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Beyond Planted Bugs in “Trusting Trust”

�e Input-Processing Frontier 

Sergey Bratus, Trey Darley, Michael Locasto, Meredith L. Patterson, Rebecca “bx” Shapiro, and Anna Shubina

I t’s been nearly 30 years since 
Ken �ompson’s “Re�ections 

on Trusting Trust” lecture and its 
famous verdict that “You can’t trust 
code that you did not totally create 
yourself.”1 If there is one practical 
lesson that the Internet has taught 
us since then, it’s that you can’t even 
trust your own code if it receives 
arbitrary inputs from the Internet. 
Sooner or later, a mixture of bugs 
or features turns connected code 
into an execution engine for hostile 
inputs—a weird machine.

Over time, exploitable bugs have 
become more complex and exploits 
more sophisticated; exploitation 
techniques �rst showed aspects of 
an art and then of a solid engineer-
ing process. However, all the bugs 
needed to compromise the so�ware 
we use daily are likely already pres-
ent in it. In this age of virtual host-
ing and cloud services, taking inputs 
from the Internet is just as dangerous 
as it was for the original Internet dae-
mons. Despite defensive measures 
such as making program stacks non-
executable and randomizing the tar-
get’s address space, exploitable bugs 
migrate to other protocols or layers, 
while still giving a�ackers access to 
the defender’s “crown jewels.” 

�e 30 years that have passed 
since �ompson’s speech is an eter-
nity in Internet time and e�ort. 
When best e�orts (in terms of both 
dedication and expenditure) at 
securing Internet-facing code are 
frustrated for so long, a deeper and 
yet not clearly understood princi-
ple must be at work. And, as is the 
case with most deep principles, it is 
likely hiding in plain sight. 

Every Input Is a Program 
Consuming input—any input—
causes the consuming code and the 
underlying memory and processor 
to change state, typically on sev-
eral levels of abstraction at once. 
In short, input drives the target 
through a computation. A program 
is as a program does—so every input 
is in fact a program for its target. It’s 
a program in the same way that the 
input being matched to a regular 
expression is the program for the 
automaton underlying that RegEx 
implementation—the input drives 
the automaton through its states and 
transitions. It’s also a program in the 
same sense that the content of a Tur-
ing machine’s tape is a program for 
that machine as well as its input.

Information Is Instructions 
We can conceive of information in 
two ways. First, we can rely on our 
common and traditional notion of 
information as some kind of inert 
data object, for example, a multi-
media �le. Our current biases 
assure us that surely this is the most 
inert type of data; a�er all, it’s just 
data about pixels or sound waves, 
is it not? 

Second, and much closer to 
objective reality, is the notion that 
all data is a stream of tokens of 
almost arbitrary complexity, and 
this stream of tokens is a sequence 
of instructions to the parser of its 

language. �is sequence causes the 
parser to transition from state to 
state; read, write, copy, and allocate 
memory; and generally speaking, 
perform every kind of operation that 
a classic computational model such 

as a pushdown automaton or a Tur-
ing machine would. �erefore, we 
should speak not of code operating 
on input data but of input data oper-
ating on code—at least, on the part of 
the program that processes inputs. 

Some inputs are very simple pro-
grams and cause very simple state 
changes. Regular expressions are 
quite manageable: we write them 
speci�cally to match inputs and 
ensure no states other than those 
of the regular expression automa-
ton can be entered while matching. 
But the more complex the input and 
the more ad hoc the parser code, the 
less sure we can be of which states 
the code is capable of. 

In other words, when presented 
with complex enough inputs and ad 
hoc code to handle them, we don’t 
and can’t fully know what kind of 
an automaton is inside the code 
and being programmed by inputs. 
Indeed, exploits are living, “pwning” 
proof that the induced computation 
can stray very far from the intended 
computation path—all the way to 
root shell. 



�e Message Is the Machine
Every valid discrete “message” (that 
is, a piece of information) passed 
between computers, network nodes, 
or program components (�les, 
objects, function parameters, net-
work packets, or frames) implicitly 
follows some grammar, which the 
code must implement. �e tokens 
and constructs of the grammar drive 
the execution of the processing 
code’s intended functionality. 

But besides that programmer-
intended functionality, there is also 
latent functionality that o�en holds 
far more power than the program-
mer intended, which can be trig-
gered by a particular alignment of 
input tokens. �is latent function-
ality may come from 
many sources, includ-
ing emergent properties 
due to the composition 
of various code com-
ponents and compiler- 
or runtime-inserted 
artifacts purporting to 
supply a full-featured execution 
environment. 

�e practical outcome is that 
programs o�en have access to much 
greater computational privilege 
than they need, and a�ackers are 
o�en able to �nd and expose this 
latent functionality.

As an example of emergent 
properties due to composition of 
components, consider the fact—
long known to a�ackers—that 
almost all functionality needed to 
e�ectively exploit and control a 
remote target is already present on 
the target system, either in its OS 
or its libraries. A state-of-the-art 
exploit might chain up to six (the 
current Pwn2Own record) di�erent 
bugs.2 Long gone are the days when 
one stack over�ow bug was enough 
to fully control the system. Native 
binary executable code in the pay-
load has been rendered a rare lux-
ury by the protective measures in 
general-purpose operating systems 
(but, alas, not in embedded and 

SCADA systems, where it remains a 
daunting reality). 

Regarding compiler- or runtime- 
inserted artifacts supplying exe-
cution environments, consider 
exception handling in executables 
compiled with recent versions of 
GCC (GNU C compiler) using 
the DWARF format and logic to 
describe how to unwind the stack 
in case of an exception in particu-
lar functions. �is logic involves 
a virtual machine (mapped into 
each process created from such an 
executable) and a bytecode that, 
for all practical purposes, is Turing- 
complete and can thus implement 
or hide Trojan executions.3 More-
over, even the loading of a typical 

Linux ELF binary executable or 
library involves rewriting the bina-
ry’s contents in memory, driven by 
the binary’s metadata and the relo-
cating code’s complex logic. It turns 
out that this metadata alone is also 
Turing-complete with all the impli-
cations thereof (for example, detec-
tion of maliciously cra�ed metadata 
can be no be�er than heuristics 
looking for pa�erns of known mal-
feasance—the model that consis-
tently fails against sophisticated 
a�ackers).4 

From Untrusted Code 
to Untrusted Data
�ompson’s caution that “No 
amount of source-level veri�cation 
or scrutiny will protect you from 
using untrusted code”—and all the 
grand decidability theory behind 
it—might as well apply to inputs fed 
to ad hoc code. Because input can 
achieve full Turing-complete power 
with the help of the code that it 
drives, “verifying” input prior to its 

introduction into the system won’t 
help. �is spells doom for trust 
in any ad hoc, complex, and con-
nected code, and this doom is on 
our doorstep. 

�e trick to restoring trust in 
code a�er these nearly 30 years turns 
out to be not just avoiding bugs, 
planted or accidental. It’s about writ-
ing input-handling code in such a 
way that the e�ects of any inputs on 
it can be veri�ed by examining the 
inputs (unlike programs, for which 
this is generally impossible). �is 
means starving the input of its power 
to induce unexpected computation. 

�e input’s power to induce com-
putation is closely related to its power 
to exploit the handling code. Only 

very simple programs for 
very simple architectures 
submit to automatic rea-
soning about their e�ects. 
(For programming lan-
guages, such reasoning is 
called veri�cation, a form 
of static analysis.) Hence, 

input- handling code and inputs, 
which are programs for this code, 
must be simple to allow such reason-
ing. Only then will we be able to trust 
the inputs—seen in their full power 
as programs—not to hijack the 
code. Formal language theory conve-
niently de�nes some such classes (as 
sketched in the sidebar). 

Verification versus 
Validation
�e previous discussion demon-
strates a fundamental connection 
between what formal language 
theory calls input validation and 
code veri�cation. Validation is the 
process of deciding whether input 
is as expected; veri�cation is about 
proving that, granted the expecta-
tions, the code will have correct 
properties. Validation seems to 
be easy, but specifying expecta-
tions and picking properties can 
be hard, because general proper-
ties of code are impossible to ver-
ify or prove algorithmically. �e 
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�e digital world has been conspicuously 

lagging in acknowledging the role 

of its own unsolvable problems.



underlying fundamental computer 
science result is known as the halt-
ing problem or its equivalent, Rice’s 
theorem, which states that there is 
no general and e�ective method to 
decide whether a given program 
terminates or has any other non-
trivial property (such as whether 
a program always computes the 
square of the number it inputs). A 
quandary arises. 

Treating input as a program—as 
exploitation does—leads us out of 
this quandary. We ask, can we verify 
inputs as programs in terms of their 
e�ects on the target? �e problem 
seems harder, but solving it is neces-
sary to deny exploitation by input. �e 
only answer, then, is to keep the input 
language simple enough—say, regular 

expression strength, or deterministic 
context-free (equivalently, determin-
istic pushdown automaton) strength 
if recursive nesting of data structures 
in the input is necessary—and to 
write the code that validates it accord-
ingly. �en, the code will be veri�ed, 
and the input will be validated by that 
code, without fear of extra states and 
runaway computation. 

Destructive Disagreements
A common source of trust failures 
is the di�erent dialects of message 
formats—from network packets to 
package �les—that are mutually mis-
understood by communicating pro-
grams or layers. Such distinct dialects 
o�er a�ackers the opportunity to cra� 
messages that peers will understand 

di�erently. �e consequences are 
devastating for any trust or security 
assumptions that rely on the correct 
and coordinated perception and pro-
cessing of these messages. 

Simply put, whenever two input 
parsers are involved, a disagreement 
between them about an input might 
destroy trust, even if both parsers 
accept the input safely. 

�is e�ect is particularly devas-
tating if certi�cates or signatures are 
involved. �e disagreeing parsers 
might reside on di�erent systems, as 
was the case with X.509 certi�cate 
authorities (CAs) and browsers 
that saw di�erent domain infor-
mation in the certi�cate signing 
request (CSR) and the signed certif-
icate, respectively.  �e CA’s parser 
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Exploits, Parsers, and Formal Languages

A n exploit succeeds when it causes the 

target system to enter a state—on 

some level of programming abstraction—

that was not expected by the target’s original 

programmers. �e best defense against 

crafted input exploits is to write input-han-

dling code using programming models that 

are explicitly concerned with valid states and 

state transitions driven by input symbols.

Luckily, formal language theory provides 

just such models. It concerns itself with 

automata that consume input symbol by 

symbol, transition between well-defined 

states as they do so, and hand down a 

verdict on whether the consumed token 

sequence conforms to a valid language 

definition. Because all states and transitions 

are explicitly derived from the valid inputs’ 

specification, and the actual implementation 

code can (and should) then be automatically 

generated from the same specification, there 

is a lot less chance of a programming error 

that would allow the system to be driven 

into an unexpected state by inputs.

In other words, an input parser that 

is a recognizer automaton for the valid 

inputs defined by a formal grammar has a 

much better chance of being secure against 

exploitation by crafted inputs.

Formal languages fall into broad classes 

by the computational strength of the auto-

mata required to recognize them.

Regular languages—familiar to the reader 

as those that can be precisely matched 

by a regular expression—require only a 

limited amount of state, regardless of the 

input string’s length. Such automata can be 

implemented without resorting to dynamic 

memory allocation, and thus without risking 

any of the nasty overflow associated with 

malloc()-ing and copying untrusted data.

�e next input language complexity 

class, context-free languages, allows arbi-

trary recursion depths of embedding data 

structure representations but draws the line 

at interdependence of sibling elements. Such 

parsers still tend to be manageable to verify 

and maintain; they also fulfill the appetite for 

transmitting structures that can be recursively 

nested, such as JSON structures in Web apps. 

Harder to parse—and for auditors of 

parsers to verify—are context-sensitive 

and recursively enumerable languages. 

In context- sensitive languages, validity of 

nested object representations depends on 

a host of other objects processed either 

before or after the current object represen-

tation is parsed. �is property often leads 

to assumptions that aren’t verified by the 

parser and blow up in subsequent process-

ing code, leading to memory corruption 

and exploitable bugs. Notorious in this 

respect are message formats that contain 

multiple object length fields that must 

agree across the whole message. 

Input-handling code is inherently risky. 

To o�set this risk, developers must rigor-

ously design valid inputs and adopt the pro-

gramming practices to match. In particular, 

defenders’ tasks can be made substantially 

more tractable by using simpler language 

formats that don’t exceed regular or context-

free language strengths. Adhering to these 

formats allows for simpler, less state-hungry, 

and therefore more likely bug-free parsers.

Conversely, allowing more complex 

input formats paints defenders into a corner 

where they must solve hard or in fact un-

solvable problems. Attempting to find 80/20 

engineering solutions to these problems is 

the fallacy that is the underlying cause of the 

current Internet insecurity epidemic (http://

langsec.org/papers/Sassaman.pdf).

For a more in-depth synopsis of exploits, 

parsers, and formal languages, see http://

doi.ieeecomputersociety.org/10.1109/

MSP.2014.1.



interpreted the CSR to contain an 
innocent domain name belong-
ing to the requester and signed it, 
whereas the browser’s SSL client 
interpreted the same data to be a 
high-value domain name belonging 
to another entity.5  

Alternatively, the parsers might 
reside on the same system as parts of 
a binary tool chain, such as the pack-
age signature veri�er and the package 
installer in the case of the Android 
Master Key type bugs.6 �e bugs 
featured a Java library cryptographic 
signature veri�er and a C++ installer, 
both of which interpreted the com-
pressed archive—but disagreed 
regarding its contents. As a result, 
unsigned content could be installed. 

�is problem is potentially pres-
ent in chains of trust wherever both 
the signature and the signed object 
are contained in packages with non-
trivial packaging formats. �eir 
respective locations inside the pack-
age are computed from the pack-
age metadata; thus, the correctness 
of signature veri�cation depends 
on the correctness and agreement 
of metadata interpretation by all 
components. (Besides the already 
mentioned examples of X.509 and 
Android Master Key bugs, see the 
classic intrusion-detection system 

evasion research.8,9)
�e kinds of messages (pro-

grams) that can be algorithmi-
cally decided to cause equivalent 
computation must be even sim-
pler than the programs for which 
we can decide whether they halt. 
�us, the message formats that we 
want to ensure are parsed the same 
on di�erent parsers must be sim-
ple enough as a language, and the 
respective parsing code must match 
that simplicity exactly. 

�ere Can Be No Chain 
of Trust in Babel
A trust chain is in fact a chain of 
parsers that interpret binary content 
to prevent unexpected computation 
throughout the execution chain. It’s 

entirely natural to break up cryp-
tographic veri�cation into mod-
ules or even separate tools—a�er 
all, this is what Unix’s philosophy 
of small tools doing one thing well 
encourages. 

However, when these parsers 
disagree, a Babel-like explosion 
of diverging interpretations and 
parser-speci�c dialects becomes a 
danger to signing schemes, object 
serialization, and even security 
proof infrastructures. To para-
phrase a well-known line from �e 
Matrix, “What good is a signature, 
Mr. Anderson, if you can’t really see 
the document?” 

Metadata Malicious, 
Mutable
Because automatic reasoning about 
code is generally hard, we simply 
sign code and later check signatures 
to convince ourselves that it hasn’t 
changed since signed by someone 
we trust. However, this ignores the 
engineering reality that the code 
will be rewri�en and combined 
with other modules, which might 
completely change the properties of 
the overall program image. 

As so�ware engineering gets 
more complex (Remember stati-
cally compiled executables? Try 
�nding any on your system!), so 
do transformations of binary code 
and data. For example, relocation of 
binary code used to mean patching 
absolute addresses in it to account 
for loading the code at a di�erent 
address than linked for. Now, there 
are more than a dozen types of relo-
cations, and the GNU/Linux code 
that applies them resembles a vir-
tual machine’s implementation of 
a bytecode. On Mac OS X, reloca-
tion entries are bytecode designed 
to be executed by a virtual machine. 
Perfectly well-formed relocation 
entries are in fact Turing-complete 
in a standard ELF-based GNU/
Linux environment,4 and the same 
is likely true for Mach-O and Por-
table Executable formats. 

Perhaps more surprising is the 
x86 address translation mechanism 
that composes physical memory 
frames into the abstraction of a virtual 
address space. Its logic—fed by page 
tables, interrupt descriptors (IDTs), 
memory segment descriptors 
(GDTs), and 32-bit hardware task-
switching descriptors—turns out to 
be Turing-complete!7

All these “tables” turn out to 
be programs for their respective 
interpreter logic (so�ware or 
hardware), capable of arbitrarily 
transforming the signed code 
supposedly “frozen” in a trusted 
state. Unless all these kinds of “table” 
metadata are watched and can be 
e�ectively reasoned about, the 
transformed code can’t be trusted. 

As before, this means that 
so�ware engineering metadata 
that goes into composing multiple 
pieces of code into a single 
runtime image must stick to the 
simplest possible formats—or 
be treated as code, with their 
immutability assured with strong 
cryptography and unambiguous 
ways of locating them and their 
signatures. �is sounds a bit like 
the chicken-and-egg problem, does 
it not? Simplifying the data and 
its respective parsers to veri�able 
strengths suddenly sounds like a 
be�er deal for trust chains. 

I n the physical world, engineering 
is based on the �rm understanding 

of unsolvable problems, rendered 
such by fundamental laws, such as 
conservation laws, that we know 
can’t be bent by cleverness or hard 
work and funding. �e digital world 
has been conspicuously lagging in 
acknowledging the role of its own 
unsolvable problems. Public percep-
tion still regards computerization as 
magic that can signi�cantly improve 
any human endeavor when applied 
with su�cient zeal. Yet, symbolic 
manipulations are subject to natural 
limitations as harsh as physical ones. 
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Ubiquitous insecurity of connected 
systems and spectacular failures of 
large-scale integration projects are 
early cautionary examples of how 
the digital utopia fails. 

Will we ever be able to trust 
connected computers? Can we 
pull out maliciously cra�ed inputs’ 
poison teeth? At the very least, we 
must rethink the dominant design 
a�itudes that got us here, such 
as the idea that document view-
ers should “�x” erroneous input 
rather than discard it out of hand 
as well as the notion of extending 
document formats until documents 
require Turing- complete interpret-
ers to render. �e same goes for 
the designs that require scripts in 
general-purpose programming lan-
guages to be executed before users 
can even begin to judge a docu-
ment’s provenance. 

�e e�ective trust model of 
designs that ignore inherent com-
puting limitations is the “leap 
of faith,” ending in expensive 
subscription- based heuristic Band-
Aids or in blaming users—that is to 
say, victims. Worse yet, large-scale 
deployment of fragile, untrust-
worthy so�ware creates vulnerabil-
ity to direct physical damage. �e 
only winning move is not to play. 
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