the other. The 
pairings were chosen uniformly at random (with replacement) 
from all possible pairings. When forming the pairs, we ignored the 
magnitude of the difference between the ratings (the rating spread) 
for the two URLs. Hence, the weight for each pair was constant 
(one), and the probability of a pair being selected was 
independent of its rating spread. 

We trained the network for 30 epochs. On each epoch, the 
training pairs were randomly shuffled. The initial training rate was 
0.001. At each epoch, we checked the error on the training set. If 
the error had increased, then we decreased the training rate, under 
the hypothesis that the network had probably overshot. The 
training rate at each epoch was thus set to: 

Training rate = 
1+ε

κ  

Where κ is the initial rate (0.001), and ε is the number of times 
the training set error has increased. After each epoch, we 
measured the performance of the neural network on the validation 
set, using 1 million pairs (chosen randomly with replacement). 
The network with the highest pairwise accuracy on the validation 
set was selected, and then tested on the test set. We report the 
pairwise accuracy on the test set, calculated using all possible 
pairs. 

These parameters were determined and fixed before the static rank 
experiments in this paper. In particular, the choice of initial 
training rate, number of epochs, and training rate decay function 
were taken directly from Burges et al [7]. 

Though we had the option of preprocessing any of the features 
before they were input to the neural network, we refrained from 
doing so on most of them. The only exception was the popularity 
features. As with most Web phenomenon, we found that the 
distribution of site popularity is Zipfian. To reduce the dynamic 
range, and hopefully make the feature more useful, we presented 
the network with both the unpreprocessed, as well as the 
logarithm, of the popularity features (As with the others, the 
logarithmic feature values were also normalized to have zero 
mean and unit standard deviation). 
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Applying fRank to a document is computationally efficient, taking 
time that is only linear in the number of input features; it is thus 
within a constant factor of other simple machine learning methods 
such as naïve Bayes. In our experiments, computing the fRank for 
all five billion Web pages was approximately 100 times faster 
than computing the PageRank for the same set. 

5.4 Results 
As Table 1 shows, fRank significantly outperforms PageRank for 
the purposes of static ranking. With a pairwise accuracy of 67.4%, 
fRank more than doubles the accuracy of PageRank (relative to 
the baseline of 50%, which is the accuracy that would be achieved 
by a random ordering of Web pages). Note that one of fRank’s 
input features is the PageRank of the page, so we would expect it 
to perform no worse than PageRank. The significant increase in 
accuracy implies that the other features (anchor, popularity, etc.) 
do in fact contain useful information regarding the overall quality 
of a page. 

 

Table 1: Basic Results 

Technique Accuracy (%) 
None (Baseline) 50.00 

PageRank 56.70 
fRank 67.43 

 

There are a number of decisions that go into the computation of 
PageRank, such as how to deal with pages that have no outlinks, 
the choice of α, numeric precision, convergence threshold, etc. 
We were able to obtain a computation of PageRank from a 
completely independent implementation (provided by Marc 
Najork) that varied somewhat in these parameters. It achieved a 
pairwise accuracy of 56.52%, nearly identical to that obtained by 
our implementation. We thus concluded that the quality of the 
PageRank is not sensitive to these minor variations in algorithm, 
nor was PageRank’s low accuracy due to problems with our 
implementation of it. 

We also wanted to find how well each feature set performed. To 
answer this, for each feature set, we trained and tested fRank 
using only that set of features. The results are shown in Table 2. 
As can be seen, every single feature set individually outperformed 
PageRank on this test. Perhaps the most interesting result is that 
the Page-level features had the highest performance out of all the 
feature sets. This is surprising because these are features that do 
not depend on the overall graph structure of the Web, nor even on 
what pages point to a given page. This is contrary to the common 
belief that the Web graph structure is the key to finding a good 
static ranking of Web pages. 

 

Table 2: Results for individual feature sets. 

Feature Set Accuracy (%) 
PageRank 56.70 
Popularity 60.82 

Anchor 59.09 
Page 63.93 

Domain 59.03 
All Features 67.43 

 

Because we are using a two-layer neural network, the features in 
the learned network can interact with each other in interesting, 
nonlinear ways. This means that a particular feature that appears 
to have little value in isolation could actually be very important 
when used in combination with other features. To measure the 
final contribution of a feature set, in the context of all the other 
features, we performed an ablation study. That is, for each set of 
features, we trained a network to contain all of the features except 
that set. We then compared the performance of the resulting 
network to the performance of the network with all of the features. 
Table 3 shows the results of this experiment, where the “decrease 
in accuracy” is the difference in pairwise accuracy between the 
network trained with all of the features, and the network missing 
the given feature set. 

 

Table 3: Ablation study. Shown is the decrease in accuracy 
when we train a network that has all but the given set of 
features. The last line is shows the effect of removing the 
anchor, PageRank, and domain features, hence a model 
containing no network or link-based information whatsoever. 

Feature Set Decrease in 
Accuracy 

PageRank 0.18 
Popularity 0.78 

Anchor 0.47 
Page 5.42 

Domain 
Anchor, PageRank & Domain 

0.10 
0.60 

 

The results of the ablation study are consistent with the individual 
feature set study. Both show that the most important feature set is 
the Page-level feature set, and the second most important is the 
popularity feature set. 

Finally, we wished to see how the performance of fRank 
improved as we added features; we wanted to find at what point 
adding more feature sets became relatively useless. Beginning 
with no features, we greedily added the feature set that improved 
performance the most. The results are shown in Table 4. For 
example, the fourth line of the table shows that fRank using the 
page, popularity, and anchor features outperformed any network 
that used the page, popularity, and some other feature set, and that 
the performance of this network was 67.25%. 

 

Table 4: fRank performance as feature sets are added. At each 
row, the feature set that gave the greatest increase in accuracy 
was added to the list of features (i.e., we conducted a greedy 
search over feature sets). 

Feature Set Accuracy (%) 
None 50.00 
+Page  63.93 

+Popularity 66.83 
+Anchor 67.25 

+PageRank 67.31 
+Domain 67.43 
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Finally, we present a qualitative comparison of PageRank vs. 
fRank. In Table 5 are the top ten URLs returned for PageRank and 
for fRank. PageRank’s results are heavily weighted towards 
technology sites. It contains two QuickTime URLs (Apple’s video 
playback software), as well as Internet Explorer and FireFox 
URLs (both of which are Web browsers). fRank, on the other 
hand, contains more consumer-oriented sites such as American 
Express, Target, Dell, etc. PageRank’s bias toward technology can 
be explained through two processes. First, there are many pages 
with “buttons” at the bottom suggesting that the site is optimized 
for Internet Explorer, or that the visitor needs QuickTime. These 
generally link back to, in these examples, the Internet Explorer 
and QuickTime download sites. Consequently, PageRank ranks 
those pages highly. Though these pages are important, they are 
not as important as it may seem by looking at the link structure 
alone. One fix for this is to add information about the link to the 
PageRank computation, such as the size of the text, whether it was 
at the bottom of the page, etc. 

The other bias comes from the fact that the population of Web site 
authors is different than the population of Web users. Web 
authors tend to be technologically-oriented, and thus their linking 
behavior reflects those interests. fRank, by knowing the actual 
visitation popularity of a site (the popularity feature set), is able to 
eliminate some of that bias. It has the ability to depend more on 
where actual Web users visit rather than where the Web site 
authors have linked. 

The results confirm that fRank outperforms PageRank in pairwise 
accuracy. The two most important feature sets are the page and 
popularity features. This is surprising, as the page features 
consisted only of a few (8) simple features. Further experiments 
found that, of the page features, those based on the text of the 
page (as opposed to the URL) performed the best. In the next 
section, we explore the popularity feature in more detail. 

5.5 Popularity Data 
As mentioned in section 4, our popularity data came from MSN 
toolbar users. For privacy reasons, we had access only to an 
aggregate count of, for each URL, how many times it was visited 

by any toolbar user. This limited the possible features we could 
derive from this data. For possible extensions, see section 6.3, 
future work. 

For each URL in our train and test sets, we provided a feature to 
fRank which was how many times it had been visited by a toolbar 
user. However, this feature was quite noisy and sparse, 
particularly for URLs with query parameters (e.g., http://search-
.msn.com/results.aspx?q=machine+learning&form=QBHP). One 
solution was to provide an additional feature which was the 
number of times any URL at the given domain was visited by a 
toolbar user. Adding this feature dramatically improved the 
performance of fRank. 

We took this one step further and used the built-in hierarchical 
structure of URLs to construct many levels of backoff between the 
full URL and the domain. We did this by using the set of features 
shown in Table 6. 

 

Table 6: URL functions used to compute the Popularity 
feature set.  

Function Example 
Exact URL cnn.com/2005/tech/wikipedia.html?v=mobile 
No Params cnn.com/2005/tech/wikipedia.html 
Page wikipedia.html 
URL-1 cnn.com/2005/tech 
URL-2 cnn.com/2005 
…  
Domain cnn.com 
Domain+1 cnn.com/2005 
…  

 

Each URL was assigned one feature for each function shown in 
the table. The value of the feature was the count of the number of 
times a toolbar user visited a URL, where the function applied to 
that URL matches the function applied to the URL in question. 
For example, a user’s visit to cnn.com/2005/sports.html would 
increment the Domain and Domain+1  features for  the URL 
cnn.com/2005/tech/wikipedia.html. 

As seen in Table 7, adding the domain counts significantly 
improved the quality of the popularity feature, and adding the 
numerous backoff functions listed in Table 6 improved the 
accuracy even further. 

 

Table 7: Effect of adding backoff to the popularity feature set 

Features Accuracy (%) 
URL count 58.15 

URL and Domain counts 59.31 
All backoff functions (Table 6) 60.82 

 

Table 5: Top ten URLs for PageRank vs. fRank 

PageRank fRank 
google.com google.com 
apple.com/quicktime/download yahoo.com 
amazon.com americanexpress.com 
yahoo.com hp.com 
microsoft.com/windows/ie target.com 
apple.com/quicktime bestbuy.com 
mapquest.com dell.com 
ebay.com autotrader.com 
mozilla.org/products/firefox dogpile.com 
ftc.gov bankofamerica.com 
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Backing off to subsets of the URL is one technique for dealing 
with the sparsity of data. It is also informative to see how the 
performance of fRank depends on the amount of popularity data 
that we have collected. In Figure 1 we show the performance of 
fRank trained with only the popularity feature set vs. the amount 
of data we have for the popularity feature set. Each day, we 
receive additional popularity data, and as can be seen in the plot, 
this increases the performance of fRank. The relation is 
logarithmic: doubling the amount of popularity data provides a 
constant improvement in pairwise accuracy. 

In summary, we have found that the popularity features provide a 
useful boost to the overall fRank accuracy. Gathering more 
popularity data, as well as employing simple backoff strategies, 
improve this boost even further. 

5.6 Summary of Results 
The experiments provide a number of conclusions. First, fRank 
performs significantly better than PageRank, even without any 
information about the Web graph. Second, the page level and 
popularity features were the most significant contributors to 
pairwise accuracy. Third, by collecting more popularity data, we 
can continue to improve fRank’s performance. 

The popularity data provides two benefits to fRank. First, we see 
that qualitatively, fRank’s ordering of Web pages has a more 
favorable bias than PageRank’s. fRank’s ordering seems to 
correspond to what Web users, rather than Web page authors, 
prefer. Second, the popularity data is more timely than 
PageRank’s link information. The toolbar provides information 
about which Web pages people find interesting right now, 
whereas links are added to pages more slowly, as authors find the 
time and interest. 

6. RELATED AND FUTURE WORK 

6.1 Improvements to PageRank 
Since the original PageRank paper, there has been work on 
improving it. Much of that work centers on speeding up and 
parallelizing the computation [15][25]. 

One recognized problem with PageRank is that of topic drift: A 
page about “dogs” will have high PageRank if it is linked to by 
many pages that themselves have high rank, regardless of their 
topic. In contrast, a search engine user looking for good pages 
about dogs would likely prefer to find pages that are pointed to by 
many pages that are themselves about dogs. Hence, a link that is 
“on topic” should have higher weight than a link that is not. 
Richardson and Domingos’s Query Dependent PageRank [29] 
and Haveliwala’s Topic-Sensitive PageRank [16] are two 
approaches that tackle this problem. 

Other variations to PageRank include differently weighting links 
for inter- vs. intra-domain links, adding a backwards step to the 
random surfer to simulate the “back” button on most browsers 
[24] and modifying the jump probability (α) [3]. See Langville 
and Meyer [23] for a good survey of these, and other 
modifications to PageRank. 

6.2 Other related work 
PageRank is not the only link analysis algorithm used for ranking 
Web pages. The most well-known other is HITS [22], which is 
used by the Teoma search engine [30]. HITS produces a list of 
hubs and authorities, where hubs are pages that point to many 

authority pages, and authorities are pages that are pointed to by 
many hubs. Previous work has shown HITS to perform 
comparably to PageRank [1]. 

One field of interest is that of static index pruning (see e.g., 
Carmel et al. [8]). Static index pruning methods reduce the size of 
the search engine’s index by removing documents that are 
unlikely to be returned by a search query. The pruning is typically 
done based on the frequency of query terms. Similarly, Pandey 
and Olston [28] suggest crawling pages frequently if they are 
likely to incorrectly appear (or not appear) as a result of a search. 
Similar methods could be incorporated into the static rank (e.g., 
how many frequent queries contain words found on this page). 

Others have investigated the effect that PageRank has on the Web 
at large [9]. They argue that pages with high PageRank are more 
likely to be found by Web users, thus more likely to be linked to, 
and thus more likely to maintain a higher PageRank than other 
pages. The same may occur for the popularity data. If we increase 
the ranking for popular pages, they are more likely to be clicked 
on, thus further increasing their popularity. Cho et al. [10] argue 
that a more appropriate measure of Web page quality would 
depend on not only the current link structure of the Web, but also 
on the change in that link structure. The same technique may be 
applicable to popularity data: the change in popularity of a page 
may be more informative than the absolute popularity. 

One interesting related work is that of Ivory and Hearst [19]. 
Their goal was to build a model of Web sites that are considered 
high quality from the perspective of “content, structure and 
navigation, visual design, functionality, interactivity, and overall 
experience”. They used over 100 page level features, as well as 
features encompassing the performance and structure of the site. 
This let them qualitatively describe the qualities of a page that 
make it appear attractive (e.g., rare use of italics, at least 9 point 
font, …), and (in later work) to build a system that assists novel 
Web page authors in creating quality pages by evaluating it 
according to these features. The primary differences between this 
work and ours are the goal (discovering what constitutes a good 
Web page vs. ordering Web pages for the purposes of Web 
search), the size of the study (they used a dataset of less than 6000 
pages vs. our set of 468,000), and our comparison with PageRank. 
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Figure 1: Relation between the amount of popularity data and 
the performance of the popularity feature set. Note the x-axis 
is a logarithmic scale. 
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Nevertheless, their work provides insights to additional useful 
static features that we could incorporate into fRank in the future. 

Recent work on incorporating novel features into dynamic ranking 
includes that by Joachims et al. [21], who investigate the use of 
implicit feedback from users, in the form of which search engine 
results are clicked on. Craswell et al. [11] present a method for 
determining the best transformation to apply to query independent 
features (such as those used in this paper) for the purposes of 
improving dynamic ranking. Other work, such as Boyan et al. [4] 
and Bartell et al. [2] apply machine learning for the purposes of 
improving the overall relevance of a search engine (i.e., the 
dynamic ranking). They do not apply their techniques to the 
problem of static ranking. 

6.3 Future work 
There are many ways in which we would like to extend this work. 
First, fRank uses only a small number of features. We believe we 
could achieve even more significant results with more features. In 
particular the existence, or lack thereof, of certain words could 
prove very significant (for instance, “under construction” 
probably signifies a low quality page). Other features could 
include the number of images on a page, size of those images, 
number of layout elements (tables, divs, and spans), use of style 
sheets, conforming to W3C standards (like XHTML 1.0 Strict), 
background color of a page, etc.  

Many pages are generated dynamically, the contents of which may 
depend on parameters in the URL, the time of day, the user 
visiting the site, or other variables. For such pages, it may be 
useful to apply the techniques found in [26] to form a static 
approximation for the purposes of extracting features. The 
resulting grammar describing the page could itself be a source of 
additional features describing the complexity of the page, such as 
how many non-terminal nodes it has, the depth of the grammar 
tree, etc. 

fRank allows one to specify a confidence in each pairing of 
documents. In the future, we will experiment with probabilities 
that depend on the difference in human judgments between the 
two items in the pair. For example, a pair of documents where one 
was rated 4 and the other 0 should have a higher confidence than 
a pair of documents rated 3 and 2. 

The experiments in this paper are biased toward pages that have 
higher than average quality. Also, fRank with all of the features 
can only be applied to pages that have already been crawled. 
Thus, fRank is primarily useful for index ordering and improving 
relevance, not for directing the crawl. We would like to 
investigate a machine learning approach for crawl prioritization as 
well. It may be that a combination of methods is best: for 
example, using PageRank to select the best 5 billion of the 20 
billion pages on the Web, then using fRank to order the index and 
affect search relevancy. 

Another interesting direction for exploration is to incorporate 
fRank and page-level features directly into the PageRank 
computation itself. Work on biasing the PageRank jump vector 
[16], and transition matrix [29], have demonstrated the feasibility 
and advantages of such an approach. There is reason to believe 
that a direct application of [29], using the fRank of a page for its 
“relevance”, could lead to an improved overall static rank. 

Finally, the popularity data can be used in other interesting ways. 
The general surfing and searching habits of Web users varies by 
time of day. Activity in the morning, daytime, and evening are 

often quite different (e.g., reading the news, solving problems, 
and accessing entertainment, respectively). We can gain insight 
into these differences by using the popularity data, divided into 
segments of the day. When a query is issued, we would then use 
the popularity data matching the time of query in order to do the 
ranking of Web pages. We also plan to explore popularity features 
that use more than just the counts of how often a page was visited. 
For example, how long users tended to dwell on a page, did they 
leave the page by clicking a link or by hitting the back button, etc. 
Fox et al. did a study that showed that features such as this can be 
valuable for the purposes of dynamic ranking [14]. Finally, the 
popularity data could be used as the label rather than as a feature. 
Using fRank in this way to predict the popularity of a page may 
useful for the tasks of relevance, efficiency, and crawl priority. 
There is also significantly more popularity data than human 
labeled data, potentially enabling more complex machine learning 
methods, and significantly more features. 

7. CONCLUSIONS 
A good static ranking is an important component for today’s 
search engines and information retrieval systems. We have 
demonstrated that PageRank does not provide a very good static 
ranking; there are many simple features that individually out 
perform PageRank. By combining many static features, fRank 
achieves a ranking that has a significantly higher pairwise 
accuracy than PageRank alone. A qualitative evaluation of the top 
documents shows that fRank is less technology-biased than 
PageRank; by using popularity data, it is biased toward pages that 
Web users, rather than Web authors, visit. The machine learning 
component of fRank gives it the additional benefit of being more 
robust against spammers, and allows it to leverage further 
developments in the machine learning community in areas such as 
adversarial classification. We have only begun to explore the 
options, and believe that significant strides can be made in the 
area of static ranking by further experimentation with additional 
features, other machine learning techniques, and additional 
sources of data. 

8. ACKNOWLEDGMENTS 
Thank you to Marc Najork for providing us with additional 
PageRank computations and to Timo Burkard for assistance with 
the popularity data. Many thanks to Chris Burges for providing 
code and significant support in using training RankNets. Also, we 
thank Susan Dumais and Nick Craswell for their edits and 
suggestions. 

9. REFERENCES 
[1] B. Amento, L. Terveen, and W. Hill. Does “authority” mean 

quality? Predicting expert quality ratings of Web documents. 
In Proceedings of the 23rd Annual International ACM SIGIR 
Conference on Research and Development in Information 
Retrieval, 2000. 

[2] B. Bartell, G. Cottrell, and R. Belew. Automatic combination 
of multiple ranked retrieval systems. In Proceedings of the 
17th Annual International ACM SIGIR Conference on 
Research and Development in Information Retrieval, 1994. 

[3] P. Boldi, M. Santini, and S. Vigna. PageRank as a function 
of the damping factor. In Proceedings of the International 
World Wide Web Conference, May 2005. 

714



[4] J. Boyan, D. Freitag, and T. Joachims. A machine learning 
architecture for optimizing web search engines. In AAAI 
Workshop on Internet Based Information Systems, August 
1996. 

[5] S. Brin and L. Page. The anatomy of a large-scale 
hypertextual web search engine. In Proceedings of the 
Seventh International Wide Web Conference, Brisbane, 
Australia, 1998. Elsevier. 

[6] A. Broder, R. Lempel, F. Maghoul, and J. Pederson. 
Efficient PageRank approximation via graph aggregation. In 
Proceedings of the International World Wide Web 
Conference, May 2004. 

[7] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. 
Hamilton, G. Hullender. Learning to rank using gradient 
descent. In Proceedings of the 22nd International Conference 
on Machine Learning, Bonn, Germany, 2005. 

[8] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. 
S. Maarek, and A. Soffer. Static index pruning for 
information retrieval systems. In Proceedings of the 24th 
Annual International ACM SIGIR Conference on Research 
and Development in Information Retrieval, pages 43-50, 
New Orleans, Louisiana, USA, September 2001. 

[9] J. Cho and S. Roy. Impact of search engines on page 
popularity. In Proceedings of the International World Wide 
Web Conference, May 2004. 

[10] J. Cho, S. Roy, R. Adams. Page Quality: In search of an 
unbiased web ranking. In Proceedings of the ACM SIGMOD 
2005 Conference. Baltimore, Maryland. June 2005. 

[11] N. Craswell, S. Robertson, H. Zaragoza, and M. Taylor. 
Relevance weighting for query independent evidence. In 
Proceedings of the 28th Annual Conference on Research and 
Development in Information Retrieval (SIGIR), August, 
2005. 

[12] N. Dalvi, P. Domingos, Mausam, S. Sanghai, D. Verma. 
Adversarial Classification. In Proceedings of the Tenth 
International Conference on Knowledge Discovery and Data 
Mining (pp. 99-108), Seattle, WA, 2004. 

[13] O. Dekel, C. Manning, and Y. Singer. Log-linear models for 
label-ranking. In Advances in Neural Information Processing 
Systems 16. Cambridge, MA: MIT Press, 2003. 

[14] S. Fox, K S. Fox, K. Karnawat, M. Mydland, S. T. Dumais 
and T. White (2005).  Evaluating implicit measures to 
improve the search experiences. In the ACM Transactions on 
Information Systems, 23(2), pp. 147-168. April 2005. 

[15] T. Haveliwala. Efficient computation of PageRank. Stanford 
University Technical Report, 1999. 

[16] T. Haveliwala. Topic-sensitive PageRank. In Proceedings of 
the International World Wide Web Conference, May 2002. 

[17] D. Hawking and N. Craswell. Very large scale retrieval and 
Web search. In D. Harman and E. Voorhees (eds), The 
TREC Book. MIT Press. 

[18] R. Herbrich, T. Graepel, and K. Obermayer. Support vector 
learning for ordinal regression. In Proceedings of the Ninth 
International Conference on Artificial Neural Networks, pp. 
97-102. 1999. 

[19] M. Ivory and M. Hearst. Statistical profiles of highly-rated 
Web sites. In Proceedings of the ACM SIGCHI Conference 
on Human Factors in Computing Systems, 2002. 

[20] T. Joachims. Optimizing search engines using clickthrough 
data. In Proceedings of the ACM Conference on Knowledge 
Discovery and Data Mining (KDD), 2002. 

[21] T. Joachims, L. Granka, B. Pang, H. Hembrooke, and G. 
Gay. Accurately Interpreting Clickthrough Data as Implicit 
Feedback. In Proceedings of the Conference on Research and 
Development in Information Retrieval (SIGIR), 2005. 

[22] J. Kleinberg. Authoritative sources in a hyperlinked 
environment. Journal of the ACM 46:5, pp. 604-32. 1999. 

[23] A. Langville and C. Meyer. Deeper inside PageRank. 
Internet Mathematics 1(3):335-380, 2004. 

[24] F. Matthieu and M. Bouklit. The effect of the back button in 
a random walk: application for PageRank. In Alternate track 
papers and posters of the Thirteenth International World 
Wide Web Conference, 2004. 

[25] F. McSherry. A uniform approach to accelerated PageRank 
computation. In Proceedings of the International World 
Wide Web Conference, May 2005. 

[26] Y. Minamide. Static approximation of dynamically generated 
Web pages. In Proceedings of the International World Wide 
Web Conference, May 2005. 

[27] L. Page, S. Brin, R. Motwani, and T. Winograd. The 
PageRank citation ranking: Bringing order to the web. 
Technical report, Stanford University, Stanford, CA, 1998. 

[28] S. Pandey and C. Olston. User-centric Web crawling. In 
Proceedings of the International World Wide Web 
Conference, May 2005. 

[29] M. Richardson and P. Domingos. The intelligent surfer: 
probabilistic combination of link and content information in 
PageRank. In Advances in Neural Information Processing 
Systems 14, pp. 1441-1448. Cambridge, MA: MIT Press, 
2002. 

[30] C. Sherman. Teoma vs. Google, Round 2. Available from 
World Wide Web (http://dc.internet.com/news/article.php/ 
1002061), 2002. 

[31] T. Upstill, N. Craswell, and D. Hawking. Predicting fame 
and fortune: PageRank or indegree?. In the Eighth 
Australasian Document Computing Symposium. 2003. 

[32] T. Upstill, N. Craswell, and D. Hawking. Query-independent 
evidence in home page finding. In ACM Transactions on 
Information Systems. 2003. 

 

 

 

715


