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Abstract
Fibromyalgia syndrome (FMS) is a complex pain disorder, characterized by diffuse pain and cognitive disturbances. Abnor-
mal cortical oscillatory activity may be a promising biomarker, encouraging non-invasive neurostimulation techniques as a 
treatment. We aimed to modulate abnormal slow cortical oscillations by delivering transcranial alternating current stimula-
tion (tACS) and physiotherapy to reduce pain and cognitive symptoms. This was a double-blinded, randomized, crossover 
trial conducted between February and September 2018 at the Rehabilitation Unit of a teaching Hospital (NCT03221413). 
Participants were randomly assigned to tACS or random noise stimulation (RNS), 5 days/week for 2 weeks followed by ad 
hoc physiotherapy. Clinical and cognitive assessments were performed at T0 (baseline), T1 (after stimulation), T2 (1 month 
after stimulation). Electroencephalogram (EEG) spectral topographies recorded from 15 participants confirmed slow-rhythm 
prevalence and provided tACS tailored stimulation parameters and electrode sites. Following tACS, EEG alpha1 ([8–10] Hz) 
activity increased at T1 (p = 0.024) compared to RNS, pain symptoms assessed by Visual Analog Scale decreased at T1 (T1 
vs T0 p = 0.010), self-reported cognitive skills and neuropsychological scores improved both at T1 and T2 (Patient-Reported 
Outcomes in Cognitive Impairment, T0–T2, p = 0.024; Everyday memory questionnaire, T1 compared to RNS, p = 0.012; 
Montréal Cognitive Assessment, T0 vs T1, p = 0.048 and T0 vs T2, p = 0.009; Trail Making Test B T0–T2, p = 0.034). Psycho-
pathological scales and other neuropsychological scores (Trail Making Test-A; Total Phonemic Fluency; Hopkins Verbal 
Learning Test-Revised; Rey–Osterrieth Complex Figure) improved both after tACS and RNS but earlier improvements (T1) 
were registered only after tACS. These results support tACS coupled with physiotherapy in treating FMS cognitive symp-
toms, pain and subclinical psychopathology.
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Introduction

Fibromyalgia syndrome (FMS) is a complex chronic pain 
disorder, defined as widespread musculoskeletal pain in the 
absence of demonstrated tissue damage, and associated with 
symptoms ranging from affective disturbances, fatigue, and 
sleep alterations, to cognitive dysfunctions [1]. Cognitive 
difficulties are referred by 50–80% of people with FMS [2] 
and are ranked as the fifth most severe symptom [3]. “Fibro-
fog” was coined to describe the typical subjective experience 
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of cognitive dysfunction in FMS, characterized among other, 
by concentration difficulties, forgetfulness, mental confusion 
and inability to multitask [4]. One of the most frequently 
reported cognitive dysfunctions in FMS is attention deficit 
[5]: people with FMS show poor performances in cogni-
tive tests requiring to deal with distractors or any source of 
stimulus competition, such as divided attention, inhibition, 
set-shifting [6], working memory [7], semantic memory and 
speed of processing [8]. It is still unclear if these cognitive 
symptoms are primarily disease manifestation or a conse-
quence of it. Many co-occurring symptoms in FMS such 
as depression, anxiety, sleep disturbances and pain percep-
tion may contribute and account for cognitive problems, 
even if no study found an unequivocal relation between 
these factors and the cognitive performance [4]. However, 
a relationship between pain intensity, affective and cogni-
tive dysfunction has been postulated based on the overlap 
of brain areas involved in pain processing and cognition [9, 
10]. This observation leads to the hypothesis that cognitive 
alterations in FMS arise because of resource competition 
with pain processing [6].

Physiotherapy is nowadays the most widely recognized 
and beneficial treatment for fibromyalgic pain symptoms. 
Literature reports effective pain and depression reduction 
associated with aerobic and strengthening exercises [11]. 
However, physiotherapy alone is not able to provide long-
lasting effects involving other symptoms than pain.

Current research is focusing on biomarkers which may 
account for both pain processing alterations and cognitive 
fibrofog. Single-photon Emission Computed Tomography 
(SPECT) and Functional Magnetic Resonance Imaging 
(FMRI) revealed abnormal activation of thalamic nuclei, 
sensory cortex, anterior cingulate, insula and prefrontal 
cortices during pain processing in FMS [12, 13]. Electroen-
cephalographic (EEG) studies show increased theta rhythm 
primarily localized in frontal brain regions and anterior cin-
gulate cortex [14, 15], which are part of the thalamo-cortical 
circuit. On this ground, chronic pain referred by people with 
FMS has been interpreted as the result of a “thalamo-cortical 
dysrhythmia” [14] characterized by a shift of oscillatory fre-
quencies in the thalamo-cortical circuits.

Neuromodulation techniques [non-invasive brain stimu-
lation (NIBS): transcranial magnetic (TMS) and transcra-
nial direct current stimulations (tDCS)] may modulate EEG 
frequency rhythms [16, 17] and shift cortical EEG genera-
tors [18, 19]. Up to now, NIBS has been mainly applied in 
FMS with the hypothesis of reducing the increased activ-
ity described over prefrontal and sensory cortices. TDCS 
was previously administered with this aim. By generating 
low-intensity sub-threshold electrical fields, tDCS is able 
to modify neuronal transmembrane potentials and in turn 
modulate cortical excitability by bringing the underlying 
neurons closer to their firing threshold [20, 21]. Repetitive 

TMS (rTMS) delivered over M1 was administered as well 
to reduce FMS pain symptomatology [22]. However, studies 
on the effect of rTMS and tDCS report a variable efficacy 
on amelioration of symptoms and quality of life in FMS 
[23, 24].

Focusing instead on abnormal oscillatory activity in FMS, 
EEG activity normalization may be considered a therapeutic 
target. No study has explored the effect of transcranial alter-
nating current stimulation (tACS) for the treatment of this 
clinical population [25].

TACS is a non-invasive, handy technique which may 
modulate endogenous brain oscillations [18, 25] when 
administrated as an alternate, sinusoid current. It has been 
demonstrated that tACS is able to shift EEG rhythms in other 
thalamo-cortical dysrhythmias [26]. Unlike tDCS, tACS 
does not induce any polarization effect but can modulate the 
ongoing brain activity by forcing the membrane potential to 
oscillate away from its resting state towards hyper-polarized 
or depolarized state. This results in the so-called entrain-
ment effect: increasing of neuronal firing time-locked to the 
frequency of stimulation [27].

We hypothesize that tACS delivered over the cortical 
area showing the greatest EEG alteration (i.e., higher slow 
rhythms power) may have beneficial effects on both pain and 
cognition by shifting EEG activity towards physiological 
frequencies. To test this hypothesis, we applied tACS as a 
primer for a specific rehabilitation program.

Materials and methods

The randomized, double-blind, crossover design was 
approved by the ethics Committee of the teaching Hospi-
tal of Padova University, Italy, (protocol no. 3507/AO/15). 
Each participant, before taking part in the experiment, was 
informed about the study and provided written informed 
consent. The study was registered on ClinicalTrials.Gov 
(NCT03221413).

The present study reports preliminary data from par-
ticipants with chronic pain. The original protocol planned 
inclusion of individuals with neuropathy; due to the princi-
pal investigator change of affiliation, access to this clinical 
population was no more possible and FMS was included, 
given that both FMS and neuropathic pain are character-
ized by increased slow thalamo-cortical oscillations in theta 
frequency band [14, 16]. This allowed the application of 
the same stimulation protocol. Clinical and neuropsycho-
logical tests were adjusted and tailored to FMS. To enhance 
research transparency, we used the recently updated CON-
SORT guidelines for cross-over trials [28] and the CON-
SORT checklist for crossover designs (see Supplementary 
material 1).
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Primary outcome was reduction of the main FMS symp-
tom, pain, measured with a visual analog scale (VAS) on a 
Likert scale from 0 to 10.

Participants

Participants (N = 15, 2 males; age: mean ± standard devia-
tion: 53.07 ± 4.18 years) were recruited as volunteers by the 
Italian Association of FMS (AISF) and enrolled by a blinded 
researcher in charge of the study conduction (LB), who also 
assigned them to sequence of intervention. Inclusion cri-
teria were: diagnosis according to the diagnostic criteria 
for fibromyalgic syndrome [29]; score higher than 3 at the 
Visual Analog Scale for pain (VAS); pain non-responsive to 
at least two analgesic drugs administered in adequate dose 
for at least 3 months; stable pharmacological treatment dur-
ing the study. Exclusion criteria were: contraindications to 
neurostimulation (pregnancy, metal fragments/implants, epi-
lepsy, previous skull fractures, pacemaker); comorbid psy-
chiatric illnesses or substance abuse disorders; minor age. 
Scalp EEG control data from twenty-one healthy volunteers 
(9 males; age: 45.14 ± 14 years) were obtained [30] using 
the same EEG setting.

EEG data acquisition and analysis

Five minutes of open-eyes resting-state EEG signal 
(32-channel system; BrainAmp 32MRplus, BrainProducts 
GmbH, Munich, Germany) were acquired at a sampling rate 
of 5 kHz with the reference between Fz/Cz and ground ante-
rior to Fz positioned according to a 10/10 system, band-pass 
filtered at 0.1–1000 Hz and digitized.

The data were processed in Matlab (MathWorks, Natick, 
MA) using personalized scripts based on EEGLAB toolbox 

[31]. The EEG recordings were band-pass filtered from 1 to 
30 Hz and down-sampled at 500 Hz. Visible artifacts (eyes 
movements, cardiac activity, and scalp muscle contraction) 
were removed using independent component analysis, and 
data were processed with a common average reference. 
Two-seconds EEG epochs (i.e., non-overlapping segments 
of 1000 samples) were extracted for each participant and a 
fast Fourier transform (FFT) was applied. The recordings 
were Hamming windowed to control for spectral leakage. 
Power spectral density (μV2/Hz) was estimated for all fre-
quencies and the relative power (%) was computed by divid-
ing the power of each frequency band (delta [1–4 Hz], theta 
[4.5–7.5 Hz], alpha1 [8–10 Hz], alpha2 [10.5–12.5 Hz], beta 
[13–30 Hz]) with the total power in the range 1–30 Hz.

A z test (p < 0.05) was used to compare each participant 
versus controls and a statistical map, defining the electrodes 
in which relative power value differs from those of the con-
trol group, was provided [32].

Trial design, stimulation parameters and tACS 
treatment

Participants were randomly assigned with a computer-
generated list (allocation ratio 1:1) to tACS or random 
noise stimulation (RNS as active sham). Each participant 
underwent 10 stimulation sessions lasting 30 min, 5 times 
a week, for two consecutive weeks, followed by 60 min of 
physical rehabilitative exercise. After a wash-out interval 
of 4 weeks from the conclusion of the first cycle, partici-
pants were crossed to the other group (Fig. 1). Participants 
were tested before program start (T0), at conclusion of 
each cycle [stimulation and physical rehabilitation (T1; 
T1′)], and after the 4-week wash-out interval (T2; T2′), 
with resting EEG, VAS, SF36, neuropsychological tests 

Fig. 1  Schematic representation of the experimental design
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and questionnaires. T0 values were recorded only before 
the start of the whole experiment.

Baseline (before the whole protocol started) resting-
state cerebral activity provided stimulation parameters 
(frequency and anode position on the scalp). EEG from 
participants was compared with those of a healthy control 
group to identify scalp areas in which a significant differ-
ence in frequency band spectral power was detected. We 
supported the hypothesis that a non-invasive stimulation 
though potentially different from the natural oscillations of 
the target brain region could modulate neuronal networks 
and shift oscillations into a physiological range. For this 
reason, we compared the power spectra of the participants 
with the one of the controls. Each participant was stim-
ulated in the EEG frequency band that presented lower 
amplitudes compared to controls. Those showing higher 
slow frequencies (theta, delta, alpha1) spectral power were 
stimulated with beta-tACS at 30 Hz, while the ones show-
ing higher fast frequencies (beta, alpha2) were stimulated 
with theta-tACS at 4 Hz. Figure 2 displays statistical maps 
derived from one participant showing higher theta activ-
ity over left motor area, compared to controls, and thus 
stimulated with beta-tACS over that cortical area. In case 
a subgroup should display a prevalence of faster frequen-
cies (alpha2, beta), they were to be stimulated with slow 
tACS at 4 Hz.

Stimulation was applied by a battery driven external 
stimulator (BrainStim, E.M.S., Bologna, Italy) via two 
sponge electrodes (5 × 7 cm), with an intensity ranging 
from 1 to 2 mA. Anode was positioned for each subject 
over the scalp area showing highest power spectral differ-
ence; cathode over the ipsilateral mastoid. The RNS was 
an alternate current with random amplitude and frequency, 
respectively, in the intervals (1–2) mA and (0–100) Hz, 
with electrodes applied over the same sites as for real 
stimulation”. [17].

Clinical assessment

The following clinical scales were administered to test pain 
and the self-reported health state:

(1) Visual Analog Scale (VAS) [33]: a 10-point Likert 
scale, ranging from none to extreme amount of pain.

(2) Short Form 36-item Health Survey (SF-36) [34]: the 
short form of a questionnaire inquiring participants’ 
health state. The 36 items are clustered into 8 domains: 
physical activity/functionality (10 items), limitations 
due to physical health (4 items), limitations due to 
emotional status (3 items), physic pain (2 items), gen-
eral healthy sate perception (5 items), energy/fatigue 
(4 items), social activities (2 items), mental health (5 
items) and one single question on the perceived changes 
in the health state.

Neuropsychological and psychopathological 
assessment

To test cognitive, affective and psychopathological domains, 
we designed a battery which comprises the following stand-
ardized neuropsychological tests and questionnaires for:

(1) Psychopathological self-assessment: Beck Depression 
Inventory-II (BDI-II) [35]; Brief Symptom Inventory 
(BSI) [36]; the State–Trait Anxiety Inventory [37].

(2) Self-reported cognitive assessment: Patient-Reported 
Outcomes in Cognitive Impairment (PROCOG-P) [38]; 
Everyday Memory Questionnaire Revised (EMQ-R) 
[39].

(3) Neuropsychological assessment: the Montréal Cog-
nitive Assessment (MoCA) [40]; the Rey–Osterrieth 
Complex Figure Test [41]; the Digit Symbol-Coding 
(from the Wechsler Adult Intelligence Scale 4th edition 
[42]; the Hopkins Verbal Learning Test-Revised [43]; 

Fig. 2  Statistical maps (z values) derived from one subject with FMS 
vs. control group. Participant n. 6 shows higher theta activity, com-
pared to controls, over left motor area. She was stimulated with beta 

tACS over CP5 (black circles: anode over area of highest theta power, 
cathode over ipsilateral mastoid)
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the Trail Making Tests A and B [44]; the Phonemic 
Verbal Fluency task [45]. For detailed description of 
each test, see Appendix A.

Physiotherapy program

The European League Against Rheumatism (EULAR) 
guidelines have been used to design the physiotherapy 
program [46]. Physiotherapy program included 30 min of 
aerobic exercise followed by 15 min of muscular stretching 
and 15 min of breathing and guided relaxation techniques. 
Participants received 60-min physical rehabilitation at the 
end of each stimulation session, 5 times a week, for two 
consecutive weeks, both in the first and second experimental 
arms. See the online resources (Table T1) for the complete 
physiotherapy program.

Statistical analysis

Region of interests (ROIs) were identified based on elec-
trodes location: right frontal ROI: Fp2, F8, F4; right motor 
ROI: FC2, FC6, C4, Cp2; right parietal ROI: CP6, P8, P4. 
Contralateral ROIs were identified on the left hemisphere. 
EEG frequency power was calculated for each of these ROIs 
and used for subsequent analysis. Statistical analyses aimed 
at detecting differences in EEG frequencies, neuropsycho-
logical, psychopathological or clinical variables with respect 
to baseline and intervention. Each comparison was based on 
complete case analysis, so all available subjects were con-
sidered when their observations could be collected. Non-
parametric methods were employed due to sample size. 
Spectral power of all EEG bands over different ROIs were 
compared to detect differences between the conclusion of 
the cycle (T1) and the end of the wash-out interval (T2) and 
between the condition of the subjects in each of those times 
(T1 and T2) and their baseline (T0) by means of the Wil-
coxon signed-rank test for paired samples. EEG frequencies 
were compared also between tACS and RNS with a paired 
samples Wilcoxon signed-rank test. All changes in variables 
related to the neuropsychological and psychopathological 
assessments and to the clinical assessment collected at dif-
ferent time point were tested with the same scheme with a 
Wilcoxon signed-rank test, assuming the usual critical level 
0.05. All statistical analyses were performed with the R sta-
tistical software [47].

Test power calculation

Sample size was computed on the basis of a functional 
outcome which is not available for subjects who actually 
entered the study. For this reason, an analysis of the power 
of the test employed was performed. The primary outcome 
is the change in the VAS scale between the beginning of the 

study and the end of intervention. Since the Wilcoxon rank-
sum test is a non-parametric test, the assumption of a stand-
ard parametric distribution for the data under the alternative 
hypothesis is avoided. A discrete distribution is assumed for 
the difference in VAS which ranges between − 1 and 6, with 
probabilities equal to those empirically observed, thus the 
median difference equals 1.5. Under such assumptions, a 
simulation study was performed in order to detect the power 
of the Wilcoxon signed-rank test. Based on 10,000 simula-
tions, with the observed sample size, the power of the test 
is 85%.

Results

Twenty-four participants were recruited. Enrolment flow 
diagram is reported in the online resources (Fig. F1). For 
demographic characteristics see Table 1. Seven participants 
did not meet inclusion criteria (2 had contraindication to 
tACS, 3 had a psychiatric disease, 2 had recently changed 
drug regimen). Of the remaining 17, 15 completed the first 
arm of the study (1 drop out, 1 change of drugs during tri-
als), and 11 both study arms (1 change of drugs, 1 due to 
stroke, 2 dropouts for personal reasons).

EEG

The open-eyes resting-state EEG confirmed low rhythm 
prevalence over fronto-central cortical regions (11/15 par-
ticipants) [13, 15]. Alpha1 power increased at T1 (p = 0.024, 
CI (− 1.89, − 0.13)) after beta-tACS compared to RNS over 
bilateral M1 (Fig. 3). Alpha 2 showed a non-significant 
increase between T1 and T2 both after tACS and RNS over 
bilateral M1.

Clinical assessment scales

VAS scores significantly decreased in 9 cases out of 14 from 
T0 to T1 (p 0.010, CI (0.5, 4.0)) after tACS. This effect was 
no longer seen at T2, where just 4 subjects out of 14 reported 
a reduced pain perception compared to T1.

After RNS, no significant improvement was seen between 
T0 and T1 as just in 7 cases out of 14 we observed a reduc-
tion in VAS scores (p = 0.062) as well as between T1 and 
T2 where just 4 subjects reported pain symptoms reduction 
(p = 0.757).

Several items of the Short Form 36-item Health Sur-
vey (SF-36) improved after both tACS and RNS. See the 
online resources (Tables T2, T4) for significant p-values and 
median scores related to each subitem.
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Table 1  Demographic and clinical characteristics of included participants

Subject Age (years) Sex Education (years) Prevailing rhythm Stimulation site Stimulation frequency Pharmakon

1 51 F 16 Theta F3 30 Hz Duloxetine (60 mg)
2 49 F 12 Theta C3 30 Hz Amitriptyline (10 mg ttx2)
3 51 F 13 Theta Cp5 30 Hz Hydroxychloroquine 

(200 mg)
4 56 F 13 Alpha 1 C4/Cp2 30 Hz Tizanidine (4 mg)
5 55 F 16 Theta C3/Cp5 30 Hz Venlafaxine (75 mg)
6 49 F 9 Theta Cz-Fz 30 Hz Gabapentin (300 × 3), 

venlafaxine (75 mg)
7 55 F 8 Theta Cp5 30 Hz Alprazolam (0,25 mgx2), 

pregabalin (150mgx3), 
Trzodone (100 mg)

8 50 M 11 Alpha 2 Cz-Pz 4 Hz Alprazolam (25mgx2), 
Amitriptyline (10 mg), 
Tizanidine (2mgx2)

9 50 F 13 Alpha 2 Pz 4 Hz Gabapentin (300 × 2), 
Duloxetine (60 mg), 
Lormetazepam (2 mg), 
Zolpidem (50 mg), Sirda-
lud (2 mg), Tapendatol 
(50 mgx2)

10 50 F 16 Theta F4 30 Hz Pregabalin (100 mg), 
Duloxetine 60 mg

11 65 F 9 Delta C3 30 Hz –
12 53 F 11 Theta Cp5 30 Hz –
13 57 F 13 Theta Cp5 30 Hz Duloxetine (60 mg); Prega-

balin (75 mg)
14 52 F 8 Beta C3 4 Hz –
15 53 M 17 Beta Pz 4 Hz –

Fig. 3  Group results. Median relative power and standard error in 
alpha1 range at each evaluation time point (T0, T1 tACS, T1 RNS, T2 
tACS, T2 RNS). Region of interests are identified based on electrodes 
location (mean of relative power): left frontal area —i.e., Fp1, F7, F3; 

right frontal area—i.e., Fp2, F8, F4; Left motor area—i.e., FC1, FC5, 
C3, Cp1; right Motor Area—i.e., FC2, FC6, C4, Cp2; left Parietal 
Area—i.e., CP5, P7, P3; Right parietal area—i.e., CP6, P8, P4
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Neuropsychological and psychopathological 
assessment

(1) Psychopathological self-assessment: the State–Trait 
Anxiety Inventory, assessing baseline state and trait 
anxiety levels, shows low trait anxiety in our sample 
at baseline (mean ± standard deviation = 37.26 ± 7.63; 
median = 38). Depressive symptoms, assessed with the 
BDI-II, decreased in the tACS group between T0 and 
T1 (p < 0.001, CI (4.0, 12.0)), and T0 and T2 (p = 0.006, 
CI (5.0, 13.0)), as well as in the RNS group between T0 
and T1 (p = 0.008, CI (1.0, 10.5)). The BSI global sever-
ity index score, a measure of the current level of per-
ceived symptomatology, significantly decreased after 
both tACS and RNS between T0 and T1 (respectively, 
p = 0.042, CI (0.01, 0.11), and p = 0.027, CI (0.02, 
0.23)). Several subitems of the BSI improved after 
both tACS and RNS. Tables T3 and T5 in the online 
resources, respectively, report the p-values and the 
median scores for each subitem.

(2) Self-reported cognitive assessment: the skill loss subi-
tem of the Patient-Reported Outcomes in Cognitive 
Impairment (PROCOG-P) improved after tACS at 
T0–T2 (p = 0.024, CI (0.05, 0.59)). The performance in 
the Everyday memory questionnaire (EMR.Q) resulted 
significantly improved in the group receiving the tACS 
compared to the RNS at T1 (p = 0.012, CI (1.5, 16.5)).

(3) Neuropsychological assessment: among neuropsycho-
logical tests, a significant improvement is observed 
in the MoCa scores after tACS at T0–T1 (p = 0.048, 
CI (− 4.5, 0.0)) and at T0–T2 (p = 0.009, CI (− 4.5, 
− 0.5)). In the Trail Making Test A (TMT-A), we 
observed a significant increased speed in the RNS 
group between T0 and T2 (p = 0.035, CI (0.0, 15.0)). The 
TMT-B time significantly decreased in the tACS group 
between T0 and T2 (p = 0.034, CI (0.0, 37.5)). Total Pho-
nemic Fluency scores increased in the group receiving 
tACS between T0 and T2 (p = 0.013, CI (− 10.0, − 1.0)) 
and errors decreased (p = 0.025, CI (0.0, 2.0)). In the 
RNS group, an increase was observed between T1 and 
T2 (p = 0.006, CI (− 9.0, − 1.5)). In the HVLT-R, the 
tACS group improved significantly both at T0–T2 and 
T1–T2 (respectively, p = 0.008, CI (− 9.0, − 1.0), and 
p = 0.009, CI (− 5.5, − 1.0)); the RNS group improved 
between T0 and T2 (p = 0.012, CI (− 14.5, − 2.0)). The 
Rey–Osterrieth Complex Figure time score improved 
in the tACS group between T0 and T1 (p = 0.025, CI 
(7.0, 49.0)), and T0 and T2 (p = 0.049, CI (0.0, 42.0)), 
and between T0 and T2 after RNS (p = 0.037, CI (3.5, 
69.0)).

In the online resources (Table T6) are reported the median 
scores of each administered test.

Discussion

Our data confirm cognitive and EEG activity abnormalities 
in a sample of people with FMS. This neurophysiological 
finding informed the choice of the neurostimulation para-
digm: tACS combined with an ad hoc physical program was 
effective in shifting EEG frequencies, reducing pain, and 
improving neuropsychological and psychopathological tests.

Slow rhythm prevalence in fronto-central cortices are 
a hallmark of FMS [16]: fast tACS aimed to interact with 
these abnormal brain oscillations and shift them towards 
more physiological frequencies [18, 25]. Eleven out of fif-
teen participants of the initial sample showed theta rhythm 
prevalence in frontal regions and/or sensorimotor areas. As 
hypothesized, tailored tACS normalized EEG activity [48]. 
Although beta-tACS decreases the prevalent theta power 
in our sample, the induced shift was towards slightly faster 
(alpha1 or alpha2) bands and not towards beta band. This 
observation may be explained with the complexity of the 
targeted pain circuit, the pain matrix [49]. Neuroimaging 
and neurophysiological studies demonstrated that nocicep-
tive stimulations activate large brain network comprising 
somatosensory, insular, cingulate areas, and with a tempo-
ral delay frontal and parietal areas [50]. FMS pain-related 
symptomatology is believed to be associated with neuroplas-
tic changes in this network [51]. Taking this into account, we 
argue that focal tACS stimulation is less likely to radically 
impact on a large cortical/subcortical network, like the one 
represented by the pain matrix. Indeed, tACS efficacy in 
EEG activity normalization was observed in the treatment of 
other thalamo-cortical dysrhythmias such as in Parkinson’s 
disease, in which the closely circumscribed thalamo-cortico-
basal circuit was targeted [18].

We found the primary motor cortex (M1) and sensori-
motor areas to emerge as the main targets for the neuro-
stimulation based on the topography of EEG abnormalities. 
Although M1 is not directly part of the pain matrix, previ-
ous studies proved its modulatory role in other chronic pain 
syndromes [51]. M1 stimulation appears to activate phasic 
and rapid activity of lateral thalamic nuclei, which in turn 
activate a cascade of events in the medial thalamus, ante-
rior cingulate/orbitofrontal cortex and periaqueductal gray 
matter.

Thus, we argue that tACS delivered over M1/sensorimo-
tor cortices may have a modulatory effect on the pain matrix 
and consequently reduce pain, as proved by reduced VAS 
score. The absence of significant improvements at T2 con-
firms previous reports [52, 53] on the lack of long-lasting 
effects of NIBS: our experimental paradigm was able to 
modulate pain during the experiment itself and immediately 
after, but the pain reduction faded after 4 weeks. This obser-
vation calls for the development of portable NIBS devices 
which may be used for home therapy. In addition, the lack 
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of effects after RNS can be considered a proof as well of the 
benefit induced by the real stimulation and physiotherapy 
treatment.

Physiotherapy may be a co-factor in pain reduction; how-
ever, as only the tACS group reported a significant decrease 
of VAS, an effect of stimulation per se accounting for this 
outcome is highly likely. TACS may have acted as a primer 
for the motor cortex, increasing the potential excitability 
of the underlying cortex and amplifying the ensuing physi-
ological activation obtained through motion.

While the results of tACS on pain suggest a determinant 
role of neurostimulation, the overall positive effect of physi-
cal activity on health perception is well known and observed 
also in our cohort.

A general health increased is observed in both groups 
(tACS and RNS), as assessed by SF-36 scores of functional-
ity, energy, social activity and pain subitems.

Similraly, physical activity may have affected also BSI 
and BDI-II. BSI assesses somatization, obsessive compul-
sive tendencies and anxiety; scores improved in both groups 
between T0 and T1. BDI-II assesses depressive symptoms; it 
decreased significantly in short and medium term (T0–T1 and 
T1–T2) in the tACS group. It is unclear if this improvement 
results from a primary effect of the stimulation and the phys-
iotherapy, both previously demonstrated to be effective in 
depressive symptoms amelioration [54, 55] or if it is a con-
sequence of pain reduction per se. Pain and depression are 
strictly linked; thus, a reduction of one can lead to beneficial 
effects on the other. However, depressive symptoms seem 
to ameliorate also in the RNS group in the short term (T1), 
which did not show a significant reduction in VAS scores. 
In this case, the positive effect of physiotherapy may have 
played a determinant role.

The PROCOG-P skill loss subitem as well as the EMR.Q 
improvement in the tACS group can be interpreted as a con-
sequence of the stimulation, which by increasing alpha1 
band prevalence, may have boost cognitive performances 
and the relative perception of self-cognitive abilities. How-
ever, pain and depression reduction may have played a role 
by influencing subjects’ general attitude on their capacities. 
This underlies the need to test cognitive abilities also with 
neuropsychological standardized test, to disentangle subjec-
tive and objective measures of cognitive functioning.

A positive correlation between theta power increase and 
cognitive deficit in healthy adults is reported [56]; whereas, 
high power of alpha rhythm is positively correlated with 
memory and attention performances [57]. TACS stimula-
tion, increasing alpha1 band prevalence, may explain the 
observed improvements in the MoCA scores, which com-
prises attention, short-term memory and working memory 
tasks.

The same can be assumed for TMT-B performance 
assessing divided attention and set-shifting, whose improve-
ment is observed only in tACS condition. On the contrary, 
TMT-A performance speeds up only in the RNS group. We 
argue that this task, assessing mainly visual searching abili-
ties, could have been less influenced by the protocol as less 
involved in FMS symptomatology compared to the other 
domains tested.

The other cognitive tasks comprising the phonemic 
fluency test, the HVLT-R and the time copy component 
of the Rey Complex Figure test, improved both after 
tACS and RNS stimulation. Faster improvement in per-
formances were observed at T1 after tACS, compared to 
the RNS later improvement (T2). We argue that tACS 
combined with physical activity is likely to speed up the 
process of cognitive performance improvement in FMS, 
which can anyway be triggered by physical rehabilita-
tion. Indeed, many studies highlight the modulation effect 
of physical activity on cognitive functioning and general 
wellbeing [58].

By delivering tailored tACS associated with ad hoc 
rehabilitative intervention, we succeeded in reducing the 
main concerns reported by people suffering FMS [59]: pain 
symptoms and cognitive dysfunctions, including both self-
reported measures of perceived impairment and neuropsy-
chological tests performance.

The improvements observed in the group receiving RNS 
combined with physiotherapy can be explained in light of 
the multiple-level beneficial impact of physical activity on 
clinical and cognitive symptoms. However, tACS group 
showed more pervasive and faster symptoms reduction, 
pointing out stimulation efficacy.

Limitations

The main limitation is the small sample size. Nevertheless, 
the sample homogeneity concerning age, sex and education 
level, adds value to results reliability.

It is pointed out that, considering the dimension of the 
sample size and the exploratory nature of the study, no cor-
rections for multiple comparisons were performed in hypoth-
esis testing. Future studies should replicate the validity of 
this treatment approach on a larger sample.

A potential bias could be concomitant drug therapy. Evi-
dence to date suggests interaction effects between drugs with 
psychotropic effects and neurostimulation techniques [60] 
Even if not such interaction is clearly reported for tACS, 
we controlled for possible confounding effects by keeping 
participants’ pharmacological therapy unchanged during the 
whole protocol.
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Conclusion

These data provide evidence of the efficacy of combining 
personalized tACS and physiotherapy in the treatment of 
pain, cognitive symptoms and subclinical psychopathology 
of FMS. Even if the involved mechanisms are still not com-
pletely understood, tACS over the sensorimotor cortex cou-
pled with physiotherapy seem to be a promising approach in 
treating this complex syndrome.
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Appendix A. Neuropsychological testing

Clinical and Psychopathological assessment

The beck depression inventory-II (BDI-II) [35] was used 
to assess depression. It consists of a 21-item questionnaire 
yielding a composite score of self-reported symptom sever-
ity. Standard cut-off scores are: 0–9 = minimal depression, 
10–18 = mild depression, 19–29 = moderate depression, and 
30–63 = severe depression.

Brief symptom inventory (BSI) [36] is a self-reported 
questionnaire designed to identify relevant psychopathologi-
cal symptoms experienced during the last week. The ques-
tionnaire is composed by 53 items concerning nine symp-
tom dimensions: Somatization, Obsession–Compulsion, 

Interpersonal Sensitivity, Depression, Anxiety, Hostility, 
Phobic Anxiety, Paranoid ideation, and Psychoticism. The 
questionnaire provides also three global indices of distress: 
Global Severity Index (a measure of current level of symp-
tomatology), Positive Symptom Distress Index (a measure of 
the intensities of symptoms), and Positive Symptom Total (a 
measure of total number of experienced symptoms). GSI T 
scores > / = 63 are considered clinically significant, also all 
cases in which two of the subscales scores are 63 or greater.

The state–trait anxiety inventory [37] is a 40-item self-
report questionnaire assessing state and trait anxiety levels. 
Scores range from 20 to 80, with higher scores indicating 
higher levels of anxiety severity.

Cognitive self‑assessment

Patient-reported outcomes in cognitive impairment (PRO-
COG-P) [38] is a 55-item self-administered questionnaire 
designed to measure a range of patient-reported symptoms 
and their impact in patient’s daily life during the last two 
weeks. The instrument is designed to detect the patient’s per-
spective on his/her cognitive impairment and impact. Items 
are rated on a five-point Likert scale and the questionnaire 
includes seven subscales whose scoring is calculated as the 
mean value of items belonging to each specific subscale 
(range 0–4).

The PROCOG-P subscales are: affect, skill loss, seman-
tic memory, short-term memory, cognitive functioning, 
long-term memory and social impact. The subscales give 
extensive description of the patient experience of his/her 
cognitive impairment and allow us to assess separately dif-
ferent memory-related symptoms and the emotional impact 
of symptoms and repetitive behaviors. A total score is the 
sum of all items (range 0–220). Higher scores indicate both 
greater impact and severity of cognitive impairment.

Everyday memory questionnaire revised (EMQ-R) [39] 
is a subjective measure of memory deficiency in everyday 
life during last month. Total score is the sum of all 13 items, 
ranged from 0 to 41, with a mean total of 9.75 (SD 8.6), and 
it is considered as a good measure of change. Higher the 
score, worse subjective memory functioning.

Neuropsychological assessment

The montréal cognitive assessment (MoCA) [61] is a 
30-point brief cognitive screening scale with short time of 
administration. MoCA is one of the most commonly used 
tools in clinics assessing general cognitive functioning. It 
measures a broad spectrum of cognitive abilities that are 
relevant to several disorders involving CNS [61]. In par-
ticular, MoCA was developed to explore frontal cognitive 
domains (i.e., attention, executive functions, and conceptual 

http://creativecommons.org/licenses/by/4.0/


208 European Archives of Psychiatry and Clinical Neuroscience (2021) 271:199–210

1 3

thinking), all domains usually already affected in the early 
stages of these disorders. Authors identified scores less than 
26 as a good cut-off for detecting cognitive impairment.

The Rey–Osterrieth complex figure test [41] is a measure 
of visuo-spatial constructional abilities and visuo-graphic 
memory, but also cognitive planning, organizational strate-
gies and executive functions. The task is composed of two 
parts, direct copying (assessing perception and visuo-spatial 
construction) and delayed reproduction (assessing implicit 
visuo-spatial memory). We used the three minutes (short) 
delay to assess visual memory. Given that repeated admin-
istrations of the ROCF resulted in significant improvements 
of performance, we used alternative forms: The Modified 
Taylor Complex Figure, and two out of the four complex 
figures devised for repeated assessments by the Medical Col-
lege of Georgia Neurology group [62].

The digit symbol-coding (from the Wechsler Adult 
Intelligence Scale 4th edition [42]), is a measure of grapho-
motor working memory and speed of processing. It consists 
of digit–symbol pairs followed by a list of digits. Partici-
pants must write the corresponding symbol under each digit 
(ranged from one to nine) as fast as possible in a limited time 
interval (120″). Digit Symbol appears to be relatively unaf-
fected by intelligence, memory, or learning. Motor persis-
tence, sustained attention, response speed, visuomotor coor-
dination, all have some role in digit symbol performance, 
which is also affected by education, gender and age. No 
practice effects appeared after repeated administering [62].

The hopkins verbal learning test-revised [43] is a test 
that assesses verbal learning and memory. The test consists 
of three trials of free recall of a 12-item composed of four 
words belonging to three different semantic categories. The 
authors provide six parallel forms leading to equivalent 
results in the normal population. We used three lists (N 1, 
5, and 6) and considered only the free recall as outcome 
measure.

The trail making tests A and B [44] measure attentional 
speed, sequencing, visual search and mental flexibility. 
Part A (TMT-A) assesses motor speed, part B (TMT-B) 
assesses complex divided attention and set-shifting, differ-
ence between B and A (i.e., B/A ratio) gives a measure of 
cognitive shifting cost and allows us to control for motor 
impairment. Practice effect is under discussion, especially 
in the case of short time interval, and we used three parallel 
forms [63].

The phonemic verbal fluency task [45] requires patients to 
freely generate as many words as possible that begin with a 
specific letter (phonemes) in 60 s. The task requires patients 
to retrieve words of their language and to access their ver-
bal lexicon, focus on the task, select only words following 
specific rules and avoid repetitions and words that start with 
phonemes close to the target one. It is therefore considered 
dependent on executive control, beyond the involvement of 

verbal abilities. The outcome consists in the total correct 
words produced through three letters. In the literature differ-
ent letter combinations are available to longitudinal studies.
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