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■ Abstract Unsupervised models of how the brain identifies and categorizes the
causes of its sensory input can be divided into two classes: those that minimize the mu-
tual information (i.e., redundancy) among evoked responses and those that minimize
the prediction error. Although these models have the same goal, the way that goal is
attained, and the functional architectures required, are fundamentally different. This
review describes the differences, in the functional anatomy of sensory cortical hierar-
chies, implied by the two models. We then consider how neuroimaging can be used to
disambiguate between them. The key distinction reduces to whether backward connec-
tions are employed by the brain to generate a prediction of sensory inputs. To ascertain
whether backward influences are evident empirically requires a characterization of
functional integration among brain systems. This review summarizes the approaches
to measuring functional integration in terms of effective connectivity and proceeds to
address the question posed by the theoretical considerations. In short, it will be shown
that the conjoint manipulation of bottom-up and top-down inputs to an area can be
used to test for interactions between them, in elaborating cortical responses. The con-
clusion, from these sorts of neuroimaging studies, points to the prevalence of top-down
influences and the plausibility of generative models of sensory brain function.

INTRODUCTION

Functional neuroimaging, or human brain mapping, has enjoyed an enormous
amount of success in systems and cognitive neuroscience over the past decade.
Much of this success rests on being able to identify functionally specialized ar-
eas. Implicit in the term mapping is cartography, which some have referred to as
neo-phrenology. Functional cartography, by itself, is clearly not going to reveal
the principles that underlie the brain’s functional architectures. However, it is an
important prelude. This review is about using neuroimaging to answer questions
about organizational principles, in terms of distributed and coupled interactions
among specialized brain systems. The question, chosen to illustrate this sort of
application, concerns the respective roles of forward and backward connections
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among cortical areas and how this coupling mediates perceptual synthesis and
categorization. The first half of this review establishes the potential importance
of backward connections using ideas from theoretical neurobiology and machine
learning. The ensuing predictions are then addressed using empirical examples
from neuroimaging.

The article starts by reviewing two fundamental principles of brain organiza-
tion, namely functional specialization and functional integration, and how they rest
on the anatomy and physiology of cortico-cortical connections in the brain. The
second section deals with the nature of representations from a theoretical or com-
putational perspective. This section contrasts information theoretic approaches
and those predicated on predictive coding. This section concludes that predic-
tive coding architectures are more plausible because they lend themselves to a
Bayesian formulation, in which constraints from higher levels of a cortical hier-
archy provide contextual guidance to lower levels of processing. This confers a
context-sensitivity on evoked responses.

Empirical evidence from electrophysiological studies of animals and functional
neuroimaging studies of human subjects is presented in the third and fourth sections
to illustrate the context-sensitive nature of functional specialization and how its
expression depends on functional integration among remote cortical areas. The
third section (on generative models and the brain) looks at extra-classical effects
in electrophysiology, in terms of the predictions afforded by generative models of
brain function. The theme of context-sensitive evoked responses is pursued at a
cortical level in human functional neuroimaging studies in the subsequent section
(on functional architectures and brain imaging). The critical focus of this section is
evidence for the interaction of bottom-up and top-down influences in determining
regional brain responses. These interactions can be considered signatures of a
predictive coding strategy.

FUNCTIONAL SPECIALIZATION AND INTEGRATION

The brain appears to adhere to two fundamental principles of functional organi-
zation, functional integration and functional specialization, where the integration
within and among specialized areas is mediated by effective connectivity. The dis-
tinction relates to that between “localizationism” and “[dis]connectionism,” which
dominated thinking about cortical function in the nineteenth century. Since the
early anatomic theories of Gall, the identification of a particular brain region with
a specific function has become a central theme in neuroscience. However, func-
tional localization per se was not easy to demonstrate: For example, a meeting that
took place on August 4, 1881 addressed the difficulties of attributing function to
a cortical area, given the dependence of cerebral activity on underlying connec-
tions (Phillips et al. 1984). This meeting was entitled “Localization of Function in
the Cortex Cerebri.” Goltz, although accepting the results of electrical stimulation
in dog and monkey cortex, considered that the excitation method was inconclusive
in that the behaviors elicited might have originated in related pathways, or current
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could have spread to distant centers. In short the excitation method could not be
used to infer functional localization because localizationism discounted interac-
tions, or functional integration among different brain areas. It was proposed that
lesion studies could supplement excitation experiments. Ironically, it was observa-
tions on patients with brain lesions some years later (see Absher & Benson 1993)
that led to the concept of disconnection syndromes and the refutation of localiza-
tionism as a complete or sufficient explanation of cortical organization. Functional
localization implies that a function can be localized in a cortical area, whereas spe-
cialization suggests that a cortical area is specialized for some aspects of perceptual
or motor processing, in which this specialization can be anatomically segregated
within the cortex. The cortical infrastructure supporting a single function may then
involve many specialized areas whose union is mediated by the functional integra-
tion among them. Functional specialization and integration are not exclusive; they
are complementary. Functional specialization is only meaningful in the context of
functional integration and vice versa.

Functional Specialization

The functional role, played by any component (e.g., cortical area, subarea, neu-
ronal population, or neuron) of the brain, is defined largely by its connections.
Certain patterns of cortical projections are so common that they could amount
to rules of cortical connectivity. “These rules revolve around one, apparently,
overriding strategy that the cerebral cortex uses—that of functional segregation”
(Zeki 1990). Functional segregation demands that cells with common functional
properties be grouped together. This architectural constraint in turn necessitates
both convergence and divergence of cortical connections. Extrinsic connections
between cortical regions are not continuous but occur in patches or clusters. This
patchiness has, in some instances, a clear relationship to functional segregation. For
example, the secondary visual area V2 has a distinctive cytochrome oxidase archi-
tecture, consisting of thick stripes, thin stripes, and interstripes. When recordings
are made in V2, directionally selective (but not wavelength or color selective) cells
are found exclusively in the thick stripes. Retrograde (i.e., backward) labeling of
cells in V5 is limited to these thick stripes. All the available physiological evidence
suggests that V5 is a functionally homogeneous area that is specialized for visual
motion. Evidence of this nature supports the notion that patchy connectivity is the
anatomical infrastructure that underpins functional segregation and specialization.

THE ANATOMY AND PHYSIOLOGY OF CORTICO-CORTICAL CONNECTIONS If spe-
cialization depends on connectivity, then important principles underpinning spe-
cialization should be embodied in the neuroanatomy and physiology of extrinsic
connections. Extrinsic connections couple different cortical areas, whereas intrin-
sic connections are confined to the cortical sheet. There are certain features of
cortico-cortical connections that provide strong clues about their functional role.
In brief, there appears to be a hierarchical organization that rests on the distinction
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TABLE 1 Some key characteristics of extrinsic cortico-cortical connections in the brain

Hierarchical organization

• The organization of the visual cortices can be considered as a hierarchy
(Felleman & Van Essen 1991).

• The notion of a hierarchy depends on a distinction between forward and
backward extrinsic connections.

• This distinction rests on different laminar specificity (Rockland & Pandya 1979,
Salin & Bullier 1995).

• Backward connections are more numerous and transcend more levels.

• Backward connections are more divergent than forward connections (Zeki & Shipp 1988).

Forward connections Backward connections

Sparse axonal bifurcations Abundant axonal bifurcation

Topographically organized Diffuse topography

Originate in supragranular layers Originate in bilaminar/infragranular layers

Terminate largely in layer VI Terminate predominantly in supragranular layers

Postsynaptic effects through fast Modulatory afferents activate slow (50 ms decay)
AMPA (1.3–2.4 ms decay) and voltage-sensitive NMDA receptors
GABAA (6 ms decay) receptors

between forward and backward connections. The designation of a connection as
forward or backward depends primarily on its cortical layers of origin and ter-
mination. Some characteristics of cortico-cortical connections are summarized in
Table 1. In brief, the anatomy and physiology of cortico-cortical connections sug-
gest that forward connections are driving and commit cells to a prespecified re-
sponse given the appropriate pattern of inputs. Backward connections, on the other
hand, are less topographic and are in a position to modulate the responses of lower
areas to driving inputs from either higher or lower areas (see Table 1). Reversible
inactivation (e.g., Sandell & Schiller 1982, Girard & Bullier 1989) and functional
neuroimaging (e.g., B¨uchel & Friston 1997) studies are consistent with this dis-
tinction. The notion that forward connections are concerned with the promulgation
and segregation of sensory information is consistent with their (a) sparse axonal
bifurcation, (b) patchy axonal terminations, and (c) topographic projections. In
contradistinction modulatory, backward connections are generally considered to
have a role in mediating contextual effects and in the coordination of processing
channels. This is consistent with their (a) frequent bifurcation, (b) diffuse axonal
terminations, and (c) nontopographic projections (Salin & Bullier 1995, Crick &
Koch 1998).

In summary, backward connections are abundant and are in a position to exert
powerful effects on evoked responses, in lower levels, that define the specialization
of any area or neuronal population. The idea pursued in this review is that spe-
cialization depends on backward connections and, due to the greater divergence
of the latter, can embody contextual effects. Appreciating this is important for
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understanding the role of functional integration in dynamically reshaping the spe-
cialization of brain areas that mediate perceptual synthesis and adaptive behavioral
responses.

Functional Integration and Effective Connectivity

Electrophysiology and imaging neuroscience have firmly established functional
specialization as a principle of brain organization in man. The functional integra-
tion of specialized areas has proven more difficult to assess. Functional integration
refers to the interactions among specialized neuronal populations and how these in-
teractions depend on the sensorimotor or cognitive context. Functional integration
is usually assessed by examining the correlations among activity in different brain
areas or trying to explain the activity in one area in relation to activities elsewhere.
“Functional connectivity” is defined as correlations between remote neurophysi-
ological events. However, correlations can arise in a variety of ways. For example
in multi-unit electrode recordings they can result from stimulus-locked transients
evoked by a common input, or they can reflect stimulus-induced oscillations me-
diated by synaptic connections (Gerstein & Perkel 1969). Integration within a
distributed system is usually better understood in terms of effective connectivity.
Effective connectivity refers explicitly to the influence that one neuronal system
exerts over another, either at a synaptic (i.e., synaptic efficacy) or population level.
It has been proposed that “the [electrophysiological] notion of effective connectiv-
ity should be understood as the experiment- and time-dependent, simplest possible
circuit diagram that would replicate the observed timing relationships between the
recorded neurons” (Aertsen & Preißl 1991). This speaks to two important points:
(a) Effective connectivity is dynamic, i.e., activity- and time-dependent and (b) it
depends on a model of the interactions. The models employed in functional neu-
roimaging can be divided into those based on regression models (Friston 1995) and
those based on structural equation models (McIntosh & Gonzalez-Lima 1994). A
more important distinction is whether these models are linear or nonlinear. Re-
cent characterizations of effective connectivity have focused on nonlinear models
that accommodate the modulatory or nonlinear effects described above. The most
general model one could envisage is provided by nonlinear system identification
through the use of Volterra series (see Box 1). This model has been used to address
nonlinear coupling among brain areas induced by attention (Friston & B¨uchel
2000). We will use this example in the functional architectures assessed with brain
imaging section.

Box 1 Dynamical Systems, Volterra Kernels, and Effective Connectivity

Input-State-Output Systems and Volterra Series
Neuronal systems are inherently nonlinear and lend themselves to modeling
by nonlinear dynamical systems. However, due to the complexity of biologi-
cal systems it is difficult to find analytic equations that describe them adequately.
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Even if these equations were known the state variables are often not observable.
An alternative approach to identification is to adopt a very general model (Wray
& Green 1994) and focus on the inputs and outputs. Consider the single input–
single output system:

ẋ(t) = f (x(t), u(t))

y(t) = λ(x(t)).

The Fliess fundamental formula (Fliess et al. 1983) describes the causal relation-
ship between the outputs and the recent history of the inputs. This relationship
can be expressed as a Volterra series, which expresses the outputy(t) as a non-
linear convolution of the inputsu(t), critically without reference to the state
variablesx(t). This series is simply a functional Taylor expansion ofy(t).

y(t) = F(u(t − σ )) = κ0

+
∞∑

i =1

t∫
0

. . .

t∫
0

κi (σ1, . . . σi ) u(t − σ1) . . . u(t − σi ) dσ1 . . . dσi

κi (σ1, . . . σi ) = ∂ iy(t)

∂u(t − σ1) . . . ∂u(t − σi )
,

whereκi (σ1, . . . σi ) is theith-order kernel. Volterra series have been described
as a “power series with memory” and are generally thought of as a high-order
or nonlinear convolution of the inputs to provide an output. See Bendat (1990)
for a fuller discussion. When the inputs and outputs are measured neuronal
activity, the Volterra kernels have a special interpretation.

Volterra Kernels and Effective Connectivity
Volterra kernels are essential in characterizing the effective connectivity or
influences that one neuronal system exerts over another because they represent
the causal characteristics of the system in question. Neurobiologically they have
a simple and compelling interpretation—they are synonymous with effective
connectivity:

κ1(σ1) = ∂y(t)

∂u(t − σ1)
, κ2(σ1, σ2) = ∂2y(t)

∂u(t − σ1) ∂u(t − σ2)
.

It is evident that the first-order kernel embodies the response evoked by a change
in input at t − σ1. In other words it is a time-dependant measure ofdriving
efficacy. Similarly, the second-order kernel reflects themodulatoryinfluence of
the input att −σ1 on the evoked response att −σ2, and so on for higher orders.
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The important thing about this formulation of effective connectivity is that
it can be defined and estimated using just the inputs and responses of a system
(e.g., cortical area). In other words, effective connectivity does not refer to
the (hidden) state variables (e.g., depolarization of every cell membrane, the
electrochemical status of every cell compartment, or the configuration of every
membrane channel) that actually mediate the input-output transformation. This
is important because these state variables are often unmeasurable, particularly
in functional neuroimaging.

THEORETICAL AND COMPUTATIONAL PERSPECTIVES

This section compares and contrasts two prevalent computational approaches to
perceptual categorization and synthesis: information theoretic and predictive cod-
ing frameworks. This section restricts itself to sensory processing in cortical hier-
archies. This precludes a discussion of other important ideas [e.g., reinforcement
learning (Sutton & Barto 1990, Friston et al. 1994), neuronal selection (Edelman
1993), and dynamical systems theory (Freeman & Barrie (1994)].

The relationship between modeled and real neuronal architectures is central
to basic and cognitive neuroscience. This section addresses this relationship, in
terms of representations. We start with an overview of representations so that the
distinctions among various approaches can be seen clearly. An important focus
of this section is the interactions among “causes” of sensory input. These inter-
actions posit the problem of contextual invariance, which has severe implications
for supervised (i.e., connectionist) models of cognitive architectures. In brief the
problem of contextual invariance points to the adoption of unsupervised models
in which interactions among causes of a percept are modeled explicitly. Within
the class of unsupervised models we compare classical information theoretic ap-
proaches and predictive coding. These schemes allow the emergence of natural
representations that can accommodate contextual invariance but do so in a very
different way. The question then reduces to how this difference would be expressed
in terms of measurable brain responses and effective connectivity. This issue is
taken up in subsequent sections.

The Nature of Representations

What is a representation? Here a representation is taken to be a neuronal event
that represents some cause in the sensorium. It can be defined operationally as the
neuronal transient evoked by the cause being represented. In very general terms,
let us frame the problem of representing real world causesu(t) in terms of the
system of equations

ẏ(t) = f (y(t), u(t)), 1.
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whereu is a vector describing the expression of causes in the environment (e.g.,
the presence of a particular object, direction of radiant light, etc.), andy represents
sensory inputs.̇y(t) denotes the rate of change ofy at timet. The functionf can
be highly nonlinear and allows for both the current state of the sensory inputs and
their causes to interact when inducing changes in the activity of sensory units. The
sensory input can be shown to be a function of, and only of, the causes and their
recent history.

y(t) = F(u(t − σ ))

=
∞∑

i =1

t∫
0

. . .

t∫
0

∂ i y(t)

∂u(t − σ1) . . . ∂u(t − σi )
u(t − σ1) . . . u(t − σi ) dσ1 . . . dσi .

2.

Equation 2 is simply a functional Taylor expansion to cover dynamical systems
of the sort implied by Equation 1. This expansion is called a Volterra series and
can be thought of as a nonlinear convolution of the causes to give the inputs (see
Box 1). Convolution is like smoothing, in this instance smoothing over time. The
importance of this formulation is that it highlights (a) the dynamical aspects of
sensory input and (b) the role of interactions among the causes of the sensory input.
For example the second-order terms withi = 2 in Equation 2 represent pairwise in-
teractions amongu, possibly at different points in time. Interactions can be viewed
as contextual effects, for which the expression of a particular cause is highly de-
pendent on the context induced by another. For example, the extraction of motion
from the visual field depends on there being sufficient luminance or wavelength
contrast. Another ubiquitous example, from early visual processing, is the occlu-
sion of one object by another. In the absence of interactions we would see a linear
superposition of both objects, but the visual input caused by the nonlinear mixing
of these two objects renders one occluded by the other. At a more cognitive level
the cause associated with the word hammer will depend on the semantic context
(that determines whether the word is a verb or a noun). These contextual effects
are profound and must be discounted before the representations of the underlying
causes can be considered veridical. The problem the brain has to contend with
is how to find a function of the inputy(t) that represents the underlying causes.
To do this, the brain must effectively undo the interactions to reveal contextually
invariant causes. In other words the brain must perform some form of nonlinear
unmixing of causes and context without ever knowing either. Furthermore, because
of the convolution implied by Equation 2, it must deconvolve the inputs to obtain
these causes. In estimation theory this general problem is sometimes called blind
deconvolution because the estimation is blind to the underlying causes that are
convolved to give the observed variables.

Most models of perceptual categorization can be understood as trying to effect
a blind deconvolution of sensory inputs to reveal the causes. Consider a formally
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similar system of equations to Equation 1 that represent the dynamics of the brain:

ẋ(t) = fθ (x(t), y(t))

v(t) = lθ (x(t)) 3.

and by analogy with Equation 2v(t) = Fθ (y(t − σ )). 4.

Herex represents the activity of neuronal units (i.e., neurons or populations of
neurons) in the brain. A subset of units can be selected and passed through a non-
linear function to give some explicit or implicit representationv. The parameters
θ of the functions in Equation 3 embody the series of dynamical transformations
that the sensory input is subject to and can be thought of specifying the connection
strengths and biases of a neuronal network model or effective connectivity. The
problem of extracting causes from the input reduces to finding the right parame-
ters such that the activity of the representational unitsv have some clearly defined
relationship to the causesu. More formally one wants to find the parameters that
maximize the mutual information or dependence between the dynamics of the
representations and their causes. Models of neuronal computation try to solve this
problem in the hope that the ensuing parameters can be interpreted in relation to real
neuronal parameters. The greater the biological validity of the constraints under
which these solutions are obtained, the more plausible the relationship becomes.

In what follows we will consider models based on information theory and those
based on predictive coding. Each subsection below provides the background for
the approach and then describes it using the formalism above. Figure 1 provides a
graphical overview of the two schemes.

Information Theoretic Approaches

There have been many compelling developments in theoretical neurobiology that
have used information theory (e.g., Barlow 1961, Optican & Richmond 1987,
Linsker 1988, Oja 1989, Foldiak 1990, Tovee et al. 1993, Tononi et al. 1994). Many
appeal to the principle of maximum information transfer (e.g., Linsker 1988, Atick
& Redlich 1990, Bell & Sejnowski 1995). This principle has proven extremely
powerful in predicting some of the basic receptive field properties of cells involved
in early visual processing (e.g., Atick & Redlich 1990, Olshausen & Field 1996).
This principle represents a formal statement of the common sense notion that neu-
ronal dynamics in sensory systems should reflect, efficiently, what is going on in
the environment (Barlow 1961). In the present context, the principle of maximum
information transfer (infomax; Linsker 1988) suggests that a model’s parameters
should be configured to maximize the mutual information between the representa-
tions that they engender and the causes of sensory input. This maximization is usu-
ally considered in the light of some sensible constraints, e.g., the presence of noise
in the sensory input (Atick & Redlich 1990) or dimension reduction (Oja 1988).

For any given causes we want to maximize the mutual information between
u(t) and the neuronal responsesv(t). Intuitively mutual information is like the
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Figure 1 Schematic illustrating the architectures implied by information theory–based ap-
proaches and predictive coding. The circles represent nodes in a network and the arrows
represent a few of the connections. See the main text for an explanation of the equations and
designation of the variables each set of nodes represents. The light grey boxes encompass
connections and nodes within the model. The strengths of connections within this area are
determined by the free parameters of the modelθ . Nonlinear effects are implied when one
arrow connects with another. Nonlinearities can be construed as the modulation of respon-
siveness to one input by another (see Box 1 for a more formal account or interpretation). The
broken arrow in the lower panel denotes connections that convey an error signal to the higher
level from the input level.
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covariance or correlation between two variables but extended to cover multivari-
ate observations. In a similar way entropy can be regarded as the uncertainty or
variability of an observation (cf. variance of a univariate observation). The mutual
information is given by

I (u, v) = H (u) + H (v) − H (u, v)

= H (v) − H (v|u), 5.

whereH (v|u) is the conditional entropy or uncertainty in the representations, given
the causes. For a deterministic system there is no such uncertainty and this term
can be discounted (see Bell & Sejnowski 1995). More generally

∂

∂θ
I (u, v) = ∂

∂θ
H (v). 6.

It follows that maximizing the mutual information between the outputs and the
causes is the same as maximizing the entropy of the responses. The infomax
principle (maximum information transfer) is closely related to the idea of efficient
coding. Generally speaking, redundancy minimization and efficient coding are
all variations on the same theme and can be considered as the infomax principle
operating under some appropriate constraints. The key thing that distinguishes
among the various information theoretic schema is the nature of the constraints
under which entropy is maximized. These constraints render the infomax a viable
approach to recovering the original causes of data, especially if one can enforce
the outputs to comply with the same constraints as the causes. One useful way of
looking at constraints is in terms of efficiency.

EFFICIENCY, REDUNDANCY, AND INFORMATION Efficiency can be considered as
the complement of redundancy (Barlow 1961); the less redundant, the more ef-
ficient a system will be. Redundancy is reflected in the dependencies or mutual
informationamongthe outputs (cf. Gawne & Richmond 1993).

I (v) =
∑

H (vi ) − H (v). 7.

HereH (vi ) is the entropy of theith unit. Equation 7 implies that redundancy is the
difference between the joint entropy and the sum of the entropies of the individ-
ual units (componential entropies). Intuitively this expression makes sense if one
considers that the variability in activity of any one unit corresponds to its entropy.
Therefore, an efficient system represents its inputs with the minimum changes in
firing. Another way of thinking about Equation 7 is to note that maximizing effi-
ciency is equivalent to minimizing the mutual information among the outputs. This
is the basis of approaches that seek to decorrelate or orthogonalize the outputs.

To minimize redundancy one can either minimize the entropy of the output
units or maximize their joint entropy. Olshausen & Field (1996) present a very
nice analysis based on sparse coding. Sparse coding minimizes the redundancy by
minimizing componential entropies. This minimization is implicit in sparse coding
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because a neuron that fires very sparsely will generally not be firing. We can, there-
fore, be relatively certain about its (quiescent) state, conferring low entropy upon it.

Approaches that seek to maximize the joint entropy of the outputs include
principle component analysis (PCA), learning algorithms (that sample the subspace
of the inputs that have the highest entropy) (e.g., Foldiak 1990, Friston et al. 1993),
and independent component analysis (ICA). ICA finds nonlinear functions of the
inputs that maximize the joint entropy (Common 1994, Bell & Sejnowski 1995).
In PCA the componential entropies are constrained by setting the sum of squared
connection strengths to be one. In ICA they are maintained at low levels by the
application of a sigmoid squashing function to the outputs.

IMPLEMENTATION In terms of the above formulation, information theoretic ap-
proaches can be construed as finding the parameters that maximize the efficiency
or minimize the redundancy

θ = min
θ

I (v). 8.

Compared to supervised schemes this has the fundamental advantage that the
algorithm is unsupervised (the causes do not enter into Equation 8). Furthermore,
the inputs can, in principle be generated dynamically and can interact. However,
for simple variants of this information theoretic approach (e.g., ICA) only linear
mixtures of independent causes can be recovered (up to some permutation and
scaling). For example a typical model adopted by PCA for Gaussian and ICA for
non-Gaussian causes is

y(t) = F(u(t − σ )) = Wu(t), 9.

whereW is linear mixing matrix. This example highlights the operational short-
comings of information theoretic approaches that are based on feedforward archi-
tectures: Not only does the model of real world mixing of causes in Equation 9
preclude any dynamics, it also ignores interactions among causes. Nonlinear vari-
ants of ICA and PCA do exist (e.g., Karhunen & Joutsensalo 1994, Dong &
McAvoy 1996) and typically employ a “bottleneck” architecture that forces the
inputs through a small number of nodes. The output from these nodes then di-
verges to predict the original inputs (see predictive coding below). However, these
architectures are better regarded as generative models in the sense that the nonlin-
ear transformations, from the bottleneck nodes to the output layer, recapitulate
the nonlinear mixing of the original causes and constitute a generative model.
Generative models are presented in the next subsection.

Finally ICA, like parallel and distributed processing models, assumes the ex-
istence of an operator that can deconvolve (a nonlinear function of) the causes
out of the inputs. For very simple mixtures of causes this may be tenable. How-
ever, generally nonlinear mixing applied by the real world renders the existence
of this deconvolution very questionable. In the inverse solution literature these
problems are known as ill-posed or underdetermined. The solution is to render the
problem tractable using constraints on the solution. This means that information
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theoretic approaches that try to solve the unmixing or inverse problem rely heavily
on constraints (e.g., efficiency, sparse coding, etc.). In the alternative approach,
considered here, we discuss predictive coding models that moderate this constraint-
dependency and suggest a more natural form for representations.

Generative Models and Predictive Coding

Over the past years generative models have supervened over other modeling ap-
proaches to brain function and represent one of the most promising avenues, offered
by computational neuroscience, to understanding neuronal dynamics in relation to
perceptual categorization. In generative models the dynamics of units in a network
are trying to predict the inputs. The representational aspects of any unit emerge
spontaneously as the capacity to predict improves with learning. There is no a
priori “labeling” of the units or any supervision in terms of what a correct re-
sponse should be (cf. connectionism). The only correct response is one in which
the implicit internal model of the causes and their nonlinear mixing is sufficient to
predict the input with minimal error. There are many forms of generative models
that range from conventional statistical models (e.g., factor and cluster analysis)
and those motivated by Bayesian learning (e.g., Dayan et al. 1995, Hinton et al.
1995) to biologically plausible models of visual processing (e.g., Rao & Ballard
1998). Indeed many of the algorithms discussed under the heading of information
theory can be formulated as generative models. The goal of generative models is
“to learn representations that are economical to describe but allow the input to be
reconstructed accurately” (Hinton et al. 1995). These models emphasize the role of
backward connections in mediating the prediction, at lower or input levels, based
on the activity of units in higher levels.

IMPLEMENTATION Predictive, or more generally, generative, models turn the in-
verse problem on its head. Instead of trying to find functions of the inputs that
predict their causes, they find functions of estimated causes that predict the in-
puts. As in approaches based on information theory, the causes do not enter into
the learning rules and they are therefore unsupervised. Furthermore, they do not
require the convolution of causes, engendering the inputs to be invertible. This is
because generative models instantiate the forward solution, not the inverse solu-
tion. Here the forward solution is the nonlinear mixing of causes that by definition
must exist. The estimation of the causes still rests on constraints, but these are now
framed in terms of the generative model and have a much more direct relationship
to casual processes in the real world. The ensuing mirror symmetry of the archi-
tecture is illustrated in Figure 1. Notice that the connections within the model are
now going backward. In the predictive coding scheme the outputs now become
the inputs such that

ẋ(t) = fθ (x(t), v(t)) ⇒
x(t) = Fθ (v(t − σ )), 10.
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cf. Equation 3. The parameters now change so as to minimize some functionG of
the prediction error at the input level

θ = min
θ

G(ε)

ε = y − Fθ (v). 11.

The top-down inputsv(t) now drive the predictionsx(t) of the input and the para-
meters of the backward connections forming these predictions change so as to
minimize the prediction error. But what drives the top-down inputs? The casual
estimates or representations change in the same way as the other free parameters
of the model. They change to minimize prediction error, usually through gradient
descent

v̇ = −∂G(ε)

∂v
. 12.

The error is conveyed from the input layer to the higher layer by forward con-
nections that are rendered as a broken line in the lower panel of Figure 1. This
component of the predictive coding scheme has a principled (Bayesian) motiva-
tion that is described in the next subsection. For the moment consider what would
happen after training or learning and prediction error is largely eliminated. This
implies that the prediction of the input becomes very precisex(t) → y(t), and
consequently from Equation 2 and Equation 10

Fθ (v(t − σ )) → F(u(t − σ )). 13.

In other words the brain’s nonlinear convolution of the estimated causes reproduces
exactly the real convolution of the real causes. In short there is a veridical (or at
least sufficient) representation of both the causes and the dynamical structure of
their mixing through the connections or parameters ofFθ .

The dynamics of representational units or populations implied by Equation 12
represents the essential difference between this class of approaches and others.
Only in predictive coding is the activity of the units driven explicitly to improve
the representational capacity of the system. Predictive coding is a strategy that has
some compelling (Bayesian) underpinnings (see below) and is not simply using
a connectionist architecture in auto-associative mode or using error minimization
to maximize mutual information transfer. It is a real time, dynamical scheme that
embeds two concurrent processes. (a) The parameters of the model are changing
so that the generative model emulates the real world mixing of causes, using their
current estimates, and (b) the representations are converging to the best estimate
of the causes extant at any time, using the generative model. Both the parameters
and the state variables change in a mathematically identical way to minimize
prediction error. The predictive coding scheme can easily accommodate dynamical
and nonlinear mixing of causes in the real world. It does not require this mixing to be
invertible, and it only requires the sensory inputs to be known. Before considering
how the brain might perform predictive coding, we look at its motivation from
another point of view.
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PREDICTIVE CODING AND BAYESIAN INFERENCE One of the most important as-
pects of generative models is that they emphasize the role of the brain as an infer-
ential machine (Dayan et al. 1995). From this perspective functional architectures
exist, not to unmix the input to obtain the causes, but to make inferences about
the causes and test the predictions against observed input. A compelling aspect of
predictive coding schemes is that they lend themselves to a hierarchical extension
that can be viewed in terms of Bayesian inference. In the simplest extension, let
us suppose we had some expected valuesū of the causes, which were used to
generate a prior prediction errorG(v − ū) not at the level of the inputs but at the
higher level of the causal representationsv. The changes inv are now required to
minimize the error at both levels so that

v̇ = − ∂

∂v
[G(y − Fθ (v)) + G(v − ū)] . 14.

The addition of this extra term renders the ensuing estimation of causes a Bayesian
one in the following way. Bayesian inference allows one to posit the probability
of the causes of some input or data given that data. This is in contradistinction to
maximum likelihood estimates, which simply identify the causes that maximize
the likelihood of the input. The difference rests on Bayes’ rule, which states that
the probability of the cause and input occurring together is the probability of the
cause given the input times the probability of the input. This, in turn, is the same
as the probability of the input given the causes times the prior probability of the
causes

p(u, y) = p(u|y)p(y) = p(y|u)p(u)

⇒ p(u|y) ∝ p(y|u)p(u). 15.

The Bayesian, posterior, or conditional estimator of the causes is that which is
most likely given the data.

max
u

p(u|y) = max
u

{ln p(y|u) + ln p(u)} . 16.

This is referred to as the maximum posterior or MAP estimator. The first term
on the right is known as the log likelihood or likelihood potential and the second
is the prior potential. If we take the Gibb’s form forp(y|u) = exp(− 1

2G{y−F(u)}),
then Equation 16 becomes

max
u

p(u|y) = min
u

{G{y − F(u)} + G(u − ū)} . 17.

A gradient descent to find the MAP estimator would be

u̇ = − ∂

∂u
[G(y − F(u) + G(u − ū)] . 18.

This is formally identical to Equation 14, the dynamics of the representations. This
suggests that if the connectivity has properly captured the dynamical structure of
the real world, i.e.,Fθ (u) → F(u) then the activities of representational units or
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populations strive to encode the most probable causes given the input. In this
Bayesian formulation the state of the brain changes, not to minimize error per se,
but to attain an estimate of the causes that maximizes both the likelihood of the
input given that estimate and the prior probability of the estimate being true.

This notion can be extended in a hierarchical fashion to any number of levels as
depicted in Figure 2. In the forgoing we simply assumed some expected values for
the causes. These expected values can, of course, be predictions from higher level
causes. This extension models the world as a hierarchy of dynamical systems in
which supraordinate causes induce, and moderate, changes in subordinate causes.
For example, the presence of a particular object in the visual field induces changes
in the incident light falling on a particular part of the retina. A more abstract
example, which illustrates the brain’s inferential capacities, is presented in Figure 3.
On reading the first sentence “Jack and Jill went up the hill” we perceive the word

Figure 2 Schematic depicting a hierarchical extension to the predictive coding architecture,
with the same format as Figure 1. Here hierarchical arrangements within the model serve to
provide predictions or priors to representations in the level below. The open circles are the
predictions and the filled circles are the representations of causes in the environment. These
representations change to minimize both the discrepancy between their predicted value and
the mismatch incurred by their own prediction of the representation in the level below. These
two constraints correspond to the prior and likelihood potentials respectively (see main text).
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Figure 3 Schematic illustrating the role of priors in biasing toward one representation of an
input or another. (Left) The word event is selected as the most like cause of the visual input.
(Right) The word went is selected as the most likely word that is (a) a reasonable explanation
for the sensory input and (b) conforms to prior expectations based on semantic context.

“event” as “went.” However, in the absence of any hierarchical inference the best
explanation for the pattern of visual stimulation incurred by the text is “event.”
This would correspond to the maximum likelihood estimate of the word and would
be the most appropriate in the absence of prior information about the most likely
word. However, within a hierarchical scheme, semantic context can provide top-
down predictions, to which the posterior estimate is accountable. When this prior
strongly biases in favor of “went,” we tolerate a small error at a lower level of visual
analysis to minimize the overall prediction error at both the visual and lexical level.
This illustrates the role of higher level estimates in providing predictions or priors
for subordinate levels. These priors offer contextual guidance toward the most
likely cause of the input. Note that predictions at higher levels do not arise by
magic. They are themselves subject to the same constraints; only the highest level
(if there is one in the brain) is free to be directed solely by bottom-up influences.

The hierarchical structure of the real world literally comes to be “reflected” by
the hierarchical architectures trying to minimize prediction error, not just at the
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level of sensory input but at all levels of the hierarchy (again notice the deliberate
mirror symmetry in Figure 2). The nice thing about this architecture is that the dy-
namics of casual representations at theith levelvi require only the error for the
current level and the immediately preceding level. This follows from the Markov
property of hierarchical systems, for which one only needs to know the imme-
diately supraordinate causes to determine the evolution of causes at any level in
question. The fact that only error from the current and lower level is required to
drive the dynamics ofvi is important because it permits a biologically plausible
implementation, where the connections driving the error minimization have only
to run forward from one level to the next (see Box 2).

In summary the predictive coding approach lends itself naturally to a hierar-
chical Bayesian treatment, which considers the brain as an inferential device. This
perspective arises because the dynamics of the units or populations are driven to
minimize error at all levels and implicitly render themselves posterior estimates
of the causes given the data. They can do this even with data generated by hi-
erarchies of highly nonlinear dynamical systems. Unlike information theoretic
approaches they do not require strong constraints to be built into the architec-
ture; these constraints emerge spontaneously as priors from higher levels. The
implicit Bayesian estimation can be formalized from a number of different per-
spectives. Rao & Ballard (1998) give an extremely nice example using the Kalman
filter.

Box 2 Hierarchical Bayes in the Brain

The biological plausibility of the scheme depicted in Figure 2 can be established
very simply. Consider any leveli in a cortical hierarchy containing units (neu-
rons or neuronal populations), whose activityvi is being predicted by equivalent
units in the level abovevi+1. The prediction error being reflected in the activities
of units is denoted byεi . Assuming the simplest generative model possible

xi = Fi
θ (vi +1) = θi vi +1

εi = vi − xi ,

whereθi are backwards connection strengths; we require units in the higher
level vi+1 to maximize the probability ofvi+1 given vi. Assuming the errors
have a Gaussian distribution with varianceλi (i.e.,Gi (ε) = εT

i εi /λi ) we have

p(vi +1|vi ) ∝ p(vi |vi +1)p(vi +1) ∝ exp

(
−1

2

(
εT

i εi

λi
+ εT

i +1εi +1

λi +1

))
.

Both the dynamics ofvi+1 and the connection strengths perform a gradient
ascent on the log of this probability.
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v̇i +1 = ∂ ln p(vi +1|vi )

∂vi +1
= λ−1

i θT
i εi − λ−1

i +1εi +1

θ̇ i = ∂ ln p(vi +1|vi )

∂θi
= λ−1

i εi v
T
i +1

Despite the complicated nature of the hierarchical generative model and the
abstract theorizing, three simple and biologically plausible things emerge:
(a) The forwards and backwards connections are exactly the same, consis-
tent with the reciprocity of anatomical connections; (b) changes in connection
strengths reduce to simple Hebbian or associative plasticity; and (c) the dynam-
ics of representational unitsvi+1are subject to two (locally available) influences:
a likelihood term mediated by forward afferents from the error units in the level
below and a prior term conveyed by error units in the same level.

GENERATIVE MODELS AND THE BRAIN

The arguments in the preceding section clearly favor predictive coding over in-
formation theoretic frameworks as a more plausible account of functional brain
architectures. However, it should be noted that the differences between them have
been deliberately emphasized. For example, predictive coding and the implicit
error minimization results in the maximization of information transfer. In other
words, predictive coding conforms to the principle of maximum information trans-
fer, but it does so in a very distinct way (see Olshausen & Field 1996 for a nice
integration of predictive and sparse coding). Predictive coding is entirely consistent
with the principle of maximum information. The infomax principle is a principle,
whereas predictive coding represents a particular scheme that serves that principle.
There are examples of infomax that do not employ predictive coding (e.g., trans-
formations of stimulus energy in early visual processing; Atick & Redlich 1990)
that may be specified genetically or epigenetically. However, predictive coding is
likely to play a much more prominent role at higher levels of processing for the
reasons detailed in the previous section.

Predictive coding, especially in its hierarchical formulation, also conforms to
the same parallel and distributed processing principles that underpin connection-
ist schema (Rumelhart & McClelland 1986). The representation of any cause
depends on the internally consistent representations of subordinate and supraordi-
nate causes in lower and higher levels. These representations mutually induce and
maintain themselves, across and within all levels of the sensory hierarchy, through
dynamic and reentrant interactions (Edelman 1993). The same parallel and dis-
tributed processing phenomena (e.g., lateral interactions leading to competition
among representations) may be observed. However, in predictive coding, these
dynamics are driven explicitly by error minimization, whereas in connectionist
simulations the activity is determined solely by the connection strengths that are
established during training.
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In addition to the theoretical bias toward generative models and predictive cod-
ing, the clear emphasis on backward and reentrant dynamics makes it a more natural
framework for understanding neuronal infrastructures. Figure 1 shows the funda-
mental difference between infomax and generative schemes. In infomax schemes
the connections are universally forward. In the predictive coding scheme the for-
ward connections (broken line) drive the casual representations to minimize error,
whereas backward connections (solid lines) use these representations to emulate
mixing enacted by the real world. The nonlinear aspects of this mixing imply that
backward connections are modulatory in predictive coding, whereas the nonlinear
unmixing in infomax schemes is mediated by forward connections. The section
on functional specialization and integration assembled some of the anatomical
and physiological evidence that backward connections are prevalent in the real
brain and can support nonlinear mixing through their modulatory characteristics.
It is pleasing that purely theoretical considerations and neurobiological empiri-
cism converge on the same architecture. Before turning to electrophysiological
and functional neuroimaging evidence for backward connections, we consider the
implications for classical views of receptive fields and the representational capacity
of neurons.

Context, Causes, and Representations

The Bayesian perspective suggests something quite profound for the classical view
of receptive fields. If neuronal responses encompass both a bottom-up likelihood
term and top-down priors, then responses evoked by bottom-up input should change
with the context established by prior expectations from higher levels of processing.
In other words, when a neuron or population is predicted by top-down inputs, it
will be much easier to drive than when it is not. Consider the example in Figure 3
again. Here a unit encoding the visual form of “went” responds when we read the
first sentence at the top of this figure. When we read the second sentence “The last
event was cancelled” it would not. If we recorded from this unit we might infer that
our “went” unit was, in some circumstances, selective for the word event. Without
an understanding of hierarchical inference and the semantic context the stimulus
was presented in, this might be difficult to explain. In short, under a predictive
coding scheme, the receptive fields of neurons should be context-sensitive. The
remainder of this section deals with empirical evidence for these extra-classical
receptive field effects.

Neuronal Responses and Representations

Classical models (e.g., classical receptive fields) assume that evoked responses
will be invariably expressed in the same units or neuronal populations irrespec-
tive of the context. However, real neuronal responses are not invariant but depend
on the context in which they are evoked. For example, visual cortical units have
dynamic receptive fields that can change from moment to moment (cf. the nonclas-
sical receptive field effects modeled in Rao & Ballard 1999). Another example
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is attentional modulation of evoked responses that can change the sensitivity of
neurons to different perceptual attributes (e.g., Treue & Maunsell 1996). There
are numerous examples of context-sensitive neuronal responses. Perhaps the sim-
plest is short-term plasticity. Short-term plasticity refers to changes in connec-
tion strength, either potentiation or depression, following presynaptic inputs (e.g.,
Abbot et al. 1997). In brief, the underlying connection strengths, which define what
that unit represents, are a strong function of the immediately preceding neuronal
transient (i.e., preceding representation).

These sorts of effects are commonplace in the brain and are generally under-
stood in terms of the dynamic modulation of receptive field properties by backward
and lateral afferents. There is clear evidence that lateral connections in visual cor-
tex are modulatory in nature (Hirsch & Gilbert 1991), speaking to an interaction
between the functional segregation implicit in the columnar architecture of V1
and the neuronal dynamics in distal populations. These observations suggest that
lateral and backward interactions may convey contextual information that shapes
the responses of any neuron to its inputs (e.g., Kay & Phillips 1996, Phillips &
Singer 1997) to confer on the brain the ability to make conditional inferences about
sensory input. See also McIntosh (2000), who develops the idea from a cognitive
neuroscience perspective “that a particular region in isolation may not act as a reli-
able index for a particular cognitive function. Instead, the neural context in which
an area is active may define the cognitive function.” His argument is predicated
on careful characterizations of effective connectivity using neuroimaging.

AN EXAMPLE FROM ELECTROPHYSIOLOGY In the next section we will illustrate the
context-sensitive nature of cortical activations, and implicit specialization, in the
infero-temporal (IT) lobe using neuroimaging. Here we consider the evidence for
contextual representations in terms of single-cell responses, to visual stimuli, in
the inferior temporal cortex of awake behaving monkeys. If the representation of a
stimulus depends on establishing representations of subordinate and supraordinate
causes at all levels of the visual hierarchy, then information about the high-order
attributes of a stimulus must be conferred by top-down influences. Consequently,
one might expect to see the emergence of selectivity, for high-level attributes, after
the initial visually evoked response (it typically takes about 10 ms for volleys of
spikes to be propagated from one cortical area to another and about a 100 ms to
reach prefrontal areas). This is because the representations at higher levels must
emerge before backward afferents can dynamically reshape the response profile of
neurons in lower areas. This temporal delay, in the emergence of selectivity, is pre-
cisely what one sees empirically: Sugase et al. (1999) recorded neurons in macaque
temporal cortex during the presentation of faces and objects. The faces were either
human or monkey faces and were categorized in terms of identity (whose face it
was) and expression (happy, angry, etc.). “Single neurones conveyed two different
scales of facial information in their firing patterns, starting at different latencies.
Global information, categorizing stimuli as monkey faces, human faces or shapes,
was conveyed in the earliest part of the responses. Fine information about identity or
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expression was conveyed later,” starting on average about 50 ms after face-selective
responses. These observations demonstrate representations for facial identity or
expression that emerge dynamically in a way that might rely on backward con-
nections. These influences imbue neurons with a selectivity that is not intrinsic to
the area but depends on interactions across levels of a processing hierarchy.

The preceding arguments have been based largely on electrophysiological re-
sponses. They can be extended to the population responses elicited in functional
neuroimaging where functional specialization (cf. selectivity in unit recordings)
is established by showing regionally specific responses to some sensorimotor at-
tribute or cognitive component. At the level of cortical responses in neuroimaging,
the dynamic and contextual nature of evoked responses means that regionally
specific responses to a particular cognitive component may be expressed in one
context but not another. In the next section we look at some empirical evidence
from functional neuroimaging that confirms the idea that functional specialization
is conferred in a context-sensitive fashion by backward connections from higher
brain areas.

FUNCTIONAL ARCHITECTURES ASSESSED
WITH BRAIN IMAGING

Information theory and predictive coding schema posit alternative architectures
that the brain might adopt for perceptual synthesis. The former relies on forward
connections, whereas the latter suggests that most of the brain’s infrastructure
would be used to predict the sensory input through a hierarchy of top-down pro-
jections. Clearly to adjudicate between these alternatives the existence of backward
influences must be established. This is a slightly deeper problem for functional
neuroimaging than might be envisaged. This is because making causal inferences
about effective connectivity is not straightforward (see Pearl 2000). It might be
thought that showing regional activity in one level was partially predicted by ac-
tivity in a higher level would be sufficient to confirm the existence of backward
influences. The problem is that this statistical dependency does not permit any
causal inference. Statistical dependencies could easily arise in purely feedforward
architecture because the higher level activity is predicated on activity in the lower
level. One resolution of this problem is to perturb the higher level directly using
transmagnetic stimulation or lesions. However, discounting these interventions,
one is left with the difficult problem of inferring backward influences, based on
measures that could be correlated because of forward connections. Although there
are causal modeling techniques that can address this problem, we take a simpler
approach and note that interactions between bottom-up and top-down influences
cannot be explained by a feedforward architecture. This is because the top-down
influences have no access to the bottom-up inputs. An interaction, in this context,
can be construed as an effect of backward connections on the driving efficacy of
forward connections. In other words, the response evoked by the same driving
bottom-up inputs depends on the context established by top-down inputs.
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In summary, a critical feature of the functional architectures implied by pre-
dictive coding is the expression of interactions between bottom-up and top-down
influences from other brain regions at a unit, population, or cortical level. The
remainder of this article focuses on the evidence for these interactions. From the
point of view of functionally specialized responses these interactions manifest
as context-sensitive or contextual specialization, where modality-, category-, or
exemplar-specific responses, driven by bottom-up inputs are modulated by top-
down influences induced by perceptual set. The first half of this section adopts this
perspective. The second part of this section uses measurements of effective connec-
tivity to establish interactions between bottom-up and top-down influences. All the
examples presented below rely on attempts to establish interactions by trying to
change sensory-evoked neuronal responses through putative manipulations of top-
down influences. These involve eliciting changes in perceptual or cognitive (atten-
tional) set.

Context-Sensitive Specialization

If the contextual nature of specialization is mediated by backward modulatory
afferents then it should be possible to find cortical regions in which functionally
specific responses, elicited by the same stimuli, are modulated by the activity in
higher areas. The following example shows that this is indeed possible.

PSYCHOPHYSIOLOGICAL INTERACTIONS Psychophysiological interactions speak
directly to the interactions between bottom-up and top-down influences, where
one is modeled as an experimental factor and the other constitutes a measured
brain response. An analysis of psychophysiological interactions tries to explain a
regionally specific response in terms of an interaction between the presence of a
sensorimotor or cognitive process and activity in another part of the brain (Friston
et al. 1997). The supposition here is that the remote region is the source of back-
ward or lateral modulatory afferents that confer functional specificity on the target
region. For example, by combining information about activity in the posterior
parietal cortex, mediating attentional or perceptual set pertaining to a particular
stimulus attribute, can we identify regions that respond to that attribute when, and
only when, activity in the parietal source is high? If such an interaction exists,
then one might infer that the parietal area is modulating selective responses in
the target area. The statistical model employed in testing for psychophysiological
interactions is a simple regression model of effective connectivity that embodies
nonlinear (second-order or modulatory effects). This class of model speaks directly
to functional specialization of a nonlinear and contextual sort. Figure 4 illustrates
a specific example (see Dolan et al. 1997 for details). Subjects were asked to view
(degraded) faces and nonface (object) controls. The interaction between activity
in the parietal region and the presence of faces was expressed most significantly
in the right IT region. Changes in parietal activity were induced experimentally
by pre-exposure of the (undegraded) stimuli before some scans but not others to
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Figure 4 (Top) Examples of the stimuli presented to subjects. During the measurement of
brain responses only degraded stimuli where shown (e.g.,the right-hand picture). In half the
scans the subject was given the underlying cause of these stimuli through presentation of the
original picture (e.g.,left) before scanning. This priming induced a profound difference in
perceptual set for the primed, relative to nonprimed, stimuli. (Right) Activity observed in a
right infero-temporal (IT) region, as a function of (mean corrected) PPC activity. This region
showed the most significant interaction between the presence of faces in visually presented
stimuli and activity in a reference location in the posterior (medial) parietal cortex (PPC).
This analysis can be thought of as finding those areas that are subject to top-down modulation
of face-specific responses by medial parietal activity. The crosses correspond to activity while
viewing nonface stimuli and the circles to faces. The essence of this effect can be seen by
noting that this region differentiates between faces and nonfaces when, and only when, medial
parietal activity is high. The lines correspond to the best second-order polynomial fit. These
data were acquired from six subjects using PET. Left: Schematic depicting the underlying
conceptual model in which driving afferents from ventral form areas (here designated as V4)
excite responses in IT regions subject to permissive modulation by PPC projections.
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prime them. The data in the right panel of Figure 4 suggest that the IT region
shows face-specific responses, relative to nonface objects, when, and only when,
parietal activity is high. These results can be interpreted as a priming-dependent
face-specific response, in IT regions that are mediated by interactions with medial
parietal cortex. This is a clear example of contextual specialization that depends
on top-down nonlinear effects.

Nonlinear Coupling Among Brain Areas

The previous example, demonstrating contextual specialization, is consistent with
functional architectures implied by predictive coding. However, it does not provide
definitive evidence for an interaction between top-down and bottom-up influences.
In this subsection we look for direct evidence using functional imaging. This rests
on being able to measure effective connectivity in a way that is sensitive to in-
teractions among inputs. Linear models of effective connectivity assume that the
multiple inputs to a brain region are linearly separable. This assumption precludes
activity-dependent connections that are expressed in one context and not in another.
The resolution of this problem lies in adopting nonlinear models, like the Volterra
formulation, that include interactions among inputs (see Box 1 and the second
section). These interactions can be construed as a context- or activity-dependent
modulation of the influence that one region exerts over another. These nonline-
arities can also be introduced into structural equation modeling using so-called
moderator variables that represent the interaction between two regions when caus-
ing activity in a third (Büchel & Friston 1997). From a dynamical point of view,
modulatory effects are modeled by second-order kernels. Within these models the
influence of one region on another has two components: (a) the direct or driving
influence of input from the first (e.g., hierarchically lower) region, irrespective
of the activities elsewhere and (b) an activity-dependent, modulatory component
that represents an interaction with inputs from the remaining (e.g., hierarchically
higher) regions. These are mediated by the first- and second-order kernels re-
spectively. The example provided in Figure 5 addresses the modulation of visual
cortical responses by attentional mechanisms (e.g., Treue & Maunsell 1996) and
the mediating role of activity-dependent changes in effective connectivity.

The bottom panel in Figure 5 shows a characterization of this modulatory effect
in terms of the increase in V5 responses, to a simulated V2 input, when posterior
parietal activity is zero (broken line) and when it is high (solid lines). In this
study subjects were studied with fMRI under identical stimulus conditions (visual
motion subtended by radially moving dots) while manipulating the attentional
component of the task (detection of velocity changes). The brain regions and
connections comprising the model are shown in the upper panel. The lower panel
shows a characterization of the effects of V2 inputs on V5 and their modulation by
posterior parietal cortex (PPC) using simulated inputs at different levels of PPC
activity. It is evident that V2 has an activating effect on V5 and that PPC increases
the responsiveness of V5 to these inputs. The insert shows all the voxels in V5 that
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evidenced a modulatory effect (p< 0.05 uncorrected). These voxels were identified
by thresholding statistical parametric maps of the F statistic (Friston et al. 1995)
testing for the contribution of second-order kernels involving V2 and PPC while
treating all other components as nuisance variables. The estimation of the Volterra
kernels and statistical inference procedure is described in Friston & B¨uchel (2000).

This sort of result suggests that backward parietal inputs may be a sufficient ex-
planation for the attentional modulation of visually evoked extrastriate responses.
More importantly, they are consistent with the functional architecture implied by
predictive coding. V5 cortical responses evidence an interaction between bottom-
up input from early visual cortex and top-down influences from parietal cortex.

CONCLUSION

In conclusion, the representational capacity and inherent function of any neuron,
neuronal population, or cortical area in the brain is dynamic and context sensitive.
Functional integration, or interactions among brain systems, that employ driving
(bottom-up) and backward (top-down) connections mediate this adaptive and con-
textual specialization. The arguments in this review were developed under gener-
ative models of brain function, where higher-level systems provide a prediction of
the inputs to lower-level regions. Conflict between the two is resolved by changes
in the higher-level representations, which are driven by the ensuing error in lower
regions, until the mismatch is “cancelled.” From this perspective the specialization
of any region is determined both by bottom-up driving inputs and by top-down
predictions. Specialization is therefore not an intrinsic property of any region but
depends on both forward and backward connections with other areas. Because the
latter have access to the context in which the inputs are generated, they are in a
position to modulate the selectivity or specialization of lower areas.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 5 (Top) Brain regions and connections comprising the model. (Bottom) Char-
acterization of the effects of V2 inputs on V5 and their modulation by posterior parietal
cortex (PPC). The broken lines represent estimates of V5 responses when PPC activity
is zero, according to a second-order Volterra model of effective connectivity with in-
puts to V5 from V2, PPC, and the pulvinar (PUL). The solid curves represent the same
response when PPC activity is one standard deviation of its variation over conditions.
It is evident that V2 has an activating effect on V5 and that PPC increases the respon-
siveness of V5 to these inputs. The insert shows all the voxels in V5 that evidenced a
modulatory effect (p< 0.05 uncorrected). These voxels were identified by thresholding
a SPM (Friston et al. 1995) of the F statistic testing for the contribution of second-
order kernels involving V2 and PPC (treating all other terms as nuisance variables).
The data were obtained with fMRI under identical stimulus conditions (visual motion
subtended by radially moving dots) while manipulating the attentional component of
the task (detection of velocity changes).
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The implications for classical models (e.g., classical receptive fields in electro-
physiology, classical specialization in neuroimaging, and connectionism in cogni-
tive models) are severe and suggest these models may provide incomplete accounts
of real brain architectures. On the other hand, predictive coding, in the context of
generative models, not only accounts for many extra-classical phenomena seen
empirically but enforces a view of the brain as an inference machine, through its
Bayesian motivation.
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