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Alzheimer disease (AD) is the leading cause of dementia in the elderly with over 5 million
individuals affected with AD in the U.S., a number projected to quadruple by 2050 as the
population ages 1. AD has a complex and largely undescribed etiology with strong genetic
determinants. Until now only four unequivocal genes carrying risk for AD have been
identified. Three of these, the amyloid precursor protein [APP] 2 and the presenilin 1 and 2
[PS1 and PS2] genes 3–5, were identified using the classical Mendelian positional cloning
paradigm most prominently applied in the 1990’s. This success was facilitated by highly-
penetrant autosomal dominant inheritance in early-onset AD families. While these three
genes explain the majority of early-onset familial AD and their identification represents a
tremendous accomplishment, collectively they account for less than 2% of all AD cases.

The genetic architecture underlying the far more common late-onset AD (LOAD; age at
onset ≥ 60 years of age) 6 is much more complex. The sibling recurrence risk (λs)for AD is
surprisingly consistent across studies 7–9 with a range of about 4–5. The confluence of
biology 10, 11 and genetic mapping 12 facilitated the identification of the association between
the apolipoprotein E (APOE) gene (the APOE-4 allele increases risk; the APOE-2 allele
decreases risk) in both familial late-onset and sporadic AD patients 13–15. APOE is the single
most significant genetic risk factor identified for LOAD, the fourth of the identified AD
genes.

The finding of an association of APOE with AD initially ignited the field, but with the
exception of variations like the CFH Y402H polymorphism in age related macular
degeneration 16–18, few such strong effects in complex diseases have been seen since
identified. Since 1993, attempts to identify additional LOAD loci have taken multiple
approaches using the best available technologies including genome-wide linkage studies
(GWLS) and tests of association for individual candidate genes.

Multiple GWLS for LOAD were published between 1997 and 2006 19–29. While some
chromosomal regions have been studied extensively (most notably on chromosomes 9, 10,
and 12), no consistently replicated LOAD gene has yet been identified using this method.
Several reasons account for the limited results including the generally small datasets, the
inability of the then available molecular genotyping technologies to capture all the
segregation information in the families, 30 and the sensitivity of linkage studies to
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underlying locus heterogeneity when using datasets consisting of a large number of small
families.

Association studies for specific candidate genes selected due to their known (or more often,
hypothesized) biological function relevant to AD have been performed for over 350
polymorphisms (www.alzgene.org). For several reasons these studies also have been largely
unsuccessful. First, our knowledge of gene function is still very limited and it has been
difficult to make direct observations of altered gene function or expression in AD tissues.
Second, the sample sizes and single-stage study designs have generally been too small for
the moderate effect sizes and the substantial locus heterogeneity that we now know underlie
LOAD. Third, the level of genomic detail in single nucleotide polymorphisms (SNP) and in
copy number variations (CNV) content that could be interrogated was low. These issues
conspired to make replication of any true effect difficult and generation of false positive
results rampant. Thus, while some of these reported associations are likely to be important, it
is not surprising that the overall evidence for any one of these loci is mixed with results from
the majority of studies refuting any association.

The (nearly) complete characterization of the consensus human sequence has greatly
increased our ability to identify and describe the genomic structure of genes and variation in
those genes between different individuals and species. Of even more import for disease gene
studies is the vast pool of characterized common differences among people provided by
HapMap data 31–33 that allows a genome wide association study (GWAS) design to be
implemented by genotyping 100,000–1,000,000 SNPs with high fidelity and low cost per
genotype. GWAS have already been successful in over 150 different phenotypes with over
400 different new polymorphisms associated with disease
(http://www.genome.gov/26525384). Clearly such an approach is successful in finding at
least some of the underlying genetic variation responsible for disease risk. It is also
becoming clear, however, that the effect sizes of almost all of these variations are quite
small (odds ratios ranging from 1.1–1.4, with most in the 1.15–1.3 range) and rarely explain
more than a tiny fraction of the overall genetic effect in any common disease 34.

There are now 10 published GWAS in AD and most use unrelated cases and controls while
a few have used family datasets. Following the pattern of most diseases, the initial five
GWAS studies used available sample sets and had somewhat limited power 35–39. A sixth
report 40 used previously reported data 35 stratified by APOE genotype, a seventh report
used a “gene based” screen 41, and an eighth report used a DNA pooling scheme 42 rather
than genotyping individual samples. All these studies confirmed the strong effect of APOE,
and while several SNPs achieved genome-wide significance, it is clear that the remaining
genetic risk loci in AD have population-level effects much smaller than APOE. Two general
conclusions can be made from the existing GWAS studies. First, there is no other genetic
effect as pervasive and strong as APOE and second, the total genetic effect explained by the
additional identified SNPs is still very small (1–2%) and a large proportion of the genetic
effect remains unexplained.

The two most recent publications by Harold et al (2009) and Lambert et al. (2009) 43, 44

represent the first of the next generation, large sample size GWAS studies designed in part
to overcome the power problem. These studies used the collaborative model that brings
together datasets from multiple research groups. Harold et al. included over 16,000 total
individuals with over 5,900 cases and 10,000 controls in their two stage analysis. With such
a commanding data set, they identified SNPs in two genes with genome wide significance,
the CLU gene (clusterin, which is also referred to as apolipoprotein J (APOJ)) and the
PICALM gene (phosphatidylinositol binding clathrin assembly protein). Both of these SNPs
were identified in the initial dataset (Stage 1) and were replicated in a second independent
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dataset (stage 2) with p-values of 8.5 × 10−10, odds ratio=0.86 and 1.3 × 10−9, odds ratio
=0.86, respectively. In the same issue, Lambert et al. (2009) performed a similarly powered
independent study of 6,000 cases and over 8,600 controls. They also employed a two stage
design and also found genome wide significance in SNPs in two genes. Significantly, the
most significant SNP identified in the Lambert et al (2009) study was in CLU. Their second
gene meeting genome wide significance was CR1 (complement component (3b/4b) receptor
1). As with Harold et al. (2009) the odds ratio for CLU was 0.86 with a p-value of 7.5 ×
10−9 and for CR1 the p-value was 3.7 × 10−9 with an odds ratio = 1.21. CLU, the consensus
candidate identified between the two studies is an excellent functional candidate. Like its
predecessor, APOE, CLU is expressed in cerebrospinal fluid, found in amyloid plaques and
can bind beta amyloid (Aβ). The two genes share such functionality that together with the
strong statistical support a compelling story emerges in support of CLU as a new AD risk
locus, albeit with an effect size much smaller than APOE. The remaining two genes of
interest, PICALM and CR1 also receive cross support from the two studies but do not
emerge as candidates as strong as CLU. In addition both studies unequivocally conclude that
additional AD genes remain to be found.

Collectively, these data represent a significant advance in the search for the genetic
underpinnings of AD and confirm that GWAS is a powerful and exciting tool for geneticists
as they continue to describe the genetic architecture of AD. However, a word of caution is
still needed. None of these genes were identified in the earlier GWAS studies as important
players, and a reanalysis of these earlier data to determine their level of support for these
new genes is needed. Additional large datasets must be examined to test the reproducibility
and generalizabiily of these effects. Even in studies generating results with p-values of this
magnitude, future studies may not consistently replicate these effects, and the effect sizes
may be even smaller than the initial reports. As demonstrated by Harold et al., and Lambert
et al., developing the necessary samples sizes almost always requires collaboration among
multiple investigators. New consortia such as the Alzheimer Disease Genetics Consortium
(ADGC) funded by the National Institute on Aging are essential and will contribute
significantly in determining the true role for these genes and identifying the remaining
genetic effects in AD.
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