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Abstract

Lipid phosphoinositides are master regulators of almost all aspects of 
a cell’s life and death and are generated by the tightly regulated activity 
of phosphoinositide kinases. Although extensive efforts have focused 
on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years 
have revealed opportunities for targeting almost all phosphoinositide 
kinases in human diseases, including cancer, immunodeficiencies, 
viral infection and neurodegenerative disease. This has led to 
widespread efforts in the clinical development of potent and selective 
inhibitors of phosphoinositide kinases. This Review summarizes our 
current understanding of the molecular basis for the involvement of 
phosphoinositide kinases in disease and assesses the preclinical and 
clinical development of phosphoinositide kinase inhibitors.

Sections

Introduction

PIP kinase evolutionary family

PI3K−type III PI4K evolutionary 
family

Outlook

1Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada. 
2Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British 
Columbia, Canada. 3Department of BioMedical Research, University of Bern, Bern, Switzerland. 4Sanford Burnham 
Prebys, La Jolla, CA, USA. 5Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, 
PA, USA.  e-mail: jeburke@uvic.ca; bemerling@sbpdiscovery.org; ghammond@pitt.edu

http://www.nature.com/nrd
https://doi.org/10.1038/s41573-022-00582-5
http://crossmark.crossref.org/dialog/?doi=10.1038/s41573-022-00582-5&domain=pdf
http://orcid.org/0000-0001-7904-9859
http://orcid.org/0000-0002-0625-0524
http://orcid.org/0000-0002-2168-4582
http://orcid.org/0000-0002-6660-3272
mailto:jeburke@uvic.ca
mailto:bemerling@sbpdiscovery.org
mailto:ghammond@pitt.edu


Nature Reviews Drug Discovery | Volume 22 | May 2023 | 357–386 358

Review article

PIKfyve also produces the main pool of PI5P in the cell, which is pri-
marily generated indirectly through the dephosphorylation of PI(3,5)
P2 by lipid phosphatases, although a small pool of PI5P may be gener-
ated by PIKfyve’s direct phosphorylation of PI to generate PI5P. The 
PIKfyve complex is primarily localized at endosomal membranes15,16, 
with PI(3,5)P2 in endosomes/lysosomes regulating the activity of ion 
channels, playing important parts in ion homeostasis17. PIKfyve is a 
crucial regulator of the endocytic pathway, with roles in endosomal 
trafficking14,18, cell migration19 and lysosomal function20,21.

In mammalian cells, PIKfyve is a large protein (2,098 amino acids) 
composed of four putative structured regions: a FYVE domain that 
binds to PI3P22, a CCT domain that mediates interaction with Vac14, a 
structurally uncharacterized CCR module, and a kinase domain with 
sequence homology to the PI5P4Ks and PI4P5Ks23 (Fig. 2a). In addition 
to lipid kinase activity, PIKfyve also has activity as a protein kinase and is 
regulated by inhibitory autophosphorylation24. Loss of PIKfyve protein 
leads to embryonic lethality in mammals25,26, and PIKfyve null fibroblasts 
have undetectable PI(3,5)P2 and significant depletion of PI5P13.

All components of the PIKfyve signalling complex are conserved 
from yeast to humans, composed of the proteins PIKfyve, the scaffold-
ing protein VAC14 (encoded by VAC14; also referred to as ArPIKfyve)27,28 
and the dual lipid–protein phosphatase FIG4 (encoded by FIG4; also 
referred to as SAC3)29–31. Studies of mouse mutants and knockout mod-
els, as well as clinical mutations in patients have revealed the crucial 
role of all members of the PIKfyve complex in the central and peripheral 
nervous systems. Both Vac14 (ref.32) and Fig4 (ref.33) knockout mice 
have extensive neurodegeneration, accompanied by decreased PI(3,5)
P2 levels and enlarged vacuoles. Mice with mutations in Vac14 that 
prevent association with PIKfyve27, or mutations in Fig4 that prevent 
association with VAC14 (ref.34) show similar neurodegeneration. Muta-
tions in FIG4 have been found in patients with the neurodegenerative 
diseases amyotrophic lateral sclerosis (ALS), primary lateral sclerosis 
(PLS)35 and Charcot–Marie–Tooth disease type 4J (CMT4J)33,36. In addi-
tion, biallelic loss-of-function mutations in VAC14 (ref.37) were found in 
patients with a progressive neurological disease with early childhood 
onset. Overall, evidence suggests that PI(3,5)P2 production, through 
the action of the PIKfyve–FIG4–VAC14 complex, is crucial for the proper 
development and maintenance of nervous system tissues.

Complicating the study of the regulation of the PIKfyve complex 
is that FIG4 has lipid phosphatase activity against PI(3,5)P2, yet loss of 
FIG4 paradoxically leads to decreased PI(3,5)P2 levels33, suggesting a 
key role of FIG4 in regulating PIKfyve activity. VAC14 forms a homo-
pentamer, which binds to single copies of PIKfyve and FIG4 (ref.38) 
(Fig. 2a). Studies suggest that a conformational change occurs in the 
VAC14 subunit upon binding to FIG4 that alters the affinity towards PIK-
fyve38. A crucial role of FIG4 in increasing PIKfyve activity was identified 
by its ability to dephosphorylate an inhibitory autophosphorylation 
site in the activation loop of the kinase domain of PIKfyve (S2053)38. 
The current biochemical and biophysical data suggest a model in which 
FIG4 has two important roles in controlling PIKfyve activity: it stabilizes 
the association of PIKfyve with VAC14, and its protein phosphatase 
activity regulates PIKfyve lipid kinase activity.

Pharmacological inhibitors. Potent and selective inhibitors towards 
PIKfyve have been useful in defining the numerous roles of PI(3,5)P2 
signalling in cells. Although structure-guided drug design has been 
limited by the lack of high-resolution structural data for the PIKfyve 
kinase domain, multiple inhibitors of PIKfyve have been developed, 
with the first generation entering clinical trials (Tables 1 and 2).

Introduction
Lipid phosphoinositides in cell membranes are master regulators of 
myriad membrane signalling events1–3. Phosphoinositides have central 
roles in membrane trafficking, metabolism, growth, signalling and 
autophagy, with alterations in phosphoinositide metabolism being 
causative for many human diseases. There are seven different phospho-
inositide species: three mono-phosphorylated phosphatidylinositol 
phosphates (PIPs), three bis-phosphorylated PIP2s and a single tris-
phosphorylated PIP3 (Fig. 1). These phosphoinositides are distributed 
differently in unique cell types, and their levels can change dramati-
cally upon activation of cell surface receptors or in pathogen-infected 
cells. Phosphoinositides are generated with spatiotemporal precision 
from phosphatidylinositol (PI) by the action of lipid phosphoinositide 
kinases (19 unique genes in mammals), and are degraded by the action 
of phosphoinositide phosphatases (up to 35 unique genes in mammals) 
(Fig. 1). This Review focuses on the phosphoinositide kinases, and read-
ers are referred to other reviews for discussion of the roles of the various 
phosphoinositide species4–8. Phosphoinositide kinases can be broadly 
split into three general families: one family contains all classes of the 
phosphoinositide 3-kinases (PI3Ks; also known as phosphatidylinositol 
3-kinases) and the type III PI4Ks, another family contains the PIP kinases, 
with the last family containing the type II PI4Ks (Fig. 1).

Multiple phosphoinositide kinases are therapeutic targets in vari-
ous human diseases, including cancer, viral infection, neurodegenera-
tive diseases, developmental disorders, diabetes and inflammatory 
diseases. Alterations in phosphoinositide metabolism are foundational 
in disease states, presenting multiple opportunities for therapeutic 
modulation of lipid kinase activity with small molecules. Mutations 
have been identified in several phosphoinositide kinases that either 
hyperactivate or inactivate lipid kinase activity, leading to disease pro-
gression. In addition, selectively targeting phosphoinositide kinases 
in parasites has potential for treating infection. Currently, there are 
many inhibitors of the class I PI3Ks that are clinically approved for the 
treatment of several cancers (Box 1); clinical trials are ongoing with 
small-molecule inhibitors that target the lipid kinase PIKfyve in cancer 
and viral infection, and inhibitors of the Plasmodium homologue of 
PI4K are in clinical trials for the treatment of malaria (Table 1).

This Review describes the structure–function, regulation and 
involvement in disease of all clinically relevant phosphoinositide 
kinases outside of the class I PI3Ks — including members of the PIP 
kinase superfamily, PI4Ks and class II and III PI3Ks — as recent reviews 
have described the class I PI3K path to clinical development9,10 (Box 1). 
The various members of the phosphoinositide kinases show a set of 
both commonalities and differences in their architecture and regu
lation (Box 2). Regarding the PI4Ks, the focus is primarily on the type III 
PI4Ks over type II owing to the extensive drug discovery efforts target-
ing PI4KA and PI4KB in viral infection, malaria and cancer, with pre-
clinical development of type II PI4K inhibitors being at a very nascent 
stage11,12. The state of the art in the development of potent and specific 
small-molecule inhibitors for the treatment of a multitude of disease 
states is discussed.

PIP kinase evolutionary family
PIKfyve
Structure and regulation. PIKfyve is conserved from yeast to humans 
and is the only protein in eukaryotes that catalyses the production of 
phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) from phosphati-
dylinositol 3-phosphate (PI3P)13. The primary pool of PI3P used by 
PIKfyve as a substrate is generated by the class III PI3K VPS34 (ref.14). 
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Similarly to many of the other phosphoinositide kinases, one 
of the first potent and selective PIKfyve inhibitors to be discovered 
arose from drug discovery efforts focused on the class I PI3Ks39 and 
led to the identification of the ATP-competitive pyridofuro-pyrimidine 
compound YM201636, which was highly potent towards PIKfyve, 
with 100-fold selectivity over the class I PI3K p110α40. This compound 
induced dramatically decreased PI(3,5)P2 levels and enlarged vacuoles 
and/or lysosomes, similar to small interfering RNA (siRNA) knock-
down of PIKfyve. The chemically very similar MF4 inhibitor (lacking 
an amino group off the pyrimidine ring) exhibits similar potency 
towards PIKfyve and ~10-fold selectivity over p110α18. Although these 
compounds were useful for defining the functional roles of PIKfyve in 
multiple cell types and tissues, the weak selectivity profile over class I 
PI3K p110α prevented further clinical development.

The small molecule N-[(E)-(3-methylphenyl)methylideneamino]-
6-morpholin-4-yl-2-(2-pyridin-2-ylethoxy)pyrimidin-4-amine (apilimod) 
was originally identified as an inhibitor of IL-12 and IL-23 cytokine pro-
duction through an unknown mechanism41. Apilimod underwent clinical 
trials for Crohn’s disease, rheumatoid arthritis and psoriasis, and was 
generally well tolerated, although it had limited clinical effect. The 
initial lack of a defined therapeutic target limited assessment of efficacy 
and toxicity. However, apilimod was found to be a highly potent and 
selective PIKfyve inhibitor42, which has shown promise as a treatment 
for cancer and viral infection, with ongoing clinical trials in cancer and 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection 
(Fig. 2b, described below).

Additional PIKfyve inhibitors have been discovered in high-
throughput screens for anticancer and anti-inflammatory compounds. 
This includes the pyrazolo[1,5-a]pyrimidine inhibitor APY0201, which 
was identified as an inhibitor of IL-12 and IL-23 production that targets 
the PIKfyve complex, acting as a potent ATP-competitive inhibitor 
with limited effect on other kinases, G protein-coupled receptors 
(GPCRs) or ion channels43. The WX8 family of compounds with either 
a 1,3,5-triazin-2-amine or pyrimidine-4-amine core were identified 
to induce excess DNA replication in cancer cells compared with non-
malignant cells. Although WX8 was the most potent compound in this 
series, it exhibited off-target inhibition on PI5P4Kγ, and NDF was the 
most selective compound44. The 3-(5-methoxy-2-methyl-1H-indol-3yl)-
1-(4-pyridinyl)-2-propene-1-one (MOMIPP) compound was identified as 
a promoter of methuosis45, which is a form of nonapoptotic cell death, 
with PIKfyve later identified as the target46. MOMIPP is a potent ATP-
competitive inhibitor of PIKfyve with weak inhibition of PI5P4Kγ and 
limited inhibition of any other lipid kinase.

ESK981 (11-(2-methylpropyl)-12,13-dihydro-2-methyl-8-(pyrimidin-
2-ylamino)-4H-indazolo[5,4-a]pyrrolo[3,4-c]carbazol-4-one, initially 
named CEP-11981) was first identified as an inhibitor of the tyrosine 
kinases TIE2, VEGFR1, VEGFR2, VEGFR3 and FGFR1, and completed 
phase I clinical assessment for pharmacokinetics and safety47. However, 
a screen of multi-tyrosine kinase inhibitors towards a panel of prostate 
cancer cells identified ESK981 as a potent PIKfyve inhibitor48, with weak 
inhibition of PI5P4Ks. ESK981 is currently undergoing clinical trials for 
castration-resistant prostate cancer (Fig. 2b, described below).

PIKfyve inhibition in neurodegenerative disorders. The severe 
peripheral demyelinating neuropathy Charcot–Marie–Tooth disease 
type 4B (CMT4B) can be caused by loss-of-function mutations in a 
PI(3,5)P2 phosphatase/regulator, MTMR2, MTMR5 or MTMR13; recent 
studies have shown that apilimod can rescue the associated in vitro 
myelin outfoldings49,50 and improve nerve conduction velocity in mouse 

models of CMT4B1 (MTM2 mutants). Thus, preventing aberrant PI(3,5)
P2 accumulation through PIKfyve inhibitors seems to be a promising 
therapy for these rare disorders.

More broadly, many sporadic neurodegenerative disorders are 
characterized by the accumulation of intracellular protein aggre-
gates, such as tau in Alzheimer disease and frontotemporal dementia 
(FTD), and α-synuclein in Parkinson disease, that lead to neuronal death 
(Fig. 2c). Misfolded copies of these proteins act like prion ‘seeds’; they 
enter the neuronal endocytic pathway, disrupt lysosomal integrity and 
induce the misfolding of endogenous cellular proteins, eventually 
leading to cell death51. Recent studies suggest that the role of PIKfyve 
in endocytic trafficking of these neurodegenerative seeds makes it a 
promising therapeutic target.

In an in vitro model of Alzheimer disease in cultured hippocam-
pal neurons, inhibition of PIKfyve by siRNA, YM201636 or apilimod 
strongly reduces the appearance of seeded tau aggregates in this 
system52. PIKfyve acts by preventing traffic to the acidic (lysosomal) 
compartments52 (Fig. 2c). PIKfyve inhibition also reduced neurode-
generation in a human organoid model of tau-induced FTD, which 
models the excitotoxic death observed in glutamatergic neurons in 
the disease53. In this system, PIKfyve did not reduce tau levels per se; 
apparently, it instead reduced excitotoxic death by reducing endocytic 
recycling of ionotropic glutamate receptors53.

PIKfyve inhibition was similarly effective in in vitro models of 
Parkinson disease with YM201636, apilimod and vacuolin-1 all blocking 
the seeded aggregation of α-synuclein in HEK293 cells54. The inhibitors 
did not block endocytosis of α-synuclein fibrils, but instead blocked 
traffic to the lysosomes; they also reduced lysosomal damage and thus 
escape of the seeds into the cytosol54.

PIKfyve has also been implicated as a potential target in ALS, which 
is caused by selective loss of motor neurons. Although mainly spo-
radic, around 10% of cases of ALS are caused by autosomal dominant 
inheritance of a heptad repeat (GGGGCC) expansion in an intron of 
the C9ORF72 gene. Recent evidence suggests that this causes neuro-
degeneration via two mechanisms55; first, neurotoxic accumulation 
of dipeptides occurs from non-AUG translation of the repeat, akin to 
the toxic protein aggregates in other neurodegenerative disorders; 
second, reduced C9ORF72 protein expression (that is, haploinsuf-
ficiency) reduces endocytosis of ionotropic glutamate receptors 
(iGluRs), leading to excitotoxicity of motor neurons55. In a patient-
derived, induced motor neuron culture model of the disease, such 
excitotoxic death can be prevented with apilimod, YM201636 or 
knock-down of PIKfyve55 (Fig. 2c).

It therefore seems that despite a range of disease mechanisms, 
PIKfyve inhibitors prevent toxicity in neurons by disrupting endocytic 
traffic, be that of aggregation-inducing seeds or excess glutamate 
receptors. Could chronic reductions in PI(3,5)P2 levels via PIKfyve 
inhibition be a general treatment for neurodegenerative disease? As 
discussed above, loss of function of any member of the PIKfyve complex 
(PIKfyve–FIG4–VAC14) itself causes neurodegenerative phenotypes 
in mice as well as in humans, including ALS35, the peripheral neuropa-
thy Charcot–Marie–Tooth disease32,33, and a severe neuropathy that 
includes hypo-myelination of central neurons56. Therefore, PIKfyve 
activity seems essential for central and peripheral nervous system 
homeostasis. The extensive vacuolation of cells after inhibition of 
PIKfyve has been observed in neurons from VAC14 and FIG4 mutant 
mice32,33. This vacuolation is reminiscent of the neuronal spongiosis 
observed in prion-driven spongiform encephalopathies. Recent evi-
dence suggests that this is more than just coincidence57: mouse brains, 
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Inhibiting PIKfyve in cancer. PIKfyve is emerging as an attrac-
tive target for various cancers as several screens have discovered 
PIKfyve inhibitors to exert anticancer activity (Fig. 2e). Apilimod 
was first identified as an antiproliferative compound across many 
cancer subtypes, with B cell non-Hodgkin lymphoma (B-NHL) cells 
being the most sensitive to apilimod treatment compared with 

normal cells66. Cytotoxicity induced by apilimod in B-NHL cells is medi-
ated through the blockade of autophagy and ultimately disruption 
of lysosome homeostasis. These findings provide a promising new 
approach for treating multiple subtypes of B-NHL as a single agent 
or in combination with existing therapies, which is currently under  
clinical evaluation.
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Fig. 1 | Phosphoinositides and the phosphoinositide kinases that generate 
them. a, All phosphoinositide kinases (PIKs) encoded by the human genome, 
grouped by evolutionary relatedness. Families were initially grouped 
around activity, before specific enzymes had been cloned or complete 
identification of the specific regio-isomer substrates and products. Hence, 
the phosphoinositide 3-kinase (PI3K) superfamily incorporates the type I PIKs 
(now known to be PI3Ks) and type III PIKs (now known to be PI4KA and PI4KB, 
and still referred to as PI4KIIIα and PI4KIIIβ at the protein level). Class III PI3K 
VPS34 exists as two distinct heterotetramers, differing in a single subunit 
between complexes I and II (referred to as VPS34 CI/CII). Cloning of the type II 
PIKs (PI4K2A, PI4K2B) revealed them to be an evolutionarily distinct family of 
enzymes. The phosphatidylinositol phosphate kinases (PIPKs), are now known 
to be three subfamilies, each catalysing a specific hydroxyl phosphorylation on 
different substrates. b, Substrate and catalytic activity of PIKs. The production 
and turnover of phosphoinositides are mediated by the coordinated action 
of lipid kinases, phosphatases and lipases. All phosphoinositide species are 
generated from phosphatidylinositol (PI). Three different hydroxyls on the 
inositol ring of PI can be phosphorylated, at the D3, D4 and D5 positions. This 
leads to the generation of seven phosphoinositides: three mono-phosphorylated 

PIPs, phosphatidylinositol 3-phosphate (PI3P), PI4P and PI5P; three 
bis-phosphorylated PIP2s, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), 
PI(3,5)P2, PI(3,4)P2 and the single tris-phosphorylated PIP3 phosphatidylinositol 
3,4,5-trisphosphate (PI(3,4,5)P3 or PIP3). Grey lines indicate families of 
phosphatases that remove indicated phosphates, usually opposing a kinase 
reaction. Note that, like the kinases, the phosphatases were named on the 
basis of activity, phenotype or homology. These often predated definitive 
identification of specific catalytic activity, so the names are now somewhat 
arbitrary. For many enzymes, alternative substrates or catalytic activities 
have been reported in the test tube or in cells. However, we focus on the major 
pathways and activities that support the biology and pathology discussed in 
the text. c, Subcellular distribution of PIKs. We focus on membranes where most 
activity is reported, which does not necessarily reflect steady-state distribution 
of the enzymes themselves. For example, the PI5P4K enzymes are mostly 
localized in the cytosol and/or nucleoplasm. FIG4, FIG4 phosphoinositide 
5-OH phosphatase; INPP4, inositol polyphosphatase 4-OH phosphatase; 
INPP5, inositol polyphosphatase 5-OH phosphatase; MTMR, mytotubularin-
related; PTEN, phosphatase and tensin homologue; SAC, SAC phosphoinositide 
phosphatase.

or a human hypothalamic neuronal cell line, exhibit ablated PIKfyve 
expression when infected with prions. This is also observed in brains 
from patients who died of sporadic Creutzfeldt–Jacob disease (sCJD). 
Mechanistically, prion-induced endoplasmic reticulum stress appears 
to mis-localize two key zinc-finger acyltransferases that normally 
acylate and stabilize PIKfyve. Without this stabilizing acylation, PIKfyve 
is rapidly degraded, leading to the vacuolation and eventual death of 
cerebral neurons57.

Collectively, it seems that PIKfyve-regulated endocytic traffic is 
essential for normal neuronal homeostasis, but also contributes to 
pathological traffic in aggregation- and excitotoxicity-driven neurode-
generation. The therapeutic potential of selective PIKfyve compounds 
will therefore derive from their ability to attenuate the latter while 
sparing the former. As neurodegenerative diseases that are alleviated 
or caused by PIKfyve inhibition all develop over many years or decades, 
safety, tolerability and efficacy of these PIKfyve inhibitors may not be 
apparent in the short term, even in clinical trials. Promisingly though, 
whereas PIKfyve null mice are pre-implantation lethal, heterozygous 
mice develop normally without obvious phenotype, despite meas-
urably reduced PI(3,5)P2 levels25. Therefore, some window of physi-
ologically sustainable PI(3,5)P2 reduction exists. Whether this level is 
sufficient to exhibit meaningful attenuation of pathological traffic, 
while preventing its own neurodegenerative insult, will dictate the 
success of these approaches in the clinic.

PIKfyve inhibition in viral infection. Many viral pathogens achieve cell 
entry through the endolysosome pathway, where, upon encountering 
a host cell receptor in the endocytic pathway, this triggers membrane 
fusion, causing the release of the virus into the cytoplasm. Unique 
viruses have evolved different trafficking routes to reach the site of 
membrane fusion. PIKfyve has shown promise as a target for inhibiting 
viral infection through blocking viral entry into the host cell cytoplasm 
through disruption of endolysosomal trafficking (Fig. 2d).

The role of PIKfyve in viral infection was initially identified through 
a genome-wide haploid genetic screen for host factors in Ebola and 
Marburg filoviruses, which are causative agents of high-mortality viral 
haemorrhagic fevers. This screen uncovered multiple components 
involved in endolysosomal trafficking, including PIKfyve, and identi-
fied the Niemann–Pick C1 (NPC1) cholesterol transporter as the host 

cell receptor for filoviruses58. These findings suggested that PIKfyve 
inhibitors may prevent the endolysosomal trafficking required for 
viral entry. Apilimod blocked infection of Ebola and Marburg viruses in 
liver, kidney and monocyte-derived macrophage cells59, by preventing 
the release of the viral genome into the cytoplasm through disruption 
of trafficking to NPC1-positive endolysosomes, resulting in the virus 
being blocked from its site of fusion and preventing entry into the cell. 
Knock-down of one of the PIKfyve signalling complex components 
VAC14 or FIG4 also decreases viral entry of filoviruses, highlighting the 
crucial role of PI(3,5)P2 production in viral entry of these viruses60. In 
Zaire Ebola virus infection, apilimod caused distension of the RAB5 and 
RAB7 endocytic compartments into vacuoles, preventing the release 
of the virus from endosomal compartments61.

The coronavirus disease 2019 (COVID-19) pandemic led to exten-
sive experiments to try to understand the mechanism of viral entry 
and develop inhibitors as antiviral therapeutics. Multiple lines of evi-
dence support PIKfyve inhibitors as a potential antiviral therapeutic. 
SARS-CoV-2 was found to enter human cells through endocytosis, 
with PIKfyve playing a crucial part in viral entry in HEK293 cells stably 
expressing the ACE2 receptor. Treatment of these cells with either of 
the PIKfyve inhibitors apilimod or YM201636 dramatically decreased 
viral infection62. In a large-scale screen of 12,000 FDA-approved small 
molecules that prevent cellular infection by SARS-CoV-2, apilimod was 
identified as one of 13 possible molecules that inhibited viral infec-
tion at achievable therapeutic doses63. Apilimod also demonstrated 
antiviral efficacy in a primary human lung explant model. Analysis 
of SARS-CoV-2-infected cells identified altered phosphorylation in a 
panel of druggable protein and lipid kinases, which included PIKfyve64. 
Further, apilimod showed antiviral efficacy in cell studies, and clinical 
trials in patients with COVID-19 are ongoing (Table 1).

Although there has been a tremendous amount of enthusiasm in 
the use of PIKfyve inhibitors as potent host factor-specific antivirals, 
potential roadblocks may exist. PIKfyve is crucial in coordinating the 
immune response of neutrophils, being required for both the gene
ration of reactive oxygen species and chemotaxis, which are both 
important in the innate immune response65. Careful analysis of the 
appropriate dosing of PIKfyve will be required to determine whether 
it is possible to decrease viral infection but not dramatically decrease 
immune cell function.
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The WX8 family has provided further supporting evidence for 
targeting PIKfyve as a therapy for autophagy-dependent cancers, 
including autophagy-addicted melanoma cells44. WX8 family inhib-
itors impaired several stages of lysosome homeostasis, including 

disrupting lysosome fission, trafficking into lysosomes and the forma-
tion of autolysosomes (Fig. 2e). Importantly, even though WX8 family 
drugs extensively disrupted lysosome homeostasis, they selectively 
killed autophagy-dependent cancer cells without affecting either the 

Box 1

Class I PI3Ks as therapeutic targets
The class I phosphoinositide 3-kinases (PI3Ks) generate 
phosphatidylinositol 3,4,5-trisphosphate (PIP3) and are master 
regulators of cell growth, metabolism and immune function243.  
The PI3K pathway is the most frequently mutated pathway in cancer, 
and PIK3CA is the second most frequently mutated gene in all 
cancers244. Somatic mutations of PI3Ks are causative in multiple 
human cancers, primary immunodeficiencies, developmental 
disorders and overgrowth syndromes.

There are four class I PI3K catalytic isoforms (class IA (p110α, 
p110β, p110δ, encoded by PIK3CA, PIK3CB, PIK3CD, respectively) 
and class IB (p110γ encoded by PIK3CG)). PI3K catalytic subunits 
require a regulatory subunit for biological activity, with five 
class IA subunits (p85α, p55α and p50α (encoded by PIK3R1), 
p85β (encoded by PIK3R2) and p55γ (encoded by PIK3R3)), and 
two class IB PI3K subunits (p84/p87 (encoded by PIK3R5) and p101 
(encoded by PIK3R6)). The catalytic cores of class IA and IB PI3Ks 
are similar, although they differentially interact with regulatory 
subunits245,246. Class I PI3Ks are activated downstream of receptor 
tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs) or Ras 
superfamily GTPases247. Most diseases that involve PI3K are driven by 
hyperactivation of PI3K catalytic activity248. However, developmental 
disorders249–251 and immunodeficiencies252,253 caused by inactivating 
PI3K mutations highlight how important it is to turn PI3K on and off  
at appropriate times in development and immune signalling.

All PI3Ks are therapeutic targets in human disease. The p110α 
isoform is activated downstream of insulin signalling166, with 
activating alterations in either p110α254,255 or p85α256,257 causing 
increased p110α signalling that leads to tumorigenesis. In cancer 
cells, there appears to be a crucial threshold for p110α activation, as 
cancer-like transcriptional remodelling in stem cells occurred only in 
cells homozygous for an activating mutant258. This fits with the clinical 
observation that cis double oncogenic mutations of PIK3CA lead to 
increased PI3K signalling and oncogenicity259. Activating PIK3CA 
mutations also occur in overgrowth syndromes called PIK3CA-related 
overgrowth spectrum (PROS)260,261. Although the p110β isoform is not 
frequently altered in cancer, it drives tumorigenesis in phosphatase 
and tensin homologue (PTEN)-deficient cancers262,263. The p110δ 
isoform is primarily expressed in immune cells, with somatic 
activating alterations in p110δ264–266 or p85α267–269 leading to the 
primary immunodeficiency activated PI3K delta syndrome (APDS). 
The p110γ isoform is not frequently altered in disease, but inhibition 
promotes antitumour immune responses270,271 and is protective in 
inflammatory conditions272.

Five PI3K inhibitors are FDA approved for the treatment of solid 
tumours and blood cancers. The only pan-PI3K inhibitor approved 
is copanlisib (BAY 80-6946/Aliqopa), which is approved in relapsed 

follicular lymphoma (FL)273. The following isoform-selective inhibitors 
have been approved: alpelisib (BYL719/Piqray, p110α selective)234 for 
hormone receptor (HR)-positive, HER2-negative, locally advanced or 
metastatic breast cancer with a PIK3CA mutation, with it also showing 
positive clinical response in patients with PROS274; idelalisib (GS-1101/
CAL-101/Zydelig, p110δ selective)275–278 for B cell cancers including 
relapsed chronic lymphocytic leukaemia (CLL), follicular B cell non-
Hodgkin lymphoma and relapsed small lymphocytic lymphoma (SLL); 
umbralisib (TGR-1202/RP5264, p110δ selective)279 for relapsed or 
refractory marginal zone lymphoma (MZL) or FL; and duvelisib (IPI-145/
INK1197, p110δ/γ selective)280 for relapsed CLL, SLL and FL. All clinically 
approved PI3K inhibitors are associated with extensive side effects, 
including increased risk of infections, colitis and hyperglycaemia.

A challenge in the therapeutic exploitation of PI3K inhibitors 
is toxicity and pathway reactivation. Feedback can counteract 
PI3K inhibition by both cell-intrinsic and systematic mechanisms. 
Inhibition of PI3K leads to decreased activation of AKT, which relieves 
suppression of receptor tyrosine kinase (RTK) expression281–284, 
reactivating the PI3K pathway. Although this increased expression 
can be therapeutically exploited, for example, in the dual treatment of 
oestrogen receptor (ER)-positive cancers with PI3K inhibitors and anti-
ER therapies, this feedback complicates effective PI3K dosage. PI3K 
inhibition also leads to increased blood glucose and insulin, causing 
reactivation of the PI3K pathway285. This suggests an opportunity to 
combine PI3K inhibition with dietary or pharmacological interventions 
to lower blood glucose levels. Other approaches to moderate toxicity 
could be through intermittent dosing, as PI3Kδ inhibition in solid 
tumours has been hampered by severe immune-related adverse 
events; however, these events could be minimized by a modified 
treatment regimen with PI3Kδ inhibitor intermittent dosing286.

A major focus in PI3K drug development is mutant-selective 
inhibitors, with Genentech reporting an inhibitor that leads to 
selective degradation of mutant p110α/p85β over wild-type p110α287, 
which prevented RTK-dependent pathway reactivation. In addition, 
LOXO Pharmaceuticals and Relay Therapeutics have reported 
H1047R-selective small-molecule inhibitors, which selectively target 
the mutant H1047R over wild-type p110α. It would be expected that 
these will cause decreased side effects and less inhibition-driven 
pathway activation. Further drug discovery efforts will be required to 
test whether other PI3K mutants can be selectively targeted.

The long road that PI3K inhibitors have followed to arrive at 
the clinic will inform the design of other phosphoinositide kinase 
inhibitors. Like the PI3Ks, the development of phosphoinositide 
kinase therapeutics will require extensive fundamental basic research 
to fully understand the mechanisms that underlie phosphoinositide 
metabolism.
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proliferation or viability of non-malignant cells. APY0201 effectively 
inhibited multiple myeloma (MM) cell growth in vitro as well as in ex vivo 
models of MM67. As previous reports have shown that MM cells are 
dependent on autophagy for survival68, targeting autophagy through 
PIKfyve inhibition may provide a feasible strategy for patients with 
MM. However, in contrast, inhibition of PIKfyve with YM201636 sup-
pressed liver cancer growth by promoting autophagy, possibly through  
induction of EGFR expression69.

The multi-tyrosine kinase PIKfyve inhibitor ESK981 blocked 
tumour growth in preclinical models of castration-resistant prostate 
cancer48. ESK981 not only blocked autophagy but also recruited T cells 
to the tumours. In fact, when an immune checkpoint inhibitor was com-
bined with ESK981, tumour growth was even further reduced. These 
findings reveal that targeting PIKfyve via ESK981 may be a promising 
approach for immunotherapy, which can convert prostate tumours 
from non-immunogenic ‘cold’ tumours into immune-inflamed ‘hot’ 
tumours. Phase II clinical trials using ESK981 alone or in combination 
with the immunotherapy nivolumab for metastatic castration-resist-
ant prostate cancer are underway. Results from these studies will be 

imperative to better understand the therapeutic effects of inhibiting 
PIKfyve for cancer treatment.

PI4P5Ks and PI5P4Ks
Structure and regulation. PI(4,5)P2 is not only the most abundant 
bis-phosphorylated phosphoinositide in mammalian cells, but it also 
acts as a substrate for the fundamental cancer and metabolism kinase 
PI3K (Box 1). Beyond PI3K signalling, PI(4,5)P2 is an established player 
in numerous cellular processes, including vesicular trafficking, mem-
brane dynamics, modulation of ion channel function, gene regulation 
and the generation of second messengers (that is, diacyl glycerol and 
inositol-1,4,5-trisphosphate downstream of phospholipase C signal-
ling). However, there is much to be understood about the regulation 
of PI(4,5)P2, specifically regarding the enzymes responsible for its 
production. PI(4,5)P2 is produced either from the subsequent phospho-
rylation of mono-phosphoinositides from PI, or by dephosphorylation 
of PI(3,4,5)P3. The kinases responsible for generating PI(4,5)P2 are char-
acterized into two subfamilies regarded as the type I and type II kinases. 
Considered the canonical pathway, the type I PI4P5Ks generate PI(4,5)P2  

Table 1 | Phosphoinositide kinase inhibitors outside of class I PI3Ks in the clinic

Agent Target Disease indication Current development status Clinical trial ID/reference

Apilimod/LAM-002A

N
N
H

N N

O

N

N

O

PIKfyve SARS-CoV-2, non-Hodgkin 
lymphoma, amyotrophic lateral 
sclerosis

Active phase II clinical trials NCT04446377, NCT02594384, 
NCT05163886

ESK981

ON
H

N
N

N

NN

HN

PIKfyve Prostate cancer, renal cell 
carcinoma

Active phase II clinical trials NCT03562507, NCT03456804, 
NCT04159896

MMV390048

S
O

O

N NH2

N

F
F

F

plasmodium PI4KB Malaria infection Phase I/II clinical trial 
(completed or terminated)

NCT02783833, NCT02554799, 
NCT02230579, NCT02783820

Enviroxime/LY122772

HO
N

N
NH2

N
S O

O

plasmodium PI4KB Poliovirus infection, enterovirus 
infection

Discontinued in phase II Phillpotts et al. (1983)168

PI4KB, type III phosphatidylinositol 4-kinase beta; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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by phosphorylating the most abundant mono-phosphorylated species 
PI4P at the inositol ring D5 hydroxyl group70. The non-canonical type II 
PI5P4Ks phosphorylate the less abundant mono-phosphorylated PI5P 
at the inositol ring D4 hydroxyl group71. Although the PI4P5Ks and 
PI5P4Ks both produce PI(4,5)P2, the timing and localization of their 
activity is distinctly orchestrated. The type I pathway functions pre-
dominantly at the plasma membrane, and the type II kinases produce 
PI(4,5)P2 at intracellular organelle membranes72–75.

In mammals, the type I PI4P5K family consists of three isoforms 
(PI4P5Kα, PI4P5Kβ and PI4P5Kγ), which are encoded by the genes 
PIP5K1A, PIP5K1B and PIP5K1C, respectively76–78 (Fig. 3a). There are 
several different splice variants for each isoform; however, the roles 
of these variants are still poorly understood. Knockout mice for all 
three isoforms of PI4P5K have been generated, which have provided 
further evidence that the isoforms have distinct functions in vivo79. 
The PI4P5Ks and PI5P4Ks share conserved structural elements includ-
ing a lipid kinase domain and dimerization domain, with an overall 
organization distinct from PI3Ks, and similar to the kinase domain 
of PIKfyve. Although both PI4P5Ks and PI5P4Ks are able to homo-
dimerize, the dimer interface is proposed to be different between 
PI4P5Ks and PI5P4Ks (Fig. 3). There is still debate on the possible roles 
of PI4P5K–PI5P4K dimers in cell signalling.

There are three mammalian type II PI5P4K isoforms (PI5P4Kα, 
PI5P4Kβ and PI5P4Kγ), which are encoded by the genes PIP4K2A, 
PIP4K2B and PIP4K2C, respectively (Fig. 3b). At a sequence level, the 
PI5P4Kα and PI5P4Kβ isoforms share 83% protein homology, with 
the γ-isoform being less similar to either the α- or β-isoform80,81. Knock-
out mice for all three isoforms are viable with normal lifespans and 
subtle phenotypes82–84.

Kinetically, PI5P4Kα has the highest kinase activity, which is 
reported to be 100-fold that of PI5P4Kβ. PI5P4Kγ has the lowest kinase 

activity, with activity 2,000-fold lower than that of PI5P4Kβ81,85,86. 
This variable catalytic activity between isoforms can be explained 
by sequence differences in the ATP-binding G-loop80. Although both 
PI5P4Kα and PI5P4Kβ are catalytically active, there are still important 
differences in the regulation of their kinase activity. Unique among all 
lipid kinases, the PI5P4Kβ isoform preferentially uses GTP as a phos-
phate donor in contrast to ATP, with its activity proposed to act as a 
GTP sensor in cells87. Importantly, kinase activity may not be neces-
sary for the cellular roles of all three isoforms, as the PI5P4Ks can 
function together as heterodimers. Whereas PI5P4Kα more efficiently 
catalyses PI(4,5)P2 from PI5P, dimerization with PI5P4Kβ or PI5P4Kγ 
enables spatial and temporal translocation to precise membrane 
locations85,88. The regulation of the PI5P4Ks is linked to the cellular 
demand for specific pools of PI5P and PI(4,5)P2, with phosphorylation 
playing a key part in this regulation. For example, it is suggested that 
nuclear PI5P accumulates because of catalytic inhibition of PI5P4Kβ 
following phosphorylation at Ser326 by MAP kinase p38 (ref.89). 
Inhibitory phosphorylation occurs at Ser326 and Thr322 of both 
PI5P4Kα and PI5P4Kβ isoforms90. Further, inhibitory phosphoryla-
tion of PI5P4Kγ at Ser324 and Ser328 occurs downstream of mTORC1 
to balance basal mTORC1 homeostasis using a nutrient-dependent  
feedback loop91.

Pharmacological inhibitors of PI4P5Ks. A limited number of potent 
and specific PI4P5K inhibitors have been reported to date and are still 
in early stages of preclinical development (Table 2). One of the best 
described is the diketopiperazine fused C-1 indol-3-yl substituted 
tetra-hydro-isoquinoline, termed ISA-2011B92. Although ISA-2011B 
binds with high affinity to PI4P5Kα and inhibits its protein expression 
and cancer growth in multiple models as well as inhibits inflammation, 
it does have significant off-target effects, including potent binding to 

Box 2

Commonalities and differences in the architecture and regulation 
of phosphoinositide kinases
The phosphoinositide kinases can be split into three groups on 
the basis of their evolutionary history, with an evolutionary family 
containing all phosphatidylinositol phosphate (PIP) kinases 
(PIKfyve, phosphoinositide 5-phosphate 4-kinases (PI5P4Ks) and 
phosphoinositide 4-phosphate 5-kinases (PI4P5Ks)), an evolutionary 
family containing all classes of the phosphoinositide 3-kinases (PI3Ks) 
and the type III PI4Ks, and a final evolutionary family composed 
of the type II PI4Ks131,288. It is important to note that enzymes with 
unique evolutionary histories can generate the same lipid (that is, 
PI4P generated by type II PI4Ks and type III PI4Ks), which highlights 
the importance of PIP metabolism. Members of the PIP kinase group 
share a conserved evolutionarily related bi-lobal kinase domain; 
however, there are major differences in the structural organization of 
PIKfyve and the PI5P4Ks and PI4P5Ks. Dimerization has a crucial role 
in the regulation of the PI5P4Ks and PI4P5Ks but has no established 
role in regulating PIKfyve (described more below). PIKfyve is one of 
the largest phosphoinositide kinases at >2,000 amino acids, and it 

forms a large trimeric complex with regulatory subunits, whereas the 
PI5P4Ks/PI4P5Ks are ~400–700 amino acids and do not form stable 
assemblies with other regulatory subunits.

Members of the group that contains all classes of the PI3Ks and the 
type III PI4Ks share a conserved core composed of a helical scaffolding 
domain and a bi-lobal kinase domain. The N-lobe of the kinase domain 
for this group has a unique helical extension that, at least for the class I 
PI3Ks, plays a crucial part in membrane association289–292. A major 
difference within this group is the formation of stable assemblies with 
regulatory subunits, with class I and III PI3Ks, and the PI4KA isoform 
of type III PI4Ks forming large multi-protein complexes, whereas the 
class II PI3Ks and the PI4KB isoform of type III PI4Ks do not and instead 
are regulated by more transient protein–protein interactions.

The smallest group is the one that contains the two isoforms 
of the type II PI4Ks. Unique among all of the phosphoinositide 
kinases, the type II PI4Ks can be regulated by lipidation, with this 
playing a key role in their cellular localization and activity.
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multiple other kinases, including the class IA PI3K p110α92. Further 
optimization of ISA-2011B, or the development of another unique 
chemical scaffold with increased selectivity towards PI4P5Kα, will be 
necessary to advance a PI4P5Kα inhibitor beyond preclinical studies.

A focused screen discovered UNC3230 (5-(cyclohexanecarbox
amido)-2-(phenylamino)thiazole-4-carboxamide), which inhibited 
PI4P5Kγ, with no inhibition of PI4P5Kα at concentrations up to 10 μM 
(ref.93). However, UNC3230 showed higher potency towards PI5P4Kγ 
over PI4P5Kγ in in vitro lipid kinase assays, and off-target effects on 

multiple additional kinases. Although UNC3230 was validated as a 
potent PI4P5Kγ inhibitor in biochemical assays, further optimization 
is warranted as it does hit other lipid and/or protein kinases and also 
has a narrow efficacy window and low solubility in appropriate vehicles 
that prevented dose–response experiments both in vitro and in vivo. 
Nonetheless, UNC3230 was proposed to regulate nociceptive sensitiza-
tion in response to diverse stimuli that cause pain93. Future studies are 
pertinent to validate PI4P5Kγ as an analgesic drug target in a clinical 
setting and assess its potential side effects.
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Fig. 2 | Structure–function, inhibition and therapeutic targeting of PIKfyve.  
a, Domain architecture of PIKfyve. The predicted structure of a fragment of the 
CCR/CCT and kinase domains (alphafold model of Q9Y2I7, all regions with pLDDT 
<50 removed)235 from the cryo-electron microscopy (cryo-EM) density is shown 
with the domains coloured according to the domain schematic. The cryo-EM 
density of the complex of PIKfyve with VAC14 and FIG4 is also shown, with the 
VAC14 pentamer coloured green, FIG4 coloured pink and the PIKfyve coloured 
as in the schematic. VAC14 in isolation forms a symmetrical pentamer, with 
oligomerization mediated by the C terminus236. FIG4 can form a complex with 
VAC14 in the absence of PIKfyve, and it binds at the end of two VAC14 arms, leading 
to distortion of the symmetry of the VAC14 pentamer. PIKfyve’s association with 
VAC14 is strongly dependent on the presence of FIG4 (ref.237). A single copy of 

PIKfyve binds to the opposite sides of the VAC14 arm bound to FIG4. Multiple cryo-
EM maps were compiled to generate this figure (EMD: 22631, EMD: 22647, EMD: 
22634). b, PIKfyve selective inhibitors (apilimod and ESK981) currently in clinical 
trials for cancer and viral infection. c, PIKfyve as a target for neurodegenerative 
disorders. Inhibition of PIKfyve prevents endocytic recycling of ionotropic 
glutamate receptors to the synapse, reducing excitotoxic death of glutamatergic 
neurons. It also prevents endocytic trafficking of tau or α-synuclein aggregates to 
the lysosome. d, PIKfyve as a target for viral infection. Again, disruption of PIKfyve 
activity prevents endocytic trafficking of endocytosed virus, preventing its escape 
into the cytoplasm from endolysosomes. e, PIKfyve as a target for cancer. PIKfyve 
inhibition prevents maturation and fusion of late autophagosomes with lysosomes, 
preventing the anti-apoptotic and pro-growth effects of autophagy in cancer cells.
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Table 2 | Summary of preclinical inhibitors of the PIP kinases

Compound Target Target potency 
(Kd or IC50)

Known off-targets/selectivity References

YM201636

H
N

N

N

O

O N

N

NH2

N

O

PIKfyve IC50 33 nM ~100-fold selectivity over class I PI3Ks Jefferies et al. (2008)40

MF4

H
N

N

N

O

O N

N

N

O

PIKfyve IC50 23 nM ~10- to 50-fold selectivity over class I PI3Ks de Lartigue et al. 
(2009)18

APY0201

N
HN

N

N

NN

N

O

PIKfyve IC50 5.2 nM Increased selectivity over Apilimod, > 50% 
inhibition of ITPK1/LOK at 300 nM

Hayakawa et al. (2014)43

WX8

O

N

N

N

N

HN
N

H
N

H
N

PIKfyve Kd 0.93 nM Kd for PI5P4Kγ of ~340 nM Sharma et al. (2019)44

NDF

N
N
H

N

NN

O

N

O
PIKfyve Kd 1.6 nM Kd for PI5P4Kγ of 24,000 nM Sharma et al. (2019)44

http://www.nature.com/nrd


Nature Reviews Drug Discovery | Volume 22 | May 2023 | 357–386 367

Review article

Compound Target Target potency 
(Kd or IC50)

Known off-targets/selectivity References

MOMIPP

H
N

O O

N

PIKfyve Kd 5 nM Kd for PI5P4Kγ of ~15,000 nM Cho et al. (2018)46

Series of 4-aminopyridine derivatives 
(compounds 8, 20, 25)

H
N

H
N

O

N
H

O

O

Pan PI4P5K IC50 4–90 nM >100-fold selectivity over other lipid 
kinases

Andrews et al. (2022)94

ISA-2011B

O

N

HN
Cl

O

O
H

N

O

PI4P5Kα ND Weakly selective; binds class I PI3K, p110α Semenas et al. (2014)92

UNC3230

O

HN

O

S
NH

NH2N

PI4P5Kγ
PI5P4Kγ

Kd 51 nM
Kd 4 nM

Kd ~300 nM for MAPK10 and SGK1 Wright et al. (2014)93

A131

N

HN

N

Pan-PI5P4K IC50 0.6 µM 
(PI5P4Kα)

Not reported Kitagawa et al. (2017)103

CC260

N

O

N

N
N

HN
Cl

Cl

OH

Pan-PI5P4K Kd 40 nM 
(PI5P4Kα), 30 nM 
(PI5P4Kβ)

Off-target protein and lipid kinase activity 
(PIKfyve, PIK3CD, PIK3CG)

Chen et al. (2021)101

Table 2 (continued) | Summary of preclinical inhibitors of the PIP kinases
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Compound Target Target potency 
(Kd or IC50)

Known off-targets/selectivity References

THZ-P1-2 derivative compound 30

O

N

O

NH

N

N

HN

N

NH

 Pan-
PI5P4K(covalent)

IC50 1340 nM 
(PI5P4Kα)

Highly selective Sivakumaren et al. 
(2020)104, Manz et al. 
(2020)111

CVM-05-002 derivative compound 13

HN

N

O

O S

NH

Pan-PI5P4K IC50 1.96 µM 
(PI5P4Kα)

Highly selective Manz et al. (2020)105

BAY-091 (Bayer)

HN
N

FN
N

OHO

PI5P4K IC50 1.3 nM Highly selective Wortmann et al. (2021)107

SAR088/imanixil (Sanofi-Aventis) 

N

O
HN

N

N NH2

O

N
H

F
F

F

PI5P4Kβ IC50 2.18 µM 9-fold selectivity over PI5P4Kα Voss et al. (2014)108

NCT-504

NN
N
N S

S
O

O

SN

N

PI5P4Kγ 
(allosteric)

Kd 354 nM Highly selective Al-Ramahi et al. (2017)110

NIH-12848 derivative compound 40

N

N
N

N
H

N

PI5P4Kγ 
(allosteric)

Kd 68 nM Highly selective Boffey et al. (2022)113

Covalent and allosteric (non-ATP competitive) inhibitors are indicated. Half-maximal inhibitory concentration (IC50), dissociation constant (Kd) and selectivity data are from the indicated 
references. ND, not determined; PIP, phosphatidylinositol phosphate; PI4P5K, phosphoinositide 4-phosphate 5-kinase; PI5P4K, phosphoinositide 5-phosphate 4-kinase.

Table 2 (continued) | Summary of preclinical inhibitors of the PIP kinases
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A high-throughput screen of an AstraZeneca compound collec-
tion identified a series of high-quality 4-aminopyridine pan-isoform 
inhibitors of PI4P5K that showed potency against all PI4P5K isoforms 
and >100-fold selectivity over other lipid kinases and that can be used 
as in vitro tool probes to further investigate the therapeutic potential 
of inhibiting PI4P5Ks94. Importantly, these compounds provide a sound 
foundation for optimization of PI4P5K drugs with a promise of entering 
clinical testing in the near future.

PI4P5K inhibition in cancer and inflammatory disease. PI4P5Ks 
are intriguing potential targets for therapeutics in cancer and inflam-
mation as they produce PI(4,5)P2 at the plasma membrane, which 
is required for activation of PI3K–AKT signalling, one of the most 
frequently activated pathways in human cancers and inflammation 
(Box 1). To date, PI4P5Kα has been shown to be expressed at higher 
levels in both prostate and breast cancers, which correlates with poor 
patient outcome92,95. The discovery of putative direct interactions 
between PI4P5Kα and p53 and oncogenic KRAS highlights an additional 
potential therapeutic benefit of targeting PI4P5Kα for the treatment of 
cancers with KRAS or TP53 mutations96,97. PI4P5Kα is the predominant 
isoform that the immune cell receptor CD28 recruits and activates at 
the immunological synapse in T lymphocytes98,99. Further, PI4P5Kα is 
a key regulator of CD28 autonomous signals that stimulate nuclear 
factor-κB (NF-κB) transcriptional activity and the transcription of 
pro-inflammatory genes99, in a PI3K-dependent manner100. Most stud-
ies examining the inhibition of PI4P5Kα and their role in cancer and 
inflammation have used ISA-2011B, which also potently binds to class 
IA PI3K p110α, complicating the analysis of its role in targeting PI4P5Kα. 
Although there might be a therapeutic benefit to targeting PI4P5Kα, 
the full validation of the therapeutic tractability of PI4P5Kα will require 
development of a truly potent and selective PI4P5Kα-specific inhibitor.

Pharmacological inhibitors of PI5P4Ks. The PI5P4Ks have become 
attractive drug targets in p53 null tumours and are implicated as key 
regulators of metabolism82,101,102. Early-phase small-molecule inhibitors 
are being explored in preclinical studies, including pan-PI5P4K inhibi-
tors101,103–105 and isoform-specific PI5P4K inhibitors106–110 (Table 2). The 
optimization of drug analogues has produced new collections of tool 
compounds105,111; however, PI5P4K inhibitors have yet to advance to 
the clinical setting.

A phenotypic screen of indole acrylonitriles for agents that selec-
tively kill cancer cells over normal cells led to the identification of 
the small molecule a131, which targets PI5P4Ks103. Although formula-
tion of a131 for in vivo application is possible, a131 has poor aqueous 
solubility and a relatively short half-life after intravenous adminis-
tration, limiting its in vivo use103,112. Biochemical screening of >5,700 
small molecules identified several PI5P4Kα/β dual inhibitors with a 
conserved 2-amino-dihydropteridinone core, including the kinase 
inhibitors volasertib, palbociclib and BI-D1870. Refinement of this 
scaffold led to the PI5P4Kα/β dual inhibitor CC260, although further 
optimization is likely needed owing to several off-target activities for 
other protein and lipid kinases101.

THZ-P1-2 is a covalent inhibitor of PI5P4K shown to target all 
three isoforms irreversibly. This compound was developed from a 
modified backbone of an acrylamide-based JNK inhibitor, which was 
identified in a chemo-proteomic kinase screen104. THZ-P1-2 targets 
conserved cysteines outside the ATP-binding pocket of the PI5P4K 
kinase domain. In cancer cells, THZ-P1-2 treatment reduced prolif-
eration and impaired autophagy, which phenocopies models that 
genetically target PIP4K2 (refs.74,104). Optimization of this molecule 
led to the derivative compound 30, which showed enhanced selec-
tivity111. High-throughput screening identified the (Z)-5-methylene 
thiazolidin-4-one inhibitor CVM-05-022, which upon optimization, 
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Fig. 3 | Structure–function, and inhibition of the PI4P5Ks and PI5P4Ks. 
a, Structure of the zebrafish homologue of phosphoinositide 4-phosphate 
5-kinase-α (PI4P5Kα), with domains annotated on the figure. PI4P5Kα (PDB:4TZ7) 
shows a putative dimeric interface composed of the dimerization domain as 
well as the N-lobe of the kinase domain, which is unique compared with the 
phosphoinositide 5-phosphate 4-kinases (PI5P4Ks; see panel b). In contrast 
to the stable PI5P4K dimers, PI4P5Ks exist in a monomer–dimer equilibrium 
in solution, with dimerization promoted by binding to PI(4,5)P2-containing 
membrane surfaces, leading to enhanced catalytic efficiency238. Like all lipid 
kinases, the kinase domain contains an activation loop that determines substrate 
specificity and also has a role in membrane recruitment. Swapping the activation 
loops between the type I PI4P5Ks and the type II PI5P4Ks led to not only swapped 
substrate specificity between PI4P and PI5P but also modified subcellular 
localization239,240. b, Structure of PI5P4Kα dimer, in which, in contrast to the 

PI4P5K, dimerization is putatively mediated solely by the dimerization domain 
(PDB: 6YM5). For type II PI5P4Ks, catalytic activity and PI5P substrate binding 
is carried out by the kinase domain, while homo- and heterodimerization with 
other type II PI5P4Ks is driven solely by the dimerization domain80. This differs 
from the type I PI4P5Ks, which have a unique dimerization interface composed 
of both the kinase and dimerization domains, with dimerization required for 
PI4P5K lipid kinase activity (panel a)241. The difference in the dimerization 
interface between PI4P4Ks and PI5P4Ks allows for the potential formation of 
complexes between type I and type II phosphatidylinositol phosphate (PIP) 
kinases, with their roles being unknown, although preliminary evidence suggests 
a potential regulatory role120,242. c, Structure of PI5P4Kα bound to the selective 
inhibitor BAY-091, with the domains coloured according to panel b (PDB: 6YM5) 
and residues that make crucial interactions in determining selectivity shown 
as sticks.
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led to the selective PI5P4K inhibitor compound 13 (ref.105). The best 
and most selective PI5P4K inhibitor available is the 1,7-naphthyridine-
based inhibitor BAY-091 (Fig. 3c) developed by Bayer, although its 
selectivity for PI5P4K isoforms is unknown107.

PI5P4K isoform-specific inhibitors are also in preclinical develop-
ment. One example is the pyrimidine-2,4-diamine compound SAR088 
(Imanixil; Sanofi-Aventi), which is a PI5P4Kβ-specific inhibitor108, 
exhibiting suitable drug properties, including no liver CYP34A inhi-
bition, intermediate cell permeability and high metabolic stability. 
Importantly, pharmacodynamic evaluation of SAR088 in vivo dem-
onstrated efficacy and bioavailability after oral administration. The 
quinazolin-4-amine compound NIH-12848 was identified as a PI5P4Kγ 
inhibitor, acting as an allosteric non-ATP-competitive inhibitor that 
binds to the putative PI5P substrate binding site109. Optimization of 
this scaffold led to compound 40, which binds an allosteric pocket 
composed of the activation loop, and PI5P4Kγ unique residues113. The 
allosteric PI5P4Kγ inhibitor NCI-504 also targets this site, increasing 
productive autophagic flux in fibroblasts and leading to disrupted 
phosphoinositide equilibrium in cells110.

Inhibiting PI5P4Ks in cancer. Therapeutic opportunities for target-
ing PI5P4Ks in cancer have recently been reviewed in detail114. Briefly, 
PIP4K2B overexpression co-occurs with Erb-B2 receptor tyrosine 
kinase 2 (ERBB2 or HER2)-amplified breast cancers115; however, reduced 
PIP4K2B expression correlated with reduced patient survival in breast 
cancer116, suggesting that either too high or too low levels of PIP4K2B 
can be involved in disease. PI5P4Kα and PI5P4Kβ are elevated in breast 
cancer relative to normal tissue and their genetic ablation in a Trp53 null 
genetic mouse model led to a dramatic reduction in tumour formation, 
with silencing of both the α and β isoforms inhibiting breast cancer 
cell proliferation in vitro and in a xenograft tumour model82. Further, 
inhibition of both PI5P4Kα and PI5P4Kβ impairs mitochondrial func-
tion, which consequently reduces proliferation and in vivo tumour 
formation101,102.

There is potential for targeting PI5P4K in haematological malig-
nancies, as PIP4K2A and PIP4K2C transcript expression is associated 
with clinical outcomes of patients with acute myeloid leukaemia 
(AML)117,118. Early characterization of the THZ-P1-2 covalent PI5P4K 
inhibitor showed that AML/ALL cell lines were sensitive to pharma-
cological PI5P4K inhibition104. Although targeting the PI5P4Ks in 
preclinical cancer models is promising, this strategy may not suit all 
cancers. Glioblastoma (GBM) brain tumours downregulate PI5P4Kα 
compared with normal tissue, with PI5P4Kα playing a tumour suppres-
sor role119. Finally, the potent and selective PI5P4K inhibitors developed 
by Bayer did not show antiproliferative effects on p53 null tumour 
cells107, suggesting either that the antitumour effect requires complete 
loss of both PI5P4Kα and PI5P4Kβ as found in the genetic ablation 
models, or that inhibitors have to potently inhibit both PI5P4Kα and 
PI5P4Kβ isoforms to have an antitumour effect. Continued develop-
ment of well-validated isoform-selective inhibitors will be crucial in 
defining any therapeutic opportunities.

PI5P4K inhibition in diabetes. PI5P4Kβ is a potential target in the 
treatment of hyperglycaemia and type 2 diabetes mellitus. This link was 
evident in the first Pip4k2b genetic knockout murine model. Pip4k2b−/− 
animals are viable but show notably reduced body weight and adiposity 
and are hypersensitive to insulin84. Preclinical testing of the selective 
PI5P4Kβ inhibitor SAR088 confirms the genetic phenotypes, as it 
dramatically lowers blood glucose levels of hyperglycaemic male 

obese rats108. Although PI5P4Kβ inhibitors pose an opportunity for 
the treatment of insulin resistance, it is still unclear whether the abil-
ity of PI5P4Ks and PI4P5Ks to potentially form mixed heterodimer 
isoforms could impair the efficacy demonstrated by SAR088, as the 
PI5P4Ks demonstrate complex crosstalk at multiple nodes of insulin 
signalling120.

PI5P4K inhibition in immunological disease. High expression of 
PI5P4Ks occurs in specialized immune organs such as the lymph 
node and spleen121. Hyperinflammation is the primary phenotype 
of mice that lack PI5P4Kγ. Although transgenic mice with a germline 
deletion of Pip4k2c have normal viability and growth, animals have 
heightened T helper (TH) cell activation, decreased regulatory T (Treg) 
cell populations and elevated plasma pro-inflammatory cytokines83. 
Inhibition of PI5P4Kβ and PI5P4Kγ is efficacious in reprogramming 
Treg cells to attenuate immunosuppressive activity and increase 
immune surveillance122. Genetic depletion and treatment with the 
PI5P4Kγ inhibitor, NIH-12848, impaired FOXP3 expression and reduced  
Treg cell proliferation, while sparing CD4+ conventional T cells and  
TH cell differentiation122.

PI5P4K inhibition in neurodegenerative disorders. Huntington dis-
ease is an autosomal dominant neurodegenerative disorder that results 
from the aggregation of mutated huntingtin protein. Pharmacological 
inhibition of PI5P4Kγ with the selective allosteric inhibitor NCI-504 
increases autophagic flux, which is thought to reduce the accumula-
tion of mutant huntingtin protein. NCI-504 also stimulates autophagy 
in rat primary cortical neurons with no impact on cell viability110. Aside 
from Huntington disease, the accumulation of protein aggregates 
occurs in Alzheimer disease and Parkinson disease. Catabolism of these 
aggregates following induction of autophagic flux by targeting PI5P4K 
could potentially alleviate neuronal toxicity. In addition, genome-wide 
association studies associate polymorphisms of PIP4K2A with elevated 
risk of schizophrenia123–125. Although no causative relationship for the 
correlation has been found, the PI5P4Ks are enriched in neural tissues 
and are hypothesized to affect synaptic function126.

PI3K−type III PI4K evolutionary family
PI4KA and PI4KB
Regulation and structure. There are four mammalian phosphati-
dylinositol 4-kinases (PI4Ks), composed of type II (PI4KIIα and PI4KIIβ, 
encoded by the genes PI4K2A and PI4K2B, respectively) and type III 
(PI4KIIIα and PI4KIIIβ, encoded by the genes PI4KA and PI4KB127, 
respectively), which together generate PI4P from phosphatidylinosi-
tol128,129. PI4P has well-defined roles in multiple organelles, including the 
Golgi–trans-Golgi network (TGN), endosomal membranes and plasma 
membrane6,130. Its production at these organelles mediates membrane 
recruitment of proteins, modulation of integral membrane protein 
activity and lipid transport between organelles7. The kinase domains 
of type II and type III PI4Ks are structurally divergent and evolutionar-
ily distinct. The evolution of two distinct structural folds to generate 
the lipid species PI4P underlies the importance of regulating PI4P 
metabolism in multiple aspects of membrane trafficking, signalling 
and lipid transport.

The PI4KA and PI4KB proteins have homologous helical and lipid 
kinase domains that are evolutionarily related to PI3Ks131 (Fig.  4a,b). 
However, the two proteins have divergent modes of regulation through 
a set of unique protein-binding partners and post-translational modifi-
cations. PI4KA generates the plasma membrane pool of PI4P132,133. PI4KA 
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at 2,102 amino acids is the largest of the phosphoinositide kinases132,134, 
composed of an α-solenoid domain, a dimerization domain, and heli-
cal and lipid kinase domains homologous to those found in PI4KB and 
PI3Ks135. The mammalian signalling complex of PI4KA is composed of 
two additional regulatory proteins, the armadillo repeat protein TTC7 
(either TTC7A or TTC7B)136, and the protein FAM126 (either FAM126A or 
FAM126B)137. The trimeric complex of PI4KA–TTC7B–FAM126A dimer-
izes through the dimerization domain of PI4KA, forming a ~900 kDa 
complex135 (Fig. 4a). The proposed primary mechanism mediating 
plasma membrane recruitment of the PI4KA complex is through TTC7 
binding to the lipidated protein EFR3 (ref.136).

The PI4KA gene is essential in yeast and mammals, with either 
pharmacological or genetic inactivation of PI4KA leading to sudden 
death133. PI4KA is ubiquitously expressed in all tissues; however, it is 
heavily enriched in brain tissues138. Biallelic loss-of-function muta-
tions in PI4KA lead to a spectrum of neurological conditions, including 
neurodevelopmental delay, developmental brain abnormalities and 
paraplegia139,140. Loss-of-function mutations in TTC7A (termed TTC7A 
deficiency) have been identified in patients with inflammatory bowel 
disease, intestinal atresia and combined immune defects141–143, which 
mimic intestinal defects that occur in mice treated with PI4KA inhibi-
tors133. PI4KA is also a crucial host factor in hepatitis C virus (HCV)144 
and encephalomyocarditis virus infection145, through viruses hijacking 
PI4KA, leading to the generation of PI4P-enriched viral replication 
organelles.

PI4KB generates PI4P at the Golgi and TGN, and it has impor-
tant roles in membrane trafficking and cytokinesis. The 801 amino 
acid PI4KB protein is composed of a helical domain and a lipid kinase 
domain146, as well as four disordered regions that mediate binding 
to regulatory proteins (Fig. 4b). Recruitment of PI4KB to the Golgi is 
primarily mediated by an interaction with the Golgi-resident protein 
ACBD3 and the N terminus of PI4KB147,148. The activity of PI4KB can 
also be modulated by phosphorylation, with protein kinase D (PKD) 
phosphorylating the linker between the helical and kinase domains, 
which leads to binding of 14-3-3 proteins149,150, which putatively stabi-
lize PI4KB. PI4KB is also able to be phosphorylated by protein kinase 
A (PKA) in a disordered region of the kinase domain, which increases 
the affinity for the armadillo repeat protein ARMH3 (ref.151), which can 
act as a positive regulator of PI4KB activity. In addition, the C terminus 
of PI4KB contains an amphipathic lipid-packing sensor motif that 
increases PI4KB activity at packing defects in the Golgi–TGN152.

Although knockout of the yeast homologue of PI4KB is lethal, the 
knockout of the PI4KB homologue in flies leads to viable progeny, with 
male flies being sterile owing to defects in spermatogenesis153. Charac-
terization of a mouse knockout of PI4KB has not been published, but 
loss of PI4KB in Schwann cells in mice leads to aberrant myelination 
of peripheral nerves154. Multiple pathogenic viruses, including kobu-
viruses, enteroviruses and Coxsackie viruses, hijack PI4KB to generate 
viral replication organelles, where PI4P is required to generate a lipid 
environment conducive to viral replication155–157.

Pharmacological inhibitors of PI4KA. The covalent PI3K inhibitor 
wortmannin was essential to the original biochemical characterization 
and identification of both PI4KA and PI4KB158–160, with the type III PI4Ks 
being separated from type II PI4Ks by their sensitivity to wortmannin. 
The discovery of the crucial role of PI4KA in HCV infection144 led to 
efforts to develop potent and specific PI4KA inhibitors (Fig. 4c and 
Table 3). A library screen for anti-HCV inhibitors identified the 4-anilino 
quinazoline AL-9, which inhibited PI4KA, but with weak specificity over 

PI4KB and p110α161. A small-molecule compound screen for PI4KA 
inhibitors by Boehringer Ingelheim identified multiple PI4KA inhibitors 
with anti-HCV activity, with roughly 10- to 20-fold selectivity for PI4KA 
over PI4KB162. The most potent and selective PI4KA inhibitors currently 
available are molecules developed by GSK and AstraZeneca. The GSK 
compounds are quinazoline precursors optimized to generate the 
potent and selective inhibitor GSK-A1 (ref.163). The GSK-A1 compound 
suffered from poor pharmacokinetic properties, with the quinazoline 
GSK-F1 having improved pharmacokinetics and similar selectivity over 
PI4KB and PI3Ks, although with decreased PI4KA potency133. AstraZen-
eca identified a 2-aminobenzothiazole derivative that was moderately 
selective for PI4KA over PI4KB. Further optimization of this scaffold 
led to highly potent PI4KA inhibitors with increased selectivity164,165.

Limiting the further clinical or preclinical development of PI4KA 
inhibitors has been the toxicity associated with PI4KA inhibition. Mice 
homozygous for either knockout of PI4KA or a knock-in PI4KA kinase 
dead mutant displayed a lethal phenotype, with extensive degen-
eration of the gastrointestinal tract162. Pharmacological blockade of 
PI4KA in mice with GSK PI4KA inhibitors led to sudden lethality at 
the highest doses, with animals dosed at the lowest levels remaining 
alive but displaying moderate to severe gastrointestinal abnormali-
ties133. These studies suggest that any possible use of small molecules 
targeting PI4KA will have a very small therapeutic window owing to 
adverse toxicity.

Pharmacological inhibitors of PI4KB. One of the first semi-selective 
PI4KB inhibitors, the phenylthiazole PIK-93 was identified in structure–
function studies targeting the p110α isoform of PI3K166. Although PIK-93 
has been used extensively as a ‘selective’ PI4KB inhibitor, it inhibits the 
PI3Ks VPS34 and p110γ with almost equal IC50 values167. Structure-based 
drug design allowed for the design of multiple improved PIK-93 deriva-
tives, with the inclusion of a t-butyl group on the acetamide group off 
the central thiazole causing similar potency, but leading to greater 
than 200-fold selectivity over all other phosphoinositide kinases167.

Potent and selective PI4KB inhibitors have been found to pre-
vent viral infection (Fig. 4c). Enviroxime was discovered as a molecule 
that prevented poliovirus replication, with clinical trials initiated for 
enterovirus infection but discontinued in phase II owing to insuf-
ficient therapeutic effects168. A pyrazolo-pyrimidinamine deriva-
tive of enviroxime (T-00127-HEV1) is a potent and selective PI4KB 
inhibitor169. The chemically similar imidazo[1,2-a]pyrazine derivative 
BF738735 was identified from a kinase inhibitor library screen towards 
inhibitors of CVB3 infection, with PI4KB identified as the primary 
target170. Derivatives with an imidazo[1,2-b]pyridazine scaffold were 
also developed, leading to MI14 (ref.171). Using structure-based drug 
design from the imidazo[1,2-b]pyridazine scaffold and combining 
features from the most potent PIK-93 derivatives led to MI356, which 
is the most potent and selective PI4KB inhibitor discovered to date172.

The discovery of PI4KB as a therapeutic target in viral infection 
led to extensive efforts from the pharmaceutical sector to develop 
PI4KB inhibitors as antivirals173. However, conflicting results on toxicity 
and effects on the immune system have complicated its therapeutic 
potential. A set of highly potent and selective aminoimidazole PI4KB 
inhibitors developed by Novartis were able to block HCV replication, 
with limited cellular toxicity, but had a strong antiproliferative effect 
on lymphocytes174. Further supporting the role of PI4KB in immune 
function, it was identified as the target of a class of immunosuppressive 
7-piperazin-1-ylthiazolo[5,4-d]pyrimidin-5-amine analogues, leading 
to the generation of the derivative UCB9608, which prevented immune 
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rejection in mouse models of organ transplantation175. Outside of 
their effects on the immune system, there have been concerns about 
the toxicity of PI4KB inhibitors. An aminothiazole series developed 
by Boehringer Ingelheim and the chemically distinct PI4KB inhibitor 

T-00127-HEV1 were toxic in SJL mice176. However, the PI4KB inhibitor 
BF738735 was well tolerated in mice and had a dose-dependent protec-
tive effect in a CVB4-induced pancreatitis model170. The combination of 
immunosuppressive effects and conflicting reports on PI4KB inhibitor 
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toxicity, together with the fact that enteroviruses can acquire resist-
ance mutations that bypass the need for PI4KB in viral replication, has 
decreased enthusiasm for further development of PI4KB inhibitors as 
antiviral therapeutics.

PI4KB inhibition in parasitic infections. The most clinically 
advanced inhibitors of PI4KB are specific towards the parasite 
homologue of PI4KB, found in the causative agents of malaria and 
cryptosporidiosis177,178. A major challenge in the treatment of malaria 
is the identification of compounds that can inhibit all life cycle stages 
of parasite development. High-throughput screening of compounds 
that target the asexual blood stage of Plasmodium falciparum (causa-
tive agent of malaria) identified an imidazopyrazine-derived class of 
antimalarials that targeted the Plasmodium homologue of PI4KB177. 
This study led to the molecules KAI407 and KDU691, which both showed 
>1,000-fold selectivity for the Plasmodium PI4KB over any human lipid 
kinase, including human PI4KB177, and potent activity against all life cycle 
stages (Fig. 4d). Further validation of Plasmodium PI4KB as a therapeu-
tic target was provided by a chemo-proteomics screen that identified 
anti-parasitic 2-aminopyridine derivatives as PI4KB inhibitors179, as well 
as a diversity-oriented synthetic screen that identified selective PI4KB 
inhibitors as antimalarials180. The 2-aminopyridine derivative inhibitor 
MMV390048 was efficacious against all life cycle stages, and showed 
efficacy in a monkey model of malarial infection181 (Fig. 4e). Owing to 
the roles of human PI4KB in immune function, the development of 
highly specific Plasmodium PI4KB inhibitors over the human variant 
is crucial. Initial insight into the molecular mechanism of selectivity 
was generated by molecular modelling of MMV390048 into the human 
and Plasmodium variants of PI4KB182. Clinical trials of MMV390048 are 
ongoing183 (Fig. 4e), with the next generation of MMV390048 derivatives 
being optimized for solubility and potency, leading to the more potent 
2-aminopyrazine compound UCT943 (ref.184).

PI4KA and PI4KB inhibition in cancer. There are some preclinical 
data that highlight the potential for targeting PI4KA and PI4KB in can-
cer185–188. PI4KA generates the PI4P pool at the plasma membrane, which 
is phosphorylated into PI(4,5)P2, which can be further phosphorylated 
into the pro-growth signal PIP3. Some of the most frequently mutated 
genes in human cancer are HRAS, NRAS and KRAS, with the activation of 
class IA PI3K p110α to generate PIP3 being crucial in Ras-driven tumori-
genesis189. An analysis of the Ras interactome identified an interaction 
between the PI4KA regulatory protein EFR3A and KRAS, with disruption 
of either PI4KA or EFR3A leading to decreased PI4P, PS and KRAS levels 

at the plasma membrane, with a concurrent decrease in oncogenic 
signalling and tumorigenesis185. Treatment of mutant KRas pancreatic 
cell lines with a combination of a G12C-specific Ras inhibitor (sotora-
sib) and the most potent 2-aminobenzothiazole AstraZeneca PI4KA 
inhibitor had a synergistic inhibitory effect on cancer cell growth. 
Another study showed that knock-down of the ORP5/8 lipid transport 
machinery that mediates the PI4P-driven lipid transport of PS to the 
plasma membrane was required for KRAS oncogenesis in a pancreatic 
cancer mouse model, and that PI4KA and EFR3A were upregulated in 
pancreatic tumours versus normal tissue186. This finding suggests that 
there may be a beneficial, limited therapeutic window of PI4KA inhibi-
tion in mutant KRAS-driven cancers when used in combination with 
either PI3K or KRAS inhibitors, although extremely careful analysis of 
toxicity will be essential.

PI4KB is overexpressed in various cancers, with a chromosomal 
region containing PI4KB being frequently amplified in many cancer 
types. The role of PI4KB in tumorigenesis is proposed to be mediated 
through its ability to recruit the oncogenic PI4P-binding protein Golgi 
phosphoprotein 3 (GOLPH3), leading to enhanced secretion of pro-
tumorigenic effector proteins, including semaphorin 3C (SEMA3C), 
lysyl hydroxylase 3 (PLOD3), tissue inhibitor of metalloproteinase 1 
(TIMP1), peroxiredoxin 5 (PRXD5), annexin A2 (ANXA2), clusterin (CLU) 
and stanniocalcin 2 (STC2), which drive increased metastasis188 (Fig. 4f). 
PI4KB inhibitors derived from the most potent PIK-93 scaffold with 
improved pharmacokinetic properties led to smaller primary tumours 
and fewer metastases in the contralateral lung in mice containing ortho-
topic chromosome 1q-amplified lung tumours188 (Fig. 4f). The clinical 
potential of PI4KB in chromosome 1q-amplified lung tumours may 
be limited, as lung cancer cells treated with PI4KB inhibitors acquire 
tolerance by upregulating the type II PI4K2A (PI4KIIα), providing an 
alternative source of Golgi-resident PI4P.

Class II PI3Ks
Structure and regulation. The class II PI3Ks, otherwise known as PI3K-
C2s (herein PI3KC2s), are a family defined by a unique substrate selec-
tivity and an extended domain architecture, which incorporates an 
eponymous C-terminal C2 domain (hence the ‘C2’ in PI3KC2s, which 
does not explicitly refer to ‘class 2’). There are three isoforms, α, β and γ, 
which are encoded by PIK3C2A, PIK3C2B and PIK3C2G, respectively. The 
extended domain architecture appears to substitute for a regulatory 
subunit, which has not been identified for PI3KC2s, contrasting with the 
constitutively associated regulatory subunits of class I and III enzymes190 
(Fig. 5a). The PI3KC2s catalyse the 3-OH phosphorylation of both PI and 

Fig. 4 | Structure–function, inhibition and therapeutic targeting of PI4KA 
and PI4KB. a, Domain architecture of phosphatidylinositol 4-kinase A (PI4KA). 
The architecture of the dimer of heterotrimers of PI4KA–TTC7–FAM126B (PDB: 
6BQ1, with the solenoid region generated from the predicted α-fold model), 
with the domains coloured according to the domain schematic. The dimer 
interface between the two heterotrimers of PI4KA–TTC7–FAM126 is highlighted 
by a box, with regions that directly contact the other dimer unit coloured 
differently to highlight the dimer interface. b, Domain architecture of PI4KB. 
The structure of PI4KB (PDB: 4D0L), with the domains coloured according to 
panel domain schematic. c, Inhibition of PI4KB as an antiviral for positive-strand 
single-stranded RNA viruses (+ssRNA). Multiple picornaviruses require PI4KB 
as a host factor to generate PI4P-enriched viral replication organelles after 
viral infection. PI4P in these organelles recruits additional cellular machinery 
and restructures the lipid environment to generate a platform optimal for viral 
replication. Disruption of PI4KB either genetically or pharmacologically can 

prevent viral replication. d, Inhibition of the malarial homologue of PI4KB as an 
antimalarial therapeutic. The life cycle of malaria in both the vector (mosquito) 
and host (human) is indicated. The various life cycle stages of the Plasmodium 
species that cause malaria are annotated, and where malarial PI4KB inhibitors 
(PI4KBi; KDU691, KAI407, MMV390048) have shown efficacy are shown. 
PI4KBi have shown particular promise in the prevention of the multi-nucleated 
schizont stages in blood and liver by preventing membrane trafficking from the 
Golgi. e, Malarial PI4KBi currently in clinical trials. f, Inhibition of PI4KB as an 
anticancer therapeutic. PI4P generated by PI4KB plays a crucial part in malignant 
secretion of pro-tumorigenic effector proteins from cancer cells that contain 
a chromosome 1q region that is frequently amplified in diverse cancers. PI4P 
enhances secretion through activating Golgi phosphoprotein 3 (GOLPH3)-
dependent vesicular release from the Golgi, with inhibition of PI4KB using highly 
selective PI4KIIIβ-IN-10 derivatives (PI4KBi) preventing this secretion. Panel a 
adapted with permission from ref.131, Elsevier.
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Table 3 | Summary of preclinical inhibitors of the type III PI4Ks and class II and III PI3Ks

Compound Target Target potency (Kd or IC50) Known off-targets/selectivity References

GSK-A1 (GSK)

O
S

O N

N

N

N

O

NH2
O
F

HN

PI4KA IC50 3.1 nM >100-fold selectivity over PI4KB/class I  
PI3Ks

Bojjireddy et al. (2014)133

GSK-F1 (GSK)

O
S

N NH2

N

F
F
F
O

NO

O
F

F

HN

PI4KA IC50 16 nM >100-fold selectivity over PI4KB/class I  
PI3Ks

Bojjireddy et al. (2014)133

Aminobenzothiazole derivatives 
(AstraZeneca)

PI4KA IC50 1–6 nM >100-fold selectivity over PI4KB/class I  
PI3Ks

Raubo et al. (2015)164

PIK-93 derivative
PI4KIIIbeta-IN-10

O

N

H
N

O

S

S
O

O

HO

NH

PI4KB IC50 3.6 nM >200-fold selectivity over PI4KA/class 
PI3Ks

Rutaganira et al. (2016)167

T-00127-HEV1

N
O

O

N
N

O

N

HN

PI4KB IC50 60 nM Partial inhibition of PIK3CD at 10 µM Arita et al. (2011)169

BF738735

OH
N

H
N

N

N

F

O

O
S

PI4KB IC50 5.7 nM >250-fold selectivity over PI4KA van der Schaar (2013)170
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Compound Target Target potency (Kd or IC50) Known off-targets/selectivity References

MI356 derivative compound 10

N
N

N

N

HN

Cl

O

O

O
S

OH

HN

PI4KB IC50 6.1 nM No detectable inhibition of any 
protein or lipid kinase at 1 µM

Mejdrova et al. (2017)172

UCB9608 (UCB Pharma)
NH2

N

N

N
H
N

O

N
N

N

O

PI4KB IC50 11 nM 15-fold selectivity over class II PI3Ks Reuberson (2018)175

MIPS-19416

N

N

N

OMe

MeO NH

O N

NH2

PI3KC2α/β IC50 7 nM (C2α) 43 nM 
(C2β)

10-fold over class I PI3K Selvadurai et al. (2020)209

PITCOIN1

N

N

N

N

O

S
H
N

O S

N

PI3KC2α IC50 95 nM (C2α) Selective for PI3KC2α Lo et al. (2022)211

PITCOIN2

N

N

N

N

O

S

O

HO

NS

NH

PI3KC2α IC50 121 nM (C2α) Selective for PI3KC2α Lo et al. (2022)211

PITCOIN3

N

N

N

N

O

S

O

O

O
S

HN

NS

NH

PI3KC2α IC50 126 nM (C2α) Highly selective for PI3KC2α Lo et al. (2022)211

Table 3 (continued) | Summary of preclinical inhibitors of the type III PI4Ks and class II and III PI3Ks
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PI4P; thus, they appear to be both an alternative to class III PI3K for 
PI3P synthesis and an alternative to class I PI3K and 5-OH phosphatase-
mediated production of PI(3,4)P2 (Fig. 1b). Both products appear to be 
physiologically relevant for PI3KC2 function190, which is discussed later. 
A recent crystal structure of the C2α isoform reveals adjacent Arg and 
Lys residues in the activation loop that confer the ability to bind to PI4P, 
which are lacking in the PI-selective class III PI3K191.

The structure of the PI3KC2α isoform191 (Fig. 5b) includes the 
C2 domain, the Ras-binding domain (RBD), and helical and kinase 
domains of the catalytic core, which exhibit a similar architecture to 
the class I PI3Ks but are mounted atop a unique four-helix bundle 
in the class II enzymes. Each family member contains a long, appar-
ently unstructured N-terminal region, containing a clathrin-binding 
motif in PI3KC2α192. The C-terminal PX–C2 domain module is required 
for optimal activity of the enzyme by facilitating binding to PI(4,5)
P2-containing membranes193. Structural and biochemical analysis of 
the module reveals moderate binding selectivity and affinity for PI(4,5)
P2 in both C2 and PX194. Crucially though, both domains are oriented in 
such a way that concomitant membrane binding by each domain is pos-
sible; thus, when combined with membrane interactions of the kinase 

core region, high avidity PI(4,5)P2-dependent membrane interaction 
is enabled194 (Fig. 5c).

Although the C-terminal PX–C2 module is necessary for optimal 
catalytic activity, there is an apparent steric inhibition of the mod-
ule through binding at the RBD and kinase domain193. Mutation of an 
EKP motif in the kinase domain kα7–8 loop to KKT (found in class I 
enzymes) disrupts this interaction and leads to constitutive activa-
tion of the enzyme. Thus, PI(4,5)P2 binding to PX–C2 not only recruits 
PI3KC2α to the membrane, but also relieves autoinhibition, analogous 
to phosphotyrosine-relieved autoinhibition of class I PI3K catalytic 
subunits by the C-terminal SH2 domain of the regulatory subunit. The 
C-terminal C2 at the RBD interface potentially plays a part in preventing 
Ras activation191. The EKP motif does not directly bind to the C-terminal 
C2 domain, but instead stabilizes an unfolded conformation of the kα12 
helix, permitting sufficient flexibility for the C-terminal C2 domain to 
dock at a second site on the RBD. Release of the PX and C2 domains 
allows the membrane-binding kα12 helix to position in an orientation 
competent for catalysis (Fig. 5c).

The best-studied class II isoform is PI3KC2α, which has crucial 
roles in development, with PI(3,4)P2 generated by PI3KC2α acting as 

Compound Target Target potency (Kd or IC50) Known off-targets/selectivity References

VPS34-IN1
HO

NHN

N N

N

H
N

N

Cl

VPS34 IC50 25 nM Highly selective Bago et al. (2014)222

SAR405 (Sanofi)
O

O

N

NN
F

F

F
N

Cl

N

VPS34 IC50 1.2 nM Highly selective Ronan et al. (2014)224

PIK-III (Novartis)

H2N N

N

N

N
H

N

N

VPS34 IC50 18 nM Highly selective Dowdle et al. (2014)223

SB02024 (Sprint Bioscience)

O

HN

N

F
F

F

N

O

VPS34 Kd 1.1 nM Highly selective Dyczynski et al. (2018)225

Covalent and allosteric (non-ATP competitive) inhibitors are indicated. Half-maximal inhibitory concentration (IC50), dissociation constant (Kd) and selectivity data are from the indicated 
references. PI3K, phosphoinositide 3-kinase; PI4K, phosphatidylinositol 4-kinase.

Table 3 (continued) | Summary of preclinical inhibitors of the type III PI4Ks and class II and III PI3Ks
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a key driver of endocytosis195. Loss of C2α expression196,197 or catalytic 
activity198 is embryonic lethal in mice, associated at least in part with 
defective primary cilia signalling, with a loss of a PI3KC2α-generated 
pool of PI3P at the pericentriolar recycling compartment, caus-
ing disruption of the membrane traffic required for ciliogenesis197.  

The enzyme has also been found to be essential for primary cilia trans-
duction of shear stress, which induces autophagy, which is required to 
regulate cell size in kidney tubule epithelia199. Such cilia-derived phe-
notypes have been described in human fibroblasts from patients with 
homozygous loss-of-function PI3KC2A mutations200. Clinically, these  
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Fig. 5 | Structure–function, inhibition and therapeutic targeting of class II 
PI3Ks. a, Domain architecture of class II PI3Ks. b, The combined model of 
PI3KC2α with the domains coloured according to the domain schematic. The 
model is derived from both cryogenic electron microscopy (cryo-EM) and 
X-ray data (compiled from PDB: 7BI2, 6BTY). The interface of the C-terminal C2 
domain (C-C2) with the Ras-binding domain (RBD) was generated by docking 
the structure of the C-C2 (PDB: 6BTY) into the cryo-EM density of EMD-12191. 
The putative PX interface on the kinase domain is based on HDX-MS data. 
c, The model of PIK3C2α activation, in which the PX and C-C2 domains inhibit 
class II PI3K activity in the closed configuration, and upon lipid binding of both 
these domains, class II PI3K adopts an open active configuration, allowing it to 
bind to lipid substrate, leading to opening of both the kinase and RBD domains. 
There are additional protein-binding partners that have important roles in 

activating and switching off class II PI3K signalling, but which are omitted here 
for clarity of the inactive and active states. d, Structure of PI3KC2α bound to 
the selective inhibitor PITCOIN3 (PDB: 7Z75)211, with the domains coloured 
according to the domain schematic in panel a. e, Inhibition of PI3KC2α as an anti-
thrombolytic: genetic or pharmacological inhibition of PI3KC2α (PI3KC2αi) is 
reported to disrupt attachment of the membrane skeleton in platelets, disrupting 
the extensive infolding of the plasma membrane known as the open canicular 
system. This impedes the formation of protrusions and filopodia in activated 
platelets, thus reducing the formation of thrombi under arterial shear stress. This 
has been observed in mice, as well as in humans ex vivo. f, PI3KC2α as a target for 
tumour angiogenesis. Genetic disruption of PI3KC2α has been shown to potently 
inhibit angiogenesis; in adult mice, this can severely disrupt vascularization of 
tumours. HBD, helical bundle domain; N-C2, N-terminal C2 domain.

http://www.nature.com/nrd


Nature Reviews Drug Discovery | Volume 22 | May 2023 | 357–386 378

Review article

patients present with an array of neurological manifestations, short 
stature, facial dysmorphia and congenital cataracts with secondary 
glaucoma200. Although most of these phenotypes may be ascribed to 
primary cilia dysfunction, recent evidence has revealed a novel role 
for PI3KC2α in cell division: the high incidence of cataracts is due to 
aberrant abscission in lens epithelial cells, leading to elevated levels of 
senescence201. Mechanistically, PI3KC2α is localized to the midbody 
of the cytokinetic bridge by γ-tubulin, where it generates a pool of 
PI(3,4)P2 necessary for the recruitment of VPS36 — a core component 
of the ESCRT complex that drives the final membrane scission between 
daughter cells. Despite this essential role for PI3KC2α in primary cilia 
function and human development, mice heterozygous for an inacti-
vated version of the enzyme are healthy and fertile, even though loss of 
50% of the PI3K activity is apparent in vivo198. Therefore, there appears 
to be promise of tolerability of PI3KC2α-directed therapy.

Preclinical data for the other PI3KC2 isoforms are less exten-
sive. Mice homozygous for kinase dead mutations in PI3KC2β show 
enhanced glucose tolerance. This occurs as a result of enhanced insulin 
sensitivity in metabolic tissues202. In hepatocytes, PI3KC2β inactivation 
decreased endosomal PI3P levels and increases APPL1 endosome num-
ber, causing a failure of insulin receptor endocytosis, thus providing 
a mechanistic basis for increased insulin sensitivity. These early indi-
cations suggest that this enzyme could be a target in type 2 diabetes. 
Notably, these insulin-sensitizing effects seem to be independent of 
the canonical class I PI3K signalling pathway downstream of insulin 
receptors202. PI3KC2β inactivation also decreases ischaemic reperfu-
sion injury by maintaining endothelial integrity; the mechanism echoes 
the effects in hepatocytes, where decreased endosomal maturation 
seems to enhance endocytic recycling of the crucial endothelial adhe-
sion molecule, VE-cadherin203. PI3KC2β also stimulates focal adhesion 
turnover by recruiting a RhoA GAP, facilitating cell migration and 
potentially playing a part in metastasis204. Finally, muscle-specific 
knockout of PI3KC2β has also been shown to alleviate the elevated 
PI3P levels association with myotubular myopathy, caused by loss-
of-function mutations in the PI3P phosphatase gene, MTM1 (ref.205). 
Therefore, there seems to be scope for pharmacological targeting of 
PI3KC2β in various diseases. Development of novel isoform-selective 
inhibitors will be crucial to test these roles. However, a concerning 
finding regarding the potential utility of PI3KC2β-specific inhibitors 
relates to the role of the enzyme in inhibiting TORC1 signalling206: 
loss-of-function mutations in PI3KC2B were recently identified, and 
through elevated mTOR signalling, were found to drive focal epilepsy 
in humans and mice207. Therefore, even acute inhibition of the enzyme 
may have severe neurological adverse effects in patients.

Pharmacology of class II PI3Ks. The first class II PI3K to be cloned was 
PI3KC2α208, characterized by a remarkable insensitivity to the generic 
PI3K inhibitors wortmannin and LY294002. There was little attention 
paid to selectively drugging these enzymes until very recently, as the 
importance of the enzymes in human health is becoming apparent190. 
Initial inhibitors for PI3KC2s were developed from derivatives of the 
class I PI3K inhibitor PIK-90, leading to the 4-aminonicotinamide 
derivative MIPS-19416, which display potency against PI3KC2α and 
PI3KC2β, but with only modest selectivity over class I enzymes209 
(Table 3). A combination of high-throughput screening and itera-
tive medicinal chemistry optimization led to the development of 
the highly selective PI3KC2α inhibitors (PITCOINs)201,210,211. The most 
selective of these molecules (PITCOIN3) is exquisitely sensitive for 
PI3KC2α, with no inhibition of >100 other tested human lipid and 

protein kinases, and high selectivity over other class II PI3Ks. The 
structure of PITCOIN3 bound to PI3KC2α showed non-conserved 
interactions of the N-phenylmethanesulfonamide of PITCOIN3 in 
driving selectivity over other class II PI3Ks (Fig. 5d). Treatment of 
platelets with PITCOIN3 recapitulated the anti-thrombotic effect 
observed in PI3KC2α knockout cells, suggesting that it may be an 
intriguing starting point for anti-thrombotics without the side effect 
of increased bleeding.

Therapeutic indications for class II PI3Ks. Although there have 
only been very recent advances in the development of selective com-
pounds that target PI3KC2s, there is considerable genetic evidence 
for therapeutic potential. Mouse experiments that induced reduction 
of PI3KC2α expression212 or catalytic inactivation of a single allele213 
showed the intriguing potential of PI3KC2α as an anti-thrombosis 
target, with comparatively mild effects on haemostasis. In either case, 
basal PI3P levels are reduced in platelets212,213, correlating with a swollen 
and expanded infolding of the plasma membrane, known as the open 
canalicular system (OCS). Mechanistically, this seems to stem from a 
loss of attachment of components of the membrane skeleton, includ-
ing spectrin, myosin and moesin, leading to stiffer platelets unable 
to form stable thrombi under arterial sheer213 (Fig. 5e). Intriguingly, 
the development of MIPS-21335 showed that acute pharmacological 
inhibition could rapidly and reversibly recapitulate these effects on 
platelet OCS and thrombus formation, and was even more potent in 
human and mouse assays of thrombosis than gold standard aspirin 
and P2Y12 antagonists209.

Roles for PI3KC2α have also been identified in cancer. The helical 
bundle domain was reported to target PI3KC2α to the mitotic spin-
dle193, where it assembles with clathrin and TACC3 to bridge the kine-
tochore fibres. Loss of PIK3C2A expression in cancer cells thus increases 
aneuploidy and sensitizes cancer cells to microtubule-based taxane 
therapies214. However, it should be noted that the scaffold function of 
PI3KC2α in the clathrin–TACC3 complex has not been observed in other 
cell types215. A catalytic function of PI3KC2α has also been reported, 
wherein the helical bundle domain targets the kinase to focal adhe-
sions in breast cancer cells, where the resulting PI(3,4)P2 stimulates 
turnover, promoting metastasis210. Promisingly, this enhanced meta-
static potential can be blocked with a PI3KC2α inhibitor (PITCOIN1). 
Finally, there are indications for a role of PI3KC2α in tumour angio-
genesis. Endothelial cell-specific knockout of PIK3C2A recapitulates 
the embryonic lethality seen in the global knockout owing to a failure 
in angiogenesis196. This appears to occur as a result of deficits in an 
endosomal PI3P pool required for VE-cadherin and VEGF receptor traf-
ficking. However, endothelial-selective PIK3C2A knockout in adult mice 
inhibited angiogenesis and tumour growth of both lung carcinoma and 
melanoma models, revealing a potential therapeutic use of PI3KC2α 
inhibitors196 (Fig. 5f).

Class III PI3K: VPS34
Structure and regulation. The class III PI3K, VPS34 (encoded by 
PIK3C3 in humans) is the primordial PI3K enzyme in eukaryotes. 
It exclusively catalyses PI3P production from PI in vitro and in vivo 
(Fig. 1) and is found as two distinct tetrameric complexes, complex I 
and complex II. Both complexes are composed of VPS34, the pseudoki-
nase VPS15 and the BARA domain containing BECLIN-1. Complex I 
is defined by a unique fourth component, ATG14; additionally, it is 
activated by a fifth subunit, NRBF2. In complex II, the fourth subu-
nit is UVRAG (Fig. 6a). The two complexes are functionally distinct, 
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with complex I initiating macroautophagy, and complex II controlling 
flux through the endocytic pathway216.

The crystal structure of complex II revealed a V-shaped assembly 
with the VPS34 C2 domain at its nexus. The remainder of VPS34 is 
intertwined with the VPS15 α-solenoid and kinase domains along one 
arm, with both the VPS15 and VPS34 kinase domains at the tip217. The 
other arm of the V consists of the VPS15 WD40 domain, flanked by 
coiled-coil domains from BECLIN-1 and UVRAG (Fig. 6a), which present 
their membrane-binding domains at the tip of the arm. It was thus 
implicit that the active enzyme would orient on the membrane by the 
tips of the V, with the nexus protruding from the membrane surface217. 
Complex I exhibits a largely similar architecture, with ATG14 replac-
ing UVRAG, again presenting its membrane-binding BATS domain at 
the tip of the arm218. In the complex II structure, key elements in the 

VPS34 kinase domain, including the activation loop, interact with 
VPS15 in a manner incompatible with substrate access217. Intriguingly, 
the complex I structure showed several conformational classes, some 
of which showed poor density for the VPS34 kinase domain, indicating 
mobility. Such mobility was essential for catalysis: a ‘leashed’ domain 
with a shortened C2–HELCAT linker only able to adopt the closed 
V structure was inactive218. Thus, release of the VPS34 kinase domain 
from VPS15 appears to be essential for catalysis.

A further structure of complex I with the fifth subunit NRBF2 showed 
how the release of the inhibited VPS34 kinase can occur. The binding of 
an NRBF2 MIT domain occurs at the nexus of the complex, causing the 
VPS15 α-solenoid to bend, displacing the VPS34 kinase domain from its 
inhibited interaction with VPS15; the VPS34 kinase domain then swings 
out by 25˚. Binding of a second NRBF2 MIT domain is then required 
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Fig. 6 | Structure–function, inhibition and therapeutic targeting of class III 
PI3Ks. a, Domain architecture of VPS34. The architecture of the tetramer of 
complex II (CII) of VPS34 is shown (PDB: 7BL1), with VPS34 domains coloured 
according to the domain schematic. The additional UVRAG, BECLIN-1 and VPS15 
subunits are indicated, with the binding site of the VPS34 CII activator RAB5 
shown (RAB5 shown as a transparent surface). b, Structure of VPS34 bound to 
the class III PI3K selective inhibitors PIK-III and SAR405 (PDB: 4PH4, 4OYS). The 
hydrophobic pocket surrounding the -CF3 (SAR405) or cyclo-propyl (PIK-III) 

groups that is crucial in VPS34 selectivity is annotated. c, Complex-selective 
activation of the VPS34 CI and VPS34 CII by either RAB1 or RAB5 GTPase, 
respectively. RAB1, present at the autophagosome, recruits and activates 
VPS34 CI, whereas RAB5, present on endosomal membranes, recruits and 
activates VPS34 CII. d, VPS34 inhibitors (VPS34i) target autophagy in cancer. 
Pharmacological block of VPS34 disrupts VPS34 CI, disrupting autophagosome 
biogenesis. This precludes a necessary adaptation and mechanism of resistance 
for the cancer cell in the stressful environment of the tumour bed.

http://www.nature.com/nrd


Nature Reviews Drug Discovery | Volume 22 | May 2023 | 357–386 380

Review article

for full activation of the enzyme by a mechanism not yet structurally 
defined219. Since then, the interaction of complex II with the master 
regulator of early endosome function, the small GTPase RAB5, has 
been defined220 (Fig. 6a). RAB5 binds with the UVRAG/BECLIN-1 arm 
of the complex, in a pocket formed by the VPS15 SGD and WD40 
domains, along with the VPS34 C2 domain helical hairpin. Similarly 
to NRBF2 binding to complex I, RAB5 binding releases the VPS34 
kinase domain from its inhibitory interaction with VPS15. Intriguingly, 
a similar binding and activation mechanism occurs with complex I 
upon binding of RAB1, revealing a novel mechanism of regulation in 
macroautophagy220 (Fig. 6c).

The RAB5–complex II interaction with liposomes can adopt a 
range of orientations, suggesting a striking mechanism for cataly-
sis of both complex I and complex II bound to Rab proteins220: the 
membrane-interacting domains of the BECLlN-1 arm, together with 
the tethered GTPase hypervariable region, anchor this arm of the 
complex to the membrane surface. This allows the complex to ‘scoot’ 
across the membrane, facilitating processivity. Meanwhile, the VPS34 
arm swings up and down, ‘pecking’ at the surface of the membrane and 
phosphorylating PI lipids.

A key lesson from this elegant structural characterization is that 
both complexes share essentially the same activation mechanisms: 
releasing the VPS34 domain from an inhibited conformation by 

a series of interactions unique to each complex. However, the mode 
of catalysis and orientation of the VPS34 domain appears highly 
conserved in each. It is not possible for an ATP-competitive kinase 
inhibitor to distinguish complexes I and II. Instead, future efforts to 
selectively inhibit complex I or complex II will likely need to target the 
different allosteric activation sites located in the more distal regions 
of the complexes.

Pharmacology of class III PI3K. The significance of inhibiting VPS34 
was recognized more than two decades ago when an inhibitor of 
autophagy, 3-methyladenine (3-MA), was discovered to block this 
enzyme221. However, 3-MA is an extremely non-selective compound, 
inhibiting the other classes of PI3K221. More recently, several potent 
and highly selective VPS34 inhibitors have been developed (Fig. 6b and 
Table 3). These include the bipyrimidinamine derivative VPS34-IN1 from 
the University of Dundee222, the chemically similar 4-aminopyridine 
PIK-III from Novartis223 and the tetrahydropyrimido-pyrimidinone 
derivative SAR405 from Sanofi224. More recently, SB02024 (Sprint)225 
and dihydropyrazolopyrazinone derivatives from Genentech have been 
reported226. All have nanomolar potency and are selective for VPS34 over 
other classes of lipid kinase by several orders of magnitude. A common 
feature of their selectivity is the exploitation of a somewhat larger hydro-
phobic pocket in the ATP-binding region of the VPS34 kinase domain, 
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(AML). A fast-growing cancer of the 
blood and bone marrow.
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A progressive brain disorder that affects 
memory and other cognitive abilities.

Amyotrophic lateral sclerosis
(ALS). A rare neurological disease 
that affects neurons responsible 
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movement.

B cell non-Hodgkin lymphoma
(B-NHL). Cancer that arises when 
B cells, a type of lymphocyte that 
normally fights infections by producing 
antibodies to neutralize foreign invaders, 
start to grow uncontrollably, eventually 
overwhelming healthy cells.

Charcot–Marie–Tooth disease
A group of inherited disorders that 
cause nerve damage. Also referred 
to as hereditary motor and sensory 
neuropathy.

Creutzfeldt–Jacob disease
(CJD). A rapidly progressive 
degenerative brain disorder that  
leads to dementia and death.

Cryptosporidiosis
A diarrhoeal disease caused by 
a microscopic parasite called 
Cryptosporidium, with particular 
prevalence in children and 
immunocompromised individuals.
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A cellular process by which cells 
internalize substances from their 
external environment.

Frontotemporal dementia
(FTD). An uncommon type of dementia 
that is a result of damage to neurons  
in the frontal and temporal lobes  
of the brain, which causes problems  
in behaviour and language.

Glioblastoma
(GBM). A fast-growing type of central 
nervous system tumour that forms  
from the glial tissue of the brain and 
spinal cord.

Macroautophagy
A fundamental degradative pathway 
for cytosolic components, such 
as proteins, RNA, DNA, lipids and 
organelles. It involves the sequestering 
of such cytosolic material in double-
membraned structures called 
autophagosomes, followed by 
membrane trafficking to the lysosome 
for degradation and recycling.

Malaria
A disease transmitted by the bite of 
infected female mosquitoes caused 
by Plasmodium parasites (five species 
infect humans, with two species, 
Plasmodium vivax and Plasmodium 
falciparum, posing the largest threat).

Parkinson disease
A central nervous system disorder 
which is associated with a deficiency  
of the neurotransmitter dopamine  
and affects movement often resulting 
in tremors.

Primary lateral sclerosis
(PLS). A rare neuromuscular disease that 
affects the central motor neurons and is 
characterized by the gradual weakness 
and stiffness of muscles.

p53 null tumours
Tumours that are deficient in either the 
tumour suppressor TP53 gene or the 
functional p53 protein product, which 
induces apoptosis, cell cycle arrest 
or senescence in response to distinct 
stimuli.

TTC7A deficiency
A rare genetic disorder caused by 
dysfunction of a gene (TTC7A), which 
causes diarrhoea, inflammation of the 
intestines, bowel obstructions, immune 
dysfunction and an inability to absorb 
nutrients.

Viral pathogens
Viruses that can infect and replicate 
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adjacent to the P-loop. This pocket is occupied by a cyclo-pentyl group in 
VPS34-IN1 and PIK-III, a trifluoromethyl group in SAR405 and an isopro-
pyl group in the Genentech series, which would not be accommodated 
in class I PI3K. In short, excellent, high potency and exquisitely selective 
compounds are available and in use for preclinical studies — with the 
caveat that they inhibit both complex I and complex II.

Therapeutic indications for class III PI3K. The central involvement 
of VPS34 complex I in autophagy has attracted the most attention for 
therapeutically targeting this enzyme. Macroautophagy maintains 
cellular homeostasis and is generally thought of as tumour suppress-
ing in healthy tissue. However, once tumours form, the capacity of 
macroautophagy to support cell survival in the stressful and nutrient-
poor tumour bed causes the process to become increasingly tumour 
promoting227 (Fig. 6d). PIK-III, SAR405, SB02024 and VPS34-IN1 all 
inhibit autophagic flux222–225. Recent preclinical studies have also 
shown indications for these compounds to be effective in cancer 
treatment.

Combined inhibition of VPS34 and the class I PI3K, PI3Kδ, 
enhanced the cytotoxicity of various cellular models of B cell malig-
nancies, including CLL and AML228. Enhanced efficacy was achieved by 
combining VPS34-IN1 with a clinically approved compound, CAL-101 
(idelalisib), or by using a novel dual-selectivity compound, PI3K/V-IN-01 
(ref.228). VPS34-IN1 and PIK-III also increased apoptosis in AML cell lines, 
an effect attributed at least in part to the inhibition of autophagy229.

SB02024 reduced growth of breast cancer cell xenografts in 
mice225. SB02024 and SAR405 also decrease tumour growth and 
improve survival in murine models of melanoma and colorectal can-
cer230. Mechanistically, VPS34 inhibition enhanced tumour cell STAT1–
IRF7 signalling, increasing CCL5 and CXCL10 expression, and causing 
enhanced infiltration of CD8+ T cells and natural killer cells into the 
tumour bed. Interestingly, VPS34 inhibition enhanced the expression of 
programmed cell death 1 (PD1) and programmed death 1 ligand 1 (PDL1), 
a key target of immunotherapy. Indeed, VPS34 inhibitors sensitized 
these tumour models to anti-PD1/PDL1 therapy230.

Macroautophagy can be a mechanism of resistance in cancer, help-
ing to prevent the induction of apoptosis227. In fact, SAR405 restored 
the sensitivity of several cisplatin-resistant bladder cancer cell lines to 
cisplatin231. The effect could be recapitulated with 3-MA or autophagy-
blocking chloroquine. Furthermore, SB02024 increased the sensitivity 
of breast cancer cell lines to the approved tyrosine kinase inhibitors 
erlotinib and sunitinib in vitro225. Therefore, there seems to be some 
promise for the use of VPS34 inhibitors as combinatorial therapies 
(Fig. 6d).

However, the promise of VPS34 inhibitors in the clinic must be 
tempered by the fact that both complex I and II core functions, namely 
macroautophagy and endocytosis, are essential cellular housekeeping 
functions; severe on-target adverse effects are to be anticipated in 
vivo. In fact, recent work testing high-potency VPS34 inhibitors from 
both GSK232 and Genentech226 revealed severe toxicity in rats. On the 
other hand, no such toxicities were reported over several weeks in mice 
treated with SB02024 or SAR405 (refs.225,230). Clues to this discrepancy 
come from mice carrying targeted inactivation of the VPS34 kinase 
domain233. Mice with two inactive kinase domains die in early embryo-
genesis, whereas mice with a single active allele display mildly attenu-
ated autophagy and beneficial metabolic enhancements. It therefore 
seems that there may be a beneficial therapeutic window of attenuated 
VPS34 activity that reduces unwanted autophagy but protects essential 
cellular housekeeping. The promise of VPS34 inhibitors in the clinic will 

likely rest on their pharmacodynamic and pharmacokinetic capacity 
to exploit this relatively narrow window.

Outlook
Numerous phosphoinositide kinases are implicated in various haema-
tological, neurological and infectious diseases, along with an assort-
ment of cancers. They have proved amenable to the development of 
small-molecule inhibitors, portending great potential as bona fide 
therapeutic targets. Highly potent and selective inhibitors have been 
developed for most of the PI3K superfamily, along with PIKfyve; these 
are at the stage of advanced preclinical research or even entering clini-
cal trials (Tables 1–3). Following behind, initial promising tool com-
pounds have been developed against the PI4P5Ks and PI5P4Ks, as well 
as against the type II PI4Ks (Table 1). Therefore, the scene is set for accel-
erating preclinical and clinical development, following the paradigm  
established by the class I PI3Ks (Box 1).

That said, some key challenges remain. Whereas class I PI3Ks are 
exclusively activated by extracellular stimuli, the rest of the phos-
phoinositide kinases appear to be constitutively active, facilitating 
essential cellular ‘housekeeping’ functions. It follows that on-target 
toxicities are to be anticipated with small-molecule inhibitors; we have 
discussed specific examples for the PI4Ks133 and class III PI3Ks226,232. Like-
wise, loss-of-function mutations of several phosphoinositide kinases 
have been shown to cause human monogenic inherited diseases33,200, 
heralding potential long-term consequences of enzyme inhibition. 
Therefore, it seems that the most immediately promising targets are 
diseases in which acute enzyme inhibition with a course of perhaps 
a few days can have a therapeutic effect and the best tolerability, for 
example, the potential of PIKfyve inhibitors in viral infection. Nota-
bly, targeting phosphoinositide kinases as pathogen host factors is 
a promising avenue. Selective targeting of phosphoinositide kinases 
of the parasitic eukaryotic pathogen also seems potentially promis-
ing, as host activity can be completely spared in this context, with the 
development of antimalarial and anti-cryptosporidiosis PI4K inhibitors 
as key examples177,178.

Inhibiting many phosphoinositide kinases likely requires exploi-
tation of a therapeutically beneficial window, where pathological 
function can be disrupted, but sufficient ‘housekeeping’ activity 
remains to maintain cell functions throughout the body. Although 
this will undoubtedly prove to be a big challenge, it is worth noting that 
such challenges were also present when developing inhibitors of the 
class I PI3Ks (Box 1). For example, the PI3Kα inhibitor alpelisib presents 
a range of on-target adverse effects but nonetheless has proven clinical 
benefit to patients with breast cancer and PIK3CA-related overgrowth 
syndromes234. Therefore, it would be folly to treat such challenges 
as insurmountable in developing therapeutic applications for phos-
phoinositide kinase inhibitors. Another lesson from the class I PI3Ks 
has been the crucial role of isoform-selective inhibitors to minimize 
on-target adverse effects. This is likely to apply to most of the families 
discussed here.

Collectively, it is clear that many phosphoinositide kinases are 
feasible and potentially very useful targets for therapeutics. The next 
few years of preclinical and clinical development will likely see many 
successes — and inevitable failures. However, in surveying the state 
of the field, the potential gains clearly justify ongoing, substantial 
investment in basic and preclinical research to maximize the eventual 
success in the clinic.
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