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In a recent publication [Phys. Rev. D 106, 104004 (2022)], we advanced a program that Buchdahl
originated but prematurely abandoned circa 1962 [Nuovo Cimento, Vol. 23, No 1, 141 (1962)].
Therein we obtained an exhaustive class of metrics that constitute the branch of non-trivial solutions
to the pure R2 field equation in vacuo. The Buchdahl-inspired metrics in general possess non-
constant scalar curvature, thereby defeating the generalized Lichnerowicz theorem advocated in
[3–6]. We found that the said theorem makes an overly strong assumption on the asymptotic falloff
in the spatial derivatives of the Ricci scalar, rendering it violable against the Buchdahl-inspired
metrics. In this paper, we shall further extend our work mentioned above [1] by showing that,
within the class of Buchdahl-inspired metrics, the asymptotically flat member takes on the following
exact closed analytical expression

ds2 =
∣∣∣1− rs

r

∣∣∣ krs

{
−
(

1− rs

r

)
dt2 +

(
1− rs

r

)−1 ρ4(r)
r4 dr2 + ρ2(r) dΩ2

}
in which the areal coordinate ρ is related to the radial coordinate r per

ρ(r) =
ζ rs
∣∣1− rs

r

∣∣ 1
2 (ζ−1)∣∣∣1− sgn

(
1− rs

r

) ∣∣1− rs
r

∣∣ζ∣∣∣ ; ζ :=
√

1 + 3k2/r2
s

The special Buchdahl-inspired metric, as we shall call it as such hereafter, is characterized by a
“Schwarzschild” radius rs and the Buchdahl parameter k, the latter of which arises via the higher-
derivative nature of R2 gravity. The case k = 0 corresponds precisely to the classic Schwarzschild
metric. Equipped with this exact expression, we shall investigate pure R2 spacetime structures.
The asymptotically flat spacetime is split into an interior region and an exterior region, with the
boundary situated at ρ = rs. We find that, except for k = 0 and k = −rs, the Kretschmann invariant
of this metric exhibits an additional singularity at the interior-exterior boundary. Accordingly, the
surface area of the interior-exterior boundary is found to vanish for k ∈ (−∞,−rs) ∪ (0,+∞),
diverge for k ∈ (−rs, 0), equal 4πr2

s for k = 0, and equal 16πr2
s for k = −rs. This behavior signals

a naked singularity or a wormhole. We shall also analytically construct the Kruskal-Szekeres (KS)
diagram for pure R2 spacetime. The Buchdahl parameter k is found to modify the KS diagram
in some fundamental way. A striking result is that the (modified) KS diagram develops a “gulf”
that sandwiches between the four established quadrants. The “gulf” resides strictly on the interior-
exterior boundary and does not correspond to any domain in the physical spacetime, specified by
(t, r, θ, φ). The nature of this novel “virtual” region in the KS diagram is an open question, related
to which we make a conjecture on a possible path forward.

I. INTRODUCTION: BUCHDAHL’S 1962
PROGRAM IN PURE R2 GRAVITY

Pure R2 gravity is among the simplest candidates
for modified gravity. Its action contains a single term,
1

2κ
∫
d4x
√
−gR2, with κ being a dimensionless param-

eter, while the traditional Einstein-Hilbert term is sup-
pressed. The theory was considered as early as the 1960’s
by Buchdahl as a parsimonious prototype of higher-order
gravity that possesses an additional symmetry – the scale
invariance [2]. There is a surge of interest in the pure R2

action of late [7–10] within a larger context of modified
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gravity [11–16]. Pure R2 gravity is the only theory that
is both ghost-free and scale invariant [17, 18].

In a seminal – yet obscure – 1962 Nuovo Cimento paper
entitled “On the Gravitational Field Equations Arising
from the Square of the Gaussian Curvature” [2], Buch-
dahl pioneered a program in search of static spherically
symmetric vacua for pure R2 gravity. He established
therein that the vacua in general possess non-constant
scalar curvature, as a result of the higher-derivative struc-
ture of the theory. Surpassing several obstacles, his ef-
forts culminated in a non-linear second-order ordinary
differential equation (ODE) which required being solved.
The finish line was within his striking distance: the R2

vacua Buchdahl sought after hinged on the analytical so-
lution – yet to be found in his time – to the ODE he
derived. Unfortunately, Buchdahl deemed his ODE in-
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Figure 1: Upper panel: the Buchdahl-inspired metric family
and its subsets. Lower panel: their relation with the Ricci-
scalar-flat family. The special Buchdahl-inspired metric in
the intersection is asymptotically flat, whereas the Buchdahl-
inspired metric with Λ 6= 0 is asymptotically constant.

tractable and prematurely suspended his pursuit for an
analytical solution. Until our recent work [1], his ODE
had remained untackled; and to this day, his Nuovo Ci-
mento paper has largely gone unnoticed by the gravita-
tion research community 1.

Recently, we have managed to bridge the remaining
gap in the Buchdahl program by identifying a compact
solution to his ODE [1]. With this impasse finally over-
come, we proceeded to accomplishing Buchdahl’s ulti-
mate goal. The outcome is an exhaustive class of pure
R2 vacua expressible in a compact form, which we called
the Buchdahl-inspired solution, to be summarized below.

1 Buchdahl’s paper has gathered merely 40+ citations since its
publications in 1962, according to NASA ADS and InpireHEP
citation trackers. Yet, none of these citations attempted to solve
Buchdahl’s ODE.

The Buchdahl-inspired solution

In [1] by reformulating Buchdahl’s original derivation
which was quite cumbersome, we obtained the Buchdahl-
inspired metric, cast in a parallel resemblance to the clas-
sic Schwarzschild-de Sitter (SdS) metric, per

ds2 = e
k
∫

dr
r q(r)

{
p(r)

[
−q(r)

r
dt2 + r

q(r)dr
2
]

+ r2dΩ2
}

(1)

The pair of functions {p(r), q(r)} obey the “evolution”
rules

dp

dr
= 3k2

4 r
p

q2 (2)

dq

dr
=
(
1− Λ r2) p (3)

and the non-constant Ricci scalar equals to

R(r) = 4Λ e−k
∫

dr
r q(r) (4)

This metric is specified by two parameters, Λ and k, re-
sulted from the fourth-derivative nature of R2 gravity, a
theory that requires two additional boundary conditions
as compared with second-derivative theories, such as the
Einstein-Hilbert action. If the spacetime structures as-
sociated with this metric are proven to be stable, then k
would stand for new higher-derivative hair which allows
the Ricci scalar to vary on the manifold, per Eq. (4).
At largest distances, the Ricci scalar converges to 4Λ,
characterizing an asymptotically constant spacetime.
To allay any lingering doubt, in [1] and [19] the cur-

rent author and Shurtleff independently checked that the
solution given in Eqs. (1)–(4) satisfies the pure R2 vacuo
field equation

R
(
Rµν −

1
4gµνR

)
+
(
gµν �−∇µ∇ν

)
R = 0 (5)

for all values of Λ ∈ R and k ∈ R, thereby affirming its va-
lidity. We must stress that the solution presented above
is able to defeat the generalized Lichnerowicz theorem ad-
vocated in [3–6] by evading an overly strong condition on
the asymptotic falloff inDiR assumed in the theorem; see
our companion papers in this “Beyond Schwarzschild–de
Sitter spacetimes” series for a detailed exposition [1, 20].
The most crucial element of the metric is the new

(Buchdahl) parameter k which makes the metric non-
Schwarzschild. At k = 0, the Buchdahl-inspired metric
duly recovers the SdS metric. To see this, at k = 0
the evolution rules (2)–(3) admit the solution p(r) ≡ 1
and q(r) = r − Λ

3 r
3 − rs, with rs being a constant, upon

which metric (1) is readily brought into the SdS form with
a constant curvature R = 4Λ everywhere. A non-zero
value of k would trigger a non-linear interplay between
p(r) and q(r) per Eqs. (2)–(3) and enable a non-constant
curvature to manifest, per Eq. (4).
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The relations between the Buchdahl-inspired metric
and the SdS metric as well as the null-Ricci-scalar spaces
are depicted by the Venn diagrams in Fig. 1. By super-
seding the SdS metric, the Buchdahl-inspired spacetime
is a bona fide enlargement of the SdS spacetime, suit-
ably regarded as a framework “beyond Schwarzschild–de
Sitter” [1].

The curious case of Λ = 0

Also shown in Fig. 1 is the special Buchdahl-inspired
metric which is the Buchdahl-inspired metric with Λ
set equal to zero. This special metric wholly occupies
the intersection of the branch of (non-trivial) Buchdahl-
inspired metrics and the branch of (trivial) null-Ricci-
scalar spaces.

Surprisingly, despite being non-linear, the evolution
rules (2) and (3) are fully soluble for Λ = 0. In this paper
we shall exploit this advantage to derive a closed analyt-
ical expression for the special Buchdahl-inspired metric.

Equipped with this exact analytical solution, we then
are empowered to investigate the properties of R2 space-
time structures that live on an asymptotically flat back-
ground. These structures are described by the special
Buchdahl-inspired metric.

—————–∞—————–

Our paper is organized in four major sections. Sec. II
is devoted to deriving the special Buchdahl-inspired met-
ric. Sec. III produces a number of surprising properties
in the Kretschmann invariant and the surface area of the
interior-exterior boundary of R2 spacetime structures.
Sec. IV analytically constructs a modified Kruskal-
Szekeres (KS) diagram for the special Buchdahl-inspired
metric and uncovers yet a novel feature of its KS diagram.
Finally, Sec. V discusses the potential implications of our
finding in various areas in modified gravity.

II. DERIVATION OF THE SPECIAL
BUCHDAHL-INSPIRED METRIC

This rather dense section derives the closed analytical
solution in step-by-step details, with Lemma 13 being
our ultimate result. We start with solving the evolution
rules (2)–(3) for Λ = 0 in Sec. IIA. We then, in Sec. II B,
expose the inadequacy of the standard Schwarzschild ra-
dial coordinate r for this metric, resulting in the need for
a new radial coordinate. Secs. II C and IID introduce
two coordinate transformations in sequel that lead to the
final solution, described in Sec. II E.

A. Analytical solution to the evolution rules with
Λ = 0

Lemma 1. For Λ = 0, the set of equations (2)–(3) ad-
mits the following solution:

r = |q − q+|
q+

q+−q− |q − q−|
−

q−
q+−q− (6)

p = (q − q+)(q − q−)
r q

(7)

q± := 1
2

(
−rs ±

√
r2

s + 3k2
)

(8)

with rs ∈ R and q± representing the two real roots of the
algebraic equation

q2 + rs q −
3k2

4 = 0 (9)

Proof. For Λ = 0, the evolution rules (2)–(3) become

pr = 3k2

4r
p

q2 (10)

qr = p (11)

which give

qrr = 3k2

4r
qr
q2 (12)

Upon a change of variable r = ex:

qr = dq

dx

dx

dr
= qx e

−x (13)

qrr = d

dx

(
qxe
−x) dx

dr
= (qxx − qx) e−2x (14)

Equation (12) becomes

qxx =
(

1 + 3k2

4q2

)
qx (15)

which can be recast as

d

dx

(
dq

dx

)
=
(

1 + 3k2

4q2

)
dq

dx
(16)

or, equivalently

d

dq

(
dq

dx

)
= 1 + 3k2

4q2 (17)

Upon integrating, it yields a first-order ODE

dq

dx
= q − 3k2

4q + rs (18)

with rs being an integration constant. Let q± :=
1
2

(
−rs ±

√
r2

s + 3k2
)
be the two real roots of the alge-

braic equation (9). A further integration of (18), with
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Figure 2: Plots of p, r, pq and pq/r as functions of q. Plots are for rs = 1, k = rs. See Remark 4 for explanations.

the integration constant for x set equal zero without loss
of generality, produces

x =
∫

q dq

(q − q+)(q − q−) (19)

= q+

q+ − q−
ln |q − q+| −

q−
q+ − q−

ln |q − q−| (20)

Restoring r = ex, we then obtain

r = |q − q+|
q+

q+−q− |q − q−|
−

q−
q+−q− (21)

Additionally, from (11) and (18), together with x = ln r,
we have

p = qr = qx
dx

dr
= qx

1
r

(22)

= 1
r

(
q − 3k2

4q + rs

)
(23)

= 1
rq

(q − q+)(q − q−) (24)

Combining Lemma 1 with Eq. (1), we arrive at the fol-
lowing analytical result.

Corollary 2. For Λ = 0, the Buchdahl-inspired metric
(1)–(3) is fully analytic, per

ds2 = e
k
∫

dr
r(q)q

{
−p(q)q
r(q) dt

2 + p(q)r(q)
q

dr2 + r2(q)dΩ2
}
(25)

r(q) = |q − q+|
q+

q+−q− |q − q−|
−

q−
q+−q− (26)

p(q) = (q − q+)(q − q−)
r(q) q (27)

k =
(
−4

3q+q−

)1/2
(28)

Remark 3. We shall call the Buchdahl-inspired metric
with Λ = 0 the special Buchdahl-inspired metric. We
shall also choose a convention of rs > 0 in the rest of the
paper. The case of rs = 0 is considered in Appendix A.
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Remark 4. Using Eqs. (26) and (27), we produce the
plots of p, r, pq and pq/r against q, as shown in Fig. 2.
The parameters are k = rs = 1, making q+ = 1/2, q− =
−3/2, and r∗ := |q+|

q+
q+−q− |q−|

−
q−

q+−q− = (27)1/4/2 ≈
1.14. In the upper left panel, the four quadrants of the
p, q diagram are labeled (I), (II), (III), (IV) counterclock-
wise, respectively. In the other three panels, the quad-
rant labels (as defined in the {p, q} plot) are attached
accordingly.

Remark 5. From Eq. (27), it is straightforward to prove
that the special Buchdahl-inspired metric supports a du-
ality relation:

q p(q) = r(q+ + q− − q) (29)

Remark 6. Note that q− < 0 < q+, by virtue of their
definitions in Eq. (8). The zeros of r and p occur at
q = q+ and q = q−. Furthermore,

p =
{
> 0 for q ∈ (q−, 0) ∪ (q+,+∞)
< 0 for q ∈ (−∞, q−) ∪ (0, q+)

(30)

pq =
{
> 0 for q ∈ (−∞, q−) ∪ (q+,+∞)
< 0 for q ∈ (q−, q+)

(31)

Remark 7. From the duality relation (29) and the defi-
nition of q± in (8),

q p(q)
r(q) = r(q+ + q− − q)

r(q) =
∣∣∣∣q − q+

q − q−

∣∣∣∣ 1√
1+3k2/r2

s (32)

making q p
r vanish as q → q+ and diverge as q → q−.

These behaviors account for the lower right panel in Fig.
2.

Remark 8. As q → 0±, r approaches r∗ :=
|q+|

q+
q+−q− |q−|

−
q−

q+−q− , whereas p → ∓∞, respectively.
One can also show that, for q ∈ (q−, q+),

dr

dq
= −q (q+ − q)

q−
q+−q− (q − q−)−

q+
q+−q− (33)

forcing r(q) to peak at q = 0 in the interval (q−, q+).
These behaviors explain the two upper panels in Fig. 2.

B. Problems with the Schwarzschild radial
coordinate in R2 gravity

The generic Buchdahl-inspired metric (1) is ex-
pressed in terms of the Schwarzschild coordinate system,
(t, r, θ, φ). This system would be problematic for metric
(25)–(28) however, as we shall see below.

Despite Lemma 1 yielding the relation r(q), the inver-
sion operation to express q in terms of r using elementary
functions cannot be carried out. The reason is that the
two exponents, q+

q+−q− and q−
q+−q− , in (6) are “out of sync”

with each other. This trouble is further complicated by
the multi-valuedness of q(r).
To see the multi-valuedness problem, we shall re-plot

Fig. 2 but with a small twist; we shall re-plot it against
the variable r in place of q. In Fig. 3 we plot q, p,
pq and rq as functions of r; again, with k = rs = 1,
q+ = 1/2, q− = −3/2, and r∗ := |q+|

q+
q+−q− |q−|

−
q−

q+−q− =
(27)1/4/2 ≈ 1.14. The quadrant labels (I), (II), (III) and
(IV) defined from Fig. 2 are carried over to Fig. 3; see
Remark 4. In the leftmost panel of Fig. 3, the function
q(r) is double-valued for r > r∗, and quadruple-valued
for r < r∗. This is the multi-valuedness problem which
further handicaps the inversion of q in terms of r.
The multi-valuedness means that r, despite playing the

Schwarzschild radial coordinate in metric (1)–(3), is not a
suitable variable for metric (25)–(27). However, looking
back at Fig. 2, we immediately realize that the variable
q can be a suitable coordinate because all other variables
– viz. r, p and others – are single-valued functions of q.
This observation guides us to the first change of variable
in the next section.

C. A first change of variable

Corollary 9. The special Buchdahl-inspired metric is
fully analytic with respect to the variable q, per

ds2 = eω(q)
{
−p(q) q
r(q) dt

2 + r(q)
p(q) q dq

2 + r2(q)dΩ2
}
(34)

r(q) = |q − q+|
q+

q+−q− |q − q−|
q−

q−−q+ (35)

q p(q)
r(q) = sgn

(
q − q+

q − q−

) ∣∣∣∣q − q+

q − q−

∣∣∣∣
rs

q+−q−
(36)

eω(q) =
∣∣∣∣q − q+

q − q−

∣∣∣∣ k
q+−q−

(37)

k =
(
−4

3q+q−

)1/2
(38)

Proof. Eq. (11) gives

dr = dq

p
(39)

from which, we deduce that

pr

q
dr2 = r

p q
dq2 (40)
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Figure 3: Plots of q, p, pq and rq as functions of r. Plots are for rs = 1, k = rs. The leftmost panel reveals the multi-valuedness
problem for q(r).

Metric (25) thus can be brought into (34), with the con-
formal factor

eω(q) := ek
∫

dr
r q(r) = ek

∫
dq

p(q)r(q)q (41)

which by combining with Eqs. (27), produces Eq. (37),
per

eω(q) = e
k
∫

dq
(q−q+)(q−q−) =

∣∣∣∣q − q+

q − q−

∣∣∣∣ k
q+−q−

(42)

Also from Eq. (27)

q p

r
= (q − q+)(q − q−)

r2 (43)

and, by using Eq. (26) and noting that q+ + q− = rs by
virtue of (8), we arrive at Eq. (36).

Remark 10. An immediate improvement of metric (34)
over metric (25) is that, apart from the conformal factor,
the two components g00 and g11 are reciprocal of each
other. This feature resembles that in the Schwarzschild
metric.

D. A second change of variable

Despite getting a step closer to the form of a
Schwarzschild metric (see Remark 10 above), the term
pq/r in metric (34) is still rather cumbersome; see Eq.
(36). It is thus desirable to find a more transparent al-
ternative to the coordinate q. The lower right panel in
Fig. 2 on page 4 suggests a further improvement. Not
only is the combination pq/r a single-valued function of
q, the reverse is also true: q is a single-valued function of

pq/r. We shall thus choose pq/r as the radial coordinate
in replacement of q.
That is to say, let us define a new radial coordinate

ρ ∈ R such that

1− rs

ρ
:= p(q) q

r(q) (44)

which, by way of (36), becomes

1− rs

ρ
= sgn

(
q − q+

q − q−

) ∣∣∣∣q − q+

q − q−

∣∣∣∣
rs

q+−q−
(45)

Remarkably, despite that q is not analytically expressible
in terms of r – a serious hindrance that we alluded to
at the beginning of Sec. II B – the relation (45) can
be inverted to express q as a analytical function of ρ.
Furthermore, since r is an analytical function of ρ per
(35), r in turn can be made an analytical function of
ρ. The inversion of Eq. (45) shall be carried out in the
following Lemma.

Lemma 11. The Schwarzschild coordinate r is express-
ible in terms of the variable ρ, per

r(ρ) =
ζ rs

∣∣∣1− rs
ρ

∣∣∣ 1
2 (ζ−1)∣∣∣∣1− sgn

(
1− rs

ρ

) ∣∣∣1− rs
ρ

∣∣∣ζ∣∣∣∣ (46)

ζ :=
√

1 + 3k2/r2
s (47)

Proof. Denote:

x := 1− rs

ρ
(48)
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Figure 4: ρ as functions of q and r. Plots are for rs = 1, k = rs.

Figure 5: Various variables as functions of ρ. Plots are for rs = 1, k = rs.

then, from (45)

x = sgnq − q+

q − q−

∣∣∣∣q − q+

q − q−

∣∣∣∣
rs

q+−q−
(49)

Further define ζ :=
√

1 + 3k2/r2
s > 1 ∀k ∈ R, then from

the definition of q± in (8) we get
rs

q+ − q−
= rs√

r2
s + 3k2

= 1
ζ

(50)

Case 1: For q > q+ then 0 < x < 1.

Inverting Eq. (49):(
q − q+

q − q−

)1/ζ
= x = |x| (51)

q = 1
1− |x|ζ

q+ −
|x|ζ

1− |x|ζ
q− (52)

then

q − q+ = |x|ζ

1− |x|ζ
(q+ − q−) (53)

q − q− = 1
1− |x|ζ

(q+ − q−) (54)

and

r = (q − q+)
q+

q+−q− (q − q−)−
q−

q+−q− (55)

=
(
|x|ζ

1− |x|ζ

) q+
q+−q−

(
1

1− |x|ζ

)− q−
q+−q−

(q+ − q−) (56)

= |x|
ζ 1√

r2
s +3k2

1
2

(
−rs+
√
r2

s +3k2
)

1− |x|ζ
ζrs (57)

= ζrs
|x|

1
2 (ζ−1)

1− |x|ζ
(58)
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Case 2: For q < q− then x > 1.
Inverting Eq. (49):(

q − q+

q − q−

)1/ζ
= x = |x| (59)

q = 1
1− |x|ζ

q+ −
|x|ζ

1− |x|ζ
q− (60)

then

q − q+ = |x|ζ

1− |x|ζ
(q+ − q−) (61)

q − q− = 1
1− |x|ζ

(q+ − q−) (62)

and

r = (q+ − q)
q+

q+−q− (q− − q)
−

q−
q+−q− (63)

=

(
|x|ζ∣∣1− |x|ζ∣∣

) q+
q+−q−

(
1∣∣1− |x|ζ∣∣

)− q−
q+−q−

(q+ − q−)

(64)

= |x|
ζ 1√

r2
s +3k2

1
2

(
−rs+
√
r2

s +3k2
)

∣∣1− |x|ζ∣∣ ζrs (65)

= ζrs
|x|

1
2 (ζ−1)∣∣1− |x|ζ∣∣ (66)

Case 3: For q− < q < q+ then x < 0.

Inverting Eq. (49):(
q − q+

q− − q

)1/ζ
= −x = |x| (67)

q = 1
1 + |x|ζ

q+ + |x|ζ

1 + |x|ζ
q− (68)

then

q − q+ = − |x|ζ

1 + |x|ζ
(q+ − q−) (69)

q − q− = 1
1 + |x|ζ

(q+ − q−) (70)

and

r = (q+ − q)
q+

q+−q− (q − q−)−
q−

q+−q− (71)

=
(
|x|ζ

1 + |x|ζ

) q+
q+−q−

(
1

1 + |x|ζ

)− q−
q+−q−

(q+ − q−) (72)

= |x|
ζ 1√

r2
s +3k2

1
2

(
−rs+
√
r2

s +3k2
)

1 + |x|ζ
ζrs (73)

= ζrs
|x|

1
2 (ζ−1)

1 + |x|ζ
(74)

In all cases, we have

r = ζ rs
|x|

1
2 (ζ−1)∣∣∣1− sgn(x) |x|ζ

∣∣∣ (75)

which is the desired result, Eq. (46).

Remark 12. For illustration, in Fig. 4, we plot the new
variable ρ against q and r. In Fig. 5, r, q and p are
plotted against ρ. In these figures, k = rs = 1. The
quadrant labels are attached accordingly.

E. The special Buchdahl-inspired metric

We are now ready for the final step of our derivation.
The Buchdahl-inspired metric with Λ = 0 is provided in
Lemma 13 below.

Lemma 13. The special Buchdahl-inspired metric is
characterized by 2 parameters, rs and k̃:

ds2 =
∣∣∣∣1− rs

ρ

∣∣∣∣k̃
{
−
(

1− rs

ρ

)
dt2 +

(
1− rs

ρ

)−1
r4(ρ)
ρ4 dρ2

+ r2(ρ)
(
dθ2 + sin2 θdφ2)} (76)

in which the Schwarzschild radial coordinate r is related
to the new radial coordinate ρ per

r(ρ) :=
ζ rs

∣∣∣1− rs
ρ

∣∣∣ 1
2 (ζ−1)∣∣∣∣1− sgn

(
1− rs

ρ

) ∣∣∣1− rs
ρ

∣∣∣ζ∣∣∣∣ (77)

ζ :=
√

1 + 3k̃2 (78)

Proof. Firstly, Eq. (45) leads to

∣∣∣∣1− rs

ρ

∣∣∣∣ =
∣∣∣∣q − q+

q − q−

∣∣∣∣
rs

q+−q−
(79)

which neatly brings the conformal factor (37) to

eω(ρ) =
∣∣∣∣1− rs

ρ

∣∣∣∣ krs

(80)

Secondly, Eq. (79) is equivalent to

ln
∣∣∣∣1− rs

ρ

∣∣∣∣ = rs

q+ − q−
ln
∣∣∣∣q − q+

q − q−

∣∣∣∣ (81)

Taking derivative on both sides of this equation:(
1− rs

ρ

)−1
rs

ρ2 dρ = rs

(q − q+)(q − q−) dq (82)
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which, with the aid of Eqs. (35), (79) and rs =
− (q+ + q−) per (8), yields

dq2 =
∣∣∣∣ q − q+

q − q−

∣∣∣∣− 2rs
q+−q−

(q − q+)2(q − q−)2 dρ
2

ρ4 (83)

= |q − q+|
4q+

q+−q− |q − q−|
−

4q−
q+−q−

dρ2

ρ4 (84)

= r4(q)dρ
2

ρ4 (85)

Finally, by defining k̃ := k/rs and using (44) and (85),
the components in metric (34) become

gtt = −eω p q
r

= −
∣∣∣∣1− rs

ρ

∣∣∣∣k̃(1− rs

ρ

)
(86)

gρρ = gqq
dq2

dρ2 = eω
r

p q

r4

ρ4 =
∣∣∣∣1− rs

ρ

∣∣∣∣k̃ 1
1− rs

ρ

r4

ρ4 (87)

gθθ = eω r2 =
∣∣∣∣1− rs

ρ

∣∣∣∣k̃ r2 (88)

gφφ = gθθ sin2 θ (89)

Remark 14. The rescaled Buchdahl parameter

k̃ := k

rs
(90)

is a dimensionless ratio.

Remark 15. At k̃ = 0, Eqs. (77) and (78) yield ζ = 1
and r(ρ) ≡ ρ. The recovery of the Schwarzschild metric
from metric (76) is obvious.

Remark 16. The combination 1 − rs
ρ is universal in the

special Buchdahl-inspired metric, (76)–(78), as it is in the
classic Schwarzschild metric. The gtt component flips
sign when ρ varies across rs. The radius rs plays the
role of the “Schwarzschild” radius for pure R2 spacetime
structures.

Remark 17. In metric (76)–(78), the radial coordinate
is ρ and the physical “origin” is located at ρ = 0. The
usual Schwarzschild coordinate r(ρ) is not the radial co-
ordinate for this metric. Rather, apart from the confor-

mal factor
∣∣∣1− rs

ρ

∣∣∣k̃, it acts as an areal coordinate via
the term r2(ρ)

[
dθ2 + sin2 θdφ2] in (76).

Remark 18. As ρ → ∞, per (77) we have r(ρ) ' ρ.
Metric (76) asymptotically is∣∣∣∣1− rs

ρ

∣∣∣∣k̃{−(1− rs

ρ

)
dt2 + r4(ρ) dρ2

ρ4
(

1− rs
ρ

) + r2(ρ)dΩ2
}

(91)

We thus do not obtain a Schwarzschild spacetime but a
conformally Schwarzschild spacetime, with the conformal

factor being
∣∣∣1− rs

ρ

∣∣∣k̃. In principle, the effects of k̃ should
manifest via its influence on the orbital motion of the
massive objects, though not that of light.

Remark 19. In (91), since
∣∣∣1− rs

ρ

∣∣∣k̃ → 1 when r → ∞,
the special Buchdahl-inspired metric is asymptotically
flat. It can also be verified to be Ricci-scalar-flat but not
Ricci flat. Its 4 non-vanishing Ricci tensor components
are:

Rtt = k̃(k̃ + 1)
2ζ4 |x|2−2ζ (1− sgn(x) |x|ζ

)4 (92)

Rρρ = k̃

2ρ4 |x|2

[
3k̃ − 1 + 2ζ 1 + sgn(x) |x|ζ

1− sgn(x) |x|ζ

]
(93)

Rθθ = k̃

2ζ2

(
1− sgn(x) |x|−ζ

)
×[

(k − 1)
(
1− sgn(x) |x|ζ

)
+ ζ
(
1 + sgn(x) |x|ζ

)]
(94)

Rφφ = Rθθ sin2 θ (95)

in which x := 1− rs
ρ , ζ :=

√
1 + 3k̃2.

In closing of this main section, Lemma 13 is the cen-
tral result of our paper. With this exact analytical result,
we are now well equipped to study the interior-exterior
boundary and the causal structure ofR2 spacetime struc-
tures in the rest of our paper.

III. APPLICATION I: ANOMALOUS
BEHAVIOR OF INTERIOR/EXTERIOR

BOUNDARY IN R2 SPACETIME

This section explores and reports a number of novel
surprising properties of the interior-exterior boundary of
R2 spacetime, described by the special Buchdahl-inspired
metric attained in Lemma 13.
Metric (76)–(78) bears an interesting resemblance to

the Schwarzschild metric, with four departures:

• The conformal factor,
∣∣∣1− rs

ρ

∣∣∣k̃;
• The gρρ component contains the ratio r4(ρ)

ρ4 ;

• The angular part involves r2(ρ) instead of ρ2.

• The function r(ρ) involves the signum function
sgn

(
1− rs

ρ

)
, thus comprising two distinct expres-

sions, one for ρ < rs and other for ρ > rs.

Across ρ = rs, the components g00 and g11 flip
their signs, hence indicating an “exterior” region for
ρ ∈ (rs,+∞) and an “interior” region for ρ ∈ (0, rs).
The nature of the interior-exterior boundary can be de-
duced from the ζ−Kruskal-Szekeres diagram constructed
in Section IVD. In Fig. 13 on page 18, the boundary for
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k̃ 6= 0 (viz., ζ > 1) is the four hyperbolic branches sur-
rounding Region (VI); the ρ = rs boundary is not a null
surface in this situation. For k̃ = 0, the four hyperbolic
branches degenerate into two straight lines T = ±X that
are null surfaces, making the ρ = rs boundary the usual
Schwarzschild horizon. For all values of k̃ ∈ R, Regions
(II) and (IV) in Fig. 13 represent “interior” sections of
an R2 spacetime.

A. Behavior of the areal radial coordinate in pure
R2 gravity

We first start with the areal coordinate r(ρ) as a func-
tion of the new radial coordinate ρ. The relation is given
in Eqs. (77)–(78). The plot of r(ρ) is shown in Fig.
6 for various values of k̃. In each panel, the curve is
juxtaposed against the benchmark r(ρ) = ρ diagonal
(dotted) line which corresponds to the case k̃ = 0 (viz.
ζ =

√
1 + 3k̃2 = 1).

The asymptotics:

• As ρ→ 0,

r(ρ) ' ζr
1
2 (1−ζ)
s ρ

1
2 (ζ+1) → 0 ∀k̃ (96)

• As ρ→∞, the areal coordinate is asymptotically

r(ρ) ' ρ− k2r2
s

8 ρ (97)

• As ρ → rs, for k̃ 6= 0, ζ is strictly greater than 1

and r(ρ) ' ζrs

∣∣∣1− rs
ρ

∣∣∣ 1
2 (ζ−1)

→ 0. All curves with
k̃ 6= 0 have a zero at ρ = rs that separates the
interior region, ρ < rs, from the exterior region,
ρ > rs.

The fact that the areal coordinate r(ρ) shrinks to zero on
the interior-exterior boundary if k̃ 6= 0 is a novel feature
of pure R2 spacetime structures.

B. Determinant of the metric

We next look into the determinant of metric (76)–(78),

−det g =
∣∣∣∣1− rs

ρ

∣∣∣∣4k̃ r8(ρ)
ρ4 sin2 θ (98)

= ζ8r8
s

ρ4

∣∣∣1− rs
ρ

∣∣∣4(ζ+k̃−1)
sin2 θ(

1∓
∣∣∣1− rs

ρ

∣∣∣ζ)8 (99)

with ∓ corresponding the exterior/interior regions, re-
spectively. Fig. 7 depicts a number of combinations of k̃
and ζ to be encountered in this paper. We deduce that

ζ + k̃ − 1 =


0 if k̃ = 0 or k̃ = −1
> 0 if k̃ ∈ (−∞,−1) ∪ (0,+∞)
< 0 if k̃ ∈ (−1, 0)

(100)

Special cases:

• At k̃ = 0:

− det g = ρ4 sin2 θ (101)

which is a result known in the Schwarzschild metric.

• At k̃ = −1:

− det g = 256 r8
s sin2 θ

ρ4
(

1∓
(

1− rs
ρ

)2
)8 (102)

with ∓ corresponding the exterior/interior regions,
respectively. The determinant with k̃ = −1 is well-
behaved for all ρ 6= 0.

The asymptotic at the interior-exterior boundary, ρ→ rs:

Due to result (100), we then have

lim
ρ→rs

(
−det g|θ=π

2

) 1
4

=


rs for k̃ = 0
4 rs for k̃ = −1
0 for k̃ 6 −1 or k̃ > 0
+∞ for k̃ ∈ (−1, 0)

(103)

C. The Kretschmann invariant

The Kretschmann scalar is given by

K := RµνρσRµνρσ (104)

= 2
ζ8r4

s

(
1− sgn(x) |x|ζ

)6 |x|2−4ζ−2k̃ ×{
4k̃2(k̃ + 1) sgn(x) |x|ζ + ζ

(
4k̃3 − 5k̃2 − 3

)(
1− |x|2ζ

)
+
(

9k̃4 − 2k̃3 + 10k̃2 + 3
)(

1 + |x|2ζ
)}

(105)

in which x := 1− rs
ρ .

By completing the square in the curly bracket in ex-
pression (105) in terms of |x|ζ , one can show that the
Kretschmann scalar is positive-definite for all ρ ∈ R and
all k ∈ R.

Special cases:
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Figure 6: Areal coordinate r as function of the new coordinate ρ. For k̃ = ±0.3,±1,±2.5. In all plots, rs = 1.

Figure 7: Various combinations of k̃ and ζ, to be used in this
paper, as functions of k̃.

• At k̃ = 0, i.e. ζ = 1

K = 12r2
s

ρ6 (106)

recovering the result known in the Schwarzschild
metric. It only has a curvature singularity at the
origin.

• At k̃ = −1, i.e. ζ = 2

K = 3
8r4

s

(
1∓

(
1− rs

ρ

)2
)6

(107)

with ∓ corresponding to the exterior/interior re-
gions, respectively. It also only has a curvature
singularity at the origin.

The asymptotics:

• As ρ→ +∞, viz. x→ 1,

K ' 12
ζ8r4

s

(
k̃2 + 1

)(
3k̃2 + 1

)(
1−

∣∣∣∣1− rs

ρ

∣∣∣∣ζ
)6

(108)

' 12
(
k̃2 + 1

) r2
s
ρ6 (109)

which decays as ρ−6 when ρ→ +∞ for ∀k̃ ∈ R.

• As ρ→ 0, viz. x→∞,

K ' 2
ζ8r4

s
|x|2ζ−2k̃+2

{
4k̃2 (k̃ + 1

)
|x|ζ +

[(
−4k̃3 + 5k̃2 + 3

)
ζ +

(
9k̃4 − 2k̃3 + 10k̃2 + 3

)]
|x|2ζ

}
(110)

Since ζ =
(
1 + 3k̃2) 1

2 > 1 for ∀k̃ ∈ R, |x|2ζ domi-
nates |x|ζ as x→∞. Hence, as ρ→ 0,

K ' 2
ζ8r4

s

(
rs

ρ

)2(2ζ−k̃+1)
×[(

−4k̃3 + 5k̃2 + 3
)
ζ +

(
9k̃4 − 2k̃3 + 10k̃2 + 3

)]
(111)

From Fig. 7, 2ζ − k̃ + 1 > 0 ∀k̃ ∈ R. Thus K
diverges as ρ−2(2ζ−k̃+1) when ρ→ 0, for all ∀k̃ ∈ R.

• As ρ→ rs, viz. x→ 0, if k̃ 6= 0 and k̃ 6= −1

K ' 2
ζ8r4

s

∣∣∣∣1− rs

ρ

∣∣∣∣2(−2ζ−k̃+1)
×[(

4k̃3 − 5k̃2 − 3
)
ζ +

(
9k̃4 − 2k̃3 + 10k̃2 + 3

)]
(112)
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Figure 8: Logarithm of Kretschmann invariant as function of
the new coordinate ρ, for various value of k̃. For clarity, we
plot the curves in two panels. In all cases, rs = 1.

From Fig. 7, −2ζ − k̃ + 1 < 0 ∀k ∈ R. Thus
K diverges as |ρ− rs|2(−2ζ−k̃+1) when ρ → rs, for
k̃ 6= 0 and k̃ 6= −1. In sum, when ρ→ rs,

K '


12 r−4

s for k̃ = 0
3
8 r
−4
s for k̃ = −1

|ρ− rs|2(−2ζ−k̃+1) → +∞ otherwise
(113)

The fact that, for k̃ 6= 0 and k̃ 6= −1, the Kretschmann
scalar exhibits an additional singularity on the interior-
exterior boundary, ρ = rs, besides the usual singularity
at the origin, is another novel result.

The plot for the Kretschmann scalar is shown in Fig.
8. For clarity, we split the curves into two groups, one
with negative k̃ (upper panel), the other non-negative k̃
(lower panel). The curves with k̃ = 0 and k̃ = −1 are
smooth across the interior-exterior boundary, ρ = rs. All
other curves show a divergence at ρ = rs.

D. Surface area of the interior-exterior boundary
of R2 spacetime: An anomalous behavior

For metric (76)–(77), the surface area of a two-
dimensional sphere of “radius” ρ is

A = 4π
∣∣∣∣1− rs

ρ

∣∣∣∣k̃ r2(ρ)

= 4πζ2r2
s

∣∣∣1− rs
ρ

∣∣∣ζ+k̃−1

(
1− sgn

(
1− rs

ρ

) ∣∣∣1− rs
ρ

∣∣∣ζ)2 (114)

which is conveniently equal to

4πρ
(
−det g

∣∣∣
θ=π/2

) 1
4

(115)

The surface area A and the determinant of g thus share
similar behaviors. The plot of A is shown in Fig. 9, with
the dotted parabola showing the regular k̃ = 0, in which
case A = 4πρ2 since r(ρ) = ρ. Note the plots are not
symmetric with respect to k̃.

The asymptotics:

• As ρ→ +∞,

A ' 4π
[
ρ2 − k̃rsρ−

r2
s
4 k̃(k̃ − 2)

]
(116)

• As ρ→ 0,

A ' 4πζ2r2
s ρ
ζ−k̃+1 (117)

From Fig. 7, ζ − k̃ + 1 > 0 ∀k̃ ∈ R. Hence, A→ 0
as ρ→ 0 for ∀k̃ ∈ R.

• As ρ→ rs,

A ' 4πζ2r2
s

∣∣∣∣1− rs

ρ

∣∣∣∣ζ+k̃−1
(118)

=


4πr2

s if k̃ = 0
16πr2

s if k̃ = −1
0 if k̃ ∈ (−∞,−1) ∪ (0,+∞)
+∞ if k̃ ∈ (−1, 0))

(119)

Remark 20. Depending on the value of k̃, the shrinkage
or divergence of the surface area at ρ = rs is evident in
Fig. 9.

Remark 21. The interior-exterior boundary exhibits a pe-
culiar property. Per Eq. (119), its surface area with
k̃ 6= 0 drastically deviates from the customary 4πr2

s ex-
pression, thereby indicating that the Buchdahl param-
eter k “distorts” the topology of spacetime around the
interior-exterior boundary.
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Figure 9: Surface area as function of the new coordinate ρ. Upper panels: k̃ = 0.3, 1, 2.5. Lower panels: k̃ = −0.3,−1,−2.5.
The dash line in each panel is the trivial k̃ = 0 benchmark, A = 4πρ2.

Remark 22. The anomalous behavior of the surface area
of the interior-exterior boundary occurs in tandem with
the curvature singularity at the interior-exterior bound-
ary in the Kretschmann invariant, Eq. (113); also see
Section V 6.

IV. APPLICATION II: CAUSAL STRUCTURE
OF PURE R2 SPACETIME

This section analytically constructs the Kruskal-
Szekeres (KS) diagram of the special Buchdahl-inspired
metric attained in Lemma 13. We adapt the usual prac-
tices that handle Schwarzschild black holes – by find-
ing the tortoise coordinates, the Eddington-Finkelstein
coordinates, and the Kruskal-Szekeres coordinates [21–
24] – to the case at hand. Quantitative adjustments are
needed. With metric (76)–(78) involving the parameter
ζ, we shall label these said coordinates by a ζ− prefix.
Fig. 13 is the outcome of our construction.

A. Constructing the ζ−tortoise coordinate for pure
R2 gravity

The ζ−tortoise coordinate ρ∗(ρ) is defined as

dρ∗ := r2(ρ)
ρ2(1− rs

ρ )dρ (120)

dρ∗ = ζ2r2
s

∣∣∣1− rs
ρ

∣∣∣ζ−1 (
1− rs

ρ

)−1

(
1− sgn(1− rs

ρ )
∣∣∣1− rs

ρ

∣∣∣ζ)2
dρ

ρ2 (121)

The integral involves a Gaussian hypergeometric func-
tion. Let us define

z := sgn
(

1− rs

ρ

) ∣∣∣∣1− rs

ρ

∣∣∣∣ζ (122)

For ρ > rs:

z =
(

1− rs

ρ

)ζ
> 0 (123)

dz = ζrs

(
1− rs

ρ

)ζ−1
dρ

ρ2 (124)
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Figure 10: The ζ−tortoise coordinate of Eq. (135) for various
values of k̃ (with rs = 1).

dρ∗ = ζrs
z−1/ζ

(1− z)2 dz (125)

giving (modulo an additive constant)

ρ∗ = ζ2rs

ζ − 1 z
1− 1

ζ 2F1

(
2, 1− 1

ζ
; 2− 1

ζ
; z
)

(126)

For 0 < ρ < rs:

z = −
(
rs

ρ
− 1
)ζ

< 0 (127)

dz = ζrs

(
rs

ρ
− 1
)ζ−1

dρ

ρ2 (128)

dρ∗ = −ζrs
(−z)−1/ζ

(1− z)2 dz (129)

= ζrs
(−z)−1/ζ

(1 + (−z))2 d(−z) (130)

giving (modulo an additive constant)

ρ∗ = ζ2rs

ζ − 1 (−z)1− 1
ζ 2F1

(
2, 1− 1

ζ
; 2− 1

ζ
; z
)

(131)

In combination, we have the ζ−tortoise coordinate
(modulo an additive constant) in terms of z ∈ C

ρ∗ = ζ2rs

ζ − 1 |z|
1− 1

ζ 2F1

(
2, 1− 1

ζ
; 2− 1

ζ
; z
)

(132)

Figure 11: ρ∗(ρ = rs) as function of ζ; both axes in log scale
(with rs = 1). The two asymptopes are ζ/(ζ − 1) (for k̃ → 0)
and ζ (for k̃ →∞). Note that ρ∗(ρ = rs) = −π for k̃ = 1.

Furthermore, using Eq. (130), the difference

ρ∗|ρ=0 − ρ∗|ρ=rs =
∫ z=−∞

z=0
ζrs

(−z)−1/ζ
d(−z)

(1 + (−z))2 (133)

= πrs

sin(π/ζ) (134)

We shall choose the additive constant such that the
ζ−tortoise coordinate vanishes at ρ = 0. Using (122)
and (134), (132) produces

ρ∗ = − πrs

sin(π/ζ) + ζ2rs

ζ − 1

∣∣∣∣1− rs

ρ

∣∣∣∣ζ−1

×

2F1

(
2, 1− 1

ζ
; 2− 1

ζ
; sgn

(
1− rs

ρ

)∣∣∣∣1− rs

ρ

∣∣∣∣ζ
)

(135)

For k̃ 6= 0, the variable ρ∗ is continuous across
ρ = rs and ρ∗|ρ=rs = − πrs

sin(π/ζ) . In the complex
plane z ∈ C, the Gaussian hypergeometric function
2F1 (2, 1− 1/ζ; 2− 1/ζ; z) has a branch point at z = 1;
expression (135) is thus applicable for z ∈ R+ and k̃ 6= 0.
See Appendix B for more information on the hypergeo-
metric function at play.
For k̃ = 0, i.e. ζ = 1, the tortoise coordinate (135)

duly recovers

ρ∗ = ρ+ rs ln
∣∣∣∣ρ− rs

rs

∣∣∣∣ (136)

which diverges at ρ = rs. See Appendix C for derivation.
Fig. 10 plots the ζ−tortoise coordinate for various

values of k̃. The case of k̃ = 0 is the usual tor-
toise coordinate, Eq. (136). Fig. 11 shows the value
−ρ∗|ρ=rs = πrs

sin(π/ζ) which asymptotes ζrs
ζ−1 for ζ & 1 and

ζrs for large ζ.



15

B. Constructing the ζ−Eddington-Finkelstein
coordinates for pure R2 gravity

Let us define the advanced and retarded ζ−Eddington-
Finkelstein coordinates, per

v := t+ ρ∗ (137)
u := t− ρ∗ (138)

Metric (76), expressed in these new coordinates, becomes

ds2 =
∣∣∣∣1− rs

ρ

∣∣∣∣k̃ ×{
−
(

1− rs

ρ

)
dv2 + r2(ρ)

ρ2

(
2dv dρ+ ρ2dΩ2)} (139)

and

ds2 =
∣∣∣∣1− rs

ρ

∣∣∣∣k̃ ×{
−
(

1− rs

ρ

)
du2 + r2(ρ)

ρ2

(
−2du dρ+ ρ2dΩ2)} (140)

Also

du dv = dt2 − r4(ρ)

ρ4
(

1− rs
ρ

)2 dρ
2 (141)

thence

ds2 =
∣∣∣∣1− rs

ρ

∣∣∣∣k̃ {−(1− rs

ρ

)
du dv + r2(ρ) dΩ2

}
(142)

In the advanced ζ−Eddington-Finkelstein coordinate,
the null geodesics (ds2 = 0) along the radial direction
amount to

dv

dρ
=
{

0 (infalling)
2r2(ρ)

ρ2(1− rs
ρ ) = 2dρ

∗

dρ (outgoing) (143)

thus

v =
{
const (infalling)
2ρ∗ + const (outgoing)

(144)

C. Behavior of light cones across the
interior-exterior boundary of a pure R2 spacetime

In the advanced ζ−Eddington-Finkelstein coordinates,
per (143) and (121), the outgoing null path has the slope

dv

dρ
= 2dρ

∗

dρ
(145)

= 2ζ2

1− rs
ρ

(
rs

ρ

)2
∣∣1− rs

ρ

∣∣ζ−1(
1− sgn

(
1− rs

ρ

) ∣∣1− rs
ρ

∣∣ζ)2 (146)

Thus the outgoing null path exhibits the following
asymptotic behaviors

dv

dρ
'


−2ζ2r

2(1−ζ)
s ρζ → 0 as ρ→ 0

+2ζ2r2−ζ
s |ρ− rs|ζ−2 as ρ→ r+

s
−2ζ2r2−ζ

s |ρ− rs|ζ−2 as ρ→ r−s
+2 as ρ→∞

(147)

Fig. 12 depicts the behavior of the light cones in the
(v, ρ) plane. Concerning the light cone behavior across
the interior-exterior boundary, there are three cases:

Case 1. For
∣∣k̃∣∣ < 1, viz. ζ < 2

dv

dρ
→ ±∞ as ρ→ r±s (148)

The light cone “flips over” across the interior-
exterior boundary as usual. This case includes
the standard Schwarzschild metric, viz. k̃ = 0.
See the leftmost panel in Fig. 12.

Case 2. For
∣∣k̃∣∣ > 1, viz. ζ > 2

dv

dρ
→ 0± as ρ→ r±s (149)

This case is a peculiar situation. The light
cone first “flattens out” when approaching the
interior-exterior boundary from the exterior.
Upon passing the interior-exterior boundary,
the light cone makes sudden “collapse” to an
single line, dv = 0, then gradually “re-widens”
when entering into the interior. See the right-
most panel in Fig. 12.

Case 3. For
∣∣k̃∣∣ = 1, hence ζ = 2

dv

dρ
→ ±8 as ρ→ r±s (150)

The light cones changes its slope in a step-wise
fashion. See the middle panel in Fig. 12.

Remark 23. From Fig. 12, in every situation, all light
paths and time-like paths inside the interior-exterior
boundary would eventually reach the origin; they can-
not escape from the interior. In the exterior region, the
outgoing light path can escape to infinity. These results
shall be confirmed by way of the Kruskal-Szekeres dia-
gram in Sec. IVD below.

D. Constructing the ζ−Kruskal-Szekeres
coordinates for pure R2 gravity

Most of the procedure originally advanced by Kruskal
and Szekeres for Schwarzschild black holes [23, 24] can
be re-purposed for pure R2 spacetime. We shall consider
the exterior and interior regions separately.
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Figure 12: Light cones in the (ρ, v) plane (with rs = 1), for k̃ = 0.5, 1, 2.5. We choose these values of k̃ as representatives for
the three cases discussed in the text.

The exterior

For ρ > rs, let us define

X := 1
2

(
e
v

2rs + e−
u

2rs

)
(151)

T := 1
2

(
e
v

2rs − e−
u

2rs

)
(152)

then

X = e
ρ∗
2rs cosh t

2rs
(153)

T = e
ρ∗
2rs sinh t

2rs
(154)

T 2 −X2 = −e
ρ∗
rs (155)

T

X
= tanh t

2rs
(156)

and

dX = e
ρ∗
2rs

2rs

[
r2(ρ)

ρ2
(
1− rs

ρ

) cosh t

2rs
dρ+ sinh t

2rs
dt

]
(157)

dT = e
ρ∗
2rs

2rs

[
r2(ρ)

ρ2
(
1− rs

ρ

) sinh t

2rs
dρ+ cosh t

2rs
dt

]
(158)

hence

dT 2 − dX2 = e
ρ∗
rs

4r2
s

[
dt2 − r4(ρ)

ρ4
(
1− rs

ρ

)2 dρ
2

]
(159)

giving

ds2 =
∣∣∣∣1− rs

ρ

∣∣∣∣k̃ ×{
−4r2

s e
− ρ
∗
rs

(
1− rs

ρ

)(
dT 2 − dX2)+ r2(ρ)dΩ2

}
(160)

The interior

For ρ < rs, let us define

X := 1
2

(
e
v

2rs − e−
u

2rs

)
(161)

T := 1
2

(
e
v

2rs + e−
u

2rs

)
(162)

then

X = e
ρ∗
2rs sinh t

2rs
(163)

T = e
ρ∗
2rs cosh t

2rs
(164)

T 2 −X2 = +e
ρ∗
rs (165)

T

X
=
(

tanh t

2rs

)−1
(166)



17

and

dX = e
ρ∗
2rs

2rs

[
r2(ρ)

ρ2
(
1− rs

ρ

) sinh t

2rs
dρ+ cosh t

2rs
dt

]
(167)

dT = e
ρ∗
2rs

2rs

[
r2(ρ)

ρ2
(
1− rs

ρ

) cosh t

2rs
dρ+ sinh t

2rs
dt

]
(168)

hence

dT 2 − dX2 = −e
ρ∗
rs

4r2
s

[
dt2 − r4(ρ)

ρ4
(
1− rs

ρ

)2 dρ
2

]
(169)

giving

ds2 =
∣∣∣∣1− rs

ρ

∣∣∣∣k̃ ×{
+4r2

s e
− ρ
∗
rs

(
1− rs

ρ

)(
dT 2 − dX2)+ r2(ρ)dΩ2

}
(170)

Combination of both regions

The special Buchdahl-inspired metric in the
ζ−Kruskal-Szekeres (KS) coordinates is thus

ds2 =
∣∣∣∣1− rs

ρ

∣∣∣∣k̃ ×{
−4r2

s e
− ρ
∗
rs

∣∣∣∣1− rs

ρ

∣∣∣∣ (dT 2 − dX2)+ r2(ρ)dΩ2
}

(171)

and

T 2 −X2 = −sgn(ρ− rs)e
ρ∗
rs (172)

T

X
=
(

tanh t

2rs

)sgn(ρ− rs)
(173)

Remark 24. For the case k̃ = 0, substituting ρ∗ = ρ +
rs ln

∣∣∣ ρrs
− 1
∣∣∣ and r(ρ) = ρ into (171), we get

ds2
(KS) = −4r3

s
e
− ρ
rs

ρ

(
dT 2 − dX2)+ ρ2dΩ2 (174)

which is the usual KS result for Schwarzschild black holes.

E. Features of the ζ−Kruskal-Szekeres diagram: A
new “virtual” region

Restricting to the radial direction, viz. dθ = dφ = 0,
metric (171) is

ds2 = −4r2
s e
− ρ
∗
rs

∣∣∣∣1− rs

ρ

∣∣∣∣1+k̃ (
dT 2 − dX2) (175)

The ζ−Kruskal-Szekeres (ζ−KS for short) plane for met-
ric (175) is shown in Fig. 13. A number of key features
are:

• Similarly to the usual KS diagram, the ζ−KS dia-
gram is conformally Minkowski.

• The null geodesics are:

dX = ±dT (176)

Light thus travels on the 45◦ lines in the ζ−KS
plane.

• The ζ−KS diagram retains, qualitatively, most fea-
tures of the causal structure established for the
usual KS diagram. There are quantitative changes;
see below.

• A constant–ρ contour corresponds to a hyperbola,
whereas the constant–t contour to a straight line
through the origin of the (T,X) plane.

• The coordinate origin ρ = 0 amounts to, per

T 2 −X2 = 1 (177)

because ρ∗(ρ = 0) = 0.

• The interior-exterior boundary ρ = rs amounts to
two distinct hyperbolae, one for the interior and
the other the exterior, per

T 2 −X2 =

−e
− π

sin π
ζ for exterior

+e
− π

sin π
ζ for interior

(178)

Note that each hyperbola comprises of two separate
branches on its own.

• For k̃ = 0, viz. ζ = 1, the hyperbolae (178) degen-
erate to two straight lines

T = ±X (179)

as expected for Schwarzschild black holes.

• Region (I) is the exterior, mapped into the ζ−KS
plane extended up to the right branch of the hy-
perbola T 2 −X2 = −e

− π
sin π

ζ .

• Region (II) is the interior, mapped into the ζ−KS
plane, extended up to the upper branch of the hy-
perbola T 2 −X2 = +e

− π
sin π

ζ .

• Regions (III) and (IV) are time-reverse images of
Regions (I) and (II).

• Regions (Va) and (Vb) (shaded by dots) are un-
physical, viz. ρ < 0.

• What is new is Region (VI) (also shaded in
dots) that sandwiches between the four hyperbola
branches given by (178).
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Figure 13: Kruskal-Szekeres diagram for k̃ 6= 0. The “gulf” shown as Region (VI) is a new feature. See text for explanations.

In Region (II), all timelike and null trajectories will even-
tually hit the origin, denoted by the hyperbola, ρ = 0.
Nothing can escape from the interior. In Region (I),
outgoing light paths would be able to escape to infin-
ity. These observations are in agreement with the result
obtained in Sec. IVC; see Remark 23.

Incoming light paths from Region (I) must enter Re-
gion (II) by “bypassing” Region (VI). An infalling object
(or light wave) would hit the interior-exterior boundary
ρ = rs on the side of Region (I) then reappear on the
interior-exterior boundary on the side of Region (II). The
“transit” – if there is any – within Region (VI) is not vis-
ible, thus “virtual”, for an outside observer from afar.

Region (VI) appears as a “gulf” in the (T,X) coor-
dinate system but it does not correspond to any re-
gion in the (t, ρ) coordinate system. When k̃ → 0, the
“gulf” shrinks toward the 2 lines T = ±X. Given that
the ζ−KS diagram is the maximal extension of the spe-
cial Buchdahl-inspired metric, the emergence of Region

(VI) is a highly curious feature, signaling potential new
physics that takes place on the interior-exterior bound-
ary of R2 spacetime. Taken altogether, the singularity
on the interior-exterior boundary in the Kretschmann in-
variant, the anomalous behavior of the surface area of the
interior-exterior boundary, and the “gulf” in the ζ−KS
diagram indicate that the topology of R2-gravity space-
time around a mass source undergoes fundamental alter-
ations when the Buchdahl parameter k is in presence.

F. A conjecture

While the intuitions about the causal structure built
for the usual KS diagram remain intact for its ζ−KS
enlargement, the appearance of the “virtual” Region (VI)
would beg for further examinations. We shall venture
some ideas going forward.
Let us recall that in the usual KS diagram, the tortoise
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coordinate is “bifurcated” into two branches, separately
for the exterior and for the interior, per

ρ∗ =
{
ρ+ rs ln (ρ− rs) for exterior
ρ+ rs ln (rs − ρ) for interior

(180)

For the ζ−tortoise coordinate obtained in Sec. IVA, this
“bifurcation” issue is somewhat mitigated if k̃ 6= 0, viz.
ζ > 1. To see this, let us recall Eqs. (122) and (132) with
the additive constant term being suppressed for conve-
nience

ρ∗ = ζ2rs

ζ − 1 |z|
1− 1

ζ 2F1

(
2, 1− 1

ζ
; 2− 1

ζ
; z
)

(181)

z := sgn
(

1− rs

ρ

) ∣∣∣∣1− rs

ρ

∣∣∣∣ζ (182)

in which z ∈ R (here, we consider ρ ∈ R un-
restricted). The Gaussian hypergeometric function
2F1 (2, 1− 1/ζ; 2− 1/ζ; z), when extended onto the com-
plex plane z ∈ C, has a branch point at z = 1 (corre-
sponding to ρ = ±∞). For k̃ = 0, Eqs. (181)–(182)
recovers the usual tortoise coordinate (see Appendix C):

ρ∗ = rs

1− z + rs ln
∣∣∣∣ z

1− z

∣∣∣∣ (183)

= ρ+ rs ln
∣∣∣∣ ρrs
− 1
∣∣∣∣ (184)

which is not analytic across z = 0, a point that separates
the exterior from the interior, as alluded to above.

To proceed, let us define the following auxiliary vari-
able for z ∈ C,

ρ̃ := ζ2rs

ζ − 1 z
1− 1

ζ 2F1

(
2, 1− 1

ζ
; 2− 1

ζ
; z
)

(185)

in which the z1− 1
ζ term has replaced the |z|1−

1
ζ term in

Eq. (181). The ζ−tortoise coordinate is thus

ρ∗(z) =
(
|z|
z

)1− 1
ζ

ρ̃(z) = e−i(1− 1
ζ ) arg z ρ̃(z) (186)

which, when restricted to z ∈ R, yields two separate
branches

ρ∗(z) =
{
ρ̃(z) exterior
e−i(1− 1

ζ )πρ̃(z) interior
(187)

The variable ρ̃, when defined in the complex plane z ∈ C,
might be used to “analytically continue” from the interior
(z ∈ R−) to the exterior (z ∈ R+). In the meantime, the
phase factor e−i(1− 1

ζ ) arg z in Eq. (186) isolates the non-
analytical part in ρ∗ from the “well-behaved” ρ̃, hence
lessening the “bifurcation” issue mentioned above.

Concerning ρ̃, for a general value of k̃ 6= 0, the ex-
ponent 1− 1

ζ is strictly confined within the range (0, 1);
the term z1− 1

ζ is thus multi-valued and the z = 0 point
represents a branch point. (N.B: the function 2F1 itself
contains another branch point at z = 1.)
We conjecture that the variable ρ̃, defined as a function

of z in the complex plane C, could serve as a tool to tackle
the “gulf” in the ζ−KS diagram, a topic worthwhile of
future research.

Conjecture 25. The auxiliary variable

ρ̃ := ζ2rs

ζ − 1 z
1− 1

ζ 2F1

(
2, 1− 1

ζ
; 2− 1

ζ
; z
)

(188)

with z ∈ C r R, viz. Im z 6= 0, represents the “virtual”
Region (VI) in the ζ−Kruskal-Szekeres diagram.

V. SUMMARY AND OUTLOOKS

Lemma 13 in Sec. II E is the central result of our work,
finalizing the program that Hans A. Buchdahl pioneered
– but prematurely abandoned – circa 1962 [2]. It presents
an asymptotically flat non-Schwarzschild spacetime in
exact closed analytical form, which we reproduce here
for the reader’s convenience∣∣∣∣1− rs

ρ

∣∣∣∣ krs
{
−
(

1− rs

ρ

)
dt2+ r4(ρ) dρ2

ρ4
(

1− rs
ρ

)+r2(ρ)dΩ2
}

(189)

The areal coordinate r is related to the radial coordinate
ρ per

r(ρ) :=
ζ rs
∣∣1− rs

ρ

∣∣ 1
2 (ζ−1)∣∣∣1− sgn

(
1− rs

ρ

) ∣∣1− rs
ρ

∣∣ζ∣∣∣ (190)

with ζ :=
√

1 + 3k2/r2
s (we have restored k := k̃ rs).

The special Buchdahl-inspired metric is a member of
the branch of non-trivial solutions, viz. the class of
Buchdahl-inspired metrics with Λ ∈ R, obtained in our
preceding work for pure R2 gravity [1]; also see Eqs. (1)–
(4) in this current paper. Fig. 1 on page 2 summarizes
the state of affairs: the generic Buchdahl-inspired metric
with Λ ∈ R supersedes the Schwarzschild-de Sitter metric
and the special Buchdahl-inspired metric supersedes the
Schwarzschild metric. Both of the superseding instants
occur when the Buchdahl parameter k is sent to zero. 2

2 In comparison, the Lü-Perkins-Pope-Stelle solution in Einstein-
Weyl gravity is a second branch separate from the Schwarzschild
branch [4, 5].
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1. Higher-derivative characteristic

The asymptotically flat R2 spacetime, described by
metric (189)–(190), is characterized by a “Schwarzschild”
radius rs and the Buchdahl parameter k, the latter
of which stems from the higher-order nature of the
quadratic theory. If R2 spacetime structures shall even-
tually have been proven to be stable [25–27], then
the Buchdahl parameter k would represent new higher-
derivative characteristic in addition to the mass of the
source (encoded by rs) 3.

Furthermore, being a signature of higher-order theory,
the Buchdahl parameter k should leave its footprints in
higher-derivative gravity at large. In the companion pa-
per [20], we confirm this intuition by carrying the concept
of a Buchdahl parameter over to the quadratic action
R2 + γ (R− 2Λ); therein we found a new vacuo which
depends on k as a perturbative parameter. The Buch-
dahl parameter therefore should be a generic universal
hallmark of several modified theories of gravity.

2. Relevance of the metric

A metric that is merely Ricci-scalar-flat is an auto-
matic trivial solution to the pureR2 vacuo field equation.
Such as metric is under-determined, though, as it is sub-
ject to only one single constraint, viz. R = 0, which is
not sufficient to determine the full gµν metric. Examples
of null-Ricci-scalar metrics hence are in abundance; some
are given, e.g., in [28].

Yet, despite its null Ricci scalar, the special Buchdahl-
inspired metric (189)–(190) acquires its structure by be-
ing a member of the class of non-trivial solutions, the
Buchdahl-inspired metrics given in Eqs. (1)–(4). The
Venn diagrams in Fig. 1 on page 2 depict the relations
among the various metrics in question.

The special Buchdahl-inspired metric describes asymp-
totically flat spacetimes, a situation with theoretical ap-
peal in and of itself. Yet it remains of relevance for
asymptotically constant spacetimes in general. For a
generic Λ 6= 0, in the range of r � |Λ|−

1
2 , the Λ r2

term in the evolution rule (3) would be suppressed. This
means that the special Buchdahl-inspired metric still
works well deep inside the bulk for a generic Buchdahl-
inspired spacetime with Λ 6= 0. That is to say, in all
practical situations, pure R2 structures (whether they
live on an asymptotically flat or an asymptotically con-
stant background) are well described by metric (189)–
(190), and the anomalous properties of R2 spacetime,
discovered herein and summarized below, remain valid
as long as

∣∣Λ r2
s
∣∣� 1.

3 The angular momentum and electric charge of the source are not
active in our consideration here.

Asymptotically flat non-Schwarzschild solutions that
are non-trivial (in the sense of not being under-
determined) in modified gravity are a rare bread. An
intriguing example is the Lü-Perkins-Pope-Stelle solu-
tion in Einstein-Weyl gravity [4, 5]. In [29] Kalita and
Mukhopadhyay also reported numerical indications of an
asymptotically flat vacuo for an f(R) theory with the
Einstein-Hilbert R being the leading term. The special
Buchdahl-inspired metric, found in our current paper, is
a newest member of this scant roster.

3. Anomalous behavior in the surface area of the
interior-exterior boundary

Equipped with the exact analytical solution (189)–
(190), we then examined asymptotically flat R2 space-
time structures. We found that, except for k = 0, the
areal radius r(ρ) shrinks to zero at the interior-exterior
boundary. See Sec. IIIA.
Crucially, we also found that the surface area of the

interior-exterior boundary, by including the conformal

factor
∣∣∣1− rs

ρ

∣∣∣ krs , vanishes for k ∈ (−∞,−rs) ∪ (0,+∞),
diverges for k ∈ (−rs, 0), equal 4πr2

s for k = 0, and equal
16πr2

s for k = −rs. See Sec. IIID.
At the same time, the Kretschmann invariant exhibits

curvature singularities on the interior-exterior boundary
provided that k 6= 0 and k 6= −rs. The usual singularity
the origin persists, but it gets modified in the presence
of k. See Sec. III C.
Taken altogether, these anomalous properties of the

interior-exterior boundary suggest that the topology of
R2 spacetimes undergo fundamental changes around
mass sources.

4. A “virtual” region in the ζ−Kruskal-Szekeres diagram

We proceeded by analytically construct the KS dia-
gram for metric (189)–(190). The techniques developed
for the regular KS diagram [21–24] are extendable to the
case at hand. We employed them to design the ζ−tortoise
coordinate, the ζ−Eddington-Finkelstein coordinates,
and the ζ−Kruskal-Szekeres coordinates, accordingly.
The ζ−tortoise coordinate ρ∗ is expressible in terms of

a Gaussian hypergeometric function. We found modifica-
tions in the “flip over” phenomenon of light cones across
the interior-exterior boundary. See Secs. IVA and IVC.
The ζ−KS diagram is shown in Fig. 13 on page 18.

The ζ−KS plane is conformally flat. The causal structure
of the regular KS diagram remains intact in the ζ−KS
diagram. In the interior, null and timelike geodesics will
eventually hit the origin; namely, no physical objects can
escape the interior. In the exterior, outgoing light paths
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can escape to infinity, whereas incoming light paths must
fall into the interior. See Sec. IVD.

Yet there emerges a very surprising feature in the
ζ−KS diagram. Sandwiching between the four known
quadrants (I)–(IV) is an “virtual” domain which cannot
be mapped to any region in the original manifold speci-
fied by (t, ρ, θ, φ). Transits of physical objects from the
exterior into the interior must bypass this “gulf” unaf-
fected, at least at the classical level.

Given that the ζ−KS diagram is the maximal exten-
sion of metric (189)–(190), the “gulf” that emerges is a
tantalizing aspect, deserving further investigation. We
put forth a conjecture that the “virtual gulf” could be
accounted for by embedding the ζ−tortoise coordinate
into the complex plane. See our Conjecture 25.

5. Questioning the validity of techniques based on series
expansions around the interior-exterior boundary

The non-analyticity of the special Buchdahl-inspired
metric across the interior-exterior boundary is self-
evident in the singularities of the Kretschmann scalar,
the anomalous properties of the surface area of the
interior-exterior boundary, and the appearance of a “vir-
tual gulf” in the ζ−KS plane. This metric therefore can-
not be attained by any technique that is based on an ana-
lytic perturbative expansion around the interior-exterior
boundary.

In a larger context, for the full quadratic gravity, viz.
γR+βR2−α CµνρσCµνρσ, as the generalized Lichnerow-
icz theorem has been evaded, one must restore the R2

term, namely, permitting β 6= 0; see [20]. Solutions
with non-analytic behaviors across the interior-exterior
boundary should be possible. At the very least, the limit
of α = γ = 0 must recover the special Buchdahl-inspired
metric together with its anomalies. The Lü-Perkins-
Pope-Stelle ansatz made in [4, 5] would need augmenting
with non-analytic built-ins in order to find these solutions
in the full quadratic action. See our companion paper for
discussions [20].

6. Non-Schwarzschild structures in pure R2 spacetime

The divergence of the Kretschmann invariant at the
interior-exterior boundary, ρ = rs, for k 6= 0 and k 6= −rs
signals the formation of a naked singularity or a worm-
hole. Given that pure R2 gravity is equivalent to a
scalar-tensor theory, it would be natural to consider the
special Buchdahl-inspired metric in conjunction with ex-
act solutions in Brans-Dicke gravity, viz. the Brans and
Campanelli-Lousto solutions which are known to possess
naked singularities or wormholes, depending on the value
of the Brans-Dicke parameter [30–34]. The no-hair theo-
rem first proved by Hawking [35] and later generalized by
Sotiriou and Faraoni [36] for scalar-tensor gravity should

also be taken in account. We plan to investigate this
direction in future research.

—————–∞—————–

What is surprising is that pureR2 gravity is a parsimo-
nious theory, containing only one single term in the ac-
tion 4. It does not involve exogenous terms, torsion, non-
metricity, metric-affine hybrid, or non-locality [11–14]. It
operates within the vanilla local metric-based formalism.
Yet, despite its simplicity, it already produces novel be-
haviors, reported herein, that are yet encountered in
the Einstein-Hilbert theory. Moreover, pure R2 gravity
admits the Buchdahl-inspired vacua with non-constant
scalar curvature, per Eq. (4). The asymptotic scalar
curvature 4Λ and the Buchdahl parameter k are two en-
dogenous degrees of freedom that are only accessible in a
fourth-order theory, as opposed to a second-order theory
such as the Einstein-Hilbert action.

It is the Buchdahl parameter k that enriches R2 grav-
ity with phenomenology which transcends the Einstein-
Hilbert paradigm.

VI. CLOSING WORDS

In this second installment of our three-paper “Beyond
Schwarzschild–de Sitter spacetimes” series [1, 20], we re-
ported an exact closed analytical solution that serves
as a bona fide enlargement of the Schwarzschild solu-
tion. It encloses the Schwarzschild spacetime as a lim-
iting case (when the Buchdahl parameter k is sent to
zero). We achieved this result by advancing an un-
finished program in search of pure R2 vacua, a pro-
gram that was originated but “forsaken” by Buchdahl
circa 1962, and largely “forgotten” by the gravitation
research community in the past sixty years [2]. Novel
intriguing theoretical properties of R2 spacetime struc-
tures are uncovered and reported herein, suggesting that
the Buchdahl-inspired spacetimes may fall outside of the
Einstein-Hilbert paradigm. They may well belong to a
separate Buchdahl-inspired framework, warranting fur-
ther explorations.

Acknowledgments

I thank the anonymous referee for their important com-
ments in improving the paper and stimulating further de-
velopments, especially regarding the non-Schwarzschild
R2 structures. I thank Dieter Lüst for his encouragement

4 Besides its parsimony, virtues of this theory are in being ghost-
free and scale invariant [7, 17, 18].



22

during the development of this research. The anony-
mous referee of my previous paper [1] motivated me to
strengthen the capacity of my work in evading the gener-
alized Lichnerowicz theorem [3–6]. The valuable help and
technical insights from Richard Shurtleff are acknowl-
edged. I thank Tiberiu Harko for his supports, Sergei
Odintsov and Timothy Clifton for their comments.

—————–∞—————–

Appendix A: The case of rs = 0

From Lemma 1 and Corollary 9, we have

q± =
√

3
2 |k| (A1)

r =
∣∣∣∣q2 − 3

4k
2
∣∣∣∣ 1

2

(A2)

p = sgn
(
q2 − 3

4k
2
)∣∣q2 − 3

4k
2
∣∣ 1

2

q
(A3)

p q

r
= sgn

(
q2 − 3

4k
2
)

(A4)

eω =
∣∣∣∣∣q −

√
3

2 |k|
q +

√
3

2 |k|

∣∣∣∣∣
2√
3

sgn(k)

(A5)

The metric is thus

ds2 =

∣∣∣∣∣q −
√

3
2 |k|

q +
√

3
2 |k|

∣∣∣∣∣
2√
3

sgn(k)

×{
sgn
(
q2 − 3

4k
2
) [
−dt2 + dq2]+

∣∣∣q2 − 3
4k

2
∣∣∣ dΩ2

}
(A6)

Appendix B: Gaussian hypergeometric function

The Gaussian hypergeometric function involved in the
ζ−tortoise coordinate, 2F1(a, b; c; z) in terms of series

2F1(a, b; c; z) = 1+ ab

c.1!z+a(a+ 1)b(b+ 1)
c(c+ 1).2! z2+. . . (B1)

Generally speaking, this series converges in the unit cir-
cle |z| < 1. For the ζ−tortoise coordinate (modulo an
additive constant)

ρ∗ = ζ2rs

ζ − 1 z
1− 1

ζ 2F1

(
2, 1− 1

ζ
; 2− 1

ζ
; sgn

(
1− rs

ρ

)
z

)
(B2)

in which z :=
∣∣∣1− rs

ρ

∣∣∣ζ , or equivalently, ρ > rs/2 (note

that ζ :=
√

1 + 3k̃2 > 1 for k̃ 6= 0).
For 0 < ρ < rs/2, in order to continue using a hyper-

geometric function defined via a series, we would need
to “invert” the variable z. Recall the ODE for ρ∗ (for
ρ < rs):

dρ∗ = +ζrs
z−1/ζ

(1 + z)2 dz (B3)

Let us substitute z := y−1, then

dρ∗ = −ζ y1/ζ

(1 + y)2 dy (B4)

accepting the solution (modulo an additive constant)

ρ∗ = − ζ2rs

ζ + 1 z
−1− 1

ζ 2F1

(
2, 1 + 1

ζ
; 2 + 1

ζ
;−z−1

)
(B5)

which converges for ρ < rs. Note that its is nothing but
the original solution with ζ replaced by −ζ (including the
ζ in the definition of z).

Appendix C: The k→ 0 limit of the ζ−tortoise
coordinate

In the limit of k → 0, viz. ζ → 1:

|z|1−
1
ζ = 1 + ln |z|

(
1− 1

ζ

)
+O

((
1− 1

ζ

)2
)

(C1)

and

ζ

ζ − 1 2F1

(
2, 1− 1

ζ
; 2− 1

ζ
; z
)

= 1
1− 1

ζ

∞∑
n=0

(n+ 1)
(

1− 1
ζ

)
n+ 1− 1

ζ

zn (C2)

= 1
1− 1

ζ

+
∞∑
n=1

n+ 1
n+ 1− 1

ζ

zn (C3)

= 1
ζ − 1 +

(
1 +

∞∑
n=1

zn

)
+ 1
ζ

∞∑
n=1

zn

n+ 1− 1
ζ

(C4)

= 1
ζ − 1 + 1

1− z + 1
ζ

∞∑
n=1

[
zn

n
+O

(
1− 1

ζ

)]
(C5)

= 1
ζ − 1 + 1

1− z −
1
ζ

ln |1− z|+O
(

1− 1
ζ

)
(C6)

Eq. (132) gives

ρ∗

rs
= ζ

ζ − 1 + ζ

1− z − ln |1− z|+ ln |z|+O
(

1− 1
ζ

)
(C7)

Note that ρ∗ was determined up to an additional con-
stant. In the limit ζ → 1, we are thus left with

ρ∗

rs
= 1

1− z + ln
∣∣∣1 + 1

z − 1

∣∣∣ (C8)

Taking into account Eq. (122), viz. z = sgn
(

1 − rs
ρ

)
×∣∣∣1− rs

ρ

∣∣∣ζ = 1− rs
ρ for ζ = 1, we finally have

ρ∗ = ρ+ rs ln
∣∣∣∣ρ− rs

rs

∣∣∣∣ (C9)

in agreement with the usual tortoise coordinate.
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