
Beyond PageRank: Machine Learning for Static Ranking
Matthew Richardson

Microsoft Research
One Microsoft Way

Redmond, WA 98052
+1 (425) 722-3325

mattri@microsoft.com

Amit Prakash
MSN

One Microsoft Way
Redmond, WA 98052

+1 (425) 705-6015

amitp@microsoft.com

Eric Brill
Microsoft Research
One Microsoft Way

Redmond, WA 98052
+1 (425) 705-4992

brill@microsoft.com

ABSTRACT
Since the publication of Brin and Page’s paper on PageRank,
many in the Web community have depended on PageRank for the
static (query-independent) ordering of Web pages. We show that
we can significantly outperform PageRank using features that are
independent of the link structure of the Web. We gain a further
boost in accuracy by using data on the frequency at which users
visit Web pages. We use RankNet, a ranking machine learning
algorithm, to combine these and other static features based on
anchor text and domain characteristics. The resulting model
achieves a static ranking pairwise accuracy of 67.3% (vs. 56.7%
for PageRank or 50% for random).

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning. H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Static ranking, search engines, PageRank, RankNet, relevance

1. INTRODUCTION
Over the past decade, the Web has grown exponentially in size.
Unfortunately, this growth has not been isolated to good-quality
pages. The number of incorrect, spamming, and malicious (e.g.,
phishing) sites has also grown rapidly. The sheer number of both
good and bad pages on the Web has led to an increasing reliance
on search engines for the discovery of useful information. Users
rely on search engines not only to return pages related to their
search query, but also to separate the good from the bad, and
order results so that the best pages are suggested first.

To date, most work on Web page ranking has focused on
improving the ordering of the results returned to the user (query-
dependent ranking, or dynamic ranking). However, having a good
query-independent ranking (static ranking) is also crucially
important for a search engine. A good static ranking algorithm
provides numerous benefits:

• Relevance: The static rank of a page provides a general
indicator to the overall quality of the page. This is a
useful input to the dynamic ranking algorithm.

• Efficiency: Typically, the search engine’s index is
ordered by static rank. By traversing the index from high-
quality to low-quality pages, the dynamic ranker may
abort the search when it determines that no later page
will have as high of a dynamic rank as those already
found. The more accurate the static rank, the better this
early-stopping ability, and hence the quicker the search
engine may respond to queries.

• Crawl Priority: The Web grows and changes as quickly
as search engines can crawl it. Search engines need a way
to prioritize their crawl—to determine which pages to re-
crawl, how frequently, and how often to seek out new
pages. Among other factors, the static rank of a page is
used to determine this prioritization. A better static rank
thus provides the engine with a higher quality, more up-
to-date index.

Google is often regarded as the first commercially successful
search engine. Their ranking was originally based on the
PageRank algorithm [5][27]. Due to this (and possibly due to
Google’s promotion of PageRank to the public), PageRank is
widely regarded as the best method for the static ranking of Web
pages.

Though PageRank has historically been thought to perform quite
well, there has yet been little academic evidence to support this
claim. Even worse, there has recently been work showing that
PageRank may not perform any better than other simple measures
on certain tasks. Upstill et al. have found that for the task of
finding home pages, the number of pages linking to a page and the
type of URL were as, or more, effective than PageRank [32]. They
found similar results for the task of finding high quality
companies [31]. PageRank has also been used in systems for
TREC’s “very large collection” and “Web track” competitions,
but with much less success than had been expected [17]. Finally,
Amento et al. [1] found that simple features, such as the number
of pages on a site, performed as well as PageRank.

Despite these, the general belief remains among many, both
academic and in the public, that PageRank is an essential factor
for a good static rank. Failing this, it is still assumed that using the
link structure is crucial, in the form of the number of inlinks or the
amount of anchor text.

In this paper, we show there are a number of simple url- or page-
based features that significantly outperform PageRank (for the
purposes of statically ranking Web pages) despite ignoring the

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to
classroom use, and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

707

structure of the Web. We combine these and other static features
using machine learning to achieve a ranking system that is
significantly better than PageRank (in pairwise agreement with
human labels).

A machine learning approach for static ranking has other
advantages besides the quality of the ranking. Because the
measure consists of many features, it is harder for malicious users
to manipulate it (i.e., to raise their page’s static rank to an
undeserved level through questionable techniques, also known as
Web spamming). This is particularly true if the feature set is not
known. In contrast, a single measure like PageRank can be easier
to manipulate because spammers need only concentrate on one
goal: how to cause more pages to point to their page. With an
algorithm that learns, a feature that becomes unusable due to
spammer manipulation will simply be reduced or removed from
the final computation of rank. This flexibility allows a ranking
system to rapidly react to new spamming techniques.

A machine learning approach to static ranking is also able to take
advantage of any advances in the machine learning field. For
example, recent work on adversarial classification [12] suggests
that it may be possible to explicitly model the Web page
spammer’s (the adversary) actions, adjusting the ranking model in
advance of the spammer’s attempts to circumvent it. Another
example is the elimination of outliers in constructing the model,
which helps reduce the effect that unique sites may have on the
overall quality of the static rank. By moving static ranking to a
machine learning framework, we not only gain in accuracy, but
also gain in the ability to react to spammer’s actions, to rapidly
add new features to the ranking algorithm, and to leverage
advances in the rapidly growing field of machine learning.

Finally, we believe there will be significant advantages to using
this technique for other domains, such as searching a local hard
drive or a corporation’s intranet. These are domains where the
link structure is particularly weak (or non-existent), but there are
other domain-specific features that could be just as powerful. For
example, the author of an intranet page and his/her position in the
organization (e.g., CEO, manager, or developer) could provide
significant clues as to the importance of that page. A machine
learning approach thus allows rapid development of a good static
algorithm in new domains.

This paper’s contribution is a systematic study of static features,
including PageRank, for the purposes of (statically) ranking Web
pages. Previous studies on PageRank typically used subsets of the
Web that are significantly smaller (e.g., the TREC VLC2 corpus,
used by many, contains only 19 million pages). Also, the
performance of PageRank and other static features has typically
been evaluated in the context of a complete system for dynamic
ranking, or for other tasks such as question answering. In contrast,
we explore the use of PageRank and other features for the direct
task of statically ranking Web pages.

We first briefly describe the PageRank algorithm. In Section 3 we
introduce RankNet, the machine learning technique used to
combine static features into a final ranking. Section 4 describes
the static features. The heart of the paper is in Section 5, which
presents our experiments and results. We conclude with a
discussion of related and future work.

2. PAGERANK
The basic idea behind PageRank is simple: a link from a Web
page to another can be seen as an endorsement of that page. In

general, links are made by people. As such, they are indicative of
the quality of the pages to which they point – when creating a
page, an author presumably chooses to link to pages deemed to be
of good quality. We can take advantage of this linkage
information to order Web pages according to their perceived
quality.

Imagine a Web surfer who jumps from Web page to Web page,
choosing with uniform probability which link to follow at each
step. In order to reduce the effect of dead-ends or endless cycles
the surfer will occasionally jump to a random page with some
small probability α, or when on a page with no out-links. If
averaged over a sufficient number of steps, the probability the
surfer is on page j at some point in time is given by the formula:

 ∑
∈

+−=
ji i

iP

N
jP

B F
)()1(

)(αα (1)

Where Fi is the set of pages that page i links to, and Bj is the set of
pages that link to page j. The PageRank score for node j is defined
as this probability: PR(j)=P(j). Because equation (1) is recursive,
it must be iteratively evaluated until P(j) converges (typically, the
initial distribution for P(j) is uniform). The intuition is, because a
random surfer would end up at the page more frequently, it is
likely a better page. An alternative view for equation (1) is that
each page is assigned a quality, P(j). A page “gives” an equal
share of its quality to each page it points to.

PageRank is computationally expensive. Our collection of 5
billion pages contains approximately 370 billion links. Computing
PageRank requires iterating over these billions of links multiple
times (until convergence). It requires large amounts of memory
(or very smart caching schemes that slow the computation down
even further), and if spread across multiple machines, requires
significant communication between them. Though much work has
been done on optimizing the PageRank computation (see e.g.,
[25] and [6]), it remains a relatively slow, computationally
expensive property to compute.

3. RANKNET
Much work in machine learning has been done on the problems of
classification and regression. Let X={ xi} be a collection of feature
vectors (typically, a feature is any real valued number), and
Y={yi} be a collection of associated classes, where yi is the class
of the object described by feature vector xi. The classification
problem is to learn a function f that maps yi=f(xi), for all i. When
yi is real-valued as well, this is called regression.

Static ranking can be seen as a regression problem. If we let xi
represent features of page i, and yi be a value (say, the rank) for
each page, we could learn a regression function that mapped each
page’s features to their rank. However, this over-constrains the
problem we wish to solve. All we really care about is the order of
the pages, not the actual value assigned to them.

Recent work on this ranking problem [7][13][18] directly
attempts to optimize the ordering of the objects, rather than the
value assigned to them. For these, let Z={< i,j>} be a collection of
pairs of items, where item i should be assigned a higher value than
item j. The goal of the ranking problem, then, is to learn a
function f such that,

)()(,, ji ffji xxZ >∈∀

708

Note that, as with learning a regression function, the result of this
process is a function (f) that maps feature vectors to real values.
This function can still be applied anywhere that a regression-
learned function could be applied. The only difference is the
technique used to learn the function. By directly optimizing the
ordering of objects, these methods are able to learn a function that
does a better job of ranking than do regression techniques.

We used RankNet [7], one of the aforementioned techniques for
learning ranking functions, to learn our static rank function.
RankNet is a straightforward modification to the standard neural
network back-prop algorithm. As with back-prop, RankNet
attempts to minimize the value of a cost function by adjusting
each weight in the network according to the gradient of the cost
function with respect to that weight. The difference is that, while a
typical neural network cost function is based on the difference
between the network output and the desired output, the RankNet
cost function is based on the difference between a pair of network
outputs. That is, for each pair of feature vectors <i,j> in the
training set, RankNet computes the network outputs oi and oj.
Since vector i is supposed to be ranked higher than vector j, the
larger is oj-oi, the larger the cost.

RankNet also allows the pairs in Z to be weighted with a
confidence (posed as the probability that the pair satisfies the
ordering induced by the ranking function). In this paper, we used
a probability of one for all pairs. In the next section, we will
discuss the features used in our feature vectors, xi.

4. FEATURES
To apply RankNet (or other machine learning techniques) to the
ranking problem, we needed to extract a set of features from each
page. We divided our feature set into four, mutually exclusive,
categories: page-level (Page), domain-level (Domain), anchor text
and inlinks (Anchor), and popularity (Popularity). We also
optionally used the PageRank of a page as a feature. Below, we
describe each of these feature categories in more detail.

PageRank

We computed PageRank on a Web graph of 5 billion crawled
pages (and 20 billion known URLs linked to by these pages).
This represents a significant portion of the Web, and is
approximately the same number of pages as are used by
Google, Yahoo, and MSN for their search engines.

Because PageRank is a graph-based algorithm, it is important
that it be run on as large a subset of the Web as possible. Most
previous studies on PageRank used subsets of the Web that are
significantly smaller (e.g. the TREC VLC2 corpus, used by
many, contains only 19 million pages)

We computed PageRank using the standard value of 0.85 for α.

Popularity

Another feature we used is the actual popularity of a Web page,
measured as the number of times that it has been visited by
users over some period of time. We have access to such data
from users who have installed the MSN toolbar and have opted
to provide it to MSN. The data is aggregated into a count, for
each Web page, of the number of users who viewed that page.

Though popularity data is generally unavailable, there are two
other sources for it. The first is from proxy logs. For example, a
university that requires its students to use a proxy has a record
of all the pages they have visited while on campus.
Unfortunately, proxy data is quite biased and relatively small.

Another source, internal to search engines, are records of which
results their users clicked on. Such data was used by the search
engine “Direct Hit”, and has recently been explored for
dynamic ranking purposes [20]. An advantage of the toolbar
data over this is that it contains information about URL visits
that are not just the result of a search.

The raw popularity is processed into a number of features such
as the number of times a page was viewed and the number of
times any page in the domain was viewed. More details are
provided in section 5.5.

Anchor text and inlinks

These features are based on the information associated with
links to the page in question. It includes features such as the
total amount of text in links pointing to the page (“anchor
text”), the number of unique words in that text, etc.

Page

This category consists of features which may be determined by
looking at the page (and its URL) alone. We used only eight,
simple features such as the number of words in the body, the
frequency of the most common term, etc.

Domain

This category contains features that are computed as averages
across all pages in the domain. For example, the average
number of outlinks on any page and the average PageRank.

Many of these features have been used by others for ranking Web
pages, particularly the anchor and page features. As mentioned,
the evaluation is typically for dynamic ranking, and we wish to
evaluate the use of them for static ranking. Also, to our
knowledge, this is the first study on the use of actual page
visitation popularity for static ranking. The closest similar work is
on using click-through behavior (that is, which search engine
results the users click on) to affect dynamic ranking (see e.g.,
[20]).

Because we use a wide variety of features to come up with a static
ranking, we refer to this as fRank (for feature-based ranking).
fRank uses RankNet and the set of features described in this
section to learn a ranking function for Web pages. Unless
otherwise specified, fRank was trained with all of the features.

5. EXPERIMENTS
In this section, we will demonstrate that we can out perform
PageRank by applying machine learning to a straightforward set
of features. Before the results, we first discuss the data, the
performance metric, and the training method.

5.1 Data
In order to evaluate the quality of a static ranking, we needed a
“gold standard” defining the correct ordering for a set of pages.
For this, we employed a dataset which contains human judgments
for 28000 queries. For each query, a number of results are
manually assigned a rating, from 0 to 4, by human judges. The
rating is meant to be a measure of how relevant the result is for
the query, where 0 means “poor” and 4 means “excellent”. There
are approximately 500k judgments in all, or an average of 18
ratings per query.

The queries are selected by randomly choosing queries from
among those issued to the MSN search engine. The probability
that a query is selected is proportional to its frequency among all

709

of the queries. As a result, common queries are more likely to be
judged than uncommon queries. As an example of how diverse
the queries are, the first four queries in the training set are “chef
schools”, “chicagoland speedway”, “eagles fan club”, and
“Turkish culture”. The documents selected for judging are those
that we expected would, on average, be reasonably relevant (for
example, the top ten documents returned by MSN’s search
engine). This provides significantly more information than
randomly selecting documents on the Web, the vast majority of
which would be irrelevant to a given query.

Because of this process, the judged pages tend to be of higher
quality than the average page on the Web, and tend to be pages
that will be returned for common search queries. This bias is good
when evaluating the quality of static ranking for the purposes of
index ordering and returning relevant documents. This is because
the most important portion of the index to be well-ordered and
relevant is the portion that is frequently returned for search
queries. Because of this bias, however, the results in this paper are
not applicable to crawl prioritization. In order to obtain
experimental results on crawl prioritization, we would need
ratings on a random sample of Web pages.

To convert the data from query-dependent to query-independent,
we simply removed the query, taking the maximum over
judgments for a URL that appears in more than one query. The
reasoning behind this is that a page that is relevant for some query
and irrelevant for another is probably a decent page and should
have a high static rank. Because we evaluated the pages on
queries that occur frequently, our data indicates the correct index
ordering, and assigns high value to pages that are likely to be
relevant to a common query.

We randomly assigned queries to a training, validation, or test set,
such that they contained 84%, 8%, and 8% of the queries,
respectively. Each set contains all of the ratings for a given query,
and no query appears in more than one set. The training set was
used to train fRank. The validation set was used to select the
model that had the highest performance. The test set was used for
the final results.

This data gives us a query-independent ordering of pages. The
goal for a static ranking algorithm will be to reproduce this
ordering as closely as possible. In the next section, we describe
the measure we used to evaluate this.

5.2 Measure
We chose to use pairwise accuracy to evaluate the quality of a
static ranking. The pairwise accuracy is the fraction of time that
the ranking algorithm and human judges agree on the ordering of
a pair of Web pages.

If S(x) is the static ranking assigned to page x, and H(x) is the
human judgment of relevance for x, then consider the following
sets:

)}()(:,{ yHxHyx >=pH and)}()(:,{ ySxSyx >=pS

The pairwise accuracy is the portion of Hp that is also contained
in Sp:

p

pp

H

SH ∩
=accuracy pairwise

This measure was chosen for two reasons. First, the discrete
human judgments provide only a partial ordering over Web pages,

making it difficult to apply a measure such as the Spearman rank
order correlation coefficient (in the pairwise accuracy measure, a
pair of documents with the same human judgment does not affect
the score). Second, the pairwise accuracy has an intuitive
meaning: it is the fraction of pairs of documents that, when the
humans claim one is better than the other, the static rank
algorithm orders them correctly.

5.3 Method
We trained fRank (a RankNet based neural network) using the
following parameters. We used a fully connected 2 layer network.
The hidden layer had 10 hidden nodes. The input weights to this
layer were all initialized to be zero. The output “layer” (just a
single node) weights were initialized using a uniform random
distribution in the range [-0.1, 0.1]. We used tanh as the transfer
function from the inputs to the hidden layer, and a linear function
from the hidden layer to the output. The cost function is the
pairwise cross entropy cost function as discussed in section 3.

The features in the training set were normalized to have zero mean
and unit standard deviation. The same linear transformation was
then applied to the features in the validation and test sets.

For training, we presented the network with 5 million pairings of
pages, where one page had a higher rating than the other. The
pairings were chosen uniformly at random (with replacement)
from all possible pairings. When forming the pairs, we ignored the
magnitude of the difference between the ratings (the rating spread)
for the two URLs. Hence, the weight for each pair was constant
(one), and the probability of a pair being selected was
independent of its rating spread.

We trained the network for 30 epochs. On each epoch, the
training pairs were randomly shuffled. The initial training rate was
0.001. At each epoch, we checked the error on the training set. If
the error had increased, then we decreased the training rate, under
the hypothesis that the network had probably overshot. The
training rate at each epoch was thus set to:

Training rate =
1+ε

κ

Where κ is the initial rate (0.001), and ε is the number of times
the training set error has increased. After each epoch, we
measured the performance of the neural network on the validation
set, using 1 million pairs (chosen randomly with replacement).
The network with the highest pairwise accuracy on the validation
set was selected, and then tested on the test set. We report the
pairwise accuracy on the test set, calculated using all possible
pairs.

These parameters were determined and fixed before the static rank
experiments in this paper. In particular, the choice of initial
training rate, number of epochs, and training rate decay function
were taken directly from Burges et al [7].

Though we had the option of preprocessing any of the features
before they were input to the neural network, we refrained from
doing so on most of them. The only exception was the popularity
features. As with most Web phenomenon, we found that the
distribution of site popularity is Zipfian. To reduce the dynamic
range, and hopefully make the feature more useful, we presented
the network with both the unpreprocessed, as well as the
logarithm, of the popularity features (As with the others, the
logarithmic feature values were also normalized to have zero
mean and unit standard deviation).

710

Applying fRank to a document is computationally efficient, taking
time that is only linear in the number of input features; it is thus
within a constant factor of other simple machine learning methods
such as naïve Bayes. In our experiments, computing the fRank for
all five billion Web pages was approximately 100 times faster
than computing the PageRank for the same set.

5.4 Results
As Table 1 shows, fRank significantly outperforms PageRank for
the purposes of static ranking. With a pairwise accuracy of 67.4%,
fRank more than doubles the accuracy of PageRank (relative to
the baseline of 50%, which is the accuracy that would be achieved
by a random ordering of Web pages). Note that one of fRank’s
input features is the PageRank of the page, so we would expect it
to perform no worse than PageRank. The significant increase in
accuracy implies that the other features (anchor, popularity, etc.)
do in fact contain useful information regarding the overall quality
of a page.

Table 1: Basic Results

Technique Accuracy (%)
None (Baseline) 50.00

PageRank 56.70
fRank 67.43

There are a number of decisions that go into the computation of
PageRank, such as how to deal with pages that have no outlinks,
the choice of α, numeric precision, convergence threshold, etc.
We were able to obtain a computation of PageRank from a
completely independent implementation (provided by Marc
Najork) that varied somewhat in these parameters. It achieved a
pairwise accuracy of 56.52%, nearly identical to that obtained by
our implementation. We thus concluded that the quality of the
PageRank is not sensitive to these minor variations in algorithm,
nor was PageRank’s low accuracy due to problems with our
implementation of it.

We also wanted to find how well each feature set performed. To
answer this, for each feature set, we trained and tested fRank
using only that set of features. The results are shown in Table 2.
As can be seen, every single feature set individually outperformed
PageRank on this test. Perhaps the most interesting result is that
the Page-level features had the highest performance out of all the
feature sets. This is surprising because these are features that do
not depend on the overall graph structure of the Web, nor even on
what pages point to a given page. This is contrary to the common
belief that the Web graph structure is the key to finding a good
static ranking of Web pages.

Table 2: Results for individual feature sets.

Feature Set Accuracy (%)
PageRank 56.70
Popularity 60.82

Anchor 59.09
Page 63.93

Domain 59.03
All Features 67.43

Because we are using a two-layer neural network, the features in
the learned network can interact with each other in interesting,
nonlinear ways. This means that a particular feature that appears
to have little value in isolation could actually be very important
when used in combination with other features. To measure the
final contribution of a feature set, in the context of all the other
features, we performed an ablation study. That is, for each set of
features, we trained a network to contain all of the features except
that set. We then compared the performance of the resulting
network to the performance of the network with all of the features.
Table 3 shows the results of this experiment, where the “decrease
in accuracy” is the difference in pairwise accuracy between the
network trained with all of the features, and the network missing
the given feature set.

Table 3: Ablation study. Shown is the decrease in accuracy
when we train a network that has all but the given set of
features. The last line is shows the effect of removing the
anchor, PageRank, and domain features, hence a model
containing no network or link-based information whatsoever.

Feature Set Decrease in
Accuracy

PageRank 0.18
Popularity 0.78

Anchor 0.47
Page 5.42

Domain
Anchor, PageRank & Domain

0.10
0.60

The results of the ablation study are consistent with the individual
feature set study. Both show that the most important feature set is
the Page-level feature set, and the second most important is the
popularity feature set.

Finally, we wished to see how the performance of fRank
improved as we added features; we wanted to find at what point
adding more feature sets became relatively useless. Beginning
with no features, we greedily added the feature set that improved
performance the most. The results are shown in Table 4. For
example, the fourth line of the table shows that fRank using the
page, popularity, and anchor features outperformed any network
that used the page, popularity, and some other feature set, and that
the performance of this network was 67.25%.

Table 4: fRank performance as feature sets are added. At each
row, the feature set that gave the greatest increase in accuracy
was added to the list of features (i.e., we conducted a greedy
search over feature sets).

Feature Set Accuracy (%)
None 50.00
+Page 63.93

+Popularity 66.83
+Anchor 67.25

+PageRank 67.31
+Domain 67.43

711

Finally, we present a qualitative comparison of PageRank vs.
fRank. In Table 5 are the top ten URLs returned for PageRank and
for fRank. PageRank’s results are heavily weighted towards
technology sites. It contains two QuickTime URLs (Apple’s video
playback software), as well as Internet Explorer and FireFox
URLs (both of which are Web browsers). fRank, on the other
hand, contains more consumer-oriented sites such as American
Express, Target, Dell, etc. PageRank’s bias toward technology can
be explained through two processes. First, there are many pages
with “buttons” at the bottom suggesting that the site is optimized
for Internet Explorer, or that the visitor needs QuickTime. These
generally link back to, in these examples, the Internet Explorer
and QuickTime download sites. Consequently, PageRank ranks
those pages highly. Though these pages are important, they are
not as important as it may seem by looking at the link structure
alone. One fix for this is to add information about the link to the
PageRank computation, such as the size of the text, whether it was
at the bottom of the page, etc.

The other bias comes from the fact that the population of Web site
authors is different than the population of Web users. Web
authors tend to be technologically-oriented, and thus their linking
behavior reflects those interests. fRank, by knowing the actual
visitation popularity of a site (the popularity feature set), is able to
eliminate some of that bias. It has the ability to depend more on
where actual Web users visit rather than where the Web site
authors have linked.

The results confirm that fRank outperforms PageRank in pairwise
accuracy. The two most important feature sets are the page and
popularity features. This is surprising, as the page features
consisted only of a few (8) simple features. Further experiments
found that, of the page features, those based on the text of the
page (as opposed to the URL) performed the best. In the next
section, we explore the popularity feature in more detail.

5.5 Popularity Data
As mentioned in section 4, our popularity data came from MSN
toolbar users. For privacy reasons, we had access only to an
aggregate count of, for each URL, how many times it was visited

by any toolbar user. This limited the possible features we could
derive from this data. For possible extensions, see section 6.3,
future work.

For each URL in our train and test sets, we provided a feature to
fRank which was how many times it had been visited by a toolbar
user. However, this feature was quite noisy and sparse,
particularly for URLs with query parameters (e.g., http://search-
.msn.com/results.aspx?q=machine+learning&form=QBHP). One
solution was to provide an additional feature which was the
number of times any URL at the given domain was visited by a
toolbar user. Adding this feature dramatically improved the
performance of fRank.

We took this one step further and used the built-in hierarchical
structure of URLs to construct many levels of backoff between the
full URL and the domain. We did this by using the set of features
shown in Table 6.

Table 6: URL functions used to compute the Popularity
feature set.

Function Example
Exact URL cnn.com/2005/tech/wikipedia.html?v=mobile
No Params cnn.com/2005/tech/wikipedia.html
Page wikipedia.html
URL-1 cnn.com/2005/tech
URL-2 cnn.com/2005
…
Domain cnn.com
Domain+1 cnn.com/2005
…

Each URL was assigned one feature for each function shown in
the table. The value of the feature was the count of the number of
times a toolbar user visited a URL, where the function applied to
that URL matches the function applied to the URL in question.
For example, a user’s visit to cnn.com/2005/sports.html would
increment the Domain and Domain+1 features for the URL
cnn.com/2005/tech/wikipedia.html.

As seen in Table 7, adding the domain counts significantly
improved the quality of the popularity feature, and adding the
numerous backoff functions listed in Table 6 improved the
accuracy even further.

Table 7: Effect of adding backoff to the popularity feature set

Features Accuracy (%)
URL count 58.15

URL and Domain counts 59.31
All backoff functions (Table 6) 60.82

Table 5: Top ten URLs for PageRank vs. fRank

PageRank fRank
google.com google.com
apple.com/quicktime/download yahoo.com
amazon.com americanexpress.com
yahoo.com hp.com
microsoft.com/windows/ie target.com
apple.com/quicktime bestbuy.com
mapquest.com dell.com
ebay.com autotrader.com
mozilla.org/products/firefox dogpile.com
ftc.gov bankofamerica.com

712

Backing off to subsets of the URL is one technique for dealing
with the sparsity of data. It is also informative to see how the
performance of fRank depends on the amount of popularity data
that we have collected. In Figure 1 we show the performance of
fRank trained with only the popularity feature set vs. the amount
of data we have for the popularity feature set. Each day, we
receive additional popularity data, and as can be seen in the plot,
this increases the performance of fRank. The relation is
logarithmic: doubling the amount of popularity data provides a
constant improvement in pairwise accuracy.

In summary, we have found that the popularity features provide a
useful boost to the overall fRank accuracy. Gathering more
popularity data, as well as employing simple backoff strategies,
improve this boost even further.

5.6 Summary of Results
The experiments provide a number of conclusions. First, fRank
performs significantly better than PageRank, even without any
information about the Web graph. Second, the page level and
popularity features were the most significant contributors to
pairwise accuracy. Third, by collecting more popularity data, we
can continue to improve fRank’s performance.

The popularity data provides two benefits to fRank. First, we see
that qualitatively, fRank’s ordering of Web pages has a more
favorable bias than PageRank’s. fRank’s ordering seems to
correspond to what Web users, rather than Web page authors,
prefer. Second, the popularity data is more timely than
PageRank’s link information. The toolbar provides information
about which Web pages people find interesting right now,
whereas links are added to pages more slowly, as authors find the
time and interest.

6. RELATED AND FUTURE WORK

6.1 Improvements to PageRank
Since the original PageRank paper, there has been work on
improving it. Much of that work centers on speeding up and
parallelizing the computation [15][25].

One recognized problem with PageRank is that of topic drift: A
page about “dogs” will have high PageRank if it is linked to by
many pages that themselves have high rank, regardless of their
topic. In contrast, a search engine user looking for good pages
about dogs would likely prefer to find pages that are pointed to by
many pages that are themselves about dogs. Hence, a link that is
“on topic” should have higher weight than a link that is not.
Richardson and Domingos’s Query Dependent PageRank [29]
and Haveliwala’s Topic-Sensitive PageRank [16] are two
approaches that tackle this problem.

Other variations to PageRank include differently weighting links
for inter- vs. intra-domain links, adding a backwards step to the
random surfer to simulate the “back” button on most browsers
[24] and modifying the jump probability (α) [3]. See Langville
and Meyer [23] for a good survey of these, and other
modifications to PageRank.

6.2 Other related work
PageRank is not the only link analysis algorithm used for ranking
Web pages. The most well-known other is HITS [22], which is
used by the Teoma search engine [30]. HITS produces a list of
hubs and authorities, where hubs are pages that point to many

authority pages, and authorities are pages that are pointed to by
many hubs. Previous work has shown HITS to perform
comparably to PageRank [1].

One field of interest is that of static index pruning (see e.g.,
Carmel et al. [8]). Static index pruning methods reduce the size of
the search engine’s index by removing documents that are
unlikely to be returned by a search query. The pruning is typically
done based on the frequency of query terms. Similarly, Pandey
and Olston [28] suggest crawling pages frequently if they are
likely to incorrectly appear (or not appear) as a result of a search.
Similar methods could be incorporated into the static rank (e.g.,
how many frequent queries contain words found on this page).

Others have investigated the effect that PageRank has on the Web
at large [9]. They argue that pages with high PageRank are more
likely to be found by Web users, thus more likely to be linked to,
and thus more likely to maintain a higher PageRank than other
pages. The same may occur for the popularity data. If we increase
the ranking for popular pages, they are more likely to be clicked
on, thus further increasing their popularity. Cho et al. [10] argue
that a more appropriate measure of Web page quality would
depend on not only the current link structure of the Web, but also
on the change in that link structure. The same technique may be
applicable to popularity data: the change in popularity of a page
may be more informative than the absolute popularity.

One interesting related work is that of Ivory and Hearst [19].
Their goal was to build a model of Web sites that are considered
high quality from the perspective of “content, structure and
navigation, visual design, functionality, interactivity, and overall
experience”. They used over 100 page level features, as well as
features encompassing the performance and structure of the site.
This let them qualitatively describe the qualities of a page that
make it appear attractive (e.g., rare use of italics, at least 9 point
font, …), and (in later work) to build a system that assists novel
Web page authors in creating quality pages by evaluating it
according to these features. The primary differences between this
work and ours are the goal (discovering what constitutes a good
Web page vs. ordering Web pages for the purposes of Web
search), the size of the study (they used a dataset of less than 6000
pages vs. our set of 468,000), and our comparison with PageRank.

y = 0.577Ln(x) + 58.283

R2 = 0.9822

58

58.5

59

59.5

60

60.5

61

1 10 100
Days of Toolbar Data

P
ai

rw
is

e
A

cc
u

ra
cy

Figure 1: Relation between the amount of popularity data and
the performance of the popularity feature set. Note the x-axis
is a logarithmic scale.

713

Nevertheless, their work provides insights to additional useful
static features that we could incorporate into fRank in the future.

Recent work on incorporating novel features into dynamic ranking
includes that by Joachims et al. [21], who investigate the use of
implicit feedback from users, in the form of which search engine
results are clicked on. Craswell et al. [11] present a method for
determining the best transformation to apply to query independent
features (such as those used in this paper) for the purposes of
improving dynamic ranking. Other work, such as Boyan et al. [4]
and Bartell et al. [2] apply machine learning for the purposes of
improving the overall relevance of a search engine (i.e., the
dynamic ranking). They do not apply their techniques to the
problem of static ranking.

6.3 Future work
There are many ways in which we would like to extend this work.
First, fRank uses only a small number of features. We believe we
could achieve even more significant results with more features. In
particular the existence, or lack thereof, of certain words could
prove very significant (for instance, “under construction”
probably signifies a low quality page). Other features could
include the number of images on a page, size of those images,
number of layout elements (tables, divs, and spans), use of style
sheets, conforming to W3C standards (like XHTML 1.0 Strict),
background color of a page, etc.

Many pages are generated dynamically, the contents of which may
depend on parameters in the URL, the time of day, the user
visiting the site, or other variables. For such pages, it may be
useful to apply the techniques found in [26] to form a static
approximation for the purposes of extracting features. The
resulting grammar describing the page could itself be a source of
additional features describing the complexity of the page, such as
how many non-terminal nodes it has, the depth of the grammar
tree, etc.

fRank allows one to specify a confidence in each pairing of
documents. In the future, we will experiment with probabilities
that depend on the difference in human judgments between the
two items in the pair. For example, a pair of documents where one
was rated 4 and the other 0 should have a higher confidence than
a pair of documents rated 3 and 2.

The experiments in this paper are biased toward pages that have
higher than average quality. Also, fRank with all of the features
can only be applied to pages that have already been crawled.
Thus, fRank is primarily useful for index ordering and improving
relevance, not for directing the crawl. We would like to
investigate a machine learning approach for crawl prioritization as
well. It may be that a combination of methods is best: for
example, using PageRank to select the best 5 billion of the 20
billion pages on the Web, then using fRank to order the index and
affect search relevancy.

Another interesting direction for exploration is to incorporate
fRank and page-level features directly into the PageRank
computation itself. Work on biasing the PageRank jump vector
[16], and transition matrix [29], have demonstrated the feasibility
and advantages of such an approach. There is reason to believe
that a direct application of [29], using the fRank of a page for its
“relevance”, could lead to an improved overall static rank.

Finally, the popularity data can be used in other interesting ways.
The general surfing and searching habits of Web users varies by
time of day. Activity in the morning, daytime, and evening are

often quite different (e.g., reading the news, solving problems,
and accessing entertainment, respectively). We can gain insight
into these differences by using the popularity data, divided into
segments of the day. When a query is issued, we would then use
the popularity data matching the time of query in order to do the
ranking of Web pages. We also plan to explore popularity features
that use more than just the counts of how often a page was visited.
For example, how long users tended to dwell on a page, did they
leave the page by clicking a link or by hitting the back button, etc.
Fox et al. did a study that showed that features such as this can be
valuable for the purposes of dynamic ranking [14]. Finally, the
popularity data could be used as the label rather than as a feature.
Using fRank in this way to predict the popularity of a page may
useful for the tasks of relevance, efficiency, and crawl priority.
There is also significantly more popularity data than human
labeled data, potentially enabling more complex machine learning
methods, and significantly more features.

7. CONCLUSIONS
A good static ranking is an important component for today’s
search engines and information retrieval systems. We have
demonstrated that PageRank does not provide a very good static
ranking; there are many simple features that individually out
perform PageRank. By combining many static features, fRank
achieves a ranking that has a significantly higher pairwise
accuracy than PageRank alone. A qualitative evaluation of the top
documents shows that fRank is less technology-biased than
PageRank; by using popularity data, it is biased toward pages that
Web users, rather than Web authors, visit. The machine learning
component of fRank gives it the additional benefit of being more
robust against spammers, and allows it to leverage further
developments in the machine learning community in areas such as
adversarial classification. We have only begun to explore the
options, and believe that significant strides can be made in the
area of static ranking by further experimentation with additional
features, other machine learning techniques, and additional
sources of data.

8. ACKNOWLEDGMENTS
Thank you to Marc Najork for providing us with additional
PageRank computations and to Timo Burkard for assistance with
the popularity data. Many thanks to Chris Burges for providing
code and significant support in using training RankNets. Also, we
thank Susan Dumais and Nick Craswell for their edits and
suggestions.

9. REFERENCES
[1] B. Amento, L. Terveen, and W. Hill. Does “authority” mean

quality? Predicting expert quality ratings of Web documents.
In Proceedings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 2000.

[2] B. Bartell, G. Cottrell, and R. Belew. Automatic combination
of multiple ranked retrieval systems. In Proceedings of the
17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 1994.

[3] P. Boldi, M. Santini, and S. Vigna. PageRank as a function
of the damping factor. In Proceedings of the International
World Wide Web Conference, May 2005.

714

[4] J. Boyan, D. Freitag, and T. Joachims. A machine learning
architecture for optimizing web search engines. In AAAI
Workshop on Internet Based Information Systems, August
1996.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
Seventh International Wide Web Conference, Brisbane,
Australia, 1998. Elsevier.

[6] A. Broder, R. Lempel, F. Maghoul, and J. Pederson.
Efficient PageRank approximation via graph aggregation. In
Proceedings of the International World Wide Web
Conference, May 2004.

[7] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.
Hamilton, G. Hullender. Learning to rank using gradient
descent. In Proceedings of the 22nd International Conference
on Machine Learning, Bonn, Germany, 2005.

[8] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y.
S. Maarek, and A. Soffer. Static index pruning for
information retrieval systems. In Proceedings of the 24th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 43-50,
New Orleans, Louisiana, USA, September 2001.

[9] J. Cho and S. Roy. Impact of search engines on page
popularity. In Proceedings of the International World Wide
Web Conference, May 2004.

[10] J. Cho, S. Roy, R. Adams. Page Quality: In search of an
unbiased web ranking. In Proceedings of the ACM SIGMOD
2005 Conference. Baltimore, Maryland. June 2005.

[11] N. Craswell, S. Robertson, H. Zaragoza, and M. Taylor.
Relevance weighting for query independent evidence. In
Proceedings of the 28th Annual Conference on Research and
Development in Information Retrieval (SIGIR), August,
2005.

[12] N. Dalvi, P. Domingos, Mausam, S. Sanghai, D. Verma.
Adversarial Classification. In Proceedings of the Tenth
International Conference on Knowledge Discovery and Data
Mining (pp. 99-108), Seattle, WA, 2004.

[13] O. Dekel, C. Manning, and Y. Singer. Log-linear models for
label-ranking. In Advances in Neural Information Processing
Systems 16. Cambridge, MA: MIT Press, 2003.

[14] S. Fox, K S. Fox, K. Karnawat, M. Mydland, S. T. Dumais
and T. White (2005). Evaluating implicit measures to
improve the search experiences. In the ACM Transactions on
Information Systems, 23(2), pp. 147-168. April 2005.

[15] T. Haveliwala. Efficient computation of PageRank. Stanford
University Technical Report, 1999.

[16] T. Haveliwala. Topic-sensitive PageRank. In Proceedings of
the International World Wide Web Conference, May 2002.

[17] D. Hawking and N. Craswell. Very large scale retrieval and
Web search. In D. Harman and E. Voorhees (eds), The
TREC Book. MIT Press.

[18] R. Herbrich, T. Graepel, and K. Obermayer. Support vector
learning for ordinal regression. In Proceedings of the Ninth
International Conference on Artificial Neural Networks, pp.
97-102. 1999.

[19] M. Ivory and M. Hearst. Statistical profiles of highly-rated
Web sites. In Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems, 2002.

[20] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining (KDD), 2002.

[21] T. Joachims, L. Granka, B. Pang, H. Hembrooke, and G.
Gay. Accurately Interpreting Clickthrough Data as Implicit
Feedback. In Proceedings of the Conference on Research and
Development in Information Retrieval (SIGIR), 2005.

[22] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM 46:5, pp. 604-32. 1999.

[23] A. Langville and C. Meyer. Deeper inside PageRank.
Internet Mathematics 1(3):335-380, 2004.

[24] F. Matthieu and M. Bouklit. The effect of the back button in
a random walk: application for PageRank. In Alternate track
papers and posters of the Thirteenth International World
Wide Web Conference, 2004.

[25] F. McSherry. A uniform approach to accelerated PageRank
computation. In Proceedings of the International World
Wide Web Conference, May 2005.

[26] Y. Minamide. Static approximation of dynamically generated
Web pages. In Proceedings of the International World Wide
Web Conference, May 2005.

[27] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the web.
Technical report, Stanford University, Stanford, CA, 1998.

[28] S. Pandey and C. Olston. User-centric Web crawling. In
Proceedings of the International World Wide Web
Conference, May 2005.

[29] M. Richardson and P. Domingos. The intelligent surfer:
probabilistic combination of link and content information in
PageRank. In Advances in Neural Information Processing
Systems 14, pp. 1441-1448. Cambridge, MA: MIT Press,
2002.

[30] C. Sherman. Teoma vs. Google, Round 2. Available from
World Wide Web (http://dc.internet.com/news/article.php/
1002061), 2002.

[31] T. Upstill, N. Craswell, and D. Hawking. Predicting fame
and fortune: PageRank or indegree?. In the Eighth
Australasian Document Computing Symposium. 2003.

[32] T. Upstill, N. Craswell, and D. Hawking. Query-independent
evidence in home page finding. In ACM Transactions on
Information Systems. 2003.

715

