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ABSTRACT * Relevance: The static rank of a page provides a general

Since the publication of Brin and Page’s paper ageRank,
many in the Web community have depended on PageRarike

static (query-independent) ordering of Web pages.shbw that
we can significantly outperform PageRank usinguiet that are
independent of the link structure of the Web. Wan gafurther

boost in accuracy by using data on the frequenayhith users
visit Web pages. We use RankNet, a ranking macldaming

algorithm, to combine these and other static festurased on
anchor text and domain characteristics. The regultinodel

achieves a static ranking pairwise accuracy of %7(8s. 56.7%
for PageRank or 50% for random).

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning. H.3.3 I[nformation
Storage and Retrieval]: Information Search and Retrieval.

General Terms
Algorithms, Measurement, Performance, Experimentati

Keywords

Static ranking, search engines, PageRank, Rank&letvance

1. INTRODUCTION

Over the past decade, the Web has grown exporgritiasize.
Unfortunately, this growth has not been isolatedjdod-quality
pages. The number of incorrect, spamming, and roabc(e.g.,
phishing) sites has also grown rapidly. The sheenber of both
good and bad pages on the Web has led to an immgeatiance
on search engines for the discovery of useful mfdion. Users
rely on search engines not only to return pagesteelto their
search query, but also to separate the good frambéd, and
order results so that the best pages are sugdested

To date, most work on Web page ranking has focused
improving the ordering of the results returnedhe user (query-
dependent ranking, aynamic ranking). However, having a good
query-independent rankingstétic ranking) is also crucially
important for a search engine. A good static ragkétgorithm

provides numerous benefits:

Copyright is held by the International World Wideel/Conference
Committee (IW3C2). Distribution of these papers ligited to
classroom use, and personal use by others.

WWW 2006, May 23-26, 2006, Edinburgh, Scotland.

ACM 1-59593-323-9/06/0005.

707

indicator to the overall quality of the page. Thésa
useful input to the dynamic ranking algorithm.

« Efficiency: Typically, the search engine’s index is
ordered by static rank. By traversing the indexittigh-
quality to low-quality pages, the dynamic rankeryma
abort the search when it determines that no ladgep
will have as high of a dynamic rank as those alead
found. The more accurate the static rank, the b#tte
early-stopping ability, and hence the quicker tharsh
engine may respond to queries.

e Crawl Priority: The Web grows and changes as quickly

as search engines can crawl it. Search enginesaneay

to prioritize their crawl—to determine which pagegé-
crawl, how frequently, and how often to seek owvne
pages. Among other factors, the static rank of gepa
used to determine this prioritization. A bettertistaank
thus provides the engine with a higher quality, enop-
to-date index.

Google is often regarded as the first commercialligcessful
search engine. Their ranking was originally based tbe
PageRank algorithm [5][27]. Due to this (and podgsithue to
Google’s promotion of PageRank to the public), FRege is
widely regarded as the best method for the statiking of Web
pages.

Though PageRank has historically been thought tfope quite
well, there has yet been little academic evidemcsupport this
claim. Even worse, there has recently been workvstg that
PageRank may not perform any better than otherlsimpasures
on certain tasks. Upstill et al. have found that tloe task of
finding home pages, the number of pages linking page and the
type of URL were as, or more, effective than Pag&Ra2]. They
found similar results for the task of finding highuality
companies [31]. PageRank has also been used iensysior
TREC's “very large collection” and “Web track” comiiions,
but with much less success than had been expetigdHinally,
Amento et al. [1] found that simple features, sashthe number
of pages on a site, performed as well as PageRank.

Despite these, the general belief remains amongymbath
academic and in the public, that PageRank is aen&at factor
for a good static rank. Failing this, it is stilsumed that using the
link structure is crucial, in the form of the numloé inlinks or the
amount of anchor text.

In this paper, we show there are a number of simgteor page-
based features that significantly outperform Pag&R@dor the
purposes of statically ranking Web pages) desgitering the



structure of the Web. We combine these and otlagic Seatures
using machine learning to achieve a ranking systhat is
significantly better than PageRank (in pairwiseeagnent with
human labels).

A machine learning approach for static ranking hather

advantages besides the quality of the ranking. Bsrathe
measure consists of many features, it is hardemfdicious users
to manipulate it (i.e., to raise their page’s statank to an
undeserved level through questionable techniguss,kmown as
Web spamming). This is particularly true if thetfga set is not
known. In contrast, a single measure like PageRankbe easier
to manipulate because spammers need only coneerirabne
goal: how to cause more pages to point to theirepdgith an

algorithm that learns, a feature that becomes Unesdue to
spammer manipulation will simply be reduced or reetbfrom

the final computation of rank. This flexibility allvs a ranking
system to rapidly react to new spamming techniques.

A machine learning approach to static ranking $® @ble to take
advantage of any advances in the machine learnéld. fFor
example, recent work on adversarial classificafib?] suggests
that it may be possible to explicity model the Welage
spammer’s (the adversary) actions, adjusting thkimg model in
advance of the spammer’'s attempts to circumvenfitother
example is the elimination of outliers in constmgtthe model,
which helps reduce the effect that unique sites hraye on the
overall quality of the static rank. By moving statanking to a
machine learning framework, we not only gain inuecy, but
also gain in the ability to react to spammer’s @i to rapidly
add new features to the ranking algorithm, and eweedage
advances in the rapidly growing field of machinarteng.

Finally, we believe there will be significant adtages to using
this technique for other domains, such as searchitagal hard
drive or a corporation’s intranet. These are domaimere the
link structure is particularly weak (or non-exigferbut there are
other domain-specific features that could be jsspawerful. For
example, the author of an intranet page and higbsition in the
organization (e.g., CEO, manager, or developer)dcguovide
significant clues as to the importance of that payenachine
learning approach thus allows rapid developmera gbod static
algorithm in new domains.

This paper’s contribution is a systematic studystattic features,
including PageRank, for the purposes of (statitatipking Web
pages. Previous studies on PageRank typically sisesets of the
Web that are significantly smaller (e.g., the TREGC2 corpus,

used by many, contains only 19 million pages). Alsbe

performance of PageRank and other static featumestypically

been evaluated in the context of a complete sy$terdynamic

ranking, or for other tasks such as question anegieein contrast,
we explore the use of PageRank and other featorethé direct
task of statically ranking Web pages.

We first briefly describe the PageRank algorithmSkction 3 we
introduce RankNet, the machine learning technigseduto
combine static features into a final ranking. Sett# describes
the static features. The heart of the paper iseicti®& 5, which
presents our experiments and results. We concludk w
discussion of related and future work.

2. PAGERANK

The basic idea behind PageRank is simple: a linoknfa Web
page to another can be seen as an endorsemerdatgiae. In
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general, links are made by people. As such, theyraticative of
the quality of the pages to which they point — wioeeating a
page, an author presumably chooses to link to pdgesed to be
of good quality. We can take advantage of this dge
information to order Web pages according to thercpived
quality.

Imagine a Web surfer who jumps from Web page to \page,
choosing with uniform probability which link to folw at each
step. In order to reduce the effect of dead-endsndiess cycles
the surfer will occasionally jump to a random pagi¢th some
small probabilitya, or when on a page with no out-links. If
averaged over a sufficient number of steps, thdability the
surfer is on pagpat some point in time is given by the formula:

WhereF; is the set of pages that padaks to, andB; is the set of
pages that link to page The PageRank score for ngde defined
as this probabilityPR(j)=P(j). Because equation (1) is recursive,
it must be iteratively evaluated un@({j) converges (typically, the
initial distribution forP(j) is uniform). The intuition is, because a
random surfer would end up at the page more fretyyein is
likely a better page. An alternative view for eqoat(l) is that
each page is assigned a qual®j). A page “gives” an equal
share of its quality to each page it points to.

PageRank is computationally expensive. Our cobectdf 5
billion pages contains approximately 370 billionkis. Computing
PageRank requires iterating over these billionsirdds multiple
times (until convergence). It requires large amsusit memory
(or very smart caching schemes that slow the coatiput down
even further), and if spread across multiple maghirrequires
significant communication between them. Though mwork has
been done on optimizing the PageRank computatier ésg.,
[25] and [6]), it remains a relatively slow, comatibnally
expensive property to compute.

3. RANKNET

Much work in machine learning has been done omptbblems of
classification and regression. ¢t{x;} be a collection of feature
vectors (typically, a feature is any real valuedmber), and
Y={y} be a collection of associated classes, wheiie the class
of the object described by feature veciqor The classification
problem is to learn a functidnthat maps;=f(x;), for alli. When

y; is real-valued as well, this is called regression.

Static ranking can be seen as a regression probfene let x;
represent features of pageandy; be a value (say, the rank) for
each page, we could learn a regression functianntapped each
page’s features to their rank. However, this owsrstrains the
problem we wish to solve. All we really care absuthe order of
the pages, not the actual value assigned to them.

Recent work on thisranking problem [7][13][18] directly
attempts to optimize the ordering of the objecésher than the
value assigned to them. For these Zle{<i,j>} be a collection of
pairs of items, where itemshould be assigned a higher value than
item j. The goal of the ranking problem, then, is to hear
functionf such that,

0, j)0z, f(x) > f(x))



Note that, as with learning a regression functtbe, result of this

process is a functiorf)(that maps feature vectors to real values.

This function can still be applied anywhere thategression-
learned function could be applied. The only differe is the
technique used to learn the function. By directbfimizing the
ordering of objects, these methods are able tm ladnnction that
does a better job of ranking than do regressiomiegces.

We used RankNet [7], one of the aforementionedriigctes for
learning ranking functions, to learn our static kafunction.

RankNet is a straightforward modification to thargtard neural
network back-prop algorithm. As with back-prop, Risdet

attempts to minimize the value of a cost functigndaljusting
each weight in the network according to the gradafrthe cost
function with respect to that weight. The differens that, while a
typical neural network cost function is based oa tifference
between the network output and the desired outhatRankNet
cost function is based on the difference betwepailof network
outputs. That is, for each pair of feature vecter$> in the

training set, RankNet computes the network outmutand o

Since vectol is supposed to be ranked higher than vecttre

larger isg-0;, the larger the cost.

RankNet also allows the pairs iB to be weighted with a
confidence (posed as the probability that the paiisfies the
ordering induced by the ranking function). In theper, we used
a probability of one for all pairs. In the next sea, we will
discuss the features used in our feature vectors,

4. FEATURES

To apply RankNet (or other machine learning techeg] to the
ranking problem, we needed to extract a set ofifeatfrom each
page. We divided our feature set into four, mutuakclusive,
categories: page-levdPdge), domain-level Domain), anchor text
and inlinks Anchor), and popularity Popularity). We also
optionally used the PageRank of a page as a fed®atew, we
describe each of these feature categories in neied.d

PageRank

We computed PageRank on a Web graph of 5 billieavied
pages (and 20 billion known URLs linked to by th@sges).
This represents a significant portion of the Webd as
approximately the same number of pages as are bged
Google, Yahoo, and MSN for their search engines.

Because PageRank is a graph-based algorithmjritpertant
that it be run on as large a subset of the Welnasilple. Most
previous studies on PageRank used subsets of thetivdeare
significantly smaller (e.g. the TREC VLC2 corpused by
many, contains only 19 million pages)

We computed PageRank using the standard valu@5ffora.
Popularity

Another feature we used is the actual popularity ¥feb page,
measured as the number of times that it has bestediby
users over some period of time. We have accesado data
from users who have installed the MSN toolbar aakehopted
to provide it to MSN. The data is aggregated intooant, for
each Web page, of the number of users who viewatdotige.

Though popularity data is generally unavailabler¢hare two
other sources for it. The first is from proxy logar example, a
university that requires its students to use aylws a record
of all
Unfortunately, proxy data is quite biased and reddy small.
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the pages they have visited while on campus.

Another source, internal to search engines, amrdsmf which
results their users clicked on. Such data was bgdtie search
engine “Direct Hit", and has recently been explortat

dynamic ranking purposes [20]. An advantage of ttiwbar

data over this is that it contains information abb&RL visits

that are not just the result of a search.

The raw popularity is processed into a number afuiees such
as the number of times a page was viewed and thdeuof
times any page in the domain was viewed. More detae
provided in section 5.5.

Anchor text and inlinks

These features are based on the information assdciwgith

links to the page in question. It includes features sucthas
total amount of text in links pointing to the pa@f@anchor

text”), the number of unique words in that text. et

Page
This category consists of features which may berdghed by
looking at the page (and its URL) alone. We usely eight,
simple features such as the number of words irbtdy, the
frequency of the most common term, etc.

Domain

This category contains features that are compusedvarages
across all pages in the domain. For example, therage
number of outlinks on any page and the averageRRade

Many of these features have been used by otherariting Web
pages, particularly the anchor and page featuresméntioned,
the evaluation is typically for dynamic ranking,dawe wish to
evaluate the use of them for static ranking. Al$o, our
knowledge, this is the first study on the use ofualk page
visitation popularity for static ranking. The clessimilar work is
on using click-through behavior (that is, which rebaengine
results the users click on) to affect dynamic ragk{see e.g.,
[20)).

Because we use a wide variety of features to cqmeith a static

ranking, we refer to this afiRank (for feature-based ranking).
fRank uses RankNet and the set of features desciibethis

section to learn a ranking function for Web pagemless

otherwise specified, fRank was trained with althaf features.

5. EXPERIMENTS

In this section, we will demonstrate that we cart parform
PageRank by applying machine learning to a striighard set
of features. Before the results, we first discuss tata, the
performance metric, and the training method.

5.1 Data

In order to evaluate the quality of a static ragkivve needed a
“gold standard” defining the correct ordering foset of pages.
For this, we employed a dataset which contains nuondgments

for 28000 queries. For each query, a number ofltesare

manually assigned a rating, from 0 to 4, by humadggs. The
rating is meant to be a measure of how relevantébalt is for

the query, where 0 means “poor” and 4 means “excgll There

are approximately 500k judgments in all, or an agerof 18

ratings per query.

The queries are selected by randomly choosing egmierom
among those issued to the MSN search engine. Toigapility
that a query is selected is proportional to itgj@i@ncy among all



of the queries. As a result, common queries areertikely to be
judged than uncommon queries. As an example of diverse
the queries are, the first four queries in thentray set are “chef
schools”, *“chicagoland speedway”, “eagles fan clutd@nd

“Turkish culture”. The documents selected for judpgiare those
that we expected would, on average, be reasonaldyant (for
example, the top ten documents returned by MSNarche
engine). This provides significantly more infornaati than
randomly selecting documents on the Web, the vagonity of

which would be irrelevant to a given query.

Because of this process, the judged pages tene tof igher
quality than the average page on the Web, and tefe pages
that will be returned for common search queriess bias is good
when evaluating the quality of static ranking fbe tpurposes of
index ordering and returning relevant documentss ©hbecause
the most important portion of the index to be vesttered and
relevant is the portion that is frequently returnfed search
queries. Because of this bias, however, the resuttss paper are
not applicable to crawl prioritization. In order tobtain

experimental results on crawl prioritization, we ulb need

ratings on a random sample of Web pages.

To convert the data from query-dependent to quadgpendent,

we simply removed the query, taking the maximum rove

judgments for a URL that appears in more than ameryg The

reasoning behind this is that a page that is relefes some query
and irrelevant for another is probably a decentepaigd should
have a high static rank. Because we evaluated #gespon
queries that occur frequently, our data indicatesdorrect index
ordering, and assigns high value to pages thatlilely to be

relevant to a common query.

We randomly assigned queries to a training, vabdaibr test set,
such that they contained 84%, 8%, and 8% of therieme
respectively. Each set contains all of the ratiiogs given query,
and no query appears in more than one set. Tharngaset was
used to train fRank. The validation set was usedediect the
model that had the highest performance. The tésta® used for
the final results.

This data gives us a query-independent orderingagfes. The
goal for a static ranking algorithm will be to reduce this
ordering as closely as possible. In the next sectiee describe
the measure we used to evaluate this.

5.2 Measure

We chose to uspairwise accuracy to evaluate the quality of a
static ranking. The pairwise accuracy is the faactof time that
the ranking algorithm and human judges agree orottiering of
a pair of Web pages.

If S(x) is the static ranking assigned to pageand Hg) is the
human judgment of relevance for x, then considerfthilowing
sets:

H,={xy:H(X)>H(y)} S, ={xy:S(x)>3(y)}

The pairwise accuracy is the portiontéf that is also contained

inSy:

and

o H,n'S,
pairwiseaccuracy=‘+——-—

|

This measure was chosen for two reasons. First,dtberete
human judgments provide only a partial orderingrodeb pages,
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making it difficult to apply a measure such as $pearman rank
order correlation coefficient (in the pairwise a@my measure, a
pair of documents with the same human judgment doesiffect
the score). Second, the pairwise accuracy has #utive
meaning: it is the fraction of pairs of documeritatt when the
humans claim one is better than the other, theicstank
algorithm orders them correctly.

5.3 Method

We trained fRank (a RankNet based neural netwosigguthe
following parameters. We used a fully connectedy2t network.
The hidden layer had 10 hidden nodes. The inpughteito this
layer were all initialized to be zero. The outplayer” (just a
single node) weights were initialized using a umforandom
distribution in the range [-0.1, 0.1]. We usedh as the transfer
function from the inputs to the hidden layer, anléhaar function
from the hidden layer to the output. The cost fiomctis the
pairwise cross entropy cost function as discussesgction 3.

The features in the training set were normalizeldaee zero mean
and unit standard deviation. The same linear toansdtion was
then applied to the features in the validation st sets.

For training, we presented the network with 5 millipairings of
pages, where one page had a higher rating thamttres. The
pairings were chosen uniformly at random (with agpment)
from all possible pairings. When forming the paws, ignored the
magnitude of the difference between the ratings (#ting spread)
for the two URLs. Hence, the weight for each pa#sveonstant
(one), and the probability of a pair being selecteds

independent of its rating spread.

We trained the network for 30 epochs. On each eptich

training pairs were randomly shuffled. The initigining rate was
0.001. At each epoch, we checked the error onrieing set. If
the error had increased, then we decreased timinyaiate, under
the hypothesis that the network had probably owrsiihe

training rate at each epoch was thus set to:

Training rate =X
e+l

Wherek is the initial rate (0.001), angdis the number of times
the training set error has increased. After eachclep we

measured the performance of the neural networkervalidation

set, using 1 million pairs (chosen randomly witiplagement).
The network with the highest pairwise accuracy fm talidation

set was selected, and then tested on the testWeeteport the
pairwise accuracy on the test set, calculated ualhgossible

pairs.

These parameters were determined and fixed bdferstatic rank
experiments in this paper. In particular, the choaf initial
training rate, number of epochs, and training ddeay function
were taken directly from Burges et al [7].

Though we had the option of preprocessing any efféatures
before they were input to the neural network, weaneed from
doing so on most of them. The only exception waspbpularity
features. As with most Web phenomenon, we found the
distribution of site popularity is Zipfian. To rec® the dynamic
range, and hopefully make the feature more usefelpresented
the network with both the unpreprocessed, as wslltlae
logarithm, of the popularity features (As with tlo¢hers, the
logarithmic feature values were also normalizedhtwve zero
mean and unit standard deviation).



Applying fRank to a document is computationallyi@ént, taking
time that is only linear in the number of inputtfeas; it is thus
within a constant factor of other simple machireréng methods
such as naive Bayes. In our experiments, comptitiegRank for
all five billion Web pages was approximately 10thds faster
than computing the PageRank for the same set.

5.4 Results

As Table 1 shows, fRank significantly outperfornegPRank for
the purposes of static ranking. With a pairwiseuaacy of 67.4%,
fRank more than doubles the accuracy of PageRai#ti(re to

the baseline of 50%, which is the accuracy thatlevbe achieved
by a random ordering of Web pages). Note that dniRank’s

input features is the PageRank of the page, so auddvwexpect it
to perform no worse than PageRank. The significacitease in
accuracy implies that the other features (anchopufarity, etc.)
do in fact contain useful information regarding thesrall quality
of a page.

Table 1: Basic Results

Technique Accuracy (%)
None (Baseline) 50.00
PageRank 56.70
fRank 67.43

There are a number of decisions that go into thepetation of
PageRank, such as how to deal with pages that iawaitlinks,
the choice ofa, numeric precision, convergence threshold, etc.
We were able to obtain a computation of PageRankn fa
completely independent implementation (provided WBlarc
Najork) that varied somewhat in these parametérachieved a
pairwise accuracy of 56.52%, nearly identical tattbbtained by
our implementation. We thus concluded that the italf the
PageRank is not sensitive to these minor variatioredgorithm,
nor was PageRank’s low accuracy due to problemé witr
implementation of it.

We also wanted to find how well each feature sefopmed. To
answer this, for each feature set, we trained asted fRank
using only that set of features. The results amsshin Table 2.
As can be seemvery single feature set individually outperformed
PageRank on this test. Perhaps the most interesting résuhat
the Page-level features had the highest performantcef all the
feature sets. This is surprising because theséeateres that do
not depend on the overall graph structure of thé Wer even on
what pages point to a given page. This is conti@itjne common
belief that the Web graph structure is the keyindifg a good
static ranking of Web pages.

Table 2: Resultsfor individual feature sets.

Feature Set Accuracy (%)
PageRank 56.70
Popularity 60.82
Anchor 59.09
Page 63.93
Domain 59.03
All Features 67.43
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Because we are using a two-layer neural netwogkfeatures in
the learned network can interact with each otheintaresting,
nonlinear ways. This means that a particular featbat appears
to have little value in isolation could actually bery important
when used in combination with other features. Taasnee the
final contribution of a feature set, in the contexktall the other
features, we performed an ablation study. Thafbiseach set of
features, we trained a network to contain all ef fdaturesxcept
that set. We then compared the performance of #selting
network to the performance of the network withadithe features.
Table 3 shows the results of this experiment, witeee'decrease
in accuracy” is the difference in pairwise accurdetween the
network trained with all of the features, and tlework missing
the given feature set.

Table 3: Ablation study. Shown is the decrease in accuracy
when we train a network that has all but the given set of
features. The last line is shows the effect of removing the
anchor, PageRank, and domain features, hence a model
containing no network or link-based infor mation whatsoever.

Feature Set Decreasein
Accuracy
PageRank 0.18
Popularity 0.78
Anchor 0.47
Page 5.42
Domain 0.10
Anchor, PageRank & Domain 0.60

The results of the ablation study are consistetit thie individual
feature set study. Both show that the most impoffeature set is
the Page-level feature set, and the second mogiriam is the
popularity feature set.

Finally, we wished to see how the performance ofniR

improved as we added features; we wanted to finghait point

adding more feature sets became relatively useksginning

with no features, we greedily added the featurahstimproved

performance the most. The results are shown ineTdblFor

example, the fourth line of the table shows tharRusing the
page, popularity, and anchor features outperforamgd network

that used the page, popularity, and some othanrfeaet, and that
the performance of this network was 67.25%.

Table 4: fRank performance as feature sets are added. At each
row, the feature set that gave the greatest increase in accuracy
was added to the list of features (i.e., we conducted a greedy
search over feature sets).

Feature Set Accuracy (%)
None 50.00
+Page 63.93
+Popularity 66.83
+Anchor 67.25
+PageRank 67.31
+Domain 67.43




Table5: Top ten URLsfor PageRank vs. fRank

PageRank fRank
google.com google.com
apple.com/quicktime/download  yahoo.com
amazon.com americanexpress.com
yahoo.com hp.com
microsoft.com/windows/ie target.com
apple.com/quicktime bestbuy.com
mapquest.com dell.com
ebay.com autotrader.com
mozilla.org/products/firefox dogpile.com
ftc.gov bankofamerica.com

Finally, we present a qualitative comparison of ¢Rank vs.

fRank. In Table 5 are the top ten URLSs returnedPfageRank and
for fRank. PageRank’s results are heavily weightediards

technology sites. It contains two QuickTime URLpple’s video

playback software), as well as Internet Explored dfireFox

URLs (both of which are Web browsers). fRank, om tther

hand, contains more consumer-oriented sites sucAnasican

Express, Target, Dell, etc. PageRank’s bias towesidnology can
be explained through two processes. First, thezen@ny pages
with “buttons” at the bottom suggesting that the $ optimized

for Internet Explorer, or that the visitor needsic@liime. These
generally link back to, in these examples, therhwe Explorer

and QuickTime download sites. Consequently, PaglkeRanks

those pages highly. Though these pages are impottey are

not as important as it may seem by looking at thke $tructure

alone. One fix for this is to add information abdl link to the

PageRank computation, such as the size of thevibether it was
at the bottom of the page, etc.

The other bias comes from the fact that the pojmuiaif Web site

authors is different than the population of Web rsisaVeb

authors tend to be technologically-oriented, and tteir linking

behavior reflects those interests. fRank, by kngwihe actual
visitation popularity of a site (the popularity feee set), is able to
eliminate some of that bias. It has the abilitydepend more on
where actual Web users visit rather than where Web site

authors have linked.

The results confirm that fRank outperforms PageRargairwise
accuracy. The two most important feature sets aegdge and

by any toolbar user. This limited the possible deas we could
derive from this data. For possible extensions, ssgion 6.3,
future work.

For each URL in our train and test sets, we praviddeature to
fRank which was how many times it had been visliga toolbar

user. However, this feature was quite noisy andrsspa
particularly for URLs with query parameters (elgttp://search-
.msn.com/results.aspx?g=machine+learning&form=QBH®ne

solution was to provide an additional feature whishs the

number of times any URL at the given domain wagedsby a

toolbar user. Adding this feature dramatically ioyed the

performance of fRank.

We took this one step further and used the builtigrarchical
structure of URLS to construct many levels of bdtketween the
full URL and the domain. We did this by using tle¢ af features
shown in Table 6.

Table 6: URL functions used to compute the Popularity
feature set.

Function Example

Exact URL | cnn.com/2005/tech/wikipedia.html?v=mobile
No Params | cnn.com/2005/tech/wikipedia.html

Page wikipedia.html

URL-1 cnn.com/2005/tech

URL-2 chn.com/2005

Domain cnn.com

Domain+1 cnn.com/2005

Each URL was assigned one feature for each fundiimwn in

the table. The value of the feature was the cotititeonumber of
times a toolbar user visited a URL, where the fiomcapplied to
that URL matches the function applied to the URLgirestion.
For example, a user’s visit tenn.com/2005/sports.html would

increment theDomain and Domain+1 features for the URL
cnn.com/2005/tech/wikipedia.htm.

As seen in Table 7, adding the domain counts saamfly
improved the quality of the popularity feature, aadding the
numerous backoff functions listed in Table 6 immdvthe

popularity features. This is surprising, as the page features accuracy even further.

consisted only of a few (8) simple features. Furtieperiments
found that, of the page features, those based ertetkt of the
page (as opposed to the URL) performed the besthdnnext
section, we explore the popularity feature in naetail.

5.5 Popularity Data

As mentioned in section 4, our popularity data cdromm MSN
toolbar users. For privacy reasons, we had accaebsto an
aggregate count of, for each URL, how many timesais visited
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Table 7: Effect of adding backoff to the popularity feature set

Features Accuracy (%)
URL count 58.15
URL and Domain counts 59.31
All backoff functions (Table 6) 60.82




Backing off to subsets of the URL is one techniduedealing

with the sparsity of data. It is also informative see how the
performance of fRank depends on the amount of pojpyldata
that we have collected. In Figure 1 we show thdoperance of
fRank trained with only the popularity feature sst the amount
of data we have for the popularity feature set.hEday, we
receive additional popularity data, and as candam $n the plot,
this increases the performance of fRank. The walatis

logarithmic: doubling the amount of popularity dateovides a
constant improvement in pairwise accuracy.

In summary, we have found that the popularity fesgtiprovide a
useful boost to the overall fRank accuracy. Gattgermore
popularity data, as well as employing simple batlstfategies,
improve this boost even further.

5.6 Summary of Results

The experiments provide a number of conclusionsstFfRank
performs significantly better than PageRank, evéthout any
information about the Web graph. Second, the pagel land
popularity features were the most significant cbutiors to
pairwise accuracy. Third, by collecting more popityadata, we
can continue to improve fRank’s performance.

The popularity data provides two benefits to fRafikst, we see
that qualitatively, fRank’'s ordering of Web pagessha more
favorable bias than PageRank’s. fRank’s orderingmse to
correspond to what Web users, rather than Web patjeors,
prefer. Second, the popularity data is more timehan
PageRank’s link information. The toolbar providesormation
about which Web pages people find interesting rigiotv,
whereas links are added to pages more slowly, t®eaufind the
time and interest.

6. RELATED AND FUTURE WORK

6.1 Improvementsto PageRank

Since the original PageRank paper, there has bemik wn
improving it. Much of that work centers on speedimg and
parallelizing the computation [15][25].

One recognized problem with PageRank is thatopifc drift: A

page about “dogs” will have high PageRank if itirkked to by
many pages that themselves have high rank, regardietheir
topic. In contrast, a search engine user lookimrggimod pages
about dogs would likely prefer to find pages that pointed to by
many pages that are themselves about dogs. Heticd, that is

“on topic” should have higher weight than a linkaths not.
Richardson and Domingos’s Query Dependent PageR28ik
and Haveliwala’s Topic-Sensitive PageRank [16] dmo

approaches that tackle this problem.

Other variations to PageRank include differentlyighiéng links

for inter- vs. intra-domain links, adding a backdsustep to the
random surfer to simulate the “back” button on mbsiwsers
[24] and modifying the jump probabilitya] [3]. See Langville

and Meyer [23] for a good survey of these, and mthe

modifications to PageRank.

6.2 Other related work

PageRank is not the only link analysis algorithradufor ranking
Web pages. The most well-known other is HITS [2&hich is
used by the Teoma search engine [30]. HITS prodackst of

hubs and authorities, where hubs are pages that point to many
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Figure 1: Relation between the amount of popularity data and
the performance of the popularity feature set. Note the x-axis
isalogarithmic scale.

authority pages, and authorities are pages thapairged to by
many hubs.
comparably to PageRank [1].

One field of interest is that of static index pmmi(see e.g.,
Carmel et al. [8]). Static index pruning methodsduee the size of
the search engine’s index by removing documents Hra

unlikely to be returned by a search query. The ipis typically

done based on the frequency of query terms. Simil®andey
and Olston [28] suggest crawling pages frequerftltheéy are

likely to incorrectly appear (or not appear) agsuit of a search.
Similar methods could be incorporated into theistatnk (e.g.,

how many frequent queries contain words found @pghge).

Others have investigated the effect that PageRasloh the Web
at large [9]. They argue that pages with high PagéRare more
likely to be found by Web users, thus more likaybe linked to,
and thus more likely to maintain a higher PageRtuan other
pages. The same may occur for the popularity dfatee increase
the ranking for popular pages, they are more likelpe clicked
on, thus further increasing their popularity. Chiale [10] argue
that a more appropriate measure of Web page quaiityld
depend on not only the current link structure &f Wkeb, but also
on the change in that link structure. The samentigcie may be
applicable to popularity data: the change in pofitylaf a page
may be more informative than the absolute popuylarit

One interesting related work is that of Ivory anéakbt [19].
Their goal was to build a model of Web sites that @nsidered
high quality from the perspective of “content, sture and
navigation, visual design, functionality, interadt, and overall
experience”. They used over 100 page level featwevell as
features encompassing the performance and strucfufes site.
This let them qualitatively describe the qualitefsa page that
make it appear attractive (e.g., rare use of galit least 9 point
font, ...), and (in later work) to build a system tlaasists novel
Web page authors in creating quality pages by etialy it
according to these features. The primary differertmetween this
work and ours are the goal (discovering what carts a good
Web page vs. ordering Web pages for the purposegvelh
search), the size of the study (they used a datéseds than 6000
pages vs. our set of 468,000), and our comparistnReageRank.

Previous work has shown HITS to perform



Nevertheless, their work provides insights to addal useful
static features that we could incorporate into fRarnthe future.

Recent work on incorporating novel features intoaiyic ranking

includes that by Joachims et al. [21], who investgthe use of
implicit feedback from users, in the form of whiskarch engine
results are clicked on. Craswell et al. [11] présermethod for
determining the best transformation to apply torgirdependent
features (such as those used in this paper) fopthposes of
improving dynamic ranking. Other work, such as Boga al. [4]

and Bartell et al. [2] apply machine learning fhe tpurposes of
improving the overall relevance of a search endine., the

dynamic ranking). They do not apply their techngue the

problem of static ranking.

6.3 Futurework

There are many ways in which we would like to egténis work.
First, fRank uses only a small number of featuvés.believe we
could achieve even more significant results withrerfeatures. In
particular the existence, or lack thereof, of dartaords could
prove very significant (for instance, “under couostion”

probably signifies a low quality page). Other featu could
include the number of images on a page, size cfethimages,
number of layout elements (tables, divs, and spars® of style
sheets, conforming to W3C standards (like XHTML Sict),

background color of a page, etc.

Many pages are generated dynamically, the conténthich may

depend on parameters in the URL, the time of dhg, dser

visiting the site, or other variables. For such gggt may be

useful to apply the techniques found in [26] tonfom static

approximation for the purposes of extracting fesgur The

resulting grammar describing the page could itself source of
additional features describing the complexity &f frage, such as
how many non-terminal nodes it has, the depth efgrammar

tree, etc.

fRank allows one to specify a confidence in eaciringa of
documents. In the future, we will experiment wittolpabilities
that depend on the difference in human judgmentwden the
two items in the pair. For example, a pair of doenta where one
was rated 4 and the other 0 should have a highdidemce than
a pair of documents rated 3 and 2.

The experiments in this paper are biased towarégp#uat have
higher than average quality. Also, fRank with dlltioe features
can only be applied to pages that have already loemwled.

Thus, fRank is primarily useful for index orderinagd improving
relevance, not for directing the crawl. We wouldkeli to

investigate a machine learning approach for craigripization as
well. It may be that a combination of methods isstbeor

example, using PageRank to select the best 5 rbithiothe 20
billion pages on the Web, then using fRank to otterindex and
affect search relevancy.

Another interesting direction for exploration is bocorporate
fRank and page-level features directly into the eRank
computation itself. Work on biasing the PageRankguvector
[16], and transition matrix [29], have demonstratieel feasibility
and advantages of such an approach. There is reéasoelieve
that a direct application of [29], using the fRaofka page for its
“relevance”, could lead to an improved overallisteank.

Finally, the popularity data can be used in othégresting ways.
The general surfing and searching habits of Welbsugaries by
time of day. Activity in the morning, daytime, amdening are
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often quite different (e.g., reading the news, ismvproblems,
and accessing entertainment, respectively). Wegaan insight
into these differences by using the popularity ddfaided into
segments of the day. When a query is issued, wddwban use
the popularity data matching the time of query ides to do the
ranking of Web pages. We also plan to explore paniylfeatures
that use more than just the counts of how ofteagewas visited.
For example, how long users tended to dwell ongepdid they
leave the page by clicking a link or by hitting theck button, etc.
Fox et al. did a study that showed that featureb s this can be
valuable for the purposes of dynamic ranking [IHhally, the
popularity data could be used as the label ratien &s a feature.
Using fRank in this way to predict the populariyaopage may
useful for the tasks of relevance, efficiency, amdwl priority.
There is also significantly more popularity datarthhuman
labeled data, potentially enabling more complexhireelearning
methods, and significantly more features.

7. CONCLUSIONS

A good static ranking is an important component tioday’s

search engines and information retrieval system& Kkéve
demonstrated that PageRank does not provide agamg static
ranking; there are many simple features that indiaily out

perform PageRank. By combining many static feajufBsank

achieves a ranking that has a significantly higlpairwise

accuracy than PageRank alone. A qualitative evialuatf the top
documents shows that fRank is less technology-Biaten

PageRank; by using popularity data, it is biasedatd pages that
Web users, rather than Web authors, visit. The maclearning
component of fRank gives it the additional benefibeing more
robust against spammers, and allows it to leveragther

developments in the machine learning communityéas such as
adversarial classification. We have only begun xplae the

options, and believe that significant strides canntade in the
area of static ranking by further experimentatiathvadditional

features, other machine learning techniques, anditiawal

sources of data.
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