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Beyond Single-Deletion Correcting Codes:
Substitutions and Transpositions

Ryan Gabrys* Venkatesan Guruswami' Joao Ribeirot Ke Wu®

Abstract

We consider the problem of designing low-redundancy codes in settings where one must
correct deletions in conjunction with substitutions or adjacent transpositions; a combination of
errors that is usually observed in DNA-based data storage. One of the most basic versions of this
problem was settled more than 50 years ago by Levenshtein, who proved that binary Varshamov-
Tenengolts codes correct one arbitrary edit error, i.e., one deletion or one substitution, with
nearly optimal redundancy. However, this approach fails to extend to many simple and natural
variations of the binary single-edit error setting. In this work, we make progress on the code
design problem above in three such variations:

e We construct linear-time encodable and decodable length-n non-binary codes correcting a
single edit error with nearly optimal redundancy logn 4+ O(loglogn), providing an alter-
native simpler proof of a result by Cai, Chee, Gabrys, Kiah, and Nguyen (IEEE Trans.
Inf. Theory 2021). This is achieved by employing what we call weighted VT sketches, a
notion that may be of independent interest.

e We construct linear-time encodable and list-decodable binary codes with list-size 2 for one
deletion and one substitution with redundancy 4logn + O(loglogn). This matches the
existential bound up to an O(loglogn) additive term.

e We show the existence of a binary code correcting one deletion or one adjacent transpo-
sition with nearly optimal redundancy logn + O(loglogn).

1 Introduction

Deletions, substitutions, and transpositions are some of the most common types of errors jointly
affecting information encoded in DNA-based data storage systems [YGM17, OAC*18]. Therefore,
it is natural to consider models capturing the interplay between these types of errors, along with
the best possible codes for these settings. More concretely, one usually seeks to pin down the
optimal redundancy required to correct such errors, and also to design fast encoding and decoding
procedures for low-redundancy codes. It is well-known that deletions are challenging to handle even
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in isolation, since they cause a loss of synchronization between sender and receiver. The situation
where one aims to correct deletions in conjunction with other reasonable types of errors is even
direr. In fact, our understanding of this interplay remains scarce even in basic settings where only
one or two such worst-case errors may occur.

One of the most fundamental settings where deletions interact with the other types of errors
mentioned above is that of correcting a single edit error (i.e., a deletion, insertion, or substitution)
over a binary alphabet. In this case, linear-time encodable and decodable binary codes correcting
a single edit error with nearly optimal redundancy have been known for more than 50 years.
Levenshtein [Lev65] showed that the binary Varshamov-Tenengolts (VT) code [VT65] defined as

C:{xe{o,l}":ii-xi:a mod(2n+1)} (1)

i=1

corrects one arbitrary edit error. For appropriate choices of a and b, this code has redundancy
at most logn + 2, and it is not hard to see that at least logn bits of redundancy are required to
correct one edit error. Remarkably, a greedy Gilbert-Varshamov-type argument only guarantees
the existence of single-edit correcting codes with redundancy 2logn — much higher than what can
be achieved with the VT code. We recommend Sloane’s excellent survey [Slo02] for a more in-depth
overview of binary VT codes and their connections to combinatorics.

Although the questions of determining the optimal redundancy and giving nearly-optimal ex-
plicit constructions of codes in the binary single-edit setting have been settled long ago, the under-
lying approach fails to extend to many simple, natural variations of this setting combining deletions
with substitutions and transpositions. In this work, we make progress on these questions in three
such fundamental variations, which we proceed to describe next.

1.1 Non-binary single-edit correcting codes

We begin by considering the problem of correcting a single arbitrary edit error over a non-binary
alphabet. This setting is especially relevant due to its connection to DNA-based data storage,
which requires coding over a 4-ary alphabet. In this case, the standard VT sketch

f(:n):szZ mod N, (2)

1=1

which allows us to correct one binary edit error in (1) with an appropriate choice of N, is no longer
enough. Instead, we present a natural extension of the binary VT code to a non-binary alphabet
via a new notion of weighted VT sketches, which yields the following order-optimal result.

Theorem 1. There erists a 4-ary' single-edit correcting code C C {0,1,2,3}" with
logn + loglogn + 7+ o(1)

bits of redundancy, where o(1) — 0 when n — o0o. Moreover, there exists a single edit-correcting
code C C {0,1,2,3}" with logn+ O(loglogn) redundant bits that supports linear-time encoding and
decoding. The existential result extends to larger alphabet size q with log n+ Ogy(log log n) redundant
bits.

LA 4-ary alphabet is relevant for DNA-based data storage.



This problem was previously considered by Cai, Chee, Gabrys, Kiah, and Nguyen [CCGT21],
who proved an analogous result. Our code construction requires slightly less redundancy and
supports more efficient encoding and decoding procedures than the construction from [CCG121].
However, we believe that our more significant contribution in this setting is the simpler approach
we employ to prove Theorem 1 via weighted VT sketches. The technique of weighted VT sketches
seems quite natural and powerful and may be of independent interest. More details can be found
in Section 3, where we also present a more in-depth discussion on why the standard VT sketch (2)
does not suffice in the non-binary case.

1.2 Binary codes for one deletion and one substitution

As our second contribution, we make progress on the study of single-deletion single-substitution
correcting codes. Recent work by Smagloy, Welter, Wachter-Zeh, and Yaakobi [SWWY20] con-
structed efficiently encodable and decodable binary single-deletion single-substitution correcting
codes with redundancy close to 6logn. On the other hand, it is known that 2logn redundant bits
are required, and a greedy approach shows the ezistence of a single-deletion single-substitution
correcting code with redundancy 4logn + O(1).

In this setting, we ask what improvements are possible if we relax the unique decoding re-
quirement slightly and instead require that the code be list-decodable with list-size 2. In other
words, our goal is to design a low-redundancy code C C {0, 1}" such that for any corrupted string
y € {0,131 U {0,1}" there are at most two codewords x,z’ € C that can be transformed into y
via some combination of at most one deletion and one substitution. This is the strongest possible
requirement after unique decoding, which corresponds to lists of size 1.

The best known existential upper bound on the optimal redundancy in the list-decoding setting
is still 4logn + O(1) via the Gilbert-Varshamov-type greedy algorithm. In this paper, we give
an explicit list-decodable code with list-size 2 correcting one deletion and one substitution with
redundancy matching the existential bound up to an O(loglogn) additive term. At a high level,
this code is obtained by combining the standard VT sketch (2) with run-based sketches, which have
been recently used in the design of two-deletion correcting codes [GH21]. More precisely, we have
the following result.

Theorem 2. There exists a linear-time encodable and decodable binary list-size 2 single-deletion
single-substitution correcting code C C {0,1}" with 4logn + O(loglogn) bits of redundancy.

More details can be found in Section 4.

1.3 Binary codes correcting one deletion or one adjacent transposition

Finally, we consider the interplay between deletions and adjacent transpositions, which map 01
to 10 and vice-versa. An adjacent transposition may be seen as a special case of a burst of two
substitutions. Besides its relevance to DNA-based storage, the interplay between deletions and
transpositions is an interesting follow-up to the single-edit setting discussed above because the
VT sketch is highly ineffective when dealing with transpositions, while it is the staple technique
for correcting deletions and substitutions. The issue is that, if y,y’ € {0,1}" are obtained from
x € {0,1}" via any two adjacent transpositions of the form 01 — 10, then f(y) = f(v') = f(z) — 1,
where we recall f(z) = > " ;i-2 mod N is the VT sketch. This implies that knowing the VT
sketch f(z) reveals almost no information about the adjacent transposition, since correcting an
adjacent transposition is equivalent to finding its location.



In this setting, the best known redundancy lower bound is log n (the same as for single-deletion
correcting codes), while the the best known existential upper bound is 2log n, obtained by naively
intersecting a single-deletion correcting code and a single-transposition correcting code. A code with
redundancy logn + O(1) for this setting was claimed in [GYM18, Section III], but the argument
there is flawed. In this work, we determine the optimal redundancy of codes in this setting up
to an O(loglogn) additive term via a novel marker-based approach. More precisely, we prove the
following result.

Theorem 3. There exists a binary code C C {0,1}™ correcting one deletion or one transposition
with redundancy logn + O(loglogn).

In fact, since we know that every code that corrects one deletion also corrects one inser-
tion [Lev65], we can also conclude from Theorem 3 that there exists a binary code correcting one
deletion, one insertion, or one transposition with nearly optimal redundancy logn + O(loglogn).
More details can be found in Section 5.

1.4 Other related work

Recently, there has been a flurry of works making progress in coding-theoretic questions analogous
to the ones we consider here in other extensions of the binary single-edit error setting.

A line of work culminating in [BGZ18, GH21, SB21] has succeeded in constructing explicit
low-redundancy codes correcting a constant number of worst-case deletions. Constructions focused
on the two-deletion case have also been given, e.g., in [SB21, GS19, GH21]. Explicit binary codes
correcting a sublinear number of edit errors with redundancy optimal up to a constant factor have
also been constructed recently [CJLW18, Hael9]. Other works have considered the related setting
where one wishes to correct a burst of deletions or insertions [SWGY17, LP20, WSF21]. Following
up on [SWWY20], codes correcting a combination of more than one deletion and one substitution
were given in [SPCH21] with sub-optimal redundancy.

List-decodable codes in settings with indel errors have also been considered before. For example,
Wachter-Zeh [Wacl8] and Guruswami, Haeupler, and Shahrasbi [GHS20] study list-decodability
from a linear fraction of deletions and insertions. Most relevant to our result in Section 1.2,
Guruswami and Hastad [GH21] considered constructed an explicit list-size two code correcting two
deletions with redundancy 3logn, thus beating the greedy existential bound in this setting.

The interplay between deletions and transpositions has also been considered before. Gabrys,
Yaakobi, and Milenkovic [GYM18] construct codes correcting a single deletion and many adjacent
transpositions. In an incomparable regime, Schulman and Zuckerman [SZ99], Cheng, Jin, Li, and
Wu [CJLW19], and Haeupler and Shahrasbi [HS18] construct explicit codes with good redundancy
correcting a linear fraction of deletions and insertions and a nearly-linear fraction of transpositions.

2 Preliminaries

2.1 Notation and conventions

We denote sets by uppercase letters such as S and T' or uppercase calligraphic letters such as C,
and define [n] = {0,1,...,n — 1} and S=F = U?:o S for any set S. The symmetric difference
between two sets S and T is denoted by SAT. We use the notation {{a,a,b}} for multisets, which
may contain several copies of each element. Given two strings z and y over a common alphabet
3}, we denote their concatenation by z||y and write z[i : j] = (2, Tit1,...,2;). We say y € XF is
a k-subsequence of x € X" if there are k indices 1 <1y < i < --- < i < n such that z;; = y; for



j=1,...,k, in which case we also call x an n-supersequence of y. Moreover, we say x[i : j| is an
a-run of x if x[i : j] = o/~ for a symbol a € ¥. We denote the base-2 logarithm by log.

A length-n code C is a subset of X" for some alphabet ¥ which will be clear from context. In
this work, we are interested in the redundancy of certain codes (measured in bits), which we define
as

nlog |X| — log|C].

2.2 Error models and codes

Since we will be dealing with three distinct but related models of worst-case errors, we begin by
defining the relevant standard concepts in a more general way. We may define a worst-case error
model over some alphabet X by specifying a family of error balls

B={B(y) C=*:y € T*}.

Intuitively, B(y) contains all strings that can be corrupted into y by applying an allowed error
pattern. We proceed to define unique decodability of a code C C X" with respect to an error
model.

Definition 1 (Uniquely decodable code). We say a code C C X" is uniquely decodable (with
respect to B) if
[By)nc| <1

for all y € ¥*.

Throughout this work the underlying error model will always be clear from context, so we do
not mention it explicitly. We will also consider list-decodable codes with small list size in Section 4,
and so require the following more general definition.

Definition 2 (List-size ¢ decodable code). We say a code C C X" is list-size ¢ decodable (with
respect to B) if
[Bly)ncl <t

for all y € ¥*.

Note that uniquely decodable codes correspond exactly to list-size-1 codes. Moreover, we remark
that for the error models considered in this work and constant ¢, the best existential for list-size-
t codes coincides with the best existential bound for uniquely decodable codes up to a constant
additive term.

We proceed to describe the type of errors we consider. A deletion transforms a string x € X"
into one of its (n — 1)-subsequences. An insertion transforms a string = € X" into one of its (n+1)-
supersequences. A substitution transforms x € X" into a string 2/ € X" that differs from z in
exactly one coordinate. An adjacent transposition transforms strings of the form ab into ba. More
formally, a string x € X" is tranformed into a string 2’ € X" with the property that z} = z;4+1 and
vy = xp for some k, and x; = x; for i # k,k+ 1.

We can now instantiate the above general definitions under the specific error models considered
in this paper. In the case of a single edit, B(y) contains all strings which can be transformed
into y via at most one deletion, one insertion, or one substitution. In the case of one deletion and
one substitution, B(y) contains all strings that can be transformed into y by applying at most
one deletion and at most one substitution. Finally, in the case of one deletion or one adjacent
transposition, B(y) contains all strings that can be transformed into y by applying either at most
one deletion or at most one transposition.



3 Non-binary single-edit correcting codes

In this section, we describe and analyze the code construction used to prove Theorem 1. Before we
do so, we provide some intuition behind our approach.

3.1 The binary alphabet case as a motivating example

It is instructive to start off with the binary alphabet case and the VT code described in (1), which
motivates our approach for non-binary alphabets. More concretely, we may wonder whether a
direct generalization of C to larger alphabets also corrects a single edit error, say

¢ = {:v € [q"

Zixizs mod (1 +2¢gn), Ve€|[q]: |{i:x; =c}| =sc m0d2},

i=1

where [¢] = {0,1,...,qg—1}. However, this approach fails already over a ternary alphabet {0, 1,2}.
In fact, C" cannot correct worst-case deletions of 1’s because it does not allow us to distinguish
between

. 102, .. and ...021. ..

which can be obtained one from the other by deleting and inserting a 1 in the underlined positions.
More generally, there exist codewords xz € C’ with substrings (z; = 1,241, ..., %)) not consisting

solely of 1’s satisfying
k

> (zi—-1)=0. (3)
i=j+1
This implies that the string &’ obtained by deleting z; = 1 from z and inserting a 1 between xy,
and x4 is also in C'.
In order to avoid the problem encountered by C’ above, we instead consider a weighted VT
sketch of the form

n
fw(z) = Zz ~w(z;) mod N (4)
i=1
for some weight function w : [¢] — Z and an appropriate modulus N. Using f,, instead of the
standard VT sketch f(z) = Y, iz; mod N in the argument above causes the condition (3) for
an uncorrectable 1-deletion to be replaced by

Then, choosing 0 < w(0) < w(l) < w(2) < --- < w(¢g — 1) appropriately allows us to correct the
deletion of a 1 in x given knowledge of f,,(z) provided that x satisfies a simple runlength constraint.
In turn, encoding an arbitrary message z into a string x satisfying this constraint can be done very
efficiently via a direct application of the simple runlength replacement technique from [SWGY17]
using few redundant bits. Theorem 1 is then obtained by instantiating the weighted VT sketch (4)
with an appropriate weight function and modulus.



3.2 Code construction

In this section, we present our construction of a 4-ary single-edit correcting code which leads to
Theorem 1. As discussed in Section 3.1, given an arbitrary string =z € {0, 1,2,3}" we consider a
weighted VT sketch

f(z) = Z’L ~w(x;) mod [1+2n - (2logn + 12)],
i=1

where w(0) = 0, w(l) = 1, w(2) = 2logn + 11, and w(3) = 2logn + 12, along with the count
sketches
he(z) = |{i : x; = c¢}| mod 2

for ¢ € {0,1,2}. Intuitively, the count sketches allow us to cheaply narrow down exactly what type
of deletion or substitution occurred (but not its position). As we shall prove later on, successfully
correcting the deletion of an a boils down to ensuring that

k
> (w(@:) —w(a)) #0 (5)
i=j
for all 1 < j < k < n such that there is i € [j, k] with x; # a. We call strings x that satisfy this
property for every a regular, and proceed to show that enforcing a simple runlength constraint on
x is sufficient to guarantee that it is regular.

Lemma 1. Suppose x € {0,1,2,3}" satisfies the following property: If ' denotes the subsequence
of z obtained by deleting all 1’s and 3’s and z” denotes the subsequence obtained by deleting all
0’s and 2’s, it holds that all O-runs of 2’ and all 3-runs of z” have length at most logn + 3. Then,
x 18 reqular.

Proof. First, note that when a = 0,3 it follows that (5) holds trivially for all . Thus, it suffices
to consider a = 1,2. Fix any z satisfying the property outlined in the lemma statement and
1 < j <k < n such that there is i € [j, k] with z; # 1. The runlength constraint on " implies that
there must be at least one 2 in z[j, k] for every consecutive subsequence of 2[logn + 3] 0’s that
appears in z[j, k]. Since w(0) — w(1l) = —1 and w(2) — 1 = 2logn + 10 > 2[logn + 3], it follows
that (5) holds. The argument for the case a = 2 is analogous using the fact that w(3) —w(2) =1
and w(l) —w(2) = —(2logn + 11) < —2[logn + 3. O

Let G C {0,1,2,3}" denote the set of regular strings. Given the above definitions, we set our
code to be
C=6N{ze{0,1,2,3}": f(z) = s, he(z) = s.,c € {0,1,2}} (6)

for appropriate choices of s € {0,...,1+ 2n - (2logn + 12)} and s. € {0,1} for ¢ = 0,1,2. A
straightforward application of the probabilistic method shows that most strings are regular.

Lemma 2. Let X be sampled uniformly at random from {0,1,2,3}". Then,
Pr[X is regular] > 7/8.

Proof. Let X’ and X" be the subsequences of X obtained by deleting all 1’s and 3’s or all 0’s and
2’s, respectively. Then, the probability that X’ has a O-run of length logn + 4 starting at 7 is ﬁ.
By a union bound over the fewer than n choices for 4, it follows that X’ has at least one such 0-run
with probability at most 1/16. Since the same argument applies to 3-runs in X”, a final union

bound over the two events yields the desired result by Lemma 1. O



As a result, by the pigeonhole principle there exist choices of s, sg, s1, s3 such that
74"
IC| > .
8:-23.(14+2n-(2logn + 12))

This implies that we can make it so that C has logn + loglog n + 6 + o(1) bits of redundancy, where
o(1) — 0 when n — oo, as desired. If n is not a power of two, then taking ceilings yields at most
one extra bit of redundancy for a total of logn + loglogn + 7 + o(1) bits, as claimed.

It remains to show that C corrects a single edit in linear time and that a standard modification
of C admits a linear time encoder. Observe that if a codeword x € C is corrupted into a string y by
a single edit error, we can tell whether it was a deletion, insertion, or substitution by computing
ly|. Therefore, we treat each such case separately below.

3.3 Correcting one substitution

Suppose that y is obtained from some x € C by changing an a to a b at position i. Then, we can find
|w(a) —w(b)| by computing hy(y) — he(z) for a = 0, 1,2. In particular, note that we can correctly
detect whether no substitution was introduced, since this happens if and only if h,(y) = hy(z) for
a=0,1,2. It also holds that

fly) = f(@) =i (wb) —w(a)).

Since i - (w(b) — w(a))] < n-(2logn + 12) < w, we can recover the position i by

computing
. 1)~ 1)
|w(b) — w(a)|

Note that these steps can be implemented in time O(n).

3.4 Correcting one deletion

Suppose that y is obtained from x € C by deleting an a at position i. First, note that we can find
a by computing h.(y) — h.(z) for ¢ = 0,1,2. Now, let y9) denote the string obtained by inserting
an a to the left of y; (when j = n this means we insert an a at the end of y). We have x = y and
our goal is to find i. Consider n > j > i and observe that

f@) = fy) = fu@) - fY)
= Z (w(z¢) —w(a)),

{=i+1

because yy—1 = x4 for £ > i. Since x is regular, it follows that Z;ZiJrl(w(:Eg) —w(a)) # 0 unless
Ziy1 = -+~ = x; = a. This suggests the following decoding algorithm: Successively compute
f(z) = f(yD) for j = n,n—1,...,1 until f(z) — f(y¥)) = 0, in which case the above argument
ensures that y) = 2 since we must be inserting a into the same a-run of z from which an a was
deleted. This procedure runs in time O(n).

3.5 Correcting one insertion

The procedure for correcting one insertion is very similar to that used to correct one deletion.? We
present the argument for completeness. Suppose y is obtained from x by inserting an a between

It is well known that every code that corrects one deletion also corrects one insertion [Lev65]. However, this
implication does not hold in general if we require efficient decoding too.



xi—1 and z; (when i = 1 or ¢ = n + 1 this means we insert an a at the beginning or end of =z,
respectively). First, observe that we can find a by computing h.(z) — he(y) for ¢ = 0,1,2. Let y)
denote the string obtained from y by deleting y; = a. Then, it holds that y® =z and for j > i we
have

f@) = ) = D) — fy)
j—2
= - Z(’w(l’e) —w(a)),
=1

because y, = xy_1 when j > i. As before, using the fact that x is regular allows us to conclude that
f(z) — f(y9) =0 if and only if z; = --- = Zj_2 = a, in which case we are deleting an a from the
correct a-run of x. Therefore, we can correct an insertion of an a in x by successively computing
f(z) — f(yY) for all j such that y; = a starting at j = n + 1 and deleting y; for the first j such
that f(z) — f(y¥)) = 0, in which case the argument above ensures that y) = 2. This procedure
runs in time O(n).

3.6 A linear-time encoder

In the previous sections we described a linear-time decoder that corrects a single edit error in
regular strings = assuming knowledge of the weighted VT sketch f(z) and the count sketches h.(z)
for ¢ =0, 1,2. It remains to describe a low-redundancy linear-time encoding procedure for a slightly
modified version of our code C defined in (6). Fix an arbitrary message z € {0, 1,2, 3}"™. We proceed
in two steps:

1. We describe a simple linear-time procedure based on runlength replacement that encodes z
into a regular string = € {0, 1,2, 3}™+4;

2. We append an appropriate encoding of the sketches f(x)||ho(z)||h1(x)|/h2(z) (which we now
see as binary strings) to x that can be recovered even if the final string is corrupted by an
edit error. This adds O(loglogn) bits of redundancy.

We begin by considering the first step. We can encode z into a regular string = € {0,1,2,3}m+4
by enforcing a runlength constraint using a simple runlength replacement technique [SWGY17,
Appendix B].

Lemma 3. There is a linear-time procedure Enc that given z € {0,1,2,3}™ outputs x = Enc(z) €
{0,1,2, 3y with the following property: If x' is obtained by deleting all 1’s and 3’s from x and

x” is obtained by deleting all 0’s and 2’s, it holds that all 0-runs of ' and all 3-runs of ¥ have
length at most [logn + 2]. Moreover, there is a linear-time procedure Dec such that Dec(z) = z.
In particular, x is reqular by Lemma 1.

Proof. Let 2’ € {0, 2}m/ with m’ < m denote the subsequence at positions 1 < i < -+ < 4,y < m of
z obtained by deleting all 1’s and 3’s, and let 2" € {0,1,2, 3}’”_7”/ denote the leftover subsequence.
We may apply the runlength replacement technique from [SWGY17] to 2’ and 2” separately in order
to obtain strings 2’ and z” with the desired properties. For completeness, we describe it below. The
final encoding z is obtained by inserting the symbols of 2’ into the positions i1, ..., %y, ,m+1,m+2
of z and the symbols of z” into the remaining positions.

The encoding of 2’ into x’ proceeds as follows: First, append the string 20 to 2z’. Then, scan
2! from left to right. If a O-run of length [logm’ + 2] is found starting at ¢, then we remove it
from 2’ and append the marker bin(7)||22 to z/, where bin(i) denotes the binary expansion of i



(over {0,2} instead of {0,1}) to [logm/] bits. Note that the length of 2’ stays the same after each
such operation, and the addition of a marker does not introduce new 0-runs of length [logm’+ 2].
Repeating this procedure until no more O-runs of length [logm’ + 2| are found yields a string
2’ € {0,2}™*2 without O-runs of length [logm’ + 2] < [logm + 2]. This procedure, along with
the transformation from ' to x, runs in time O(n). The encoding of 2" into z” € {1,3}" ™ *2 is
analogous with 1 in place of 2 and 3 in place of 0.

It remains to describe how to recover z from x. It suffices to describe how to recover 2’ and z”
from 2’ and 2", respectively, in time O(n). By the encoding procedure above, we know that if
ends in a 0 then it follows that 2’ = 2/[1 : m’ = |2/| — 2]. If 2/ ends in a 2, it means that 2’ has suffix
bin(7)||22 for some i. Then, we recover i from this suffix and insert a O-run of length [logm’ + 2]
in the appropriate position of /. We repeat this until 2’ ends in a 0. This procedure also runs
in time O(n). The approach for z” is analogous and yields z”. Finally, we can merge 2’ and 2"
correctly to obtain z since we know that z’ should be inserted into the positions occupied by 2’ in
x (disregarding the last two symbols of /). O

To finalize the description of the overall encoding procedure, let = Enc(z) and define (Enc, Dec)
to be an explicit coding scheme for strings of length ¢ = | f(z)||ho(x)||h1 (x)|/he(x)| correcting a single
edit error (a naive construction has redundancy 2log ¢+ O(1) = O(loglogm)). If

u = Enc(f(z)|lho(z)|h1(z)|| ha(z)),

the final encoding procedure is
z— zllu €{0,1,2,3}",

which runs in time O(m) = O(n) and has overall redundancy logm + O(loglogm) = logn +
O(loglogn).

Now, suppose y is obtained from z||u by introducing one edit error. We show how to recover
z in time O(n) from y. First, we can recover u by running Dec on the last |u| — 1, |ul, or |u| + 1
symbols of y depending on whether a deletion, substitution, or insertion occurred, respectively. If
the last |u| symbols of y are not equal to u, we know that the edit error occurred in that part of
y. Therefore, we have x = y[1 : m + 4] and can compute z = Dec(y[1 : m + 4]). Else, if the last |u]
symbols of y are equal to u, it follows that y[1 : |y| — |u|] can be obtained from x via one edit error.
This means we can recover x from y[1 : |y| — |u|] and in turn compute z = Dec(z).

4 Binary list-size two code for one deletion and one substitution

In this section, we describe and analyze a binary list-size two decodable code for one deletion
and one substitution, which yields Theorem 2. Departing from the approach of [SWWY20], our
construction makes use of run-based sketches combined with the standard VT sketch. Run-based
sketches have thus far been exploited in the construction of multiple-deletion correcting codes,
including list-decodable codes with small list size [GH21].

We proceed to describe the required concepts: Given a string x = (x1,...,2,) € {0,1}", we
define its run string r* by first setting r§ = 0 along with xg = 0 and z,,; = 1, and then iteratively
computing rf = r’ | if x; = ;1 and r{ = r{ | + 1 otherwise for ¢ = 1,...,n,n 4+ 1. Note that
every string x is uniquely determined by its run string r* and vice-versa. Moreover, it holds that
r® defines a non-decreasing sequence and 0 < 77 <4 for every ¢ = 1,...,n,n + 1. As an example,
the run string corresponding to x = 011101000 is r* = 0111234445. We call r{ the rank of index ¢
in 2. We will denote the total number of runs in « by r(x). The following simple structural lemma
about the number of runs in a corrupted string will prove useful in our case analysis.
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Lemma 4. If 2’ is obtained from x via one deletion, then either r(x') = r(x) or r(z') = r(z) — 2.
On the other hand, if x' is obtained from x via one substitution, then either r(z') = r(z), r(2') =

r(z) —2, orr(z') =r(x) + 2.

Proof. The desired statement follows by case analysis. We have r(2’) = r(z) —2 when 2’ is obtained
by deleting or flipping a bit in a run of length 1 in z. Otherwise, we have r(z’) = r(z) when 2’ is
obtained by deleting a bit in a run of length at least 2 or by flipping the leftmost or rightmost bit
in a run of length at least 2. In the remaining case where the flipped bit is in the middle of a run
of length at least 3, we have r(z') = r(x) + 2. O

The main component of our code is a combination of the standard VT sketch

f(z) = zn:za:, mod (3n + 1) (7)
i=1
with the run-based sketches
fi(z) = En:rf mod 12n + 1, (8)
i=1
fo(z) = Zn:rf(rf —1) mod 16n? +1 9)
i=1

originally considered in [GH21]. Additionally, we also consider the count sketches

h(z) = En: x; mod 5, (10)
i=1
hr(z) =r(z) mod 13. (11)

The count sketches are used to distinguish different error patterns. Intuitively, the sketch h(z) is
used to determine the value of the bit deleted and the value of the bit flipped, while A, (x) is used
to distinguish among different cases of run changes, i.e., whether the number of runs decreases by
four or increases by two due to the errors. For each possible error pattern, we use the standard
VT-sketch and the run-based sketches to decode. Given the above, our code is defined to be

C={z {0, 1}": f(x) = s, f{(x) = s, f3(x) = 85, h(x) = v, by () = ur}, (12)

for an appropriate choice of s € [3n + 1], s] € [12n + 1], s5 € [16n? + 1], u € [5], and u, € [13]. By
the pigeonhole principle, there is such a choice which ensures C has redundancy 4logn 4+ O(1). In
the remainder of this section, we will show that C admits linear-time list-size two decoding from
one deletion and one substitution. Moreover, we will also show that a slightly modified version of C
with redundancy 4log n+ O(loglog n) admits linear-time encoding and inherits the error correction
properties of C.

4.1 Error correction properties

Let y be the string obtained from x € C after one deletion at index d and one substitution at index
e. We use z, to denote the bit flipped, and z4 to denote the bit deleted in z. When d = e, we
simply have one deletion and no substitution. Our goal is to recover = from .
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For our analysis, it is useful to note that

n n
—4n < er —ZT‘ZD < 2n,
i=1 i=1
n n
—on” <3 orlrf = 1) = 3 rilrd — 1) < 4
i=1 i=1

In particular, by the choice of modulus in the run-based sketches f{ and fJ, this implies that we

can recover the values > 7' | r¥ and > " | r¥(rf — 1) from knowledge of y and the sketches f{(z)

1
and f5(x). Therefore, we can safely omit the modulus when we compare the difference between
the sketches of x and of y later in our analysis.
Moreover, it is useful to observe that one deletion and no substitution can be equivalently
transformed to one deletion and one substitution, thus we will only consider the case in which we

have one deletion and one substitution, i.e., d # e. In fact:

e If the single deletion of b in the ¢-th run does not change the number of runs, then it is
equivalent to one deletion of 1 — b in the (i — 1)-th run and one substitution at the beginning
of the i-th run. See Figure 1 for an example.

Y Y

)

0 T

dy € d
Figure 1: Transforming a single deletion into one deletion and one substitution, when the single

deletion does not change the number of runs.

e If the single deletion of b in the i-th run reduces the number of runs by two, then it is equivalent
to one deletion in the (i — 1)-th run and a substitution in the i-th run. See Figure 2 for an
example.

Y Y

)

® T
d

Figure 2: Transforming a single deletion into one deletion and one substitution, when the single
deletion reduces two runs.

Let 0 be an indicator variable of whether e > d. That is, § = 1 if e > d, and § = 0 otherwise.
Then, the corrupted string y can be regarded as a string obtained via one substitution at index
e — 6 from ' € {0,1}"!, where 2’ is in turn obtained via one deletion from z at index d. See
Figure 3 for an example of § =0 or § = 1.

The process of decoding can be thought of as inserting a bit x4 before the d-th bit in y and
flipping the (e — §)-th bit in y. Roughly speaking, we will begin with a candidate position pair
(d,e) with d is as small as possible with the property that, if  denotes the string obtained from y

12



O
x : l
y i
e—1

When d < e, we have § = 1. When d > e, we have § = 0.

Figure 3: Example of d > e and d < e. The blue rectangles denote runs of 0, and the red rectangles
denote runs of 1. The shaded rectangle denotes the deleted bit and the bordered rectangle denotes
the flipped bit.

by inserting x4 before the d-th bit in y and flipping the bit at position e — S in y, where 5 indicates
whether d < ¢, then f(7) = f(z). Then we move d to the right to find the next candidate pair d
such that d is as small as possible, and € is the unique index such that (d €) gives the correct value
of f(z). During this process, either f](z) determines a unique candidate position pair (d, €), or a
convexity-type property of fj(x) guarantees at most two candidate position pairs. The convexity
of f5(x) is a consequence of the following lemma.

Lemma 5 ([GH21, Lemma 4.1]). Let a; and a} be two sequences of non- negative integers such that
Yoy a; =Y i a; and there is a value t such that for all i satisfying a, < al it holds that al; < t,

i=1

and for all i satisfying a; > al it holds that a > t. Then, either a; = a) for all i, or

n n
Zai(ai —-1)> Za;(a; —1).
i=1 i=1

Given h,(z) and h,(y), we can easily tell how the number of runs changes; with the sketches
h(z) and h(y), we can recover the values of x4 and x.. Table 1 summarizes the connections between
h and the values of the corrupted bits.

Difference between h(z) and h(y) | Bit deleted | Bit flipped
h(z) —h(y) = -1 xg=0 e =10
h(z) —h(y) = 1 zg=0 Te=1
h(z) —h(y)= 0 rg=1 ZTe =0
h(z) —h(y) = 2 zg=1 xe =1

Table 1: Correspondence between (h(x),h(y)) and (z4, ze).

Elementary moves. Recall that we defined the string z associated with a candidate position
pair (d:'é) to be the string obtained from y by inserting x4 before y7 and flipping y. 5. Making
a parallel with x and 2/, let 7’ denote the string obtained from Z by deleting T3 Then, we say
(d,€) is a valid pair if f(Z) = f(z), hy(F) = he(z), and h,(z') = h,(F'). Intuitively, valid pairs are
indistinguishable from the true error pattern (d,e) from the perspective of the VT-sketch and the
count sketches.
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During the decoding procedure, we move from one valid pair to another as follows: Suppose we
hold the valid pair (d €). Then, we move d one index to the right, and check whether the unique
€ such that f(Z) = f(x) forms a valid pair with d. If not, we again move d one index to the right
and repeat the process until we find the next valid pair. We call this an elementary move. Note
that since inserting a bit b into a b-run at any position gives the same output, we may always move
d to the end of the next x4-run in y (which may be empty).

For example, suppose that the error pattern indicates that x4 = 1, x, = 1, the deletion does
not reduce the number of runs, i.e., h.(z") = h,(z), while the substitution increases the number of
runs by two, i.e., h.(z') — h.(y) = —2. This means that in an elementary move, d is moving from
the end of a 1-run in y to the end of the next 1-run in y, while € is moving to the left accordingly
so that the pair is valid. Moreover, since this elementary move needs to match the error pattern
that the substitution increases two runs, it must satisfy that y_ = 1 = Ys_5_, = 0 both before and
after the move. Figure 4 shows an example of such an elementary move.

Y

—
z )
d ¢

Figure 4: Example of an elementary move. Suppose that the error pattern indicates that x4 = 1,
z. = 1, and the deletion does not reduce the number of runs while the substitution increases the
number of runs by two. The process starts with the left figure in which a bit 1 is inserted at
position 67, the end of a 1-run and the bit 1 at position € — 1 is flipped. After an elementary move,
d moves to the end of the next 1-run, and e moves to the next position that matches the error

pattern Ys541 = Yo5_1 = 0.

d €

We use different arguments according to how the number of runs changes to show that at
most two valid candidate position pairs (d,¢) yield the correct value of f(z), fi(z), and fI(x)
simultaneously. The following equations will be useful to determine how d and € change in each
elementary move. Recall that we regard y as a string obtained via one substitution at index e — §
from 2’ € {0,1}"71, where 2’ is obtained via one deletion from z at index d. Note that

f(z) = (@) = dza + ix;, f@') = fly) = (e = d)[xe — (1 — )]
d

Moreover, we have
n—1 n—1
Z:E; = Zyl + (22, — 1).
d d

Then, combining these three observations yields

n—1

f(x)— fly) =dzqg+ Zyi +e(2xe — 1). (13)

i=d

4.1.1 If the number of runs increases by two

If r(y) = r(z) + 2, then it must be that r(z) = r(2’) and r(y) = r(2') + 2. This means that the
deletion does not change the number of runs (and thus occurred in a run of length at least 2 in
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x), while the substitution affects a bit in the middle of a run of length at least 3. In particular, we
have Ye—5-1 = Ye—s+1 = 1 — Ye—s. In this case, it follows that

fi(z) = fi(a) =g, @) = fily) = -1 +2(n—e+9)).
Therefore, for the run-based sketch f](z) it holds that
fi(@) = fily) = rg — (1 +2(n —e+9)). (14)

We now proceed by case analysis on the value of x4 and z..

If z. = x4 = b: In this case, when d makes an elementary move to the right, it must pass across
a (1 — b)-run of some length £ > 1. According to (13), position € has to move to the left by £ so
that f(Z) = f(z). If we have d < € before one elementary move but d > & after that move, we call
it a take over step. For each elementary move:

o If the move is not a take over step: Then, 7’3; increases by 2 while 2(n — d+ g) + 1 increases by
20. Therefore, (14) implies that f](7) strictly decreases after such a move whenever ¢ > 1. If
¢ =1, then € moves by 1 to the left and f{(Z) remains unchanged. However, since we need
1-b=y; 7=1-y_ 5it follows that € cannot move only 1 position to the left, and so £ > 1
necessarily. See Figure 4 for an example.

e If the move is a take over step: Before the move, d is on the left of a (1—=b)-run of length £ > 1
while € > d satisfies Yz—1 = 1 — b and ys_9 = ys = b. After the move, d moves to the right of
the (1 — b)-run of length ¢, while € is to the left of d. Moreover, it must be that yz =1 —b
and yz 1 = yzr1 = b. To match the error pattern, the only possible case is that £ = 1. To
see why this is the case, note that when £ > 2 the index € has to move to the left by at least

¢+ 2 to match the error pattern y. 5 =y, = 11 = 1 =y, 5 However, this move leads to

F(Z) # f(z), and thus does not yield a valid pair (d,€). When £ =1, let (d;,é,) and (da, &)

denote the position pair before and after the move, respectively. Then, these two pairs yield

the same candidate solution 1 = Z3. See Figure 5 for an example.

Y )

gl €2
di € ey do

Figure 5: An example of a take over step. If the take over happens, it must be that £ = 1. The
resulting 21 and Zo are the same.

Taking into account both cases above, we see that f](z) decreases during each elementary move,
and decreases by at most 2n during the whole process. Since the value of f{(x) is taken modulo
12n + 1, there is only a unique pair (c?,é’) that yields a solution such that f{(Z) = f{(x). Hence,
f(z) and f](z) together with y uniquely determine one valid pair (d,€), which in turn yields a
unique candidate solution Z = x.
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If x; =1—x.,=b: Inthiscase, when d makes an elementary move to the right, it must pass across
a (1—b)-run of some length ¢ > 1. Then, e has to move to the right by ¢ so that f(z) = f(z). During
each such move f](z) strictly increases. For the whole process, f{(Z) increases by at most 2n. By
a similar argument as above, we have that f(z) and f](x) together with y uniquely determine one
valid pair (d,¢) which yields the correct solution 7 = z.

4.1.2 If the number of runs decreases by four

If (y) = r(x) — 4, then it must be that r(z’) = r(z) — 2 and r(y) = r(2’) — 2. This means that the
error pattern must satisfy x4 1 = x4q11 = 1 —124 and that ye_5 1 = Ye_511 = 1 — Ye_s. In this case,
since

filz) = fi@@) =rg +2(n+1-d), f@) = fily) =1+2(n—e+9),
we have that
file) = fily) =l[rg+2n+1-d)]+[1+2(n—e+0). (15)

We now proceed by case analysis on the value of x4 and z..

If vy = z. = b:  We first find a solution of d and € such that d is as small as possible. During each
elementary move, let (dy,€1) denote the valid pair before the move and (ds, €3) after the move. Let
z1 and Ty be the resulting string, respectively. Recall that the rank of an index ¢ in a string x is
the i-th number in the run string r*. For each elementary move,

o If Jl < e1 and 672 < eg: Since both the deletion and the substitution decreases the number
of runs by two, for index ¢ such that d; < i < ds, the rank of index 4 in 7 is larger than
the rank of index i in 5. Similarly, for index j such that es < j < €3, the rank of index j
in z; is smaller than the rank of index j in Zo. By Lemma 5, we have that f5(z1) < f3(Z2).
Therefore, if d < € before and after an elementary move, then f5 () is strictly increasing.

o If 671 > ¢1 and Elvg > ep: For index i such that ez <14 < ej, the rank of index i in 77 is smaller
than the rank of index ¢ in Zo. Similarly, for index j such that d; < j < ds, the rank of index
J in 77 is larger than the rank of index j in Z3. By Lemma 5, we have that f5(z1) > f35(z2).
Therefore, if d > € before and after an elementary move, then f5(Z) is strictly decreasing.

Since when d moves to the right, ¢ has to move to the left accordingly to be a valid pair, we
can have at most one take over step. Moreover, f3(¥) increases by at most 4n? if d < € before
and after the elementary move, and f5(7) decreases by at most 4n? if d > € before and after the
elementary move. Since the value of fJ(z) is taken modulo 16n? + 1, this implies that we have at
most two candidate position solutions (671,51) and (672,52), where Jl < €1 and Jg > ey such that
f(@1) = f(@2) = f(z) and f3(Z1) = f3(Z2) = f;(z). Hence, f(z), f{(x), and f7(x) together with y
yield at most two candidate position solutions (di, €1) and (dz, €2), and thus at most two candidate
solutions z1 and Ts.

If zg=1—x. =0b: We first find a valid pair (CZE) such that d is as small as possible. When d
makes an elementary move to the right, € needs to move to the right such that f(z) = f(x). During
such moves, if d moves to the right by ¢, then rZ increases by at most ¢, while 2(n+1—d) decreases
by 2¢. Moreover, 2(n — e + ¢) is non-increasing. Therefore, by (15), f](z) strictly decreases during
the elementary moves. For the whole process, f{(Z) decreases by at most 4n. Hence, following
a similar argument as above, f(z) and f{(x) together with y uniquely determine a position pair
(cj, €), and thus a unique candidate solution z.
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4.1.3 If the number of runs decreases by two

If r(y) = r(z) — 2, it might be that the substitution decreases the number of runs by two: r(z') =
r(z) and r(y) = r(2') —2; or that the deletion decreases the number of runs by two: r(z') = r(z)—2
and r(y) = r(2'). We will treat these two sub-cases separately, and we will show that in each of
these sub-cases we can uniquely recover .

Substitution decreases the number of runs by two. We consider the case in which the
substitution decreases the number of runs by two, i.e., r(2') = r(z) and r(y) = r(2’) — 2. Since
the substitution decreases the number of runs, it must flip a bit b in a b-run of length one, i.e.,
Ye—b—-1 = Ye—5+1 = Ye—s, and we also have

fi(@) = fily) = rg + (1 +2(n —e+9)). (16)

We will proceed by case analysis based on the value of x4 and x..

If vy =z, = b: We first find a valid pair (c?,a such that d is as small as possible. When d makes
an elementary move to the right, it must pass across a (1 — b)-run of length ¢ > 1. Henceforth,
in this elementary move € must to move to the left by ¢ so that f(z) = f(z), according to (13).
During such moves, 7‘% strictly increases, while 2(n — e+ ¢) is non-decreasing. As a result, by (16),
f1(Z) increases during each elementary move. For the whole process, f{(x) increases by at most
2n. Therefore, analogously to previous cases, f(x) and f](z) together with y uniquely determine
a valid position pair (cflv7 €), and thus a unique candidate solution = = z.

If zg=1—x. =0b: We first find a valid pair (CZE) such that d is as small as possible. When d
makes an elementary move to the right, it must pass across a (1 —b)-run of length ¢ > 1. According
to (13), € needs to move to the right by ¢ to ensure that f(z) = f(z).

e If this is not a take over step: Suppose that the valid pairs are ((71, €1) and (Jg, €2) before and
after the move, respectively. During each such move, the run number 7‘3 increases by 2 while

[142(n —e+6)| decreases by 2¢. By (16), if £ > 1, then f] () decreases; if £ = 1, then f{(Z)
does not change.

However, when £ = 1, the rank of Jl and d~1 +1in 77 is smaller than that in Z5, while the rank
of €; and € in 7 is larger than that in Zo. By Lemma 5, f5(Z1) > f5(Z2). This implies that
during such elementary moves, either f{(Z) strictly decreases, or fJ(x) strictly decreases.

e If this is a take over step: During each such move, the run number 7‘% increases by 2 while

[1+2(n — &+ 9)] decreases by 2/ + 2. Therefore, fi(z) decreases.
During the whole process, f7(z) decreases by at most 2n, while f5(z) decreases by at most 4n?.
Consequently, f(z) and f{(x) together with y uniquely determine a valid pair (d,€), and thus a
unique candidate solution Z = x.

Deletion decreases the number of runs by two. In this section we consider the case in which
r(2’) = r(z) — 2 and r(y) = r(z’). This means that the substitution happens at the beginning or
end of a run. Moreover, the deletion pattern satisfies x4 1 = x411 = 1 — x4. Let v be an indicator
variable such that v = 1 if the substitution is at the end of a run in y, and v = —1 if the substitution
is at the beginning of a run in y. Then we have that

file) = fily) =rg+2(n+1—d)+. (17)
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We now proceed by case analysis cased on the value of x4 and x.

If xg = e = b:  We first find a valid pair (cz €) such that d is as small as possible. There are two
kinds of elementary moves of d.

e The index d moves within a (1 — b)-run of length at least two: In this case, when d moves to
the right by ¢, € has to move to the left by £ so that f(z) = f(x). In such a move, 7‘3 does not
change, while 2(n+ 1 —d) decreases by 2¢. According to (17), f{(z) decreases if £ > 1. When
¢ =1, if v changes from —1 to 1, the run-based sketch f{(Z) remains unchanged by (17).
This implies that during this move, € moves from the beginning of a b-run in y to the end of
a b-run in y. Otherwise, the substitution will affect the number of runs. However, € has to
move to the left by at least two to match the error pattern. Thus, it must be that £ > 1.

e The index d moves across a b-run of length ¢: In this case, d moves to the right by ¢+ ¢
for ¢/ > 2, € has to move to the left by ¢’ such that f(Z) = f(z). During such moves, f{(Z)
decreases.

For the whole process, fi(z) decreases by at most 2n. Therefore, f(z) and f{(x), together with y,
uniquely determine one position pair (d, €), and thus a unique candidate solution .

If zg=1—2.=b: We first find a valid pair (c?,a such that d is as small as possible. There are
two kinds of elementary moves of d.

e The first one is that when d moves within a (1 — b)-run of length at least two. In this case,
when d moves to the right by ¢, € has to move to the right by ¢ such that f(z) = f(z). During
such moves, f{(z) is non-increasing. Moreover, f{(Z) only remains unchanged during such
moves if £ = 1 and € moves from the beginning of a b-run of length two to the end of this
b-run; otherwise the substitution will affect the number of runs. During such a move, fJ(x)
is increasing.

e The second one is that when d moves cross a b-run of length ¢. In this case, d moves to the
right by ¢ + ¢’ for some ¢ > 2, € has to move to the right by ¢ to match f(z). During such
moves, f{(x) decreases.

For the whole process, f7(x) decreases by at most 2n, while f5(z) increases by at most 4n?.
Therefore, f(x), f{(z) and fj(x), together with y, uniquely determine a position pair (d,€), and
thus a unique candidate solution .

4.1.4 If the number of runs does not change

r(x) and

If r(y) = r(x), it might be that both errors do not change the number of runs: r(z') =
) =r(x)-2

r(y) = r(z’); or that deletion reduces two runs while substitution increases two runs: r(
and 7(y) = r(z') + 2.

Both errors do not change the number of runs. In this case, let v be an indicator variable

satisfying v = 1 if the substitution is at the end of a run in y, and v = —1 if the substitution is at
the beginning of a run in y. We have

file) = fily) =rg + 7. (18)
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Moreover,

rf(rr —1)+2(rz = 1), ify=1,
Fy(a) — fy(y) = § AU~ D2 (19)
ra(ri —1)=2r, ify=-1
We now proceed by case analysis cased on the value of x4 and x.
If 24 = . = b:  We have at most two solutions, one with v = 1 and one with v = —1. Assume that

the pair (di, €1) corresponding to v = 1 yields codeword Z1, and that the pair (ds, €2) corresponding
to v = —1 yields codeword Zo. We now show that if f(z1) = f(z2), f1(Z1) = f{(Z2), and that
f5(z1) = f5(z2), then Z; must be same as 5.

Note that since f](z1) = f](z2)and f5(z1) = f5(Z2), by (18) and (19), we have

Ty _ %1 1,01 T _ T2 T2 1\ _ 9,22
re=rs + 2, re (7’31 1) —i—2(rgl 1) = 5 (7“672 1) 2rz2.

This means that 72! + 75> = 7‘31 + 7"32, or, equivalently,
1 2

Y Y _ .Y Y
rY 4y =0y re
€1—01 + €2—02 di—1 + d2—1’

(20)
where 1 (d2) is the indicator of whether Jl is smaller than €] (672 is smaller than ey, respectively).
Since both d; and dz do not change the runs, there exists a single (1 — b)-run of length ¢ between
di and ds in y, and that e; — e = /.

y y . : y y :
o If a5 Ta By (20), it must be that e, < Ty That is to say,

52—52<C?1—1<(I2—1<51—51.

However, this contradicts the fact that e; —e; = £.

Yy oy . e e . . o o . _ _
o If T 5 = Tdt This is impossible since Yo, 5, = 1 b while Yi, 1 = b.

o IfrY _ <r% : By (20) and the fact that f(Z1) = f(Z3), it must be that ¥ - =r% +1,
€1—01 do—1 €1—01 di—1

and r?Y . =r%
€3—02 do—1

the beginning of this run. In this case, we must have 1 = Z3. See Figure 6 for an example.

—1,1ie., 1 — gl is the end of the (7’Z~ ) + 1)-th run in y, and ey — dy is
—

Y Y

z O Z2 O

dy €1 €2 da

Figure 6: An example of 1 = T, where 77 is a candidate solution with v = 1 while Z5 is a
candidate solution with v = —1.

Therefore, in this case, f(x), f{(z), and f5(z) together with y uniquely determine a valid pair (d, €)
and thus a unique candidate solution T = x.
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@ G O

dy €1 €2 do

Figure 7: An example of 1 = Z3, where x; is a candidate solution with v = 1 while 75 is a
candidate solution with v = —1.

If g = 1— 2. =b: We have at most two solutions, one with v = 1 and one with v = —1.
Assume that the pair (dy, €1) corresponding to v = 1 yields codeword 71, and that the pair (da, €3)
corresponding to v = —1 yields codeword Zs. By a similar argument as above, it must be that
rgl 5= rdl , ng—gz = 7"212_1. These two position pairs actually yield the same result 21 = Zs.

See Figure 7 for an example. B
Therefore, f(x), fi(x), and fj(x) together with y uniquely determine a valid pair (d,€), and
thus a unique candidate solution = = .

Deletion reduces the number of runs while the substitution increases the number of
runs. In this case, we have

f(z) = fi@@) =ri+2(n+1-d), @) = fily) =-1-2(n—e).

Therefore,
fil@) = fily) =lrg +2(n+1—-d)] - [1+2(n —e+0)]. (21)

We now proceed by case analysis cased on the value of z4 and z..

If vy = z. = b: We first find a valid pair of d and € such that d is as small as possible. When
d makes an elementary move to the right, ¢ has to move to the left to match f(z). During such
moves, 7%4— 2(n+1—d) decreases, while 14 2(n—e+¢) is non-decreasing. By (21), f{(Z) decreases.
During this process, f{(x) decreases by at most 4n. By a similar argument as above, f(z), f{(z),
together with y uniquely determine a position pair (J, €), and thus a unique candidate solution .

If vy =1—2. = d: We first find a valid pair (CZE') such that d is as small as possible. When
d moves to the right, ¢ has to “move to the right to make sure than f(z) = f(z). During such
moves, f4 (d) increases if ¢ > d and decreases if ¢ < d by a similar argument in Section 4.1.2.
Therefore, we have at most two solutions, (dl, €1) and (dg, €2), where d1 < e, d2 > €9, such that
f(@1) = f(Z2) = f(z), and meanwhile, f7(z1) = f;(Z2) = f5(x). Since f7(z) increases by at most
4n? when € > d and decreases by at most 4n? when € < d, f(z) and f3(x) together determine at
most two possible position pairs (dl, €1) and (dg, €2), and thus at most two candidate solutions x;
and Ts.

4.2 A linear-time decoder

We now proceed to describe our decoding procedure for C based on the case analysis described in
Section 4.1:

1. If |y| = n, i.e., there is no deletion, we use the VT sketch f(z) to decode directly.
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2. If |[y] = n — 1, i.e., the error includes one deletion at some index = and one substitution at
index e, we check h,(z) — h,(y). By comparing h(x) and h(y) we can also recover the value
of x4 and z. according to Table 1.

(a) If the number of runs increases by two (h,(x)— h,(y) = —2), the analysis in Section 4.1.1
shows that we can recover a unique candidate solution Z = x that matches all the sketches
simultaneously in linear time.

(b) If the number of runs decreases by four (h,(z)— h,(y) = 4), the analysis in Section 4.1.2
implies we can recover at most two candidate solutions T; and Zo that match all the
sketches simultaneously in linear time, and we are guaranteed that @ € {Z1,Z2}.

(¢) If the number of runs increases by two (h,(x) — h,(y) = 2), the analysis in Section 4.1.3
implies that we can uniquely recover z in linear time if we know which of the errors
(deletion or substitution) reduced the number of runs by 2. This property yields a linear
time list-size 2 decoder as follows. We run the decoder for the two different cases above
on y. We are guaranteed that one of the decoders will behave correctly and output x.
The other decoder may behave arbitrarily, but we know that if it outputs more than one
(possibly erroneous) candidate string then it is not the correct decoder, and we can then
disregard its output. Therefore, in the worst case we obtain a list of size 2 containing x.

(d) If the number of runs does not change (h.(z) = h,.(y)), the analysis in Section 4.1.2
implies that we can uniquely recover x in linear time if we know whether both errors
did not affect the number of runs or whether the deletion reduced the number of runs
by 2 while the substitution increased it by 2. By an analogous argument to the previous
item where we run both decoders, this property implies that we can recover a list of size
2 containing x in linear time.

Therefore, we can list decode from one deletion and one substitution with a list of size at most
two in time O(n).

4.3 A linear-time encoder

In Section 4.1 we gave a list decoding procedure that corrects one deletion and at most one sub-
stitution given knowledge of the VT sketch (7), the run-based sketches (8) and (9), and the count
sketches (10) and (11). In this section, we describe a linear-time encoding procedure for a slightly
modified version of the code C defined in (12) with redundancy 4 logn + O(loglog n) which inherits
the same list decoding procedure and properties from Section 4.2. This approach is standard and
very similar to Section 3.6.

Consider an arbitrary input string z € {0, 1}™ for some fixed message length m. Let (Enc, Dec)
denote the efficient encoding and decoding procedures of a code for messages of length

C= 1@ @) f5 (@) 1h() 1 ()]

correcting one deletion and one substitution (here, we represent the sketches via their binary
representations). For example, we may take the code from [SWWY20], which has redundancy
6log ¢ + 8 = O(loglogm). Let

u = Enc(f(@)[| f{ () f3 (@) | h(2) ||y ().
Then, we take final encoding procedure Enc to be

Enc(z) = z|lu € {0,1}",
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which runs in time O(m) = O(n) with overall redundancy |u| = 4logn + O(loglogn).

We now describe a linear-time decoding procedure. Suppose that Enc(x) is corrupted into
a string y via at most one deletion and one substitution. First, note that we can recover u by
running Dec on the last |u| — 1 bits of y. Then, using the linear-time decoding procedure described
in Section 4.2, we can recover a list of size at most two containing = from u (which encodes the
necessary sketches) and ' = y[1 : m — 1]. This yields Theorem 2.

5 Binary codes correcting one deletion or one transposition

We prove Theorem 3 in this section. Our starting point is a marker-based segmentation approach
considered by Lenz and Polyanskii [LP20] to correct bursts of deletions. We then introduce several
new ideas. Roughly speaking, our idea is to partition a string « € {0,1}" into consecutive short
substrings 2{,. .., z; for some £ according to the occurrences of a special marker string in x. Then,
by carefully embedding hashes of each segment 2 into a VT-type sketch and exploiting specific
structural properties of deletions and adjacent transpositions, we are able to determine a short
interval containing the position where the error occurred. Once this is done, a standard technique
allows us to recover the true position of the error by slightly increasing the redundancy.

5.1 Code construction

We now describe the code construction in detail. For a given integer n > 0, let A = 50+ 1000log n
and m = 1000A2 = O(log2 n). For the sake of readability, we have made no efforts to optimize
constants, and assume n is a power of two to avoid using ceilings and floors. Given a string
x € {0,1}", we divide it into substrings split according to occurrences of the marker 0011. To avoid
edge cases, assume that z ends in 0011 — this will only add 4 bits to the overall redundancy. Then,
this marker-based segmentation induces a vector

2* = (zf,...,zfx),

where 1 < £, < n, and each string 2z} has length at least 4, ends with 0011, and 0011 only occurs
once in each such string. We may assume that |z7| < A for all . This will only add 1 bit to the
overall redundancy, as captured in the following simple lemma.

Lemma 6. Suppose X is uniformly random over {0,1}". Then, we have

1
Prs| < Ayi=1,.... 4] > .

Proof. Since the probability that a fixed length-4 substring of X equals 0011 is 1/16, it follows that
the probability that 2| > A for any fixed i is at most

15\ A4
- < .
16 = 23

A union bound over all 1 < i <n yields the desired statement. O

Our goal now will be to impose constraints on z* so that (i) We only introduce log n+0O(log log n)
bits of redundancy, and (ii) If z is corrupted by a deletion or transposition in z7, we can then locate
a window W C [n] of size |[W| = O(log*n) such that z¥ C W. This will then allows us to correct
the error later on by adding O(loglogn) bits of redundancy.
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Since each z7 has length at most A = O(logn), we will exploit the fact that there exists a hash
function h with short output that allows us to correct a deletion, substitution, or transposition in
all strings of length at most 3A. This is guaranteed by the following lemma.

Lemma 7. There exists a hash function h : {0,1}=3% — [m] with the following property: If 2 is
obtained from z by at most two transpositions, two substitutions, or at most a deletion and an
insertion, then h(z) # h(2').

Proof. We can construct such a hash function h greedily. Let A(z) denote the set of such strings
obtained from z € {0,1}=32. Since |A(z)| < m, we can set h(z) so that h(z) # h(z') for all
2 e A(2) \ {z}. O

With the intuition above and the hash function h guaranteed by Lemma 7 in mind, we consider
the VT-type sketch

Ly
fl@)=>"j(zFl-m+h(z})) mod (L=10n-A-m+1)
j=1

along with the count sketches

9 (:E) = éw mod 57
ga2(r) = ZTZ mod 3,
=1

where T; = 23-:1 x; mod 2. At a high level, the sketch f(z) is the main tool we use to approxi-
mately locate the error in z. The count sketches g1 (z) and go(x) are added to allow us to detect
how many markers are created or destroyed by the error, and to distinguish between the cases
where there is no error or a transposition occurs.

With the above in mind, we define the preliminary code
C' ={x € {0,1}"|(zn_3,...,7n) = (0,0,1,1), f(z) = s0,91(x) = 51, 92(x) = 82,Vi € [ly] : |27] < A}

for appropriate choices of sg, s1,s2. Taking into account all constraints, the choice of A and m,
and Lemma 6, the pigeonhole principle implies that we can choose sg, s1, s2 so that this code has
at most

4+log(10n-A-m+1)+1+4+24+2+1=Ilogn+ O(loglogn) (22)

bits of redundancy.

However, it turns out that the constraints imposed in C’ are not enough to handle a deletion
or a transposition. Intuitively, the reason for this is that, in order to make use of the sketch f(z)
when decoding, we will need additional information both about the hashes of the segments of x that
were affected by the error and the hashes of the corresponding corrupted segments in the corrupted
string y. Therefore, given a vector z* and the hash function h guaranteed by Lemma 7, we will be
interested in the associated hash multiset

Hy = {{h(z1), ..., h(2,)}}

over [m]. As we shall see, a deletion or transposition will change this multiset by at most 4 elements.
Therefore, we will expurgate C’ so that any pair of remaining codewords x and z’ satisfy either
H, = H, or |H,AH,s/| > 10. This will allow us to recover the true hash multiset of x from the
hash multiset of the corrupted string. The following lemma shows that this expurgation adds only
an extra O(logm) = O(loglogn) bits of redundancy.
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Lemma 8. There exists a code C C C' of size
|

m10

€l =

such that for any x,x’ € C we either have H, = Hy or |Hy/AHy| > 10.

Proof. Let S be the family of multisets over [m] with at most n elements. Order the multisets S in
S in decreasing order according to the number N(S) of codewords = € C’ such that H,» = S. The
expurgation procedure works iteratively by considering the surviving multiset S with the largest
N(S), removing all codewords z € C’ associated to S’ € S such that S" # S and |[SAS’| < 10,
and updating the values N(S) for S € S. Since there are at most m!'® multisets S’ satisfying the
conditions above and N(S) > N(S’) for all such S’, we are guaranteed to keep at least a ﬁ—
fraction of every subset of codewords considered in each round of expurgation. This implies the

desired result. O

We will take our error-locating code to be the expurgated code C guaranteed by Lemma 8.
By (22) and the choice of m, it follows that there exists a choice of sy and s; such that C has
logn + O(loglog n) bits of redundancy. We prove the following result in Section 5.3, which states
that, given a corrupted version of x € C, we can identify a small interval containing the position
where the error occurred.

Theorem 4. If x € C is corrupted into y via one deletion or transposition, we can recover from y
a window W C [n] of size |W| < 10'%log*n that contains the position where the error occurred (in
the case of a transposition, we take the error location to be the smallest of the two affected indices).

5.2 Error correction from approximate error location

In this section, we argue how we can leverage Theorem 4 to correct one deletion or one transposition

by adding O(loglogn) bits of redundancy to C, thus proving Theorem 3.

Let L = 10'%log*n. We partition [n] into consecutive disjoint intervals B{l), Bél), .. ,Bfl) of
length 2L + 1. Moreover, we define a family of shifted intervals B§2), . ’Bt@l where BZ.(2) = [a+
L,b+ L] if BZ-(l) = [a, b]. For a given string z € {0,1}", let (1) denote its substring corresponding
to Bi(l) and 227 its substring corresponding to Bi@).

The key property of these families of intervals we exploit is the fact that the window W of
length at most L guaranteed by Theorem 4 satisfies either W C BZ-(l) or W C BZ-(Z) for some i. As a
result, we are able to recover z(1:7) (resp. x(2’j)) for all j # i from y if W C Bi(l) (resp. W C BZ-(2)).
Moreover, we can also recover a string y( that is obtained from z(1) or (29 via at most one
deletion or one transposition. Therefore, it suffices to reveal an additional sketch which allows us
to correct a deletion or a transposition in strings of length 2L 4+ 1 = O(log4 n) for each interval.
Crucially, since we can already correctly recover all bits of x except for those in the corrupted
interval, we may XOR all these sketches together and only pay the price of one such sketch. We
proceed to discuss this more concretely.

Suppose f : {0,1}2L%1 — {0,1}¢ is a sketch with the following property: If z € {0,1}2E+1 s
transformed into y via at most one deletion or one transposition, then knowledge of y and f(z)
is sufficient to recover z wuniquely. It is easy to construct such a sketch with ¢ = O(log L) =
Q(log logn) [GYMI18]. For completeness, we provide an instantiation in Appendix A. Armed with
f, we define the full sketches

t
Gi(z) = EB Fla®)
i=1
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and

Note that gy(x) has length £ = O(loglogn) for b € {0,1}. Then, we take our final code to be
C= {z € C:g1(x) = 53,02(x) = s4}

which has redundancy log n+O(loglog n) for some choice of s3 and s4. To see that C indeed corrects
one deletion or one transposition, note that, by the discussion above, if the window W guaranteed
by Theorem 4 satisfies W C BZ-(l), then we can recover f(x(l’i)) from gj(z) and y, along with a
string y® obtained from (1) by at most one deletion or one transposition. Then, the properties

~

of f ensure that we can uniquely recover (19 from y(® and the sketch f (x(l’i)). The reasoning for
when W C BZ.(2) is analogous. This yields Theorem 3.

5.3 Proof of Theorem 4

We prove Theorem 4 in this section, which concludes our argument. Fix z € C and suppose y
is obtained from x via one deletion or one transposition. We consider several independent cases
based on the fact that a marker cannot overlap with itself, that we can identify whether a deletion
occurred by computing |y|, and that we can identify whether a transposition occurred by comparing

g2(z) and ga(y).

5.3.1 Locating one deletion

In this section, we show how we can localize one deletion appropriately. Fix x € C and suppose
that a deletion is applied to 2. The following lemma holds due to the marker structure.

Lemma 9. A deletion either (i) Creates a new marker and does not delete any existing markers,
in which case €y = l; +1, (ii) Deletes an existing marker and does not create any new markers, in
which case £, = €, — 1, or (iii) Neither deletes existing markers nor creates new markers, in which
case by = {;.

Proof. Without loss of generality, we may assume that the deletion is applied to the first bit of
a O-run or to the last bit of a 1-run in x € C. The desired result is implied by the following
three observations: First, if the deletion is applied to a run of length at least 3, then no marker is
created nor destroyed. Second, if the deletion is applied to a run of length 2, then a marker may
be destroyed, but no marker is created. Finally, if the deletion is applied to a run of length 1, then
a marker may be created, but no marker is destroyed. O

Note that we can distinguish between the cases detailed in Lemma 9 by comparing g;(x) and
91(y). Thus, we analyze each case separately:

1. ¢, = {;: In this case, we have

Zy:(lew--7Z?—17Z£7Z?+17'-'7ZZ)7 (23)
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where 2/ is obtained from 27 by a deletion (in particular, |z| = |27| — 1). Therefore, it holds
that

lo
Z (|25]-m+h(z Z] |zy| m+ h(z )) mod L

(I il-m+h(z -)—Izil'm—h(zi))
= i(m + () — h(2}),

where the second equality uses (23) and ¢, = ¢,. Let H, denote the hash multiset of y. Then,
we know that |[H,AH,| < 2. Therefore, we can recover H, from H,, which means that we
can recover h(z¥) — h(z}). Indeed, if h(2¥) — h(2]) = 0 then H, = H,. On the other hand, if
h(z7) — h(z}) # 0 then |H,AH,| = 2 and we recover both h(z7) (the element in H, but not
in H,) and h(z}) (the element in H,, but not in H,). As a result, we know m + h(z¥) — h(z}).
Since it also holds that m + h(z7) — h(z]) # 0 (because |h(zF) — h(z])| < m), we can recover
i from f(x) — f(y). This gives a window W of length at most A = O(logn).

. £y = £; — 1: In this case, the marker at the end of 2 is destroyed, merging 2 and zf, ;.
Observe that if ¢ = £, then we can simply detect that the last marker in = was destroyed.
Therefore, we assume that ¢ < £, in which case we have

zy:(zf,...,zf_l,zg,zfﬂ,...,zfz), (24)

where |z = |27| + |2F, ;| — 1. Consequently, it holds that

?\

Ly
(y) =Y _j(zf|-m+h(z Z (12 -m+ h(zY)) mod L
‘]:

:z(| Z-mth(20) + (0 4+ D(|z00] - m+ h(2fa)) — i) - m+ h(z)

+ Z (127] - m + (7))

Jj=i+2

:'Z (|27 - m+ h(25) +i(m + h(zF) + h(zf 1) — h(2})

Note that, since |H,AH (y)| < 3, we can recover H, from H,. In particular, this means that
we know h( 7) + h(zf ) — h(2]). Therefore, for i' = £, — 1, € ..,4 we can compute the
“potential functlon

Ly
o) = > (12 m+h(2Y) + i (m+ h(zF) + h(zf1) — h(2])
j=i'+1
Ly
= Y (2] m A h(z]) + 7 (m+ h(F) + h(zf0) — h(2)).
j=i'+2
Note that
B (i) — (f(x) = FW)] = ll2fa] - m + h(zf)| < A-m+m <107 log?n. (25)
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Moreover, we also have

(i = 1) = @) = |z | - m+ h(zi 1) = (m+ h(z) + M(2i) = h(z))
>4m —3m =m. (26)

This suggests the following procedure for recovering the window W. Sequentially compute
®(i') for 4’ starting at £, — 1 until we find i* > 4 such that |®(i') — (f(z) — f(y))| < 10°log?n.
This is guaranteed to exist since i/ = i satisfies this property. We claim that i* —i < 107 logn.
In fact, if this is not the case then the monotonicity property in (26) implies that

|P(2) — (f(z) — f(y))| >m- 107 logn > 107 log? n,

contradicting (25). Since |zf| < A for every j, recovering i* also yields a window W C [n] of
size
W|=10°logn - A = 10°log®n

containing the error position, as desired.

. £y = £, + 1: This case is similar to the previous one. We present it for completeness. The
deletion causes the segment z¥ to be split into two consecutive segments z; and 2/’ such that
|z| + |2/| = |#F| — 1. Therefore, we have

Y = (zf,...,zf_l,zg,z;',zﬁrl,...,zfx). (27)
We may compute
Ly Ly
F@) = f) =30z -m+h(zf) =Y _i(l2Y]-m+h(z})) mod L
7j=1 7j=1
=i - m+ b)) —i(lz] - m+ b)) = (0 + D(|2]] - m+ h(2]))
Ly
— > (Z] - m+h(z)))
j=it+1
Ly
= — > (1] - m+h(z]) +i(m+ h(zf) = h(z]) — h(2]))
J=t+1

As in the previous case, we can recover H, from H,, and this implies we can also recover

h(zF) — h(z]) — h(z). Therefore, for ' > i we can compute

Ly

O() =~ Y (Il-m+h(z)) +i(m+ h(=) = h(z) = h(=]))
J=i'+2

Ly
= — 3 (2] A(D)) + 7 (m A h(=E) — A=) — h(z]).
J=v'+1

Then,
|2(0) — (f(x) = f()| = [l -m + k(=) < A-m+m < 107 log® n, (28)
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since |2/| < |z¥| < A. Furthermore, for i’ > i we have

O(i') = (&' = 1) = |z | - m+ h(z7) + (m + h(z) — h(z) — h(z))
>4m —2m =2m. (29)

As in the previous case, we can exploit (28) and (29) to recover an appropriate window
W C [n] of size at most 10 log? n.

5.3.2 Locating one transposition

In this section, we show how we can localize one transposition appropriately. Fix z € C and suppose
that a transposition is applied with the left bit in 2 (note the right bit may be in 27, ;). Then, the
following lemma holds.

Lemma 10. A transposition either (i) Creates a new marker and does not delete any existing
markers, in which case €y = £, + 1, (ii) Deletes an existing marker and does not create any new
markers, in which case £, = €, —1, (iii) Neither deletes existing markers nor creates new markers,
in which case ly = £y, () Deletes two existing consecutive markers and does not create any new
markers, in which case £y = {, —2, or (v) Creates two consecutive new markers but does not delete
any existing markers, in which case £, = {; + 2.

Proof. We obtain the desired statement via case analysis. If the leftmost bit of the adjacent
transposition belongs to a run of length at least 3 in x, then no marker is created and at most one
marker is destroyed, and likewise for the case where the leftmost bit belongs to some 0-run of length
2. On the other hand, the leftmost bit belongs to a 1-run of length 2, then no marker is created,
but at most two markers may be destroyed (consider applying one transposition to the underlined
bits in 00110011). If the leftmost bit belongs to a O-run of length 1, then no marker is destroyed
and at most two consecutive markers may be created (consider applying one transposition to the
underlined bits in 00101011). Finally, if the leftmost bit belongs to a 1-run of length 1, then no
marker is destroyed and at most one marker is created (consider applying one transposition to the
underlined bits in 0101). O

As before, we can distinguish between the cases detailed in Lemma 10 by comparing ¢; (z) and
g1(y). Cases (i), (ii), and (iii) in Lemma 10 are analogous to the respective cases considered for a
deletion in Section 5.3.1. Therefore, we focus on cases (iv) and (v).

1. ¢, = {;: In this case, we have

and we can recover i by first recovering h(z¥) — h(z}) # 0, which holds because z; is obtained
from z via one transposition.

2. {y = {; — 1: In this case, we have

La

F@) = fy)= D (2f]-m+h(z)) +ilh(z) + h(zf) = ) + (1l - m+ h(zfa),
j=it2

and we can then use the exact same approach as in Case (ii) from Section 5.3.1.
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3. £y = {; + 1: In this case, we have

Ly

F@) = fy)=— Y (=1 m+h(=h) +i(h(=F) = h(z) = h(=]) = (1] - m+ h(=])),
j=i+1

and we can then use the exact same approach as in Case (iii) from Section 5.3.1.

4. ¢, =, —2: In this case, two consecutive markers are deleted and no new markers are created,
xT xT xT 3 / 3 3 VA x x
so zi, zf 1, and 27 5 are merged into a corrupted segment z; satisfying |z| = |2F| + |2} +1’ +
x
2§, 5| In general, we have

Y = (zf,...,zf_l,zg,zﬁrg, e 20
and so
2 £y
F@) = fy) =Ygz -m+hz5) =D (Y- m+h(z¥)) mod L
j=1 j=1
Ly
=2 > (|27 m+ h(z])) +i(h(zF) + h(2fi1) + h(2fe) — h(2))
Jj=i+3

+ ([0 ] -m 4 W) + 2(12] | - m + h(2 ).

Since |HyAH,| <4, we can recover H, from H,, which implies that we can recover h(z}) +
h(zf 1)+ h(zf5) — h(2;). As before, this means that for i/ > i we can compute the potential
function

éy
o) =2 > (12 - m+h(z)) + i (h(zF) + h(2f1) + h(zfpa) — h(2))
j=i'+1

125
=2 Y (12| m+h(z))) + (A=) + h(zf) + h(zfa) — h(ZD)).
j=i'+3

Exploiting the fact that

(1) = (f(2) = FW) = (7] - m + h(zE0)) + 2([2F ] - m + b2 2))
< 3(A-m+m)
< 10'%10g?n

and
O(i' — 1) — ®(i') > 8m — 3m = 5m,

we can use the approach from Section 5.3.1 to recover the relevant window W C [n] of size
at most 10'% log3 n containing the error position in y.

5. £y = €, +2: This case is similar to the previous one. Two consecutive markers are created and
none are deleted, meaning that z¥ is transformed into two consecutive corrupted segments z,
2!, and z[". Therefore,

Y _ (T T roon oz T
z _(217---7Zi—17zi7zivzi7zi+17'--7'z€x)
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with |2F| = |2]| 4+ |2/| + |2"|. We have

Lo ly
f(x)— fly) = Z](’Zﬂ -m+ h(z;c)) — Zj("z;/’ -m + h(zjy)) mod L
j=1 e
le
=2 Z (1251 - m+ h(z])) +i(h(z]) — h(z) = h(]) — h(2]"))
J=i+1

= (2] m+ 7)) = 212" - m + 1(z").

As above, we can recover H, from H, and thus also recover h(z]) — h(z}) — h(z]) — h(z]").
Consequently, for ¢/ > 7 we can compute the potential function

ZZJ
By = =2 S (2] m+ b)) + 1 (=) = hz0) — hll) = h(E)
j=i'+3

Ly
= -2 Z (|z§c| -m + h(Z;C)) + Z/(h(zlx) _ h(ZZ/) _ h(Z;l) _ h(ZZ{”)).

j=i'+1
Since
@) — (f(z) = f)] = (2] - m + h(=) +2(|2"| - m + h(2"))
<3(A-m+m)
<10"%10g%n
and

®(i') — ®(i' — 1) > 8m — 3m = 5m,

we can follow the previous approach to recover a window W C [n] of size at most 1019 log®n
containing the error position.

6 Open problems

Our work leaves open several natural avenues for future research. We highlight a few of them here:

e Given the effectiveness of weighted VT sketches in the construction of nearly optimal non-
binary single-edit correcting codes in Section 3 with fast encoding and decoding, it would be
interesting to find further applications of this notion.

e We believe that the code we introduce and analyze in Section 4 is actually uniquely decodable
under one deletion and one substitution. Proving this would be quite interesting, since then
we would also have explicit uniquely decodable single-deletion single-substitution correcting
codes with redundancy matching the existential bound, analogous to what is known for two-
deletion correcting codes [GH21].

e The code we designed in Section 5 fails to correct an arbitrary substitution. Roughly speaking,
the reason behind this is that one substitution may simultaneously destroy and create a marker
with a different starting point. As the clear next step, it would be interesting to show the
existence of a binary code correcting one edit error or one transposition with redundancy
logn + O(loglogn).
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A Naive sketch for one deletion or one transposition

In this section, we provide a concrete instantiation of the sketch f used in Section 5.2 which is
implicit in [GYM18]. Let L' = 2L + 1. We claim that we may take f : {0,1}* — {0,1}¢ of the
form
R n n
f(z) = bin (Z izi mod (L' + 1), Zizi mod (2L’ + 1)),
i=1 =1
where bin denotes binary expansion up to [log(2L’' + 1)] bits and z; = 22':1 z; mod 2. Note that
in this case £ = O(log L), as desired.
It remains to see that f above satisfies the desired property. Suppose that y is obtained from
z € {0, 1}L/ via at most one deletion or one transposition. Our goal is to show that we can determine
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~

z uniquely from y and f(z). First, note that we can detect if a deletion occurred by computing |y|.
If |y| = L’ — 1, then, as shown by Levenshtein [Lev65], we can use y and the first part of f(z) to
recover z. Else, if |y| = L/, then we observe that an adjacent transposition in z is equivalent to a
substitution in Z. Therefore, as shown as well by Levenshtein [Lev65], we can use y and the second

~

part of f(z) to recover z since there is a unique correspondence between z and Z.
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