
 

Beyond performance/cost tradeoffs in motion control

Citation for published version (APA):
van Zundert, J., Oomen, T., Verhaegh, J., Aangenent, W., Antunes, D. J., & Heemels, W. P. M. H. (2020).
Beyond performance/cost tradeoffs in motion control: a multirate feedforward design with application to a dual-
stage wafer system. IEEE Transactions on Control Systems Technology, 28(2), 448-461. [8575151].
https://doi.org/10.1109/TCST.2018.2882341

DOI:
10.1109/TCST.2018.2882341

Document status and date:
Published: 01/03/2020

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 21. Aug. 2022

https://doi.org/10.1109/TCST.2018.2882341
https://doi.org/10.1109/TCST.2018.2882341
https://research.tue.nl/en/publications/00d69a6d-123e-48bc-892e-6e342a1f9496


1

Beyond Performance/Cost Trade-Offs in Motion

Control: A Multirate Feedforward Design

with Application to a Dual-Stage Wafer System
Jurgen van Zundert, Tom Oomen, Senior Member, IEEE, Jan Verhaegh, Wouter Aangenent, Duarte J. Antunes

Member, IEEE, and W.P.M.H. Heemels, Fellow, IEEE

Abstract—Motion systems with multiple control loops often
run at a single sampling rate for simplicity of implementation
and controller design. The achievable performance in terms of
position accuracy is determined by the data acquisition hardware,
such as sensors, actuators, and analog-to-digital/digital-to-analog
converters, which is typically limited due to economic cost
considerations. The aim of this paper is to develop a multirate
approach to go beyond this traditional performance/cost trade-
off, i.e., to use different sampling rates in different control loops
to optimally use hardware resources. The approach appropriately
deals with the inherent time-varying behavior that is introduced
by multirate sampling. A multirate feedforward control design
framework is presented to optimize tracking of a dual-stage
multirate system. Application of the proposed approach to an
industrial dual-stage wafer system demonstrates the advantages
of multirate control, both in simulations and experiments.

Index Terms—Multirate control, feedforward design, perfor-
mance/cost trade-off, dual-stage system, wafer stage application,
experiments.

I. INTRODUCTION

Multivariable control systems, including those in motion

systems, are often implemented digitally since it offers flexibil-

ity and directly connects to the digital supervisory layers. The

digital implementation requires analog-to-digital and digital-

to-analog conversion. For motion systems, these processes are

often executed using fixed, single-rate sampling schemes [1],

[2], i.e., homogeneous for all loops, since for linear time-

invariant (LTI) systems it enables controller design using

well-developed design approaches. In particular, it allows

the use of frequency domain techniques such as Bode plots

and Nyquist diagrams [3], which find application in various

areas of controller design, including feedback control [3], [4],

feedforward control [5], and iterative learning control [6].

Fixed, single-rate sampling is preferred from a controller

design point of view, but not from a performance versus cost

point of view. As an example, consider systems with multiple

control loops, where only one limits the overall performance.
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The performance of a control loop can be increased by increas-

ing the sampling frequency of that loop. For single-rate imple-

mentations this implies that if the performance of one of the

loops is increased, the sampling frequency of all loops needs

to be increased. Obviously, such an approach is expensive in

terms of the required hardware, such as sensors, actuators, and

analog-to-digital/digital-to-analog converters, since all loops

are affected while only one is limiting performance.

From a performance versus cost point of view, flexible

sampling is preferred over fixed sampling, see also Fig. 1. Ex-

amples of flexible sampling include multirate control [7]–[16],

sparse control [17], and non-equidistant sampling [18], [19].

Indeed, a multirate approach is more natural for multiloop

systems with different performance requirements, but also for

systems with different time scales such as thermomechanical

systems [20]. Sparse control and non-equidistant sampling

are used in, e.g., systems with limited resources and optimal

resource allocation [18], [21].

Flexible sampling has a large potential, but its deployment

is hampered by a lack of control design techniques. This is

mainly caused by the fact that flexible sampling introduces

time-varying behavior [1, Section 3.3]. In particular, flexible

sampling of a linear time-invariant (LTI) system yields a

linear (periodically) time-varying (L(P)TV) system. Due to the

time variance, the frequency domain control design techniques

mentioned earlier are not (directly) applicable. Frequency

domain design for linear time-varying systems is investigated

in [22]–[26] and linear time-varying feedforward design is

investigated in [19], [27], but at present there is no systematic

control design framework available.

Although flexible sampling has the potential to go beyond

the traditional performance/cost trade-off for fixed sampling,

as shown in Fig. 1, at present its deployment is hampered by a

lack of control design techniques for such sampling schemes.

In this paper, a framework to exploit multirate feedforward

controller design is presented to overcome this restriction and

thereby go beyond the traditional performance/cost trade-off.

Application of the framework focuses on precision motion

systems. In particular, the framework is demonstrated on an

experimental dual-stage system, as standard in, e.g., wafer

stages [28, Chapter 9].

The main contribution of this paper is a framework to

exploit multirate control for performance improvement. The

following subcontributions are identified: (I) multirate con-

troller design based on multirate system descriptions, including
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Fig. 1. A low sampling frequency is inexpensive in terms of implementation
cost, but yields low performance ( ). A high sampling frequency yields high
performance, but is expensive ( ). This performance/cost trade-off is inherent
to traditional fixed sampling ( ). Flexible sampling goes beyond this trade-
off through use of different sampling frequencies in different control loops.
Essentially, the performance/cost trade-off can be decided upon per control
loop, resulting in an improved overall trade-off ( ).

time variance; (II) controller optimization addressing non-per-

fect models; (III) performance improvement by exploiting

time variance; (IV) application of the design framework in

simulation; and (V) experimental validation on a dual-stage

system. Initial results on simulation level can be found in

[29] and related work on minimizing intersample behavior

in digital control systems can be found in [1], [25], [30].

The present paper contains substantial original contributions

including Contribution (I), Contribution (II), and Contribu-

tion (V). Related work on wafer stage control design includes

feedback control [31], [32], feedforward control [33], LPV

control [34], and sparse control [17]. In the present work,

previously unexplored freedom in sampling is exploited, which

makes the approach complementary to other approaches.

This paper is organized as follows. In Section II, the main

problem that is considered to improve the performance/cost

trade-off through multirate control is presented. In Section III,

the multirate control system is modeled. The multirate con-

troller design is presented in Section IV. Furthermore, the

performance is further improved by exploiting properties of

time-varying systems. The controller design is applied to an

experimental setup resembling a dual-stage wafer system. The

experimental setup is detailed in Section V. Simulation results

are presented in Section VI and experimental results are pre-

sented in Section VII. Conclusions are given in Section VIII.

II. PROBLEM DEFINITION

In this paper, a framework is presented to enhance the

performance/cost trade-off through multirate control. In this

section, the main problem is presented.

A. Application motivation: Dual-stage motion systems with

large differences in performance requirements

In many motion control applications, a high positioning

accuracy is required over a large range. For such systems, a

single-stage design may not suffice due to the large dynamic

range. To achieve high precision over a large range, a dual-

stage system can be used.

A dual-stage system, as illustrated in Fig. 2, consists of two

subsystems: a short stroke with a high positioning accuracy

long stroke (LoS)

dynamic
coupling

short stroke (SS)

Fig. 2. Dual-stage systems consist of two subsystems: a short stroke for
high precision and a long stoke to cover large ranges. The combined system
provides high positioning accuracy over a large range.

(and limited range) connected to a long stroke with a large

range (and limited positioning accuracy). If designed properly,

the dual-stage system is able to cover a large range with

high positioning accuracy. Clearly, there is a large difference

between the performance requirements of the two subsystems.

An example of a dual-stage system is a wafer stage in

lithography machines [28, Chapter 9]. Wafer stages require

an accuracy up to nanometer level over a range of one meter (

[35]; [28, Section 9.3.1]), resulting in a large dynamic range of

O(109). Therefore, wafer stages are typically constructed as

dual-stage systems. More details on the wafer stage application

are presented in Section V.

B. A performance/cost perspective on multivariable systems

with large differences in performance requirements

In view of the performance/cost trade-off in Fig. 1, the

different (control) requirements for the subsystems of the

dual-stage design provide an excellent opportunity to exploit

multirate control to go beyond performance/cost trade-offs in

motion control.

The considered multirate control architecture is shown in

Fig. 3 where a high sampling frequency fh is used for the short

stroke GSS,h ( in Fig. 1) and a low sampling frequency fl is

used for the long stroke GLoS,l to reduce cost ( in Fig. 1). The

short-stroke system GSS,h tracks reference trajectory ρSS,h.

The long-stroke system GLoS,l tracks the position of GSS,h
to ensure the short stroke is within range and reaction forces

are limited. The downsampler DF facilitates the sampling rate

conversion. The control design of both subsystems consists of

feedback control (CFB), feedforward control (CFF ), and input

shaping (Cψ).

For design of the long-stroke controllers, the interest is in

the position error between the two stages during exposure, i.e.,

during the scanning motion, to limit reaction forces to the short

stroke. This error measured at the highest possible sampling

frequency f∗ is denoted ε∗ and not available for real-time

control, but typically available afterwards for performance

evaluation. The sampling frequencies are related by

f∗ = Fhfh = Flfl, fh = Ffl, (1)

where Fh ≥ Fl ≥ 1, F := Fl
Fh

, with Fh, Fl, F ∈ N. In this

paper, finite-time signals are considered of which the signal

lengths are related as

N∗ = FhNh = FlNl, Nh = FNl (2)

as directly follows from (1).
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Fig. 3. Multirate control configuration for a dual-stage system. The top part
relates to the short stroke (SS) at high rate fh. The bottom part relates
to the long stroke (LoS) at low rate fl. The long stroke tracks the output
position of the short stroke, where downsampler DF facilitates the sampling
rate conversion. Dotted lines ( ) indicate extreme high sampling rates f∗,
dashdotted lines ( ) high sampling rates fh, and dashed lines ( ) low
sampling rates fl. Both control loops include a feedback controller CFB ,
a feedforward controller CFF , and an input shaper Cψ . The objective is to
minimize position difference ε∗ through design of Cψ,LoS,l and CFF,LoS,l.

Remark 1. The assumption of integer sampling rate factors in

(1) is imposed for ease of notation, but can easily be relaxed

if the factor is a rational number. The proposed approach is

not applicable for irrational factors, although these can often

be closely approximated with rational factors.

C. Problem formulation: Framework for exploiting multirate

sampling for enhanced control performance

In this paper, the following problem is considered.

Main problem. Given the multirate control configuration in

Fig. 3 with sampling frequencies admitting (1), a given finite-

time reference trajectory ρSS,h ∈ R
Nh for ρSS,h, models

GSS∗
, GLoS,∗ of GSS,h, GLoS,l at sampling frequency f∗,

and controllers CFF,SS,h, Cψ,SS,h, CFB,SS,h, CFB,LoS,l,

determine

(CFF,LoS,l, Cψ,LoS,l) = arg min
CFF,LoS,l,Cψ,LoS,l

‖ε∗‖
2
2 , (3)

where ε∗ ∈ R
N∗ denotes the position error ε∗ over the

considered interval.

Controllers CFF,SS,h, Cψ,SS,h, CFB,SS,h are often avail-

able from earlier control designs based on the single-rate

short-stroke system only, neglecting the long-stroke system

and multirate aspects. A similar reasoning holds for CFB,LoS,l.

It is assumed that CFB,SS,h and CFB,LoS,l stabilize the short-

stroke and long-stroke system, respectively. Note that stability

is not affected by CFF,LoS,l, Cψ,LoS,l.

Importantly, control objective (3) incorporates the dynamics

of the short stroke for design of the long-stroke controllers

CFF,LoS,l, Cψ,LoS,l. Moreover, it considers ε∗ rather than

εLoS,l and thereby takes intersample behavior into account,

which is an important aspect in multirate control [25]. Note

that (3) is posed in terms of finite-time signals, rather than

infinite-time signals, since, in practice, tasks have a finite

length.

The presented framework allows to recover single-rate con-

trol as a special case of multirate control by setting Fh = Fl.

In Section VI and Section VII, multirate control is compared

with single-rate control.

D. Notation

Matrix variables are underlined, with In the n× n identity

matrix, 0m×n the m×n zero matrix, 1n the n×1 ones vector

with all elements 1, and en the n × 1 unit vector with the

first element 1 and others 0. Vector α ∈ R
N , N ∈ N, is given

by α =
[

α[0] α[1] . . . α[N − 1]
]⊤

, with transpose (·)⊤

and ‖α‖22 = α⊤α. The Kronecker product is denoted ⊗ and

diag{(·)} denotes a diagonal matrix with diagonal entries (·).
The floor operator is given by ⌊x⌋ = max{m ∈ Z | m ≤ x}.

The discrete-time delay operator is denoted z−1.

III. MULTIRATE CONTROL SYSTEM

In this section, the model-based multirate controller de-

sign is presented, which constitutes Contribution (I). In Sec-

tion III-A, the time-varying aspects of multirate systems are

modeled. In Section III-B, these models are used to describe

the multirate control diagram in Fig. 3. Based on these results,

the multirate controller is presented in Section IV.

A. Modeling multirate systems: Time-varying aspects

In this section, building blocks to model the multirate

system in Fig. 3 are presented. The system is modeled over

the finite-time length considered in the main problem in

Section II-C.

Consider a causal, single-input, single-output (SISO),

discrete-time, linear time-invariant (LTI) system H with

Markov parameters h(k) ∈ R, k = 0, 1, . . . , N − 1. The

mapping from the finite-time input α ∈ R
N to the finite-time

output β ∈ R
N is given by H ∈ R

N×N via

β = Hα, (4)








β[0]
β[1]
β[2]

...
β[N−1]









=









h(0) 0 0 ··· 0
h(1) h(0) 0 ··· 0
h(2) h(1) h(0) ··· 0

...
...

...
. . .

...
h(N−1) h(N−2) h(N−3) ··· h(0)

















α[0]
α[1]
α[2]

...
α[N−1]









.

(5)

Since α, β have the same sampling frequency, H is square.

Moreover, since H is causal and time-invariant, H is lower

triangular and Toeplitz, respectively [1].

The multirate system in Fig. 3 involves different sampling

frequencies. The conversions between the different sampling

frequencies are given as follows, see also [36, Section 4.1.1]

and [25, Definition 5]. Let α ∈ N
FN , F,N ∈ N, then the

downsampling operator DF : R
FN 7→ R

N with factor F

yields β = DF (α) ∈ R
N where

β[k] = α[Fk], k = 0, 1, . . . , N − 1. (6)

Let α ∈ R
N , N ∈ N, then the upsampling operator Su,F :

R
N 7→ R

FN with factor F ∈ N yields β = Su,F (α) ∈ R
FN

where

β[k] =

{

α[ k
F
], k = 0, F, 2F, . . . , (N − 1)F,

0, otherwise.
(7)
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The upsampling operator inserts zeros in between the values

of the low rate signal to create a high rate signal. The

interpolation is performed using a zero-order-hold interpolator.

In terms of discrete-time transfer functions, the zero-order-

hold interpolator with factor F ∈ N is defined as

IZOH,F =

F−1
∑

f=0

z−f . (8)

The zero-order-hold interpolator is used in combination with

the upsampling operator for upsampling. The resulting zero-

order-hold upsampler is defined by HF := IZOH,F Su,F , i.e.,

let α ∈ R
N , N ∈ N, then HF with factor F ∈ N yields

β = HF (α) ∈ R
FN where

β[k] = α[⌊ k
F
⌋], k = 0, 1, . . . , (N − 1)F. (9)

The system description and controller design are based

on finite-time descriptions. The finite-time description of the

downsampling operator DF with factor F ∈ N is given by

DF = IN ⊗ e⊤F ∈ R
N×FN , (10)

i.e., let α ∈ R
FN , N ∈ N and let β ∈ R

N be given by (6),

then β = DFα with DF in (10). The finite-time description

of the zero-order-hold upsampling operator HF with factor

F ∈ N is given by

HF = IN ⊗ 1F ∈ R
FN×N , (11)

i.e., let α ∈ R
N , N ∈ N and let β ∈ R

FN be given by (9),

then β = HFα with HF in (11). Examples of DF and HF

are provided by Example 2.

Example 2 (Downsampler and upsampler). Let F = 2, N =
3, then DF in (10) and HF in (11) are given by

DF =
[

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]

, HF =





1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1



 . (12)

Let α =
[

1 2 3 4 5 6
]⊤

, then β := DF (α) =

DFα =
[

1 3 5
]⊤

and γ := HF (β) = HFβ =
[

1 1 3 3 5 5
]⊤

. Note that γ = HFDFα 6= α, since

HFDF =





1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0



 6= I6. (13)

Example 2 shows that down-up sampling affects the signal.

More generally, using the Kronecker mixed-product property

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (14)

it can be shown that

DFHF = IN , HFDF = IN ⊗ (1F e
⊤

F ) 6= IFN . (15)

A key observation is that up-down sampling DFHF has

no effect on the signal, whereas down-up sampling HFDF

does affect the signal. In fact, HFDF is block Toeplitz with

block size F , see also Example 2, and hence the down-up

sampling operation is not LTI, but linear periodically time-

varying (LPTV) with period F . An important consequence

is that if an input-output operation involves any sampling

rate lower than the input sampling rate, then the operation

is LPTV. Indeed, this is the case for the multirate control

diagram in Fig. 3, which is thus LPTV. The presented finite-

time descriptions enable to exactly describe this time-varying

multirate system.

In the following section, the multirate control diagram is

presented, based on the finite-time descriptions presented in

this section.

Remark 3. A more general definition of the downsampler

DF in (6) is obtained by considering α ∈ R
M , β ∈ R

⌈MF ⌉,

F,M ∈ N. For ease of notation, it is assumed that M = FN .

B. Multirate control diagram

The full control diagram of the architecture in Fig. 3

is shown in Fig. 4 and includes the modeling of systems

GSS,h and GLoS,l. The systems are modeled through GSS,∗
and GLoS,∗ operating at the extremely high rate f∗, which

approximate the underlying continuous-time systems GSS and

GLoS , respectively. Here, H∗,S∗ are the continuous-time hold

(digital-to-analog) and sampling (analog-to-digital converter).

Recall that signals at rate f∗ are not available for real-time

feedback control. However, this approach enables evaluation

of the tracking error ε∗ at rate f∗.

To determine the optimal controllers, the relation between

CFF,LoS,l, Cψ,LoS,l and ε∗ is required. The dependence of

finite-time ε∗ on ρSS,h, νFF,LoS,l, ρψ,LoS,l is given by

Lemma 4.

Lemma 4. Given the finite-time descriptions in Section III-A,

ε∗ in Fig. 4 is given by

ε∗ = ψSS,∗ −A

[

νFF,LoS,l
ρψ,LoS,l

]

, (16)

with

ψSS,∗ = GSS,∗HFhSSS,h

× (CFF,SS,h + CFB,SS,hCψ,SS,h) ρSS,h,
(17)

A = GLoS,∗HFlSLoS,l
[

INl CFB,LoS,l
]

, (18)

SSS,h = (INh + CFB,SS,hGSS,h)
−1, (19)

SLoS,l = (INl + CFB,LoS,lGLoS,l)
−1. (20)

Proof. See Section A.

An important observation in Lemma 4 is that A includes

sampling rate changes and hence the transfer function from

νFF,LoS,l, ρψ,LoS,l to ε∗ is LPTV and cannot be described

using traditional frequency domain transfer functions. In the

next section, the controllers are designed.

IV. MULTIRATE CONTROLLER DESIGN

In the previous section, the multirate system in Fig. 4 was

modeled. In this section, the controllers are parameterized and

the optimal controller parameters are presented, constituting

Contribution (II). Furthermore, the multirate system is further

improved by modifying the controller implementation and

design, which constitutes Contribution (III).
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Cψ,SS,h
ρSS,h ρψ,SS,h εSS,h

CFF,SS,h

CFB,SS,h
+

+ ψSS,h

+
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−

GLoS,l GLoS,∗
ψLoS,l

ψSS,∗

+

−

ε∗

ψLoS,∗

HFh
H∗ GSS S∗

GSS,h

DFh

GSS,∗
ySS

yLoS

e+

−

νFF,SS,h

νFF,LoS,lρLoS,l CFF,LoS,l

CFB,LoS,l HFl
H∗ GLoS S∗

DFl
Cψ,LoS,l

ρψ,LoS,l εLoS,l+

−

νSS,h

νLoS,l

Fig. 4. Multirate control architecture where the short-stroke (SS) loop (top part) runs at high rate fh and the long-stroke (LoS) loop (bottom part) at low
rate fl. The interconnection is provided through downsampler DF . Error ε∗ is an approximation of the continuous-time signal e at extreme high rate f∗.
Solid lines ( ) indicate continuous-time signals, dotted lines ( ) extreme high sampling rates f∗, dashdotted lines ( ) high sampling rates fh, and
dashed lines ( ) low sampling rates fl. Both subsystems (G) are controlled through feedback (CFB), feedforward (CFF ), and input shaping (Cψ). The
objective is to minimize ε∗ through design of CFF,LoS,l and Cψ,LoS,l such that the long stroke tracks the short stroke. In this configuration, CFF,LoS,l
and Cψ,LoS,l are implemented at the low rate, i.e., fc = fl.

A. Controller parameterization

To address arbitrary reference trajectories, the feedforward

and input shaping filters are parameterized in terms of basis

functions, see, for example, [37], [38]. Basis functions de-

couple the parameters from the reference trajectory, allowing

variations in the reference trajectories without affecting the

parameters. This is in contrast to standard learning approaches

[6] in which a command signal for one specific reference

trajectory is learned.

Inspired by [39], controllers CFF,LoS,l, Cψ,LoS,l are pa-

rameterized in terms of difference operators according to

Definition 5. Note that CFF,LoS,l(0) = 0 and Cψ,LoS,l(0) = 1
such that if the parameters are zero, only feedback control is

used.

Definition 5. CFF,LoS,l and Cψ,LoS,l in Fig. 4 are given by

CFF,LoS,l(θFF ) =

nFF−1
∑

i=0

θFF [i]

(

fl(z−1)

z

)i+1

, (21)

Cψ,LoS,l(θψ) = 1 +

nψ−1
∑

i=0

θψ[i]

(

fl(z−1)

z

)i+1

, (22)

with design parameters θFF , θψ .

Theorem 6 shows that νFF,LoS,l and ρψ,LoS,l depend affine

on parameters θFF and θψ , respectively.

Theorem 6. Given Definition 5, the finite-time descriptions of

νFF,LoS,l and ρψ,LoS,l are given by

νFF,LoS,l = CFF,LoS,lDFψSS,h = ΦFF,l θFF , (23)

ρψ,LoS,l = Cψ,LoS,lDFψSS,h = DFψSS,h +Φψ,l θψ,
(24)

with

Φx,l = DFTψSS,h

[

Inx+1 ⊗ eF
0(Nh−F (nx+1))×(nx+1)

]

Rx,l, (25)

TψSS,h =









ψSS,h[0] 0 0 ··· 0

ψSS,h[1] ψSS,h[0] 0 ··· 0

ψSS,h[2] ψSS,h[1] ψSS,h[0] ··· 0

...
...

...
. . .

...
ψSS,h[Nh−1] ψSS,h[Nh−2] ψSS,h[Nh−3] ··· ψSS,h[0]









,

(26)

Rx,l =









1 1 1 ... 1
−1 −2 −3 ... −nx
0 1 3 ... ∗
0 0 −1 ... ∗

...
...

...
. . .

...
0 0 0 ... (−1)nx









diag{f1l , . . . , f
nx
l }, (27)

where x refers to FF or ψ.

Proof. See Section B.

Combining Theorem 6 with Lemma 4 reveals an affine

dependence of ε∗ on θFF and θψ as made explicit in Lemma 7.

Lemma 7. Error ε∗ is given by

ε∗ = b−AΦθ, (28)

with

b = ψSS,∗ −GLoS,∗HFlSLoS,lCFB,LoS,lDFψSS,h, (29)

Φ =

[

ΦFF,l 0
0 Φψ,l

]

, (30)

θ =

[

θFF
θψ

]

. (31)

Proof. See Section C.

Lemma 7 provides the dependence of ε∗ on the controller

parameters θ. In the next section, the parameters θ are opti-

mized.

B. Controller optimization

The optimal parameters for the control objective in (3) are

given by the solution of the optimization problem

min
θ

∥

∥ε∗
∥

∥

2

2
s.t. ε∗ = b−AΦθ. (32)
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If AΦ is full rank, the solution to this quadratic optimization

problem is given by the least-squares solution θ = θ0, with

θ0 =
(

(AΦ)⊤(AΦ)
)−1

(AΦ)⊤b. (33)

For perfect models, solution (33) provides the optimal solution.

In practice, there are always model mismatches for which

the parameters are iteratively learned through an approach

that closely resembles norm-optimal iterative learning control

(ILC) [6] based on the models and data of previous executions.

A key observation is that the models are time-varying, which

is in sharp contrast to standard learning techniques. One

execution of the learning approach is referred to as a trial

or task and indicated with subscript j = 0, 1, 2, . . .. The

parameters θj+1 for the next trial are determined as those

minimizing the performance criterion in Definition 8 [6] based

on measured data from trial j.

Definition 8 (Performance criterion). The performance crite-

rion for trial j + 1, j = 0, 1, 2, . . . is given by

J (θj+1) = ‖εj+1,∗‖
2
W ε

+
∥

∥ξj+1,l

∥

∥

2

Wξ

+
∥

∥ξj+1,l − ξj,l
∥

∥

2

W
∆ξ

(34)

where ‖(·)‖2W = (·)⊤W (·), with W ε ∈ R
N∗×N∗ positive

definite, Wξ,W∆ξ ∈ R
2Nl×2Nl semi-positive definite, and

εj+1,∗ = εj,∗ −AΦ (θj+1 − θj) , (35)

ξj,l = Φθj . (36)

Performance criterion (34) can be used to address several

control goals. For example, for W ε = IN∗
and Wξ =W∆ξ =

02Nl , the control goal in (3) is addressed, i.e., minimizing

‖ε∗‖
2
2. The optimal parameters for the general criterion are

given by Theorem 9.

Theorem 9 (Iterative solution). The parameters θj+1, j =
0, 1, 2, . . ., that minimize J (θj+1) in Definition 8 are given

by

θj+1 = Qθj + Lεj,∗, (37)

with

Q =
(

(AΦ)⊤W ε(AΦ) + Φ⊤
(

Wξ +W∆ξ

)

Φ
)−1

×
(

(AΦ)⊤W ε(AΦ) + Φ⊤W∆ξΦ
)

,
(38)

L =
(

(AΦ)⊤W ε(AΦ) + Φ⊤
(

Wξ +W∆ξ

)

Φ
)−1

× (AΦ)⊤W ε.
(39)

Theorem 9 directly follows from substitution of (35) and

(36) in (34) and equating ∇J (θj+1) = 0, see also [37]. Note

that W ε,Wξ,W∆ξ should be chosen such that the inverse in

(38) and (39) exists. A step-by-step procedure for the iterative

algorithm is provided in Algorithm 10, where (33) provides

initial parameters based on models only.

Algorithm 10 (Iterative tuning procedure). Calculate Q,L

using (38), (39), set j = 0 and determine θ0 in (33). Then,

perform the following sequence of steps:

1. Execute task j and record data εj,∗.

2. Determine θj+1 through (37).

νFF,LoS,l

ψSS,h

CFF,LoS,h

Cψ,LoS,h
ρψ,LoS,l

DF
νFF,LoS,h

DF
ρψ,LoS,h

(a) Part of the control diagram in Fig. 4 with the
controllers implemented at high rate, i.e., fc = fh.

CFF,LoS,lDF

DFCFF,LoS,h

(b) The design space is
larger for the controller
design at high rate.

Fig. 5. Designing and implementing the controllers at high rate allows to
exploit all information in ψSS,h and thereby improve performance.

3. Set j → j + 1 and repeat from step 1 until satisfactory

convergence in θj or a user-defined maximum number of

trials is reached.

Algorithm 10 provides the iterative tuning solution for the

time-varying multirate system with controller design at the

low rate. In the next section, the controllers are explicitly

designed and implemented at the high rate to enhance the

performance/cost trade-off in Fig. 1.

C. Performance enhancement: High-rate control

In the previous sections, the optimal controller for the

multirate system in Fig. 4 is presented. In this section, the

performance of the multirate system is further improved by

modifying the controller implementation and design, which

constitutes Contribution (III). The results of the previous

section are recovered as a special case.

In contrast to time-invariant systems, time-varying systems

do generally not commute, i.e., interchanging the order affects

the output. One key advantage of the proposed approach

is that this property can be directly exploited to enhance

the performance/cost trade-off in Fig. 1. In Fig. 4, both the

feedforward controller and input shaper of the long stroke

are implemented at the low rate fl. In this section, these

controllers are implemented at high rate fh as shown in

Fig. 5(a). This implementation has the potential to improve

the performance since ψSS,h contains more information than

ρLoS,l = DFψSS,h. This also follows from the noble identity

DFH(zF ) ≡ H(z)DF , with H a discrete-time system rational

in z [36, Section 4.2]. Indeed, since the frequency response

of CFF,LoS,h is independent from that of CFF,LoS,l, there is

more design freedom as illustrated in Fig. 5(b).

The additional cost of the high-rate implementation is

negligible since it only involves a different controller design

in software, without effecting hardware. In particular, it uses

sensor information of the short-stroke loop at high rate, which

is also required for feedback control on the short stroke. The

new design does not require sensor information of the long-

stroke loop at a higher rate. The actuation of the long-stroke

loop remains at low rate.

The parameterization of the controllers at high rate is similar

to that in Definition 5 and provided by Definition 11.



7

Definition 11. CFF,LoS,h and Cψ,LoS,h in Fig. 5 are given

by

CFF,LoS,h(θFF ) =

nFF−1
∑

i=0

θFF [i]

(

fh(z − 1)

z

)i+1

, (40)

Cψ,LoS,h(θψ) = 1 +

nψ−1
∑

i=0

θψ[i]

(

fh(z−1)

z

)i+1

. (41)

The finite-time descriptions for this parameterization are

provided in Lemma 12. Using these results, the iterative

approach outlined in Algorithm 10 is directly applicable.

Lemma 12. Given Definition 11, the finite-time descriptions

(23), (24), and (30) change to

νFF,LoS,l = DFCFF,LoS,hψSS,h = DFΦFF,h θFF , (42)

ρψ,LoS,l = DFCψ,LoS,hψSS,h = DFψSS,h

+DFΦψ,h θψ, (43)

Φ =

[

DFΦFF,h 0
0 DFΦψ,h

]

, (44)

with

Φx,h = TψSS,h

[

Inx+1

0(Nh−(nx+1))×(nx+1)

]

Rx,h, (45)

Rx,h =









1 1 1 ... 1
−1 −2 −3 ... −nx
0 1 3 ... ∗
0 0 −1 ... ∗

...
...

...
. . .

...
0 0 0 ... (−1)nx









diag{f1h , . . . , f
nx
h }, (46)

where x refers to FF or ψ.

Proof. See Section D.

The controller design and implementation at high rate

completes the multirate controller design. Next, the advantages

of multirate control over single-rate control are demonstrated

in both simulation and experiments.

V. EXPERIMENTAL SETUP: A DUAL-STAGE WAFER STAGE

SYSTEM

In the remainder of this paper, the multirate control design

framework presented in the previous section is validated on a

dual-stage system, both in simulations and experiments. In this

section, the wafer stage system is introduced in more detail and

the experimental setup of the dual-stage system is presented.

A. Wafer stages: Key components in lithography machines

Wafer stages are key components in wafer scanners. Wafer

scanners are state-of-the-art lithography machines for the auto-

mated production of integrated circuits. In Fig. 6, a schematic

illustration of a wafer scanner system is depicted. Ultra-violet

light from a light source 1 passes through a reticle 2 ,

which contains a blueprint of the integrated circuits to be

manufactured. The reticle is clamped atop the reticle stage 3

which performs a scanning motion. The resulting image of the

reticle is scaled down by a lens system 4 and projected onto

the light sensitive layers of a wafer 5 . The wafer is clamped

1

2

3

4

5

6

Fig. 6. Schematic illustration of a wafer scanner system, consisting of light

source 1 , reticle 2 , reticle stage 3 , lens system 4 , wafer 5 , and wafer

stage 6 .

metrology frame encodersLoS SS force frame

Fig. 7. Experimental setup resembling a one degree-of-freedom wafer
stage. The setup consists of two air-guided stages that can translate in one
horizontal direction. The positions are measured through 1 nm resolution
optical encoders.

on the wafer stage 6 and performs a synchronized scanning

motion with the reticle stage.

During the scanning process, the wafer stage and reticle

stage track reference signals with nanometer positioning ac-

curacy. In this paper, the focus is on control of the wafer stage,

which has more stringent performance requirements than the

reticle stage [40].

B. Experimental setup

The experimental setup is shown in Fig. 7 and consists

of two stages: a long stroke (LoS) and a short stroke (SS).

Both stages can translate in one horizontal direction and are

air guided. Each stage is actuated through a Lorentz actuator

attached to the force frame. The position of each stage is

measured through 1 nm resolution optical encoders attached to

the metrology frame, which is separated from the force frame

to reduce interaction. The total stroke is 16.0 mm.

The sampling rate of ε∗ is f∗ = 10080 Hz. The identified

frequency response functions of both stages are shown in

Fig. 8. The stages are modeled as freely moving masses with
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(a) Short-stroke (SS) stage.
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(b) Long-stroke (LoS) stage.

Fig. 8. Measured frequency response functions ( ) with sampling rate f∗ =
10080 Hz and the identified models ( ) in (47).

one sample I/O delay:

Gx,∗ = z−1 (z + 1)

2mxf2∗ (z−1)2
, (47)

with masses mSS = 4.70 kg and mLoS = 4.33 kg. The

sampling rate factors Fh, Fl are varied and provided when

relevant.

Reference trajectory ρSS,h consists of a forward and back-

ward movement with a total duration of 0.25 s and is shown

in Fig. 9. The point-to-point profile is representative for the

application in terms of distance, maximum acceleration, etc. A

fourth-order profile is used to guarantee a smooth signal with

limited high-frequency content to avoid excitation of higher-

order dynamics, see also Fig. 8 and, e.g., [41].

Experiments show that the measurement noise on both

ψSS,∗ and ψLoS,∗ has a variance of (45 nm)2. This value

is used during simulation to mimic experimental conditions.

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

Time [s]

ρ
S
S
,h

[m
m

]

Fig. 9. Reference trajectory ρSS,h is a forward and backward movement
over 0.5 mm constructed from fourth-order polynomials.

C. Controller design

The fixed feedback controllers CFB,SS,h and CFB,LoS,l
both consist of a lead filter, weak integrator, and second

order lowpass filter based on loop-shaping techniques [5]. The

controllers stabilize their respective closed-loop systems and

yield a bandwidth (first 0 dB crossing of the open-loop) of

100 Hz for both loops. The feedforward controller and input

shaper for the short stroke are given by

CFF,SS,h = mSS

f2h(z−1)2

z2
, (48)

Cψ,SS,h = GSS,hCFF,SS,h. (49)

Hence, CFF,SS,h generates mass feedforward and the combi-

nation results in εSS,h = 0, if GSS,h is exact.

The design of the long-stroke feedforward controller and

input shaper aims to minimize ‖ε∗‖
2
2 by setting the weights

in Definition 8 to

W ε = IN∗
, Wξ,W∆ξ = 02Nl×2Nl . (50)

Note that these settings also facilitate fast convergence of the

iterative procedure in Algorithm 10.

VI. SIMULATION RESULTS

In this section, the simulation results are presented, which

serve as a benchmark for the experimental results presented

in Section VII. The simulations enable validation of the

experimental results and constitute Contribution (IV).

A. Comparing controllers at different rates

The considered control configurations are listed in Table I,

see also (1). Due to the difference in sampling rate between

the controller parameterization on low rate (Definition 5) and

high rate (Definition 11), the number of parameters nFF and

nψ alone does not provide a fair comparison between the

controllers. Therefore, the controller buffer lengths

τFF :=
nFF

fc
, τψ :=

nψ

fc
, (51)

are defined, where fc is the sampling rate of the optimized

controllers, see Table I. These buffer lengths are an indication

for the implementation cost of the controller.
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(a) Simulation results for varying τFF show that, due to more design
freedom in terms of parameters nFF , the performance increases (J
decreases) for increasing cost (increasing buffer length τFF ). The results
shown are for fixed Cψ,LoS = 1 and varying nFF .
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(b) Experimental validation of the simulation in (a). The results are in line
with the simulation results.
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(c) Simulation results for varying τψ show that larger cost (larger buffer
length τψ) yields better performance (lower J ). The results shown are
for mass feedforward (nFF = 2 and θFF [0] = 0) and varying nψ .
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10
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10
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(d) Experimental validation of the simulation in (c). The results are in line
with the simulation results.

Fig. 10. Simulation results in (a) and (c), and experimental results in (b) and (d) for the four control configurations in Table I. As is expected, single-rate
high ( ) outperforms single-rate low ( ). The performance of multirate low ( ) is similar to that of single-rate low ( ). The performance of
multirate high ( ) is close to the performance of single-rate high ( ). The results demonstrate the advantages of multirate control. Indeed, a high level
of performance is achievable with multirate control for limited cost since one of the feedback control loops is evaluated at a lower rate.

TABLE I
THE FOUR DIFFERENT CONTROL CONFIGURATIONS THAT ARE EVALUATED.

Label Symbol f∗ [Hz] fh [Hz] fl [Hz] fc [Hz]

Single-rate high 10080 2016 2016 2016
Single-rate low 10080 1008 1008 1008
Multirate high 10080 2016 1008 2016
Multirate low 10080 2016 1008 1008

B. Simulation setup

For comparison with the experimental results in Section VII,

measurement noise is added to ψSS,∗ and ψLoS,∗. The noise

is modeled as zero mean, Gaussian white noise with variance

σ2 = (45 nm)2 based on experimental data, see also Sec-

tion V-B.

In simulation, the models are exact and hence the initial

parameters θ0 in (33) provide the optimal solution. Note that

the noise introduces trial-varying disturbances, which cannot

be compensated through the iterative tuning algorithm and

thereby limits the achievable performance.

C. Results

The performance/cost trade-off curves for the configurations

in Table I are shown in Fig. 10(a) and Fig. 10(c). Both fig-

ures show the enhancement of the performance/cost trade-off

through multirate control as illustrated in Fig. 1. In particular,

both figures show I) increasing performance (decreasing J )

for increasing cost (increasing τ ); and II) excellent perfor-

mance through multirate control with design at high rate.

As a direct consequence of a higher sampling rate, single-

rate high outperforms single-rate low. Multirate control is

a trade-off between these two and hence the performance

is somewhere in between. The performance improvement

of multirate low is limited compared to single-rate low. In

contrast, the performance of multirate high is close to that of

single-rate high. The results show that multirate control can

achieve high performance with limited cost, when designed

and implemented at the high rate. Indeed, the long-stroke

feedback control loop remains executed at the low rate.

The results in Fig. 10(a) show the importance of adding

the acceleration profile as basis function in terms of perfor-

mance improvement, as is also apparent from the frequency

response functions in Fig. 8 and identified models in (47).

Indeed, especially for low frequencies, the stages behave as

a rigid body mass. Therefore, a mass feedforward controller

CFF,LoS = θFF [1]
f2

c (z−1)2

z2
is used in Fig. 10(c), where pa-

rameter θFF [1] is also optimized. Note that mass feedforward

is also used for the short-stroke feedforward controller in (48).

Time-domain results for multirate high with nFF = 2, nψ =
0 are shown in Fig. 11. Compared to mass feedforward, there

is an additional parameter in the feedforward filter as can be

observed in νFF,LoS,l, resulting in improved performance.

The simulation results demonstrate the potential of multirate

control, especially when the controllers are designed and im-
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(a) Feedforward signal νFF,LoS,l.
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(b) Error signal ε∗.

Fig. 11. Time-domain simulation results for single-rate high with nFF = 2,
nψ = 0. The results show the importance of mass feedforward.

plemented at the high rate. Next, the results are experimentally

validated.

VII. EXPERIMENTAL RESULTS

In this section, the simulation results of the previous sec-

tion are experimentally validated on the setup described in

Section V. The results experimentally validate the advantages

of multirate control and constitute Contribution (V).

A. Application of iterative tuning

In contrast to simulation, the models do not exactly describe

the system in experiments. Therefore, the iterative tuning

procedure in Algorithm 10 is invoked to iteratively update the

parameters based on measured data. The convergence of the

iterative tuning algorithm is shown in Fig. 12 for the various

control configurations in Table I with a fixed buffer length

τFF = 1 ms (τψ = 0).

The results in Fig. 12 show fast convergence (one trial) of

the iterative algorithm as desired. Note that the deviations over

the trials are caused by trial-varying disturbances for which the

algorithm cannot compensate. In the remainder, five trials are

used and only the results of the fifth trial are shown.

B. Results

The experimental results for the simulations in Fig. 10(a)

and Fig. 10(c) are shown in Fig. 10(b) and Fig. 10(d),

respectively. The results are in line with the simulation results

and the conclusions in Section VI, i.e., higher performance

(lower J ) for increasing number of parameters (increasing τ ),

and excellent performance for multirate control with control

design at high rate (multirate high).

Time-domain signals for several parameterizations with

multirate high are shown in Fig. 13. Clearly, mass feedforward

only (nFF = 2, θFF [0] = 0, nψ = 0) is restrictive

0 1 2 3 4

10
−11.2

10
−11

10
−10.8

Trial j

J
[m

2 ]

Fig. 12. Experimental results of the performance criterion over trials for
τFF = 1 ms, τψ = 0 with single-rate high ( ), multirate high ( ),
multirate low ( ), and single-rate low ( ). The results show that all control
configurations converge in one trial up to the level of trial-varying disturbances
for which the iterative tuning algorithm cannot compensate.

and achieves moderate performance. When using nFF = 2,

nψ = 0 there is more design freedom resulting in better

performance. Adding design freedom in the input shaper by

using nFF = 2, nψ = 4 yields even better performance.

Most design freedom is obtained by fully parameterizing

the feedforward signal as in traditional learning control with

nFF = Nh (nψ = 0) and yields the best performance. Indeed,

the performance of standard learning control in which the full

signal is learned is superior for repeating tasks. However, the

performance deteriorates drastically when the trajectory ρSS,h
is changed, see for example [37], [38], which conflicts with

the requirement on reference task flexibility in Section II-C.

Hence, there is a trade-off between performance and task

flexibility, which can be balanced using basis functions.

C. Summary

The experimental results validate the simulation results and

thereby demonstrate the potential of multirate control for dual-

stage systems. Both the simulations and experiments show

that a multirate design approach with control design at the

high rate can significantly enhance the performance compared

to traditional single-rate control on the low rate. In fact, the

performance is similar to that of single-rate control at the high

rate, but obtained with a lower cost since one of the control

loops is executed at the low rate which reduces hardware cost.

VIII. CONCLUSION

In most motion systems, all control loops are operated on

a single, fixed sampling rate since this allows the use of

well-known control design techniques. However, for such a

design, increasing the sampling rate to increase performance

is costly in terms of required hardware since all control loops

are affected.

In this paper, a multirate approach is exploited to enhance

the traditional performance/cost trade-off. In essence, this

allows to allocate the performance and cost over the different

control loops. The time variance introduced by multirate

sampling complicates control design and constitutes the main

challenge addressed in this paper.

The main contribution of this paper is a control design

framework for multirate systems. The framework facilitates

optimal feedforward control design through iterative tuning
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(a) Parameterizations with more design freedom yield a smaller error ε∗
which is also apparent in the performance criterion J shown in Fig. 10.
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(b) The different parameterizations yield different feedforward signals
νFF,LoS,l.
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(c) The shaped input ρψ,LoS,l is only different from ρLoS,l for the parame-
terization with nψ = 4 ( ) since nψ = 0 for the other parameterizations.

Fig. 13. Time-domain results for multirate high for different parameteriza-
tions. In ascending order of design freedom: mass feedforward (nFF = 2,
θFF [0] = 0, nψ = 0) ( ); nFF = 2, nψ = 0 ( ); nFF = 2,
nψ = 4 ( ); and full learning of νFF,LoS,h (nFF = Nh, nψ = 0)
( ). More design freedom reduces the error ε∗.

control. Through simulations and experiments on a dual-stage

wafer stage system, the advantages of the multirate control

approach are demonstrated. In particular, it is shown that by

design of multirate control on the high rate excellent perfor-

mance is achieved, with limited cost. The results demonstrate

the potential of flexible sampling in motion systems.

Ongoing research focuses on feedback control design for

multirate systems, see [26] for preliminary results, and control

design for other classes of flexible sampling.

APPENDIX A

PROOF LEMMA 4

The following identity, known as the push-through rule, is

exploited:

(Im +AB)
−1
A = A (In +BA)

−1
, (52)

with A ∈ R
m×n, B ∈ R

n×m, n,m ∈ N.

Using Fig. 4 and (52), ψSS,∗ is expressed in ρSS,h:

ψSS,∗ = GSS,∗HFh (CFF,SS,h + CFB,SS,hCψ,SS,h) ρSS,h

−GSS,∗HFhCFB,SS,hDFhψSS,∗
(53)

= (IN∗
+GSS,∗HFhCFB,SS,hDFh)

−1
GSS,∗HFh

× (CFF,SS,h + CFB,SS,hCψ,SS,h) ρSS,h
(54)

= GSS,∗HFh (INh + CFB,SS,hDFhGSS,∗HFh)
−1

× (CFF,SS,h + CFB,SS,hCψ,SS,h) ρSS,h
(55)

= GSS,∗HFhSSS,h

× (CFF,SS,h + CFB,SS,hCψ,SS,h) ρSS,h,
(56)

with SSS,h in (19). Using Fig. 4 and (52), ψLoS,∗ is expressed

in ρψ,LoS,l, νFF,LoS,l:

ψLoS,∗ = GLoS,∗HFl

(

νFF,LoS,l + CFB,LoS,lρψ,LoS,l
)

−GLoS,∗HFlCFB,LoS,lDFlψLoS,∗
(57)

= (IN∗
+GLoS,∗HFlCFB,LoS,lDFl)

−1
GLoS,∗HFl

×
(

νFF,LoS,l + CFB,LoS,lρψ,LoS,l
)

(58)

= GLoS,∗HFl (INl + CFB,LoS,lDFlGLoS,∗HFl)
−1

×
(

νFF,LoS,l + CFB,LoS,lρψ,LoS,l
)

(59)

= GLoS,∗HFlSLoS,l

×
[

INl CFB,LoS,l
]

[

νFF,LoS,l
ρψ,LoS,l

]

(60)

= A

[

νFF,LoS,l
ρψ,LoS,l

]

, (61)

with SLoS,l in (20) and A in (18). The result follows from

ε∗ = ψSS,∗ − ψLoS,∗.

APPENDIX B

PROOF THEOREM 6

It is shown that for the parameterization

Cl(θ) =

n−1
∑

i=0

θ[i]

(

fl(z−1)

z

)i+1

(62)

it holds

ξl = ClDF ρSS,h = Φlθ. (63)

Relations (23) and (24) directly follow from this result.
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Parameterization (62) can equivalently be written as a finite

impulse response (FIR) structure of order nα = n+ 1:

Cl(θ) =

n−1
∑

i=0

θ[i]

(

fl(z−1)

z

)i+1

=

nα−1
∑

i=0

α[i]z−i. (64)

By equating coefficients, it directly follows that the relation

between the parameters is given by α = Rlθ with Rl ∈ R
nα×n

as in (27). Note that Rl is the product of a truncated transposed

(lower triangular Cholesky factor of the) Pascal matrix of order

nα, with a diagonal scaling matrix depending on fl.

The finite-time description of Cl in terms of α is given by

Cl =



























α[0] 0 0 ···

α[1] α[0] 0 ···

... α[1] α[0] ···

α[nα−1]
... α[1]

. . .

0 α[nα−1]
...

. . .

0 0 α[nα−1]
. . .

...
...

...
. . .



























. (65)

Using the Kronecker mixed-product property rule (14) the

order of Cl and DF , see (10), is interchanged:

ClDF = (Cl ⊗ 1)
(

INl ⊗ e⊤F
)

(66)

= (ClINl)⊗
(

1e⊤F
)

(67)

= (INlCl)⊗
(

(e⊤F eF )e
⊤

F

)

(68)

=
(

INl ⊗ e⊤F
) (

Cl ⊗ (eF e
⊤

F )
)

(69)

= DF

(

Cl ⊗ (eF e
⊤

F )
)

. (70)

Note that Cl ⊗ (eF e
⊤

F ) is a lower triangular matrix and that

ψSS,h = TψSS,heNh , with TψSS,h in (26) is also a lower

triangular matrix.

Next, the commutative property of lower triangular matrices

is exploited to express ξl in θ. To this end, the Kronecker

product rule and the relation α = Rlθ are used:

ξl = ClDFψSS,h (71)

= DF

(

Cl ⊗ (eF e
⊤

F )
)

ψSS,h (72)

= DF

(

Cl ⊗ (eF e
⊤

F )
)

TψSS,heNh (73)

= DFTψSS,h
(

Cl ⊗ (eF e
⊤

F )
)

eNh (74)

= DFTψSS,h

[

α⊗ eF
0(Nh−Fnα)×1

]

(75)

= DFTψSS,h

[

(Inαα)⊗ (eF 1)
0(Nh−Fnα)×1

]

(76)

= DFTψSS,h

[

Inα ⊗ eF
0(Nh−Fnα)×nα

]

α (77)

= DFTψSS,h

[

Inα ⊗ eF
0(Nh−Fnα)×nα

]

Rlθ (78)

= Φlθ, (79)

which concludes the proof of (62). Relations (23) and (24)

directly follow from this result.

APPENDIX C

PROOF LEMMA 7

Substitution of (23) and (24) in (16) and using (18) yields

ε∗ = ψSS,∗ −A

[

νFF,LoS,l
ρψ,LoS,l

]

(80)

= ψSS,∗ −A

[

ΦFF,lθFF
DFψSS,h +Φψ,lθψ

]

(81)

= ψSS,∗ −A

[

0Nl
DFψSS,h

]

−A

[

ΦFF,lθFF
Φψ,lθψ

]

(82)

= ψSS,∗ −GLoS,∗HFlSLoS,l
[

INl CFB,LoS,l
]

×

[

0Nl
DFψSS,h

]

−A

[

ΦFF,lθFF
Φψ,lθψ

]

(83)

= ψSS,∗ −GLoS,∗HFlSLoS,lCFB,LoS,lDFψSS,h

−A

[

ΦFF,l 0
0 Φψ,l

] [

θFF
θψ

]

(84)

= b−AΦθ, (85)

with b,Φ, θ as given in Lemma 7.

APPENDIX D

PROOF LEMMA 12

It is shown that for the general parameterization

Ch(θ) =

n−1
∑

i=0

θ[i]

(

fh(z−1)

z

)i+1

(86)

it holds

ξl = DFChψSS,h = DFΦh θ. (87)

Relations (42) and (43) directly follow from this result.

The proof is similar to that of Theorem 6. First, Ch is

expressed in terms of FIR parameters α:

Ch(θ) =

n−1
∑

i=0

θ[i]

(

fh(z−1)

z

)i+1

=

nα−1
∑

i=0

α[i]z−i, (88)

where α = Rhθ with Rh ∈ R
nα×n as in (46) and nα = n+1.

The finite-time description of Ch in terms of α is given by

Ch =



























α[0] 0 0 ···

α[1] α[0] 0 ···

... α[1] α[0] ···

α[nα−1]
... α[1]

. . .

0 α[nα−1]
...

. . .

0 0 α[nα−1]
. . .

...
...

...
. . .



























. (89)
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Next, it is exploited that the lower triangular matrices Ch
and TψSS,h commute:

ξl = DFChψSS,h (90)

= DFChTψSS,heNh (91)

= DFTψSS,hCheNh (92)

= DFTψSS,h

[

α

0(Nh−nα)×1

]

(93)

= DFTψSS,h

[

Inα
0(Nh−nα)×nα

]

α (94)

= DFTψSS,h

[

Inα
0(Nh−nα)×nα

]

Rhθ (95)

= DFΦhθ. (96)

Relations (42) and (43) directly follow from this result.
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