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Abstract Viruses successfully infect host cells by ini-

tially binding to the surfaces of the cells, followed by an

intricate entry process. As multifunctional heterodimeric

cell-surface receptor molecules, integrins have been shown

to usefully serve as entry receptors for a plethora of viruses.

However, the exact role(s) of integrins in viral pathogen

internalization has yet to be elaborately described. Notably,

several viruses harbor integrin-recognition motifs dis-

played on viral envelope/capsid-associated proteins. The

most common of these motifs is the minimal peptide

sequence for binding integrins, RGD (Arg-Gly-Asp),

which is known for its role in virus infection via its ability

to interact with over half of the more than 20 known

integrins. Not all virus-integrin interactions are RGD-de-

pendent, however. Non-RGD-binding integrins have also

been shown to effectively promote virus entry and infec-

tion as well. Such virus-integrin binding is shown to

facilitate adhesion, cytoskeleton rearrangement, integrin

activation, and increased intracellular signaling. Also, we

have attempted to discuss the role of carbohydrate moieties

in virus interactions with receptor-like host cell surface

integrins that drive the process of internalization. As much

as possible, this article examines the published literature

regarding the role of integrins in terms of virus infection

and virus-encoded glycosylated proteins that mediate

interactions with integrins, and it explores the idea of tar-

geting these receptors as a therapeutic treatment option.

Introduction

Viruses may be small in size, but they carry enough genetic

material that they are capable of inflicting some of the

deadliest diseases in the world. If not for their ability to

enter host cells and efficiently impair them, we would not

even talk about them. An efficient pathogen is one that has

evolved a robust entry mechanism for delivery of genetic

material into different target host cells, which is critical for

replication and sustenance. Over the years, viruses as

obligate parasites have evolved successful ways to colonize

host cells, using complicated but well-orchestrated mech-

anisms to enter cells.

The whole process of virus entry—otherwise referred to

as internalization—begins with the virus binding to target

cells. Binding to cells is a reversible process that does not

ensure virus entry. Virus binding or attachment only

ensures viral proximity to cells. However, this process is

the most essential step that kick-starts the whole cascade of

events, resulting in the eventual internalization of the virus.

Several viruses utilize different glycosaminoglycans

expressed on the target cells as binding receptors. Gly-

cosaminoglycans serve as good receptor molecules that

promote binding, as they are expressed ubiquitously in

eukaryotic cells. Some of the most common binding

receptors are heparan sulfate (HS) and chondroitin sulfate

[4, 82, 99, 143, 167]. Virus binding to such receptors brings

them closer to cells and provides the opportunity to interact

with other receptor molecules that promote the actual

internalization process. Several scientists have
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hypothesized that the initial step of virus binding to cells

also induces conformational changes to the glycoproteins

expressed on the target cells that are critical for the virus to

interact with other receptor molecules, thus promoting

internalization.

The actual virus entry is complicated to the extent that a

single virus may utilize different receptors to efficiently

enter different target cells [6, 19]. Viruses have evolved

such mechanisms to be effective pathogens. Such varia-

tions in the entry mechanisms dictate the actual entry route.

For example, Epstein-Barr virus (EBV) enters lym-

phoblastoid cells by fusion but enters B cells via endocy-

tosis [112]. Integrins are a family of receptor molecules

that serve as entry receptors for a variety of different

viruses, including foot-and-mouth disease virus (FMDV)

[97], Kaposi’s sarcoma-associated herpesvirus (KSHV) [5],

herpes simplex virus-2 (HSV-2) [31], adenovirus [168],

human papillomavirus-16 (HPV-16) [3], reovirus [40], and

others. Our understanding of the role of integrins in pro-

moting virus entry is still not complete. In this review, we

have attempted to elaborate on the role of integrins in virus

internalization.

What are integrins?

Integrins play an important role in regulating a variety of

cellular functions, including cell adhesion, cell migration,

and critical signaling processes. This is possible because of

their ability to interact with various ligands, including

extracellular matrix glycoproteins (i.e., collagens, fibro-

nectins, laminins, etc.) and cellular receptors (i.e., vascular

cell adhesion molecule-1 and intercellular cell adhesion

molecules) [85, 86, 124]. Discovered over twenty years

ago, integrins are a large family of transmembrane glyco-

proteins found in a variety of organisms ranging from

sponges, corals, nematodes, and echinoderms to mammals

[20].

There are about 24 integrins that have been identified.

These heterodimeric receptor molecules result from dif-

ferent pairings among 18 a and 8 b subunits [86]. Each

integrin subunit has three domains: an extracellular,

transmembrane, and cytoplasmic domain. The extracellular

domain is the largest part, ranging from 80 to 150 kDa,

while the cytoplasmic domain is a short and largely

unstructured domain of 10-70 amino acid (aa) residues,

with the exception of the b4 subunit, which contains

[1,000 aa residues [148]. The transmembrane domains of

integrins are single-spanning structures comprised of

25-29 aa residues that form a-helical coiled coils that exist

as either homo- or heterodimers [2].

High-resolution X-ray crystallography structural data

are available for the extracellular domains of integrins [9,

98, 183], but no high-resolution experimental X-ray crystal

structures are available for the transmembrane or cyto-

plasmic domain of any integrin heterodimer. Much of the

structural data of the transmembrane and cytoplasmic

domains are based purely on NMR analysis. Integrins can

shift between high- and low-affinity conformations for

ligand binding to transduce intracellular signals following

ligand binding. In the inactive state, the extracellular

domain of integrins is not bound to ligands and exists in a

bent conformation. However, signals from the cell induce

conformational changes that expose the external ligand-

binding site, where ligands bind and transmit the signals

from outside to inside the cell [148].

Although some integrins can bind their ligands in a

resting state, there are other integrins whose binding to

their ligand requires activation through alterations in the

intracellular domains by signaling events, which subse-

quently lead to transmission of signals from inside to

outside of the cell; this is commonly referred to as inside-

out signaling [37]. Ligand binding to extracellular domains

of integrins leads to activation of integrins and subsequent

transmission of cellular signals from outside to inside of

the cell, which is known as outside-in signaling [182].

These intracellular signals are very important for cell

growth, differentiation, and apoptosis. Additionally, intra-

cellular signals lead to formation of the focal adhesion

complex, which is a large and dynamic multi-protein

complex that includes a vast number of intracellular pro-

teins [185].

Along with proteoglycans, integrins form the major

adhesion receptors for extracellular cellular matrix (ECM)

proteins, making them important for signaling events that

determine cell fate [94]. Cellular signaling processes

depend on the pattern of expression and the composition of

integrins, which determine the ECM type a cell can bind

and initiate downstream signaling events [78]. Integrins

provide a connection between the ECM proteins and the

actin cytoskeleton that is crucial for regulating cytoskeletal

organization and intracellular signaling pathways, all of

which are a necessity for cell survival, proliferation, shape,

attachment, migration, and angiogenesis [148].

As adhesion molecules, integrins mediate cell-to-cell,

cell-to-ECM, and cell-to-pathogen interactions, and such

adhesion is regulated through the inside-out signaling

process. Integrin-induced adhesion is very important in the

regulation of the immune system during leukocyte traf-

ficking, migration, and phagocytosis [108]. Adhesion of

integrins to a solid surface is the first step in cell migration

and motility. The vital role of integrins in cell migration

makes them essential for many important biological events,

including embryonic development [58, 189], inflammatory

responses [50, 55, 101], wound healing [7, 24], and tumor

metastasis [81]. There are many pathogens, including
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viruses [45, 89, 146] and bacteria [76, 80], that have the

ability to use integrins with different mechanisms for

invading cells. Through regulation of several cell func-

tions, integrins have a role in human disease. For example,

tumors, cancer, and immunodeficiency disorders are all

associated with altered integrin-mediated adhesion and

migration [84].

The hallmark of tumor development is cell attachment,

migration, and proliferation; all of which are regulated by

integrin-based cellular signaling [71, 113, 170]. Expression

of particular integrins, including a6b4, a6b1, aVb5, a2b1
and a3b1, on tumor cells in the context of activated

cytokine receptors or growth factor receptors leads to

increased disease progression and severity [42]. Integrins

integrate the extracellular and intracellular environments

by binding to ligands outside the cell and cytoskeletal

components and signaling molecules inside the cell [108].

The role of integrins in cancer initiation and progression

makes them targets for several therapeutic agents in clin-

ical trials of cancer therapy.

What are the roles of integrins in virus entry
of cells?

Integrins have been exploited by many pathogens, includ-

ing bacteria and viruses to infect cells. Penetration of the

host-cell plasma membrane is a crucial step for a successful

virus infection [178]. To invade the host cell, several ani-

mal viruses physically interact with integrins to infect cells.

There are many studies that demonstrate the critical role of

membrane rafts in viral entry and infection [22, 153].

Interestingly, many integrins used by viruses for binding

and internalization are localized to and associated with

membrane rafts, which consolidate the role of integrin in

virus internalization and infection [30, 70, 116, 153]. A list

of viruses and the manner by which they utilize integrins to

infect cells is provided in Table 1.

RGD-binding integrins and their effect on virus
infection of cells

Many viruses, including adenoviruses and herpesviruses,

have an RGD (Arg-Gly-Asp) tripeptide motif displayed on

their viral envelope glycoproteins. RGD is the minimal

peptide sequence for binding integrins. As an integrin-

recognition motif, RGD plays an important role in virus

infection by binding one or different combinations of

several integrins, which include aVb1, aVb3, aVb5, a5b1,
aVb6, aVb8, and aIIbb3 [28, 127, 132, 140]. RGD binding

to these integrins activates cellular signals such as phos-

phatidylinositol-3-kinase (PI-3K) and mitogen-activate

protein kinase (MAPK) pathways, which are critical for

supporting virus infection of cells [5, 106].

Many serotypes of adenovirus use RGD-binding inte-

grins to stimulate endocytosis and thereby promote virus

entry [41, 106, 177]. Binding of the RGD motif on the

adenovirus penton base capsid protein to integrins initiates

virus internalization by stimulating endocytosis via cla-

thrin-coated vesicles [11, 104, 150]. Philpott and col-

leagues demonstrated that blocking adenovirus binding to

integrins using an RGD peptide resulted in a 2- to 3-fold

reduction in viral DNA intake [123]. Likewise, studies by

Shayakhmetov and colleagues revealed that the deletion of

the RGD motif in the penton base did not affect virus

attachment but significantly reduced the rate of virus

internalization, specifically at the step that involves endo-

somal escape [140].

Several members of the family Herpesviridae interact

with integrins in an RGD-dependent manner. For example,

herpes simplex virus type 1 (HSV-1) envelope-associated

gH interacts with aVb3, which is critical for virus entry of

cells [122]. KSHV or human herpesvirus 8 (HHV-8)

interacts with a variety of cellular integrins, including

a3b1, aVb3, and aVb5, and activates focal adhesion

kinase (FAK), Src, PI-3K, Rho GTPases, and diaphanous 2

(Dia2)-associated signaling, which is a necessity for the

internalization of the virus [28, 117]. The ability of KSHV

to interact with integrins is mediated by the RGD motif of

envelope-associated gB [5, 61, 74]. Interestingly, the RGD

motif of gB is also required to mediate attachment of cells

to the endothelium [44].

RGD-binding integrins are also important for other

viruses. For example, the interaction between RGD of

capsid protein VP1 of coxsackievirus A9 and aVb3 is

essential for virus binding and entry into cells [77, 130,

131]. There are also other studies that demonstrate that a

high-affinity interaction between RGD of coxsackievirus

A9 and aVb6 (compared to aVb3) is important for cell

entry and virus uncoating [77, 138, 180]. Notably, the

RGD sequence is highly conserved in the VP1 protein of

FMDV and mediates virus attachment to integrins, and

thus internalization [47]. Synthetic RGD peptides have

been shown to block FMDV attachment in a dose-de-

pendent manner [57, 88, 119]. HIV-1 Tat protein interacts

with RGD-binding aVb5, aVb3, and a5b1 and initiates

the integrin endocytic pathway, which is essential for

entry of the virus [13, 160, 173]. HIV-1 Tat protein’s

interaction with RGD-binding integrin(s) is important for

adhesion of target cells [12, 114]. Interactions of the more

deadly Ebola virus with a5b1 is deemed critical for

modulating infection of fibroblasts [135]. Thus, RGD

interactions between viral proteins and integrins seem to

regulate not only virus infection of cells but also the

associated pathogenesis.
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Do viruses utilize non-RGD-binding integrins
to enter cells?

Not all integrins recognize and interact with the conserved

RGD motif of viral proteins. There are multiple other non-

RGD-binding integrins that drive virus entry and infection

[105, 150]. Some of the non-RGD-binding integrins that

promote entry and infection of HCMV [54], KSHV [174],

simian virus 40 (SV40) [149], and Ross River virus (RRV)

[96] are a1b1, a2b1, a4b1, a6b1, a9b1 and axb2.
a1b1 and a2b1 are collagen receptors that are utilized

by viruses for cell entry and infection. RRV is an alpha-

virus that is endemic to Australia and New Guinea and is

etiologically associated with epidemic polyarthritis [75,

115]. RRV interacts with a1b1 to infect target cells [60,

96]. Infection of RRV has been shown to be blocked by

function-blocking antibodies to a1b1, soluble a1b1 inte-

grin, or peptides representing the a1b1 integrin-binding

site on collagen IV [96]. Rotavirus utilizes different non-

RGD binding domains to interact with integrins. (i) The

Tyr-Gly-Leu (YGL) sequence of the rotavirus spike pro-

tein, VP4, interacts with a4b1 and a4b7 and helps the

rotavirus to bind and enter cells [66], and (ii) the GPR

sequence in the rotavirus spike protein VP7 interacts with

axb2 and helps the rotavirus to enter cells [64, 65]. Inte-

grins also have a critical role to play in rotavirus patho-

genesis. Integrin a1b1 and a2b1 are important receptors

for enterotoxin function and pathogenesis through their

interactions with rotavirus NSP4, which eventually results

in diarrhea [137].

Human echovirus 1 (EV1), which belongs to the family

Picornaviridae (a family of RNA viruses) is implicated in

many human diseases, including meningoencephalitis and

carditis. EV1 successfully infects cells by interacting with

a2b1 integrin in an RGD-independent manner. In fact, a2b1
clustering on the surface of cells is the determining factor

that defines the success rate of the EV1-mediated signaling

pathway and virus infection of cells [15, 92, 186]. Also, HIV-

1 interacts with the non-RGD-binding integrin a4b7 via

gp120, which is critical for efficient cell-to-cell spread of the

virus [10, 35, 72]. More interestingly, Cicala et al. hypoth-

esize that gp120-a4b7 interactions play an important role in

the very early events following sexual transmission of HIV

andmay have important implications in the design of vaccine

strategies for the prevention of acquisition of HIV infection

[36]. Stergiou et al., determined thata2b1 plays a crucial role
inmodulating SV40-induced cellular signaling and infection

[149]. There is also evidence that indicates a role for a2b1
integrin in promoting human papillomavirus (HPV)-induced

squamous epithelial dysplasia [161].

Apart from the traditional RGD motif, herpesvirus gly-

coprotein B (gB) possesses a disintegrin-like domain (DLD)

[53, 54]. A role for DLD in HCMV and KSHV entry and

infection has been described recently. HCMV interacts with

a2b1 and a6b1 [53], and KSHV interacts with a9b1 [174]

via the DLD contained within gB to successfully enter cells.

Table 1 Integrins used by different viruses and their role in virus infection

Virus Integrins Role of integrins References

Human adenovirus type 2/5 avb3, avb5, avb1, a5b1,
aLb2, aMb2

Cell entry, endosome escape [32, 68, 151, 177, 181]

Human cytomegalovirus (HCMV) a2b1, a6b1, avb3 Cell entry [53]

Kaposi’s sarcoma-associated herpesvirus (KSHV) a3b1, aVb3, aVb5, a9b1 Cell entry [5, 28, 169, 174]

Epstein-Barr virus (EBV) aVb3, aVb5, a5b1 Cell entry [166]

Human immunodeficiency virus 1 (HIV-1) a4b7, aVb5, aVb3, a5b1 Cell attachment [10, 35, 114, 173]

HPS-associated hantaviruses NY-1 and

Sin Nombre virus (SNV)

aVb3, allbb3 Cell attachment, entry [62, 127]

Rotavirus a4b1, a4b7, a2b1, aVb3, axb2 Cell attachment, entry [66, 67, 69, 107]

Echovirus types 1 a2b1, aVb3 Cell attachment, entry [49, 92, 162]

Echovirus types 9 aVb3 Cell attachment, entry [150]

Foot-and-mouth disease virus (FMDV) a5b1, aVb3, aVb6, aVb8, aVb1 Cell attachment, entry [88, 100, 176]

Coxsackievirus A9 aVb3, aVb6 Cell attachment, entry [129, 138, 150, 164]

Murine polyomavirus a4b1 Cell entry [25]

Vaccinia virus b1 Cell entry [87]

West Nile virus avb3, avb1 Cell entry [33, 134]

Simian virus 40 a2b1 Cell attachment, entry [149]

Ross River (RR) virus a1b1 Cell attachment, entry [96]

Human papillomavirus a6b4 Cell attachment [37, 184]

Ebola virus a5b1 Cell entry [135]
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Theminimum component of the disintegrin module required

for integrin engagement is the 12- to 13-amino-acid disin-

tegrin loop, for which a consensus sequence has been

described: RX6DLXXF [48]. In the case of KSHV gB, the

DLD sequence is RX5-7D/ELXXF/LX5C (aa 66-85; with a

conservative D to E substitution). Overall, viruses seem to

use non-RGD- and RGD-binding integrins to a comparable

extent as a means of binding and entering cells.

Comparison of the roles of RGD- versus non-RGD-
binding integrins in assisting virus infection of cells

Integrins play a crucial role in cellular function through

interactions with a variety of ligands. Integrins are ligand

specific and can be grouped into four major groups: lami-

nin-binding integrins (a1b1, a2b1, a3b1, a6b1, a7b1, and
a6b4), collagen-binding integrins (a1b1, a2b1, a3b1,
a10b1, and a11b1), leukocyte integrins (aLb2, aMb2,
aXb2, and aDb2), and RGD-recognizing integrins (a5b1,
aVb1, aVb3, aVb5, aVb6, aVb8, and aIIbb3) [155].

Interestingly, RGD and non-RGD-binding integrins aid

equally in the internalization of viruses (Table 2).

The key cellular components that are altered
by interactions of integrin with viruses

Virus-integrin binding induces changes in the quaternary

structure of the integrin resulting in clustering of subunits,

which increases virus affinity, cytoskeletal rearrangement,

and subsequent virus internalization [150]. These confor-

mational changes are critical for integrins to achieve out-

side-in and inside-out signaling necessary for various

cellular functions, including cytoskeleton activation,

endocytosis, gene expression, cell motility, attachment, cell

cycle, cell growth, apoptosis, and differentiation [28, 108].

On the other hand, interactions of viruses with cellular

integrins induce conformational changes in the viral sur-

face proteins, helping to expose the essential domains

required for virus entry into a host cell [107].

Through integrin activation, viruses can induce FAK

phosphorylation which is followed by the activation of

several focal adhesion-associated signal molecules,

including Src, PI-3K, Rho GTPases (RhoA, Rac, and

Cdc42), Dia2, and other effector molecules, such as AKT,

ezrin, protein kinase C (PKC), MAPK (MEK, ERK1/2),

NF-kB, and p38MAPK [5, 28]. Focal adhesion and asso-

ciated molecules play critical roles in mediating the inter-

nalization of viral DNA into target cells [1, 95].

Src is one of the cellular components that is acti-

vated immediately upon activation of FAK by virus-

integrin interactions. Src-mediated tyrosine phosphory-

lation of clathrin regulates clathrin translocation to the

plasma membrane, which is important for interactions

of clathrin with a number of other essential proteins,

including AP2, Eps15, and dynamin. Src-mediated tyr-

osine phosphorylation also plays a role in endocytosis

by releasing the internalized endocytic vesicles and

initiating the assembly of the plasma-membrane-asso-

ciated Ras activation complex [21, 26]. PI-3K and Ras

are directly responsible for activating Rho and Rab

GTPases. These GTPases, along with the activated

ERK1/2, are critical for the microtubule and microfila-

ment reorganization that determines the formation of

various types of endocytic vesicles and their move-

ments, as well as acting as a force to drive the virus

inside and closer to the nuclear membrane [28].

Many viruses use microtubules and cytoplasmic dynein

for nuclear targeting [43]. Virus-induced activity of Rho

GTPases such as RhoA and Rac1 increase the efficiency of

viral trafficking along microtubules to the nucleus. Thus,

inactivation of these Rho proteins affects the stability of

microtubules, thereby limiting the delivery of viral nucleic

acids into the nucleus [110]. Ezrin is the best-studied

member of the downstream effector molecules induced by

Rho GTPases, and it is a critical element for cross-linking

the actin cytoskeleton with the plasma membrane and

inducing the morphological changes that are commonly

observed in cells being infected by viruses and other

pathogens [139]. Rac, Rho, Cdc42, and Rab5 also act as

switching molecules that are essential for internalization of

any pathogen due to their ability to modulate actin

dynamics, formation of endocytic vesicles and their fission,

Table 2 Functions of RGD and non-RGD binding integrins

Class Integrin Functions in virus

infection

References

RGD

binding

aVb1 Cell attachment, entry,

signaling, and

endosome escape

[5, 62, 83, 100, 107,

127, 140, 150,

176]
aVb3

aVb5

a5 b1

aVb6

aVb8

aIIbb3

aMb2

aLb2

a3b1

Non-

RGD

binding

a1b1 Cell attachment, entry,

signaling, and

endosome escape

[10, 25, 28, 32, 35,

37, 53, 68, 96,

169, 173]
a2b1

a4b1

a6b1

a9b1

axb2

a6b4
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cytoskeletal transport, endosome movement, fusion of

endocytic vesicles, and recycling [1, 27, 139].

Adenoviruses, echoviruses, FMDV, parechoviruses,

parvoviruses, rotaviruses, KSHV, hantaviruses, and others

enter target cells via endocytosis by physically interacting

with integrins, resulting in the activation of the FAK–Src–

PI-3K signaling pathway [111, 139, 179]. PI-3K-induction

in a integrin-FAK-Src-dependent manner plays an impor-

tant role in virus entry and infection via activation of the

Rho family of GTPases and ezrin, and mediates actin

cytoskeleton reorganization. Interestingly, these events

initiate a cascade of intracellular signals that eventually

activate the mitogen-activated protein kinase (MAPK)

pathways, which are very important in modulating a variety

of cellular processes, including proliferation, differentia-

tion, survival, and apoptosis [117, 163]. In terms of cellular

machinery, actin cytoskeleton reorganization is the crux

that supports integrin-associated signaling-induced virus

entry. Apart from working as a structural platform stabi-

lizing cellular signaling molecules, actin provides

mechanical force for endosome formation and endocytic

vesicle propulsion [139, 157]. Microtubules and microfil-

aments along with other cytoskeletal elements play an

important role in controlling the intracellular movement of

many viruses [39, 102, 103, 118, 126].

A key role for carbohydrate moieties on the cell
surface in virus-integrin interactions

Successful virus infection involves multiple steps, which

include initial binding to the cell surface, internalization,

replication, and egress. In the initial step of virus infection,

these versatile infectious agents can bind several different

cellular surface molecules, such as proteins, lipids, and

carbohydrates. These molecules may function in mediating

attachment (i.e., concentrating virus on the cell surface) or

serve as receptors or co-receptors facilitating viral endo-

cytosis, conformational changes, and the initiation of sig-

naling pathways associated with infection [121, 158].

In addition to the protein receptor, which is generally

dubbed the ‘principal’ receptor, the carbohydrate moiety of

host-cell membrane proteoglycans, glycosphingolipids, and

glycoproteins also serve as viral receptors. For instance,

HIV-1, via its glycoprotein subunits gp41 and gp120,

attached to cell-surface carbohydrates (i.e., glycosphin-

golipids, galactosylceramide, and heparan sulfate proteo-

glycans [HSPGs]) as a means of promoting actual virus

binding to cells [8, 51, 171]. Similarly, several human

herpesviruses, including HSV [147], KSHV [4], and CMV

[93], make their initial contact with cells by binding to cell-

surface HSPGs.

Expressing many glycan-binding proteins [46], viruses

have been shown to bind host-cell carbohydrate attachment

receptors in what is considered a charge-transfer-based

lectin-sugar interaction [18]. Lectins are glycoproteins that

bind sugar with high specificity [8], and these lectin-gly-

coconjugate interactions have been shown to involve

hydrogen bonding, van der Waals interactions, and

hydrophobic binding [8, 159]. Many enveloped and

nonenveloped viruses have multiple lectin sites on their

multimeric surface proteins; the apparent lectin clustering

allows for potentially numerous interactions with cellular

surface receptors and notably higher-affinity binding to the

oligosaccharide attachment receptors compared to mono-

meric endogenous lectins [18, 79, 142, 158, 175]. The

influenza virus haemagglutinin glycoprotein is one exam-

ple of a common viral lectin-binding protein that binds to

sialyloligosaccharide carbohydrate receptors on epithelial

cell surfaces with high affinity [144, 172, 187]. Similarly,

sialyloligosaccharide receptors serve as a means of cell

attachment for other viruses, including human JC virus,

Sendai virus, and sialyloligosaccharide-dependent strains

of rotavirus and reovirus [18]. Specifically, C-type lectins

are associated with HIV, SARS coronavirus, and measles

virus infections. Likewise, S-type, P-type and I-type lectins

are important for promoting infection of HIV, HTLV-

1,VZV, and porcine reproductive and respiratory syndrome

virus (PRRSV) [38, 63, 133].

In general, binding of viruses to carbohydrate moieties

on the surface of cells is the key step that induces con-

formational changes in the viral structure that are critical

for interactions with entry-promoting receptors such as

integrins. Blocking this step of virus interactions with

carbohydrate moieties impairs viral entry via integrins [4].

A list of viruses that utilize carbohydrate moieties to pro-

mote virus binding to cells is provided in Table 3.

Integrins are targeted specifically to develop
therapeutic strategies to treat infections

Integrins are exciting pharmacological targets because

(i) they are exposed on the cell surface and are sensitive to

pharmacological blockades and (ii) they regulate the

interactions of cells and precisely sense their microenvi-

ronment. Inhibitors of integrin functions have been suc-

cessfully tested as drugs to treat several pathological

conditions. PSK1404, a nonpeptide antagonist of avb3,
inhibited osteoclast-mediated bone resorption in a cancer

animal model of bone loss [188]. Volociximab, now known

as M200, is a humanized monoclonal antibody that binds

specifically to a5b1 integrin [14]. In a phase I trial con-

ducted by Ricart et al., volociximab was shown to stabilize
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disease in patients with advanced solid tumors [128].

Vedolizumab, a humanized monoclonal antibody that

specifically recognizes the a4b7 heterodimer, underwent a

phase 3 trial to determine its effectiveness and safety in

treating patients with ulcerative colitis [52]. In that study,

vedolizumab as both an initial and maintenance therapy for

patients with active ulcerative colitis was shown to be

effective in achieving a response and remission [52].

Recently, natalizumab, one of the five therapeutic drugs

targeting integrins, has been approved for clinic use. This

engineered pan-a4 antibody has been approved for recur-

rent multiple sclerosis (MS) patients and has been shown to

yield promising results for relapsed MS patients by

reducing the frequency of relapse, a unique therapeutic

result [125]. Its efficacy against Crohn’s disease has also

been demonstrated [125].

Though integrins have been targeted to treat cancers and

other pathological disorders, we have not made a signifi-

cant breakthrough in targeting integrins to treat virus

infections. This does not seem encouraging, especially with

many viruses having been shown to utilize integrins to

enter cells. This may be due to the fact that (i) viruses

utilize multiple receptor molecules to enter the same cell

and that (ii) the receptors utilized by the same virus to enter

cells in vitro and in vivo may differ [56]. To overcome this

pitfall, we may have to decipher the key elements in the

motifs on the virus that interact with integrins and conduct

detailed comparative studies outlining the manner by

which the virus enters cells under in vitro and in vivo

conditions. This will be crucial for gaining comprehensive

knowledge of the receptors utilized by viruses to infect

cells. Such studies, we hope, will get us one step closer to

developing treatment strategies targeting integrins to

combat viral infections.

Conclusions and recommendations

Integrins are just not receptors expressed on the surface of

cells. They regulate a diverse set of cellular functions are

involved in the pathology of autoimmune diseases [73] and

viral infections [174]. Viruses utilize different types of

integrins, which are classified primarily based on the

manner in which they interact with their ligands, ECM

proteins. Integrins physically recognize and interact with

distinct amino acid sequences contained within the ligands

or pathogens. These can be RGD or any other specific

(non-RGD) sequences. Whatever the amino acid recogni-

tion sequence may be, integrins (RGD and non-RGD) seem

to generally aid in virus attachment and entry into cells.

The function of integrins is not limited to providing

anchoring for the virus. They are also critical for preparing

the cells to support a permissive infection via outside-in

signaling. Expression of integrins seems to be of relevance

Table 3 Carbohydrate moieties that interact with viruses

Virus Viral protein Carbohydrate moiety Cell-surface glycoprotein References

KSHV Glycoproteins B and K8.1 HS Proteoglycans [4, 16]

HSV-1 Glycoproteins B and C HS Proteoglycans [141, 154,

165]

VZV gB (gpII) HS Proteoglycans [90]

CMV gB and gM (gC-II) HS Proteoglycans [93, 120]

HHV7 gB and gp65 HS Proteoglycans [136, 145]

BPV Hemagglutinin Sialic acid and O-linked alpha2,3

neuraminic acids

Sialylglycoproteins and

glycophorin A (GPA)

[17, 91]

Human norovirus

[23]

Histo-blood group antigens

(HBGA) and HS

Glycosphingolipids and

proteoglycans

[156, 158]

Vaccinia virus HS Proteoglycans [18]

HIV-1 Subunits gp41 and gp120 Galactosylceramide Glycosphingolipids and

galactosylceramide

[51, 171]

Influenza virus Haemagglutinin and

neuraminidase

Sialyloligosaccharide Glycoproteins or

glycosphingolipids

[144, 187]

JC virus Sialyloligosaccharide Glycoproteins or

glycosphingolipids

[152]

Sendai virus Sialyloligosaccharide Glycoproteins or

glycosphingolipids

[59, 109]

Rotavirus virus Sialyloligosaccharide Glycoproteins or

glycosphingolipids

[34]

Reovirus virus Sigma1 protein Sialyloligosaccharide Glycoproteins or

glycosphingolipids

[29]
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in the initial infection as well as in the pathobiology of the

virus-induced condition. Recent growth in the field of

biomedical sciences has already aided in the development

of therapeutics based on integrin interactions to treat var-

ious cancers and other pathological conditions. To date,

such novel therapeutics to treat virus infections are still

only a dream, even though multiple viruses seem to utilize

integrins to enter cells. Future studies, we hope, will work

toward understanding the roles of integrins in virus infec-

tion and associated pathogenesis, as such studies may result

in novel treatment regimens aimed at preventing the

internalization of viruses. After all, the ideal method of

treating infection is to block the entry of a pathogen into

cells.
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