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ABSTRACT

Gallium nitride (GaN) light-emitting-diode (LED) technology has been the revolution in modern lighting. In the last decade, a huge global
market of efficient, long-lasting, and ubiquitous white light sources has developed around the inception of the Nobel-prize-winning blue GaN
LEDs. Today, GaN optoelectronics is developing beyond solid-state lighting, leading to new and innovative devices, e.g., for microdisplays, being
the core technology for future augmented reality and visualization, as well as point light sources for optical excitation in communications, imag-
ing, and sensing. This explosion of applications is driven by two main directions: the ability to produce very small GaN LEDs (micro-LEDs and
nano-LEDs) with high efficiency and across large areas, in combination with the possibility to merge optoelectronic-grade GaN micro-LEDs
with silicon microelectronics in a hybrid approach. GaN LED technology is now even spreading into the realm of display technology, which has
been occupied by organic LEDs and liquid crystal displays for decades. In this review, the technological transition toward GaN micro- and
nanodevices beyond lighting is discussed including an up-to-date overview on the state of the art.
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I. INTRODUCTION

The research field of gallium nitride (GaN)-based semiconduc-
tors, with first light-emitting-diodes (LEDs) demonstrated in the early
1990s,1 has since then been developed into a very mature semiconduc-
tor technology (Fig. 1). Main drivers have been solid-state lighting,
including LEDs and laser diodes,2–4 as well as high-frequency (HF)
and—more recently—power electronics.5–8 Today, LEDs are an inte-
gral part of many consumer products like light engines for general
lighting, smartphones, or automobiles, often enabling new functionali-
ties (e.g., higher efficiency and endurance, more compact form factor,
and higher design flexibility), if compared with their traditional
counterparts.

Until now, both optoelectronic and electronic applications (e.g.,
LEDs, laser diodes, and FETs), have been based on planar approaches.9

In particular, LEDs made for solid-state lighting need to be large (on
the order of square millimeters) to achieve a high lumen output. This
scaling behavior is contrary to the well-known Moore’s law in silicon-
based microelectronics. There, transistors are becoming smaller and
smaller, with more and more functionality per area on the chip. As a
consequence, cost reduction in LED fabrication has been—and still
is—much more challenging, relying on a continuous optimization of
nitride material growth methods and better fabrication strategies
instead of only structure size reduction.

This continuous optimization has led to a steady increase in effi-
ciencies, which will approach theoretical limits over the next few
years10 (see Fig. 1). A luminous efficacy of above 250 lm/W has
become available not only in the lab, but also in the consumer market.

In 2014, Cree, Inc., an American LED manufacturer has demon-
strated a world-record luminous efficacy of 303 lm/W from white
high-power LEDs, which has surpassed the previous product-best
value of 276 lm/W.11 Meanwhile, in the same year, OSRAM Opto
Semiconductors GmbH has obtained peak efficacies as high as
307 lm/W employing direct green LEDs emitting at 536 nm.9 For
comparison, the theoretical maximum efficacy is around 350 lm/
W. An exact theoretical limit cannot be stated since this depends
on the assumed quality of the “white” spectrum—in terms of color
rendering index—of the LED emission. Finally, the systematic
improvement of efficiency will lead LEDs to reach saturation val-
ues in efficiency over the next five years. Other challenges are now
coming into focus, like cost reduction, new device concepts, and
improvement in the accessible wavelength range from the blue-
green into the UV and red spectral range.

This has consequences for global GaN research and development.
While in the past the focus has been on material quality and its
improvement (by understanding, e.g., epitaxy processes) as well as
device design, it is now more and more shifting into processing tech-
nology. Until now, processing of “large” area devices, like power LEDs
with 1W light output with an area of 1mm2,9 has been intensively
researched by GaN community. Today, however, new possibilities
emerge from combining micro- and nanoscale fabrication techniques
with GaN technology, paving the way toward micro- and nano-LEDs
or nanosized field-effect transistors (nano-FETs). A rising amount of
research budget is allocated in this direction due to good reasons. The
potential markets to be addressed in the future are very attractive. GaN
micro-LED technology might even become a core display technology
not only for augmented reality (AR) applications, but also for large
area screens. GaN nano-FET technology might spread out from HF
electronics into power electronics and even into an integration of opto-
electronic components (based on GaN) and complementary metal-
oxide semiconductor (CMOS) technology based on silicon electronics.

The expectations are huge. Micro- or nanoscale GaN structures
can be free of extended defects, building a perfect material platform

FIG. 1. Estimated road map for key applications of micro-LEDs including relevant technology milestones.
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for future GaN technology. This is why—besides market pull—there is
a strong technology push toward GaNmicro- and nanodevices.

A first driver of innovation is related to the production of vertical
GaN nanostructures. Today, it is possible to grow the 3D GaN nano-
structures, embodying a full LED4,12,13 or an FET6–8,14,15 device in a
vertical, core-shell configuration of only about a few hundred nano-
meters in diameter and a few micrometers in length (Fig. 1). Such 3D
nano-LEDs and nano-FETs give access not only to extreme miniaturi-
zation, but also to (1) superior material properties (e.g., lower defect
density), (2) better compatibility with other technologies (e.g., more
resilience to lattice mismatch with the substrate and transferable to
flexible carriers12), and (3) potential for complementary MOS
approaches in nitrides (a CMOS-like technology, but based on GaN).

A second technology driver of innovation is the possibility of
transferring electronic- and optoelectronic-grade GaN structures to
silicon-based chips with microelectronic functionality. As a matter of
fact, with laser lift-off methods,16 the planar as-grown GaN structures
can be transferred from the sapphire substrates needed to grow high
quality GaN to better suited substrates like silicon at a wafer scale.9

Besides the cost argument, sapphire is a passive substrate with limited
possibilities in terms of added functionality and micromachining.
Therefore, the combination of GaN devices with active substrates—like
silicon—opens the door to new developments that combine the advan-
tages of GaN (superior optoelectronic, high frequency, and high-power
properties), with the flexibility of CMOS (miniaturization and stan-
dardized highly integrated analog and digital functionalities).17

In contrast to traditional trends in lighting applications, these
two enabling technologies are in the direction of miniaturization. As a
consequence, emerging applications aim at exploiting the advantages
of GaN technology (high-efficiency, long endurance, high bright-
ness—not achievable by its organic counterparts) in the context of
miniaturized and compact designs. This is the case for microdis-
plays18–20—the core technology for future augmented reality21—and
for optical excitation in communications,22–24 imaging,25 and sens-
ing26 (Fig. 1).

The goal of this review is to discuss this technological transition
toward GaN micro- and nanodevices and to provide an overview on
the present state of the art. This is particularly related to GaN process-
ing of micro- and nanoscale devices and their integration into flexible
and silicon technologies, which are the newly emerging processing
possibilities that push toward new applications of GaN far beyond the
traditional markets of lighting. Some of these applications, like micro-
displays, visible light communications (VLCs), imaging, and sensing,
will also be discussed in detail.

II. GaN LED TECHNOLOGY AND PROCESSING

A. Material aspects and epitaxy of planar architectures

Due to the quite special material properties of GaN, metalorganic
vapour-phase epitaxy (MOVPE) is by far the most often used growth
technique today. At the high growth temperatures of 1000 �C and
above needed for producing high-quality GaN, a high amount of active
nitrogen has to be available to stabilize the GaN surface from dissocia-
tion. At the same time, reactive nitrogen atoms readily recombine to
the very stable N2 molecule, which is then lost for the chemical reac-
tion. Ammonia (NH3) has been proven to be a very versatile nitrogen
precursor for MOVPE. Tri-Ethy-Gallium (TEGa) and its aluminum
and indium modifications are used with NH3 for the growth of GaN,

AlN, and InN and all their ternary and quaternary alloys. Numerous
very good reviews are available focusing on the MOVPE of as well as
LED development for solid-state lighting,27–31 so that details on both
will only be described here where necessary.

It is this high growth temperature of MOVPE that makes the
growth process incompatible with silicon microelectronics. Neither
the MOVPE growth of GaN on processed silicon chips nor the proc-
essing of silicon electronic circuitry after the growth of GaN layers on
top of silicon substrates seems to be a viable strategy to combine both
worlds. Due to this incompatibility of jointly processing GaN and sili-
con on the same wafer, this review does not cover this type of mono-
lithic integration, but focuses on hybrid integration of GaN and silicon
microelectronic chips, with the main advantage that both types of
devices can draw on separately optimized process technologies without
any compromises.

Besides MOVPE, molecular beam epitaxy (MBE) has also been
developed further to grow LED structures.32,33 The limited throughput
(in comparison to MOVPE), the complexity of working with ultrahigh
vacuum, and the success of MOVPE have however prevented MBE
from entering industrial production. MBE will therefore not be in the
focus of this review.

Today, MOVPE of nitrides is well under control and LED hetero-
structures have been optimized at a very high level. Modern LED
structures consist of many layers, up to 100 and more, in order to
guarantee key requirements for a good LED: high efficiency in current
injection, efficient photon generation and photon extraction, and sta-
ble operation conditions along the lifetime of more than 50 000hours.
This optimization is related to active regions with highest internal
quantum efficiency (IQE), efficient electron blocking layers, defect-
reduced buffer layers, p-GaN layers with reduced absorption, and
increased conductivity, in combination with an optimization of chip
processing for achieving highest possible photon extraction and lowest
feasible driving voltages. All this has resulted in more than 200 lm/W
of lamp efficacy in 2014,34 with these values further improving.

Initial development has been devoted to LEDs with wavelengths
in the blue spectral range (400nm–460nm). For this spectral range,
the indium content in the InGaN quantum wells (QWs), which serve
as active regions, is in the 20% range. This is large enough for an effi-
cient confinement of both electrons and holes. On the other hand, the
indium content in “blue” quantum wells is still sufficiently small to
allow to circumvent substantial material degradation due to the
increasing lattice mismatch and the dissimilar material properties of
InGaN and GaN.35–37

The fact that GaN LEDs with efficiencies close to their theoretical
limit can be fabricated should not obstruct the view on still existing
major challenges. One of these challenges is the so-called droop prob-
lem.38–40 The maximum efficiency of blue GaN LEDs is achieved at rel-
atively low current densities of a few amperes per square centimeter.
Even though the fabricated devices have been efficient, their overall
light output under these conditions is too low for high-power and low-
cost GaN LEDs. Therefore, LEDs are usually operated at much higher
current densities, in the range of 30–70A/cm2. This increases the total
light output, but at the same time reduces the device efficiency. The
origin of this decrease was a matter of discussion over the past years.
The community has agreed that Auger recombination processes con-
tribute substantially and dominantly to carrier loss over the barriers,
being the main course for carrier overflow and hence the reduction of
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efficiency at higher current densities. Therefore, LEDs today use multi-
ple quantum wells as active regions to reduce the carrier concentrations
during operation. Hence, Auger effects can be minimized.

These blue LEDs exhibit a very interesting property, which ini-
tially has been unexpected. InGaN quantum wells in this spectral
range can achieve IQEs of above 90%, even though the films are
“suffering” from a density of extended defects of above 108 cm–2,40,41

This particularly attractive property of InGaN quantum wells is the
main reason why the heteroepitaxy on sapphire—despite a huge lattice
mismatch and despite a large mismatch in thermal expansion coeffi-
cients—has been so successful. The reason for this insensitivity to
defects has been a matter of long debate. The keys to it are laterally
inhomogeneous potentials in the quantum well (QW), caused by
indium gradients, blocking carriers away from dislocations.42 For GaN
quantum wells, this localization is no longer active, so that UV LEDs
presently have much worse performance data.

Starting out from the blue spectral range, it is a huge challenge
extending the emission wavelengths beyond the green into the red
and infrared (IR) range. For tuning the bandgap of the active region
into the red and infrared, a much higher amount of indium has to be
used. The respective lattice mismatch in combination with the incom-
patibility of InN and GaN concerning ideal growth temperatures is
challenging.43 Nevertheless, InGaN technology is stepwise pushing
into the green and red ranges. Indeed, green InGaN LEDs have a
lower wall plug efficiency. However, it has recently been demon-
strated that this is not due to a reduced material quality, but because
of an increased droop effect instead.44,45 At lower current densities,
the performance of green LEDs is almost the same as that of blue
LEDs. The originally stated “green gap” for LEDs, meaning that only
blue InGaN and red InGaAlP high-power LEDs can be fabricated,
with an efficiency gap in between, is closing. The reduction in efficacy
is mainly due to the shift in efficiency maximum to lower current
densities rather than a principal issue.44 Further work will very likely
eliminate the green gap in the future.

The extension of the spectral range into the UV is also very chal-
lenging, but due to different reasons. In the UV spectral range, GaN
quantum wells need to be used as active regions, relaxing the condi-
tions for carrier localization. The strong carrier localization in InGaN
quantum wells is believed to be the main reason for the stability of
nitride LEDs against the existence of extended defects. Figure 2 shows
this effect. Whereas, IQEs of close to 100% can be reached in InGaN
quantum wells even at defect densities as high as 108 cm–2, the effi-
ciency is reduced to less than 0.1% for UV-C at similar defect densities.
Reducing the defect densities is believed to be a key requirement for
future UV LED technology.46–48

A current strategy for reducing threading dislocation density
includes growth on AlN bulk substrates [threading dislocation density
is around 103 cm–2 (Ref. 49)]. However, these bulk substrates are very
expensive and only available up to 2 in. in diameter, thus not meeting
the requirements for high-throughput production. In addition, high-
quality AlN bulk substrates suffer from strong absorption in the UV
range.50,51 An effective reduction of the defect density in AlN/AlGaN
templates is urgently needed in order to increase the IQE of UV LEDs
for all wavelengths while still maintaining cost effectiveness and scal-
ability of substrate sizes.

All the developments described so far have been obtained using a
planar approach: growing planar thin film structures on flat wafers,
e.g., on 6-in. sapphire. Meanwhile, many companies offer this material
commercially at the wafer level, so that it can be a serious basis for
future technology development. Also, GaN foundry services offer even
a full-scale wafer level processing of GaN LEDs and other
microdevices.52

For state-of-the-art planar InGaN-based blue LEDs, the external
quantum efficiencies (EQEs) of more than 60% can be regularly
obtained.9,53 The highest reported EQE even reached maximum values
under optimized operation conditions of beyond 80% for InGaN-
based blue LEDs at 50mAwith a die size of 450� 450 lm2.54At a reg-
ular forward-bias current of 350mA, these devices have an emission

FIG. 2. Simulated internal quantum efficiency (IQE) against the dislocation density for 280 nm UV LEDs.48 Reproduced with permission Kneissl et al., Semicond. Sci. 26(1),
014036 (2011). Copyright 2011 IOP Publishing.
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wavelength, an output power, and an EQE of at 440 nm, 756 mW, and
71.0%, respectively. Due to a huge challenge to grow a high-quality
InGaN QWwith low strain, InGaN-based green LEDs exhibit a typical
external quantum efficiency (EQE) of �20% at 20mA, which is much
lower than that of top-level blue LEDs.55 Green LEDs with a record
high EQE of 28.3% at 20mA, a die size of 1� 1mm2, an output power
of 13.3 mW, and an emission wavelength of 529nm were reported
using semipolar plane concepts.56 Thus, to improve the efficiency of
GaN-based green LEDs, several techniques have been continuously
investigated, e.g., employing prestrained layers underneath the QW,
inserting AlGaN between the QW and the barrier, and growing semi-
polar/nonpolar QWs. Meanwhile, for AlGaN-based UV LEDs the
highest reported EQE and output power in the UV-C range (at
280–300nm emission) are 14.3% and 153.4 mW, respectively, which
are believed to be continually improved in the next few years.57,58 The
shortest emission wavelength reported to date for UV LEDs is 210nm
by Taniyasu et al. from NTT Basic Research Laboratories, Japan.59

Several approaches have been developed and attempted to over-
come efficiency droop in GaN LEDs, e.g., (1) modification of QWs
using a thick well, double heterostructure or increased QW number in
the active region to lower the effective carrier density in QWs,60–62 (2)
suppression of quantum-confined Stark effect (QCSE) in c-plane
based on energy band engineering to shorten the radiative recombina-
tion lifetime [e.g., employing the staggered QW,63,64 creating thin bar-
rier coupled QWs,65 and replacing QWs with quantum dots (QDs)66],
(3) polarization matching of individual quantum barrier and well
layers of the MQW active region by utilizing ternary InGaN or quater-
nary AlInGaN barriers,67,68 (4) replacement of c-plane by nonpolar/
semipolar planes or engineering of micro-/nanostructures with semi-/
nonpolar facets,69–71 (5) insertion of additional carrier recombination
channels (e.g., surface plasmon coupling) to shorten the carrier life-
time,72,73 and (6) conversion of spontaneous emission to stimulated
emission by introducing a stimulated radiative recombination
process.74

Among them, making the QWs thicker is considered to be the
simplest way. However, when using thicker active layers (QW) and
double heterostructures, the material quality and recombination rate
of QWs can be worsened because of the formation of additional
defects and accumulation of strain as well as a stronger quantum-
confined Stark effect.75 Whereas although the other mentioned meth-
ods are found to be efficient for reducing the internal electric field in
the active region,61 several challenges were still often faced in the reali-
zation of the device structures, i.e., more complicated growth and fab-
rication conditions of samples with other materials and structures
than c-plane InGaN/GaN QWs. Thus, in 2016, Yoo et al. introduced
another effective technique to overcome the efficiency droop by utiliz-
ing conventional c-plane InGaN/GaN QW structures having thinner
barriers and an increased number of wells with a fixed single well
thickness while keeping the same total active layer region (i.e., thick-
ness of whole wells and barriers).76 By employing this c-plane InGaN-
based LED structures, internal electric field and carrier density can be
reduced dramatically without complicated bandgap engineering and
material quality decay, which improves overall efficiency (i.e., IQE is
higher than 80%) and reduces efficiency droop issues. At the present
status, even though massive experimental progress has been made to
understand the efficiency droop in GaN LEDs, the debate on this
problem has not been over yet.75 Thus, several questions have still

arisen related to, e.g., the comparison of droop in InGaN LEDs with
that in AlGaInP red LEDs, the most dominant factor for LED droop,
accurate evaluation of LED efficiency without any assumption, and
further feasible solutions to address the droop.

From the different strategies that can be applied to address the
efficiency droop, the use of nonpolar and semipolar orientations has
been vigorously researched since early work from Waltereit et al. in
200077 to boost the LED efficiency in the green spectral region by
reducing the quantum-confined Stark effect and increasing the indium
incorporation efficiency.56,71,78,79 This is due to the fact that nonpolar
and semipolar LEDs have numerous potential advantages over those
c-plane counterparts (e.g., minimized polarization fields, reduced
dependence on alloy content, larger wavefunction overlaps, increased
optical matrix elements, faster recombination rates, and higher optical
gain, more wavelength-stable emission, smaller hole effective mass,
good emission anisotropy, and higher device design flexibility).71

Anisotropic in-plane biaxial strain in nonpolar and semipolar orienta-
tions can boost the valence band degeneracy80 and enable polarized
light emission as well as anisotropic optical gain.81 By eliminating the
quantum-confined Stark effect, design of active regions can be made
more flexible, where wide QWs can be implemented without putting
concern on charge separation.82 For InGaN-based blue LEDs employ-
ing various semipolar planes, the reported devices show good perform-
ances, in which an output power of 0.24–37.0 mW, efficiency (EQE)
of 0.43%–80.8%, droop of 3.7%–71.4%, and peak electroluminescence
wavelength of 407–480 nm at 20mA have been demonstrated.56

Compared to c-plane LEDs, the semipolar LEDs can have much lower
efficiency droop, especially at high current density (i.e., an efficiency
droop of only 5% at 100A=cm2 and 18% at 300A=cm2).83,84 By incor-
porating more Indium content, in recent years, InGaN-based green
LEDs with different semipolar planes have been reported showing an
increasing trend on their device performances in terms of output
power (2.3–13.3 mW), efficiency (EQE of 4.0%–28.2%), droop
(24.3%–57.1%), and spectral response (peak electroluminescence
wavelength of 516–529nm at 20mA).56,84–86 Table I lists the recently
developed high-performance blue and green InGaN/GaN
LEDs.54,56,82,84–92 More comparison of the LED device structures and
performances can be found in Ref. 56. It should be noted that almost
all those InGaN blue and green LEDs were grown on bulk GaN sub-
strates, in which UC Santa Barbara, USA, has been the most active
developer in this semipolar LED optimization. The trade-offs between
the modulation bandwidth and efficiency (IQE) for nonpolar and
semipolar InGaN/GaN LEDs have also been investigated,71,93 where
the bandwidth-IQE product is found to be a potential figure of merit
for optimizing speed and efficiency in InGaN/GaN LEDs, especially
for visible light communication (VLC).

Another approach to access nonpolar and semipolar planes is to
grow micro-/nanostructures with exposed nonpolar or semipolar fac-
ets. Depending on the applied mask geometries and growth condi-
tions, various micro-/nanostructure architectures can be realized (e.g.,
wires or fins as well as nonpolar or semipolar).4,56 Because of the
reduced or eliminated polarization-induced quantum-confined Stark
effect, modulation bandwidth in nonpolar and semipolar InGaN/GaN
LEDs can be enhanced. A modulation speed and a record 3 dB modu-
lation bandwidth of 1.1GHz and 1.2GHz, respectively, have been
demonstrated using GaN/InGaN coreshell nanowire LEDs with pri-
mary nonpolar active regions.71,94 It is believed that further research
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related to nonpolar and semipolar III-nitrides will continuously be
conducted in the upcoming years to increase the efficiency, especially
for green LEDs.

Downscaling of InGaN LEDs mitigates the efficiency droop
effect, as their electrical and optical properties are improved in micro/
nano-LEDs.38,95,96 It has been reported that by scaling down the LED
from 200 to 20lm, the peak EQE occurs at a higher injection current
density for smaller LEDs. In this case, a peak EQE of 83.7% was
obtained in the 20lm micro-LED compared to that in the 80lm
micro-LED (only 70.2%). At a bias voltage of 10V, the measured cur-
rent densities of 200 lm and 20lm LEDs were 20A/cm2 and 492A/
cm2, respectively. A uniform current spreading (larger fraction) in
smaller micro-LEDs can enhance their electrical property97 and
EQE.98 Besides, having a reduced size, the current crowding effect in
the active region is less significant, leading to reduced Auger recombi-
nation probability and local heating.99 It was also demonstrated that
strain relief can further improve EQE characteristics in smaller InGaN
micro-LEDs (diameter size< 50lm), apart from the current spread-
ing effect.97,98 Strain relaxation reduces the quantum confined Stark
effect and creates a less tilting band diagram, which consequently
increases the overlap of the electron and hole wavefunctions and pro-
vides more suppression of Auger recombination, leading to enhanced
radiative recombination and reduced nonradiative recombination
probabilities. Thus, it will improve the overall quantum efficiency. As
a result, the efficiency droop can be lowered while reducing the LED
size, which then leads to the possibility of deploying micro-/nano-
LEDs as the building block for large effective-area, high brightness
emitters.

B. Material aspects and epitaxy of 3D architectures

In the past years, however, another approach has gained substan-
tial interest and a lot of work has been devoted to 3-dimensional (3D)

GaN architectures like nanorods and nanofins (see Fig. 3). The original
motivation for 3D architectures has been that these high-aspect micro-
and nanostructures possess some key features, which potentially are
very attractive for future devices: (1) increasing the active area in core-
shell architectures by more than a factor 10 and (2) being free of
extended defects (3) enabling nonpolar m- or a-oriented sidewall
quantum wells. Consequently, such 3D architectures address the two
key challenges, which have been mentioned before: reducing the cur-
rent density in core-shell architectures for potentially reducing droop
and enabling better UV LEDs by making low defect density LEDs
available.

Switching to 3D growth rather than planar growth in MOVPE
makes a substantial difference. It took many years of intense research
to finally have vertical MOVPE growth of GaN nanorods or nanofins
under control. Whereas pulsed growth techniques were in the focus
during the early days of GaN nanowires by metal-organic chemical
vapor deposition (MOCVD),100,101 later continuous growth methods
have been developed.4,102–107 The strategies are usually based on sub-
strates patterned by a passivating mask with hole or line patterns. SiO2

has turned out to be a versatile and thermally stable mask on GaN buf-
fers on the sapphire substrate. Due to the amorphous nature of the
mask, a 100% selectivity can be achieved, provided the openings are
not too far apparat, since no chemical bonds are available for the
incorporation of gallium or nitrogen on the mask. MOVPE growth
can be tuned into a mode where not only growth on the mask surface,
but also lateral growth in the GaN openings is inhibited.103,108 For
that, very low V/III ratios must be used during growth. It has also
been shown that silicon doping during growth substantially enhances
the vertical growth rates.103,109,110 Initially, the development of 3D
GaN microrods has been hampered by the lack of suitable charac-
terization techniques in 3 dimensions. Cathodoluminescence in
combination with nanoneedles for electrical contacts has been
demonstrated to be a very versatile tool for analyzing the optical

TABLE I. Comparison of high-performance blue and green InGaN/GaN LEDs. Wavelength is peak electroluminescence wavelength at 20mA. Light output power (LOP) and
external quantum efficiency (EQE) are values at 20 mA. Droop is calculated at 100 mA, except that Refs. 89 and 88 are calculated at 80mA.

Year
(Reference) Developer

LED type, plane,
and structure

Wavelength
(nm)

Light output
power (mW)

EQE
(%)

Droop
(%)

2006 (Ref. 84) Kyoto University and
Nichia Corporation, Japan

Green, ð1122Þ, 3 nm SQW 527 2.3 4.0 31.7

2007 (Ref. 85) UC Santa Barbara, USA Green, ð1122Þ, 4 nm 6 QWs 516 5.0 10.5 49.8

2008 (Ref. 86) UC Santa Barbara, USA Green, ð1122Þ, 4 nm 6 QWs 519 9.0 18.9 44.4

2010 (Ref. 89) UC Santa Barbara, USA
and Sharp Corporation, Japan

Green, ð2021Þ, 3.5 nm SQW 516 9.9 20.4 57.1

2010 (Ref. 54) Nichia Corporation, Japan Blue, ð0001Þ, 3 nm 6 QWs 460 37.0 80.8 18.3

2010 (Ref. 90) UC Santa Barbara, USA Blue, ð1011Þ, 3 QWs 411 31.1 54.7 3.7

2010 (Ref. 91) UC Santa Barbara, USA Blue, ð1011Þ, 3 nm 6 QWs 420 22.8 39.5 4.2

2011 (Ref. 92) UC Santa Barbara, USA Blue, ð2021Þ, 3 nm 3 QWs 423 30.6 52.2 8.5

2012 (Ref. 87) UC Santa Barbara, USA Blue, ð2021Þ, 12 nm SQW 446 28.2 52.7 4.7

2013 (Ref. 88) UC Santa Barbara, USA Green, ð2021Þ, 3 nm SQW 518 5.8 11.9 56.5

2014 (Ref. 82) UC Santa Barbara, USA Blue, ð3031Þ, 15 nm SQW 413 29.8 49.5 9.5

2018 (Ref. 56) Arizona State University,
Sandia National Laboratories,

UC Santa Barbara, USA

Green, ð2021Þ, 3.5 nm SQW 529 13.3 28.2 24.3
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and electrical properties of 3D GaN structures with high spatial
resolution [see Figs. 4(a) and 4(b)].110,111

Meanwhile, the first blue and even white microrod LEDs have
been demonstrated (Fig. 5). For white microrod LEDs, the regular
large grain phosphors had been converted into highly efficient micro-
grain phosphors in order to fill the phosphor particles in between the
microrods.105

Even though huge progress could be made, nanorod LEDs today
do not yet reach efficiencies of their blue-emitting planar counterparts.
It is likely that this is due to the limited research effort put into 3D
processing. In any case, a physical limitation has not yet been identi-
fied for that. Rather, sidewall quantum wells with high IQEs of up to
60% (Ref. 112) have been demonstrated. However, these high IQEs
could not yet be transferred into micro-LED devices with high external
quantum efficiency (EQE), being reported to be about 10%.105 One of
the reasons for the somewhat low speed of development is the diffi-
culty in analyzing 3D nanorods in the same way planar thin films are
analyzed, which is retarding technological progress. It has, e.g., only
recently become clear that a pronounced gradient of indium incorpo-
ration along the sidewalls could be one of the reasons why processed

FIG. 3. 3D GaN architectures: (a) planar thin film with c-plane quantum wells and (b) high-aspect-ratio microrods with nonpolar a- or m-quantum wells at the sidewalls.

FIG. 4. (a) Geometry of the cathodoluminescence setup equipped with nanoneedles for electrical contact. (b) Electron beam induced current image of a core-shell p-GaN/
InGaN/n-GaN LED indicating a complete coverage of the micro-LED surface with p-type GaN.

FIG. 5. Emission from the first phosphor converted white microrod LED. Reprinted
with permission from Schimpke et al., Phys. Status Solidi 213, 1577 (2016).105

Copyright 2016 Wiley-VCH Verlag GmbH & Co. KGaA.
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microrod LEDs do suffer from low EQEs.102,110 In addition, data on
the IQE along the sidewall of a high-aspect-ratio microrod are still
very limited. This, however, would be a key element for further
optimization.

3D architectures are particularly interesting for the UV spectral
range, with many additional advantages. Besides the possibility to
obtain a defect-free material, an additional aspect is related to a change
in the valence band sequence in AlGaN for a higher Al content (see
Fig. 6).113 Due to this modified valence band structure, UV LEDs
based on conventional c-plane quantum wells tend to be polarized in a
way that is detrimental to vertical emission. In contrast to that, the
polarization in nonpolar, a-, or m-oriented quantum wells is favorable
for vertical emission. Therefore, research efforts are presently on the
way to explore 3D architectures for the fabrication of UV microrod or
microfin LEDs.114,115

While most of the studies on 3D architectures have focused on
nanorod or microrod geometries, fin geometries are very promising
and have recently attracted substantial interest.102,116 Fin architectures
have the key advantage that the analysis of their internal properties is
much easier compared to that of microrods. In contrast to microrods,
open internal surfaces of fin samples emerge in a controlled and repro-
ducible way after only cleaving the sample. These cross sections can
then be analyzed optically, e.g., by cathodoluminescence and electri-
cally, e.g., by nanoneedles in a customized SEM setup [see Fig.
4(a)].110 Another substantial advantage of fins related to microrods is
the fact that their 3D epitaxy seems to exhibit a much larger stable
growth window in comparison to their microrod counterparts. Fins
with dimensions in the micrometer range can be produced homoge-
neously on large substrates.116 Many details on fin growth have
recently been reported. It remains to be seen whether all that knowl-
edge can be transformed into highly efficient fin LEDs.

Even though the 3D growth of GaN structures like microrods or
microfins is well under control, the requirement of a low V/III ratio
during growth and the most frequently used high silicon doping have
put some restrictions on the properties of GaN.116 For core-shell
LEDs, a highly doped GaN in the core is advantageous. For other devi-
ces, however, it might be necessary to adapt composition or doping
profiles along the c-axis of the 3D structure. This is, e.g., the case for
vertical FETs.7 In such cases, another approach for fabrication of 3D
structures could be advantageous, which is offering a better control on

vertical material and doping profiles: patterning and top-down etching
of the planar parent material.

C. Top-down fabrication of 3D architectures

Top-down patterning methods, generally by means of etching
techniques, are introduced as a low-cost but highly efficient way
toward fabrication of high-aspect-ratio 3D GaN micro-/nanostruc-
tures, which are mainly employed by researchers for implementations
of both optoelectronic and electronic devices.117,118 In the last few
years, this technique has more and more attracted immense attention,
as it has achieved an amazing degree of control.119 In comparison to
the direct 3D MOVPE growth of high-aspect-ratio microstructures,
the top down approach is much more flexible, as the etching processes
are directly performed on GaN epitaxial or bulk wafers. Prior to etch-
ing, the thin film architecture (i.e., layer stack) defines the vertical
design of the final microstructures in a first and fully independent
step, in which the dimensions of micro-/nanostructures are later
defined by lithography and subsequent etching processes. Figure 7
illustrates the morphological changes of 3D GaN micro-/nanostruc-
tures during the top-down fabrication process using a hybrid dry/wet
etching concept.

The high degree of control both at the micro- and nanoscale is
based on precise vertical and lateral etching in combination with a
proper mask material. Similar to the 3D silicon top-down
approach,120,121 plasma dry etching [e.g., inductively coupled plasma
reaction ion etching (ICP-RIE)] can be directly used to create GaN
micro-/nanostructures, using hard materials (e.g., oxides or metals) as
etching masks. The masks can be patterned into arbitrary geometries
by standard lithography [e.g., photolithography, nanoimprint lithogra-
phy, colloidal nanoparticle lithography, or electron beam lithography
(EBL)].14,122–126 The fabrication of large-area GaN nanocolumns on a
Si (111) substrate with a sidewall oblique angle of 86� by using
chlorine-based ICP chemistries has been demonstrated by Paramanik
et al. in 2012.127 Besides the standard Cl2-based chemistries during ICP
etching, gas mixtures of SF6/H2 have also been reported for dry etching
of GaN.13,128 In contrast to ICP etching of silicon nanostructures, GaN
nanostructures usually possess damaged surfaces after ICP etching, due
to the physical ion bombardment effects [see Fig. 7(a)], which are con-
sequently not appropriate to be directly employed for building surface
sensitive devices (e.g., FETs, LEDs, and laser diodes).129

As an alternative to dry etching, anisotropic etching using wet
chemical etchant solutions has also been reported to result in GaN
nanostructures, usually resulting in much smoother surfaces. In 2011,
the fabrication of vertical GaN nanowire arrays on a sapphire substrate
with well-aligned c-axis orientation by using a conventional electrode
free photoelectrochemical method has been reported by Liu et al.130

The etchant has been a mixed base solution of 1 M KOH and 0.1 M
K2S2O8. The process is assisted with a 150W Xe lamp as the UV light
source generating free holes at the material surfaces and by that pro-
moting the oxidation process. This etching process, however, is
strongly dependent on dislocations, meaning that the etching solution
can “dig down” along the threading dislocations. Thus, at the end of
the etching process, a high material quality can be achieved regardless
of the limitation of precise control in the nanowire number, location,
and dimension (see Fig. 7).14

Later, a two-step hybrid etching method, involving sequential
processes of dry and wet etching, has been proposed by several

FIG. 6. Conduction band and valence band sequence in (a) GaN and (b) AlN, indi-
cating a change of polarization. From Rass and Lobo-Ploch, III-Nitride Ultraviolet
Emitters. Copyright 2016 Springer Nature. Reprinted with permission from Springer
Nature.113
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researchers to combine the advantages in structure homogeneity and
material quality.6,8,14,119,128,131–134 Li et al. reported the fabrication of
nontapered GaN nanowires by employing hybrid etching to achieve
single-mode lasing with a linewidth of �0.12 nm and a side-mode
suppression ratio of >18 dB.134 This has demonstrated that the
hybrid-etched GaN nanowires can have a precise control in dimension
as well as a high material quality for enhancing gain. Hybrid-etched
GaN nanostructures were later successfully applied in power and
high-frequency electronic applications.7,14,15,119,133,135 In 2015, Jo et al.
produced vertical GaN nanowire FET using SiO2 and 5% tetramethy-
lammonium hydroxide (TMAH) as the etch mask and solution,

respectively.135 Next, Yu et al. reported vertical nano-FET based on
hybrid-etched GaN nanowires using Cr and AZ400K developer
(KOH-based solution) as the etching mask and etching solution,
respectively. They obtained regular GaN nanowire arrays with diame-
ters down to 50nm and smooth hexagonal sidewalls, which were con-
firmed to be a-plane oriented sidewalls [see Figs. 7(e) and 7(f)].14,119

By changing the etching solution concentrations, m-plane sidewalls
can however also be obtained. Im et al. performed the hybrid etching
of lateral GaN nanowires on GaN-on-insulator wafers by wet etching
on ICP-patterned strips in 2016, where 5% TMAH solution was used
in their case and triangle-shaped nanowires could be achieved.133

FIG. 7. 45�-tilted SEM images of GaN nanowire arrays after (a) ICP RIE followed by wet chemical etching for (b) 20 min, (c) 1 h, (d) 2 h, (e) 4 h, and (f) 6 h at 90 �C, respec-
tively. All samples used in wet etching are with a metal mask on top. Insets are images of feature crystallographic textures with large magnification. Reprinted with permission
from Yu et al., Nanotechnology 28(9), 095206 (2017).14 Copyright 2017 IOP Publishing.
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Following the success of the hybrid etching technique for 3D GaN
nanowires, in 2017, Sun et al. have transferred this approach for build-
ing GaN nanofin or nanowall structures from a GaN bulk substrate
using TMAH treatment.15 This has shown the high flexibility and
reproducibility of this top-down approach for creating any type of
structures that are defined by lithography. The fins with both a- and
m-plane sidewalls have been fabricated in their work, where the latter
sidewall orientation presented smoother surface morphology. They
have not only investigated the etching effect on GaN fins, but also suc-
cessfully demonstrated a vertical GaN nanofin FET for power elec-
tronics with high breakdown voltage.

As mentioned before, the main advantage of this top-down
approach in comparison to bottom-up technique is the flexibility in
composition and doping along the c-axis of the micro- and nanorods.
Both the composition and doping are controlled by the original parent
material and its original thin film sequence. Here, well-established pla-
nar growth processes can be utilized. This has, e.g., successfully been
implemented in the development of vertical nano-FETs based on n-p-
n transitions inside the nanorod.7 In the same way, micro- and nano-
LEDs with an almost arbitrary internal structure can be fabricated.

Nevertheless, there are still challenges in device processing, which
are generally related to the 3D nature of the micro-/nanostructures.
Chip processing has to be transferred from a conventional planar tech-
nology into technology for processing of 3D micro-/nanostructures
with a high aspect ratio. For example, in both nano-LEDs and nano-
FETs, top and bottom contacts have to be fabricated. The bottom con-
tact is quite straightforward, since the nanostructures are most often
directly located on a buffer layer with high conductivity. For the top
contact, however, a filling process is necessary in order to allow top
metallization with subsequent photolithographic patterning (see Fig.

8). The filling of the open volume between high-aspect-ratio nano-
structures fulfills two requirements. First of all, the sidewalls of the
nanostructures have to be safely covered, so that they are not electri-
cally short-circuiting the active device after metallization. Second, the
filling has to leave the top part of the nanostructure open for metalliza-
tion. Hence, good top contacts can be realized. Whereas in planar
technology, a photolithography step with subsequent opening of con-
tact pads is a standard process, which is challenging for 3D devices. It
is difficult to control the original thickness of a photoresist spinning
process in order to fulfill both requirements at the same time.
Therefore, the first spinning process will need to cover the overall field
of nano-LEDs, making a subsequent back-etching necessary. This
back-etching process of the photoresist (or any other filling material)
has to be well controlled to keep only the top part of the nanorods free
of resist. Again, etch depth control is possible in planar geometries due
to self-limiting etching procedures. For 3D geometries, however, the
photoresist will not be completely flat, and these undulations caused
by the 3D character of the underlying GaN structures might lead to
open sidewalls after back-etching. One has to make sure that these
open sidewalls do not cause a problem during later metallization. In
nano-LEDs, for example, the active quantum well inside the p-n-junc-
tion is only a few 100nm below the surface of the device, which
imposes quite narrow limitations on the back-etching process. Much
more details of this 3D processing of GaN nanowires are described in
the publications of Feng et al.7,14,119

The described chip processes are more and more challenging as
the lateral dimensions decrease and hence the aspect ratios increase.
Due to its internal structure and the thickness of the original layers,
the core part of a nano-LED should have a height of at least a few
micrometers, including the cladding, active regions, and contact layers.

FIG. 8. Detailed processing sequence during 3D processing of GaN micro-LEDs. The critical step is the filling of the microstructures, since often very high aspect ratios lead to
inhomogeneous distributions of polymers.
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Micro-LEDs with dimensions of 5lm, which need to be isolated by
etching through the whole GaN buffer layer, therefore already
approach aspect ratios of 1 and above.

One of the fundamental properties of LEDs is the fact that they
are emitting monochromatic light. The wavelength is given by the
bandgap of the active region. In many applications, however, poly-
chromatic or full color emission is a requirement. Strategies of using
nano-LEDs with different diameters, leading to a variation of indium
incorporation, have been suggested.107 During 3D growth of InGaN,
the geometry of the 3D structure directly influences the kinetics of
growth, including the Indium incorporation. This would allow to fab-
ricate wavelength distributions on the chips, which can arbitrarily be
chosen by the initial patterning of the mask used for selective area
growth. Even though a lot of effort has been devoted in this direction,
the degree of control is still quite limited.

Another approach might promise to be more feasible. A blue
emitting micro-LED array can be converted into a full color microdis-
play by adding phosphors, which convert blue light into green and red
light. These phosphors need to be added with a spatial resolution simi-
lar to the pixel pitch of the micro-LED array, which is a challenge par-
ticularly for very small micro-LEDs. Since the downconversion
efficiencies above 90% have been reported, this approach seems to be
very promising.136

D. Laser micromachining and lift-off processing of GaN

LEDs

Today, all high power LEDs rely on a “thin film design,” where
the nitride LED-layers are removed from the original sapphire sub-
strate and transferred onto a second carrier substrate (see Fig. 9). This
carrier substrate, often a metal coated silicon wafer, increases the pho-
ton outcoupling dramatically, since the metal layer leads to a high
reflectivity, which is reducing photon reabsorption intensely. At the
same time, the carrier substrate fulfills additional requirements for
high power LEDs: high electrical conductivity, thermal conductivity,
and stability. The introduction of “thin film LED” has been a major
breakthrough in pushing GaN LED efficiency toward its limits.137,138

Removing an InGaN/GaN layer stack from its sapphire substrate is

realized by a process so-called “laser lift-off,” which has been devel-
oped in early 2000s (see Fig. 9).139,140 The sapphire/nitride stack is hit
by the beam of a high power excimer laser from the backside. The laser
light is transmitted through the substrate and absorbed at the GaN/
Sapphire interface. There, the high intensity leads to a dissociation of
the GaN into gallium and nitrogen. Since gallium is liquid under these
conditions, the nitride stack can subsequently be removed from its
sapphire substrate and be transferred onto a second carrier, as indi-
cated in Fig. 9.

The laser lift-off process used today is based on expensive excimer
laser systems. The emission of these systems at a wavelength of usually
193–355nm is absorbed in GaN, but not in sapphire.139,141–143

However, the energy of the photons is not high enough to be absorbed
in AlN. AlN buffer layers need to be used to grow high quality buffers
for UV LEDs. The transfer of the well-known laser-lift-off process to
UV LED technology is still an open question. A potential alternative is
the usage of femtosecond laser pulses. Here, the absorption is due to
multiphoton-processes, which also lead to efficient absorption when
the photon energy is below the bandgap of the semiconductor to be
processed (like AlN in this case). First experiments are presently on the
way to explore the potential of this alternative approach to laser lift-off
for creating free-standing nitride films.144,145 Another ingredient for
efficient light outcoupling is the roughening of the top p-GaN surface
that can lead to a beneficial and arbitrary distribution of photon paths,
which finally—in combination with highly reflective backside mir-
rors—result in very high outcoupling efficiencies of above 90%.146

E. Hybrid integration of GaNmicro-LEDs with Si CMOS

electronics

Removing a thin nitride LED stack from its original sapphire
substrate is not only a powerful technique for putting LED thin films
on highly reflective carriers and by that optimizing light outcoupling.
Since the impact of the laser takes place at the sapphire-GaN interface
only, leading to the dissociation of GaN, this process is a high tempera-
ture process, but only at the particular point where the laser is hitting
the sample, leading to a very local impact only. Overall, for the rest of
the wafer, it is a low temperature process step. This has important

FIG. 9. Sequence of single steps during a laser lift-off process. (a) Original LED structures on a sapphire substrate, with p-contact on top. (b) Original wafer is bonded face-to-
face to a new carrier, often with a mirror with high reflectivity in between. (c) The GaN-sapphire interface is exposed to strong UV laser irradiation, which leads to a disruptive
dissociation of the GaN material in the interface region, leaving metallic gallium behind. (d) After that, the original sapphire wafer can be removed. The former interface region
is now the new surface of the overall structure. The existing roughness is supporting light extraction. (e) Finally, an n-contact is made.
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consequences, since laser lift-off can be used to transfer GaN thin films
onto polymer carriers (in order to introduce mechanical flexibility, as
discussed later), or onto processed silicon wafers, where the impact of
the laser lift-off is sufficiently low to guarantee the stability of micro-
electronic circuits on the silicon wafer. This opens up amazing possi-
bilities and is believed to be one of the core technology drivers in the
near future. As a result, laser lift-off would allow to combine photonic
with microelectronic functionality in a fully hybrid approach. The sili-
con wafer can be processed first, making use of global foundry services
having full access to silicon technology, and then, it can be connected
by laser lift-off to GaN thin films adding photonic functionality.
Subsequently, the GaN/silicon stack can then be processed in order to
achieve GaN devices of choice.

This hybrid combination of GaN micro-LEDs with silicon
CMOS technology is interesting in two directions. First, the CMOS
chip can be used as a control device for the micro-LED device, e.g.,
offering intelligent connection and driving units to a micro-LED array.
Second, GaN micro-LEDs can be used as light engines on a silicon
CMOS wafer, e.g., toward optical communication. The wafer transfer
technique with a subsequent lithography fully outperforms conven-
tional pick-and-place assembly of discrete optical components, like
laser diodes. GaN micro-LEDs can be modulated at gigahertz frequen-
cies,94 being combined with waveguides on wafer,147 and by that have
the potential to be at the root of a future hybrid photonic-
microelectronic integration.148 It should also be mentioned that minia-
turization of LEDs in the GaN material system is much less critical in
comparison to conventional III-V semiconductors due to much longer
surface recombination time in GaN.149

F. Transfer of GaNmicro- and nano-LEDs onto flexible

substrates

Besides planar and 3D micro-/nano-LEDs that are grown on the
original substrates or placed on solid substrates, nowadays an intense
and extensive research has been performed to realize flexible inorganic
LEDs using various approaches (e.g., polymer embedment, printing,
flip-chip, and lift-off).150 This is due to a fact that flexible LEDs have
offered several novel functionalities and possessed unconventional
opportunities to open up a new path toward other applications that
cannot be covered by conventional rigid LEDs (e.g., foldable and
deformable light sources,151 wearable light on fabrics,152 paper LED
displays,153 large-scale flexible displays,154 or smart tactile sensing
devices for robotics and human–machine interfaces.155 Moreover,
because of their simple processing, low material cost, high flexibility,
various available substrates, promising performance, and possible
large-scale production, flexible LED displays will certainly find large
future markets.

In the last decades, the key technology for flexible optoelectronics
has been organic LEDs (OLEDs).156 However, the OLEDs have suf-
fered from several issues related to device instabilities (e.g., caused by
temperature variation, oxidation, aging, diffusion or mixture of the
stacked organic layers, and recrystallization), which may degrade the
conductivity and optoelectrical properties of the LED affecting the per-
formance of the whole optoelectronic systems. Therefore, alternative
materials based on inorganic III–V compound semiconductor materi-
als with wideband gaps (e.g., GaAs, GaN, and AlInGaP) have been
introduced to be integrated on the flexible substrates. Printing of GaAs
micro-LEDs on a polyethylene terephthalate (PET) substrate has been

demonstrated by the group of Rogers.157,158 Another type of flexible
GaAs red LED array with noncoplanar serpentine bridges has been
used in biosystems, clinical medicine, and robotics,158 which can cover
large areas on various surfaces with high flexibility. As a proof-of-con-
cept measurement, monitoring of glucose concentration has been
demonstrated by measuring the variation of transmitted light intensi-
ties using a photodiode. However, although GaAs LEDs are favorably
used in biological sensing, they emit only red and infrared (IR) light
due to their narrow wavelength range (630–700nm), which conse-
quently limits their further possible applications. Thus, GaN with its
potential to cover the green to UV spectral range will massively enter
these applications for micro-LEDs on flexible substrates in the future.
Recent reviews related to the flexible GaN micro-/nano-LEDs can be
found in Ref. 159.

III. GAN LED APPLICATIONS BEYOND SOLID-STATE
LIGHTING

In this section, some applications of the GaN LED devices that
have been previously described in detail in terms of their fabrication
and processing are shown.

A. High-brightness micro-LED displays

1. Micro-LED displays for augmented reality (AR)

Until now, GaN technology has not been assumed to be a viable
technology for displays. The display market is governed by liquid crys-
tal display (LCD) and OLED technology, mainly due to cost consider-
ations. As GaN technology follows a strict and successful cost
reduction strategy over the past years, this perception meanwhile has
completely been changed. Modular large area displays made of GaN
micro-LEDs are meanwhile commercialized,160 drawing from their
major advantages in comparison to LCD and OLED:161,162 highest
brightness, contrast, efficiency, and modulation frequencies. These
“micro-LED” displays, though, are using LEDs in the 50–100lm
range. As there is still room for improvement moving toward even
smaller LEDs, micro-LED displays are likely to enter a huge market
served by GaN technology.19,107,163

Besides virtual reality (VR) systems, augmented reality (AR) sys-
tems are of increasing interest, as they combine the real-world images
with artificial ones in real time using, e.g., glasses with displays. For
such smart eyewear, the advantages of a GaN technology are even
more striking, making GaNmicro-LEDs by far the desired technology.
In these AR applications, full resolution displays are supposed to have
micro-LEDs with sizes in the 10–50lm range, since in order to display
information into AR glasses, a very compact projection display is
needed. The core requirements for a microdisplay are: smallest possi-
ble size (for best integration into glasses), highest possible brightness
(even when in the micrometer range, for operation at daylight with
smallest displays), being most efficient (for long battery lifetime), and
have highest lifetime (since it will be operating continuously). For each
single requirement, GaN-based displays are by far superior to OLED
or LCD displays. This is the reason why innovative companies active
in the field of augmented reality worldwide meanwhile are deeply
involved into micro-LED development (e.g., Apple, Google, and
Plessey Semiconductors partnering with Vuzix).
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2. Nano-LED arrays for super resolution microscopy

For displays, there is no reason to reduce the pixel size of micro-
LED arrays further down, possibly even below the optical resolution
limit. On the one hand, all foreseen applications involve in one way or
another the human vision, which has some evident limits concerning
the smallest objects that can be seen by the naked eye (of about several
tens of micrometers in the most favorable conditions164–167)
Therefore, pixel resolutions in the range of a micrometer or less have

remained fully unexplored. On the other hand, light intensity will be
reduced with the pixel size, which is another argument against further
miniaturization. The high brightness of inorganic GaN LEDs com-
pared to their OLED counterparts—makes them a good technological
choice if size reduction is attempted.

As discussed in Secs. II B and IIC, there is no technological
impediment to achieve today GaN LED emitters of nanometric sizes,
and to arrange them in a 2D array configuration with pixel to pixel
distances in the nanoscale [see Fig. 10(a)]. From a broad perspective,
these nano-LED arrays would provide experimentalists a new tool: a
set of almost ideal point light sources, which can be located in space
with nanometric precision, without the need for any optical or
mechanical system. This way the origin of the light emission could be

shifting from one nano-LED to another in a fully repeatable and accu-
rate way, only switching one LED after the other. From a fundamental
point of view, this will give access to light source displacements well
below the diffraction limits (around 200nm for light in the visible
range) [see Figs. 10(b)–10(d)].

Among other applications, new strategies to improve optical res-
olution, based on ideas that remained dormant for years,168 can now
be implemented [see Fig. 10(d)]. The array can be scanned, switching
on and off one single nano-LED at a time, separately and at a high
rate.25 In combination with a light detector, a signal related to light
matter interactions occurring in the vicinity of each one of the nano-
LEDs positions could be recorded. Thus, the photodetector signal in
time could be transferred into a real space transmission image showing
the “transmission” image of the object under investigation, placed
right over the nano-LED array. In contrast to conventional micros-
copy, spatial resolution would be provided by the illumination source,
and not by the optical detection system. Hence, the optical detection
system would not require particular alignments, optical focusing sys-
tems or spatially resolved detectors, as spatial resolution will solely be
limited by the distance between two neighboring nano-LEDs. Current
estimations suggest that pixel-to-pixel distances in the range of 50 nm
can be at reach with existing technologies.

FIG. 10. (a) Array of InGaN 3D nano-LEDs. Each one of the nanorods contains one fully functional LED element, which can be activated as an independent point light source.
Current technology makes it feasible achieving pitches between nano-LEDs of a few hundred nanometers. This means that independent point light sources with a spacing
below the wavelength of the emitted light are at reach. (b) One possible application of this extremely dense nano-LED array is direct optical microscopy, without lenses, in com-
bination with a broad area light detector, located in front and close to the nano-LED array. (c) and (d) Such a system can produce direct shadow images, by scanning the sam-
ple with one nano-LED pixel after the other, and monitoring the intensity through the sample, which means approaching the typical wavelengths of the light emitted. This
approach opens the door to a new kind of highly miniaturized, high resolution microscope.
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All this renders a new path toward what is known as superresolu-
tion microscopy, a set of microscopy techniques like stimulated emis-
sion depletion microscopy (STED), stochastic optical reconstruction
microscopy (STORM), photoactivated localization microscopy
(PALM), near-field scanning optical microscopy (NSOM), and struc-
tured illumination microscopy (SIM),169–171 in which all those meth-
ods are based on bulky optical systems and complex sample
preparations that allow for acquiring optical images with a spatial reso-
lution beyond limits imposed by the diffraction of light.

B. Visible light communication (VLC)

A discussion, which is ongoing for many years, is whether white
LEDs—in addition to solid-state lighting—can also be used for optical
communication. VLC describes an optical and wireless communica-
tion system that transmits information by modulating light in the visi-
ble spectrum (380nm–780nm). VLC would have the advantage that
the information can safely be kept inside a room by physical reasons—
by only blocking the windows or closing the doors. Walls are intrans-
parent to visible light, in contrast to WiFi radiation. When moving
into the UV, exploiting the strong scattering of UV light, non-line-of-
sight communication is another version of using modulated LEDs or
laser diodes for communication. These high-frequency modulation
schemes are not visible to the human eye, but can be detected by, e.g.,
smartphones and further internet of things (IoT)-based devices
equipped with a detector in line of sight to the emitting LEDs.172 The
possibility and attractiveness to integrate such VLC systems into the
world of lighting infrastructure are directly coupled to the uprising of
LED technology in the last two centuries, as incandescent or fluores-
cence light bulbs cannot be modulated quickly, and are well driven by
the demand for an ubiquitous but safe connection of smart devices.
The advantages of VLC are the license-free operation,24 the high spa-
tial confinement to one room and therefore offering physical layer
security,173 and the possibility to supplement the RF data spectrum
while possible even integrating the VLC systems into existing lighting
solutions.174 In particular, the micro-LED technology offers some
advantages over conventional solid-state lighting solutions in terms of
VLC performance, in particular concerning speed of operation.

1. Structure of the VLC system

A viable VLC system is based on three parts: transmitter, chan-
nel, and receiver.174 The transmitter side includes the driver electronics
to control the triggering of the optical emitter according to the input
data. The illumination may be shaped by optics in front of the light
source. The channel can either be a free space one (e.g., air) or based
on waveguides. The receiver transduces the received optical intensities

to the electrical output data. Therefore, optical receivers with a high
bandwidth and adequate optics and an amplifier circuit are required.
A schematic of the described system is shown in Fig. 11.

In this paper, only the most frequent systems with a free space
channel and commonly available detectors are considered. Hereby,
one light source can be detected by one detector (single input single
output) or multiple light sources (e.g., micro-LED arrays) can be
detected by multiple detectors (multiple input multiple output). The
light source can be modulated via different modulation schemes as
described in detail in Refs. 174–176.

The main requirement for a high-speed data VLC system is a
high bandwidth throughout all parts of the system. Detectors based
on charge-coupled device (CCD) or CMOS image sensors can be
used on the receiver side. However, these sensors are designed for
a low number of frames per second and achieve data rates in the
kbit/s range.177 Photodiodes such as silicon PIN photodiodes or
avalanche photodiodes (APDs) reach data rates up to 1 Gbps
(Refs. 178 and 179) and are therefore more suitable for high-speed
data communications.

2. Micro-LEDs as an emitter in the VLC system

Commercially available GaN-based LEDs with the main pur-
pose of solid-state lighting usually have chip sizes of 200 lm and
above and are coated with a phosphor to convert the blue bandgap
emission from the LED to an overall white light emission. Those
off-the-shelf LEDs have modest modulation bandwidths of
10–20MHz,24 while their VLC performance is limited by the afore-
mentioned properties.180

Micro-LEDs exhibit several characteristics, which make them
more suitable for VLC applications. At first, a smaller LED size leads
in general to lower RC constants, which contribute to a higher modu-
lation capability of the transmitter.181 A smaller LED footprint also
allows for higher current densities during operation, which reduces
the carrier lifetime in the active area and therefore offers a higher mod-
ulation frequency.182 The modulation bandwidth therefore strongly
depends on the injected current density. Moreover, the carrier lifetime
can be reduced further by the employment of nonpolar or semipolar-
based micro-LEDs instead of usual c-plane micro-LEDs. This is due to
the larger electron-hole wavefunction overlap of non-/semipolar LEDs
in comparison to c-plane LEDs and the effect is especially pronounced
at lower current densities.93

Table II shows the performance comparisons of GaN micro-
LEDs with other technologies based on nanowire LEDs and laser
diodes for VLC applications. In terms of the micro-LED-based VLC
system, the highest data rate of 7 Gbit/s has been achieved by
Rajbhandari et al.183 using a 6� 6 micro-LED array with a diameter of

FIG. 11. Visible light communication (VLC) system consisting of the transmitter, channel, and receiver.
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39 lm and an emitted blue wavelength of 450nm. The obtained band-
widths of micro-LEDs in VLC are ranging from 140 to 800MHz.
Using commercial blue GaN laser diodes, the systems can result in
higher bandwidths (1–1.5GHz) and data rates (4–9 Gbit/s) than those
employing micro-LEDs.187–189 In such a system, a remote phosphor is
normally used to realize white light communication. For modulation,
several schemes have been employed, i.e., pulse-amplitude modulation
(PAM), orthogonal frequency division multiplexing modulation
(OFDM), and on-off key modulation (OOK). More devices other than
micro-LEDs, nanowire LEDs, and lasers were also introduced for VLC
(e.g., commercial white LED and RGB LED), in which deeper discus-
sion for all the demonstrated VLC systems for the last decade can be
found in another review paper.174

Several multi-Gbit/s VLC data link rates based on micro-LEDs
have been realized by the adoption of different modulation and equali-
zation schemes and are described in Refs. 22, 24, and 190. It should be
mentioned, however, that the integration of lighting systems and VLC
systems can also be viewed as being critical. Lighting systems are often
switched off, whereas VLC systems should be available continuously.
In addition, specialized electronics will be necessary, and it is unlikely
that lighting housing will regularly be equipped with this.
Nevertheless, VLC is being viewed as an interesting approach for
future industry 4.0 and smart home environments, but it is more likely
that separate specialized units will be developed for this. Micro-LEDs
have an advantage concerning modulation speed. On the other side,
intensities are becoming a critical issue when larger distances and light
sources with a broad spatial emission are to be used. In view of the
rather broad emission of LEDs in comparison to laser diodes, multi-
wavelength transmission will certainly remain to be a challenge for the
next years.

C. Biomedical sensors and imaging systems

GaN micro-LEDs and nano-LEDs with various wavelengths
from UV to visible ranges have been implemented in different types of
biomedical sensors and imaging systems. The micro-LED chips need
to be combined with sensitive photodetectors [e.g., CMOS camera and
single-photon avalanche diode (SPAD)] and other supporting ele-
ments (e.g., microfluidics, 3D-printed housings, driver circuits, and
reconstruction software), ideally in a fully integrated architecture.
Lensless mini microscopes, optoelectronic tweezers, and fluorescence-
based sensors have attracted immense attention from the biological
and biomedical research communities, in which they are used in dif-
ferent biological targets (e.g., microparticles, cells, neurons, and mole-
cules). In the last few years, the demands on the biosensors have
moved toward portable or wearable low-cost instruments that can be
employed as personal sensors to be used out of the labs. During minia-
turization and cost reduction processes, the performance (e.g., sensitiv-
ity or imaging resolution) is not to be sacrificed. This has been made
possible with the development of advanced microfabrication processes
enabling on-chip biosensors and imaging systems.

For all types of developed biomedical sensors, the integration of
micro-/nano-LEDs as a light source can either provide additional new
function or improve the existing feature of the optical sensing systems.
By scaling the LEDs down to micro-/nanosized structures, high-spa-
tial-resolution sensors will be made feasible targeting only on specific
objects (e.g., bioparticles, proteins, or neurons) at specific locations,
without affecting other parts of object systems. This is, for example,
very important for optogenetics where in most cases localized illumi-
nation is needed at a very small area, so that other parts of nontargeted
neurons will not be influenced, in which fluorescence-based

TABLE II. Performance comparison of GaN micro-LED technology with other devices (i.e., nanowire LED and laser) used for visible light communication (VLC). PAM, pulse-
amplitude modulation; OFDM, orthogonal frequency division multiplexing modulation; OOK, on-off key modulation.

Light source Device property Modulation type Bandwidth Data rate Year (Reference)

GaN micro-LED Array¼ 6� 6; diameter¼ 39lm;
color ¼ blue (450 nm)

PAM 140MHz 7 Gbit/s 2017 (Ref. 183)

GaN micro-LED Diameter¼ 20lm; color ¼ blue (450 nm) PAM 450MHz 2 Gbit/s 2016 (Ref. 184)

GaN micro-LED Diameter¼ 24 and 42 lm; color ¼ blue (450 nm) OFDM 800MHz 5 Gbit/s 2016 (Ref. 24)

GaN micro-LED Diameter¼ 24 and 42 lm; color ¼ blue (450 nm) PAM 800MHz 3.5 Gbit/s 2016 (Ref. 24)

GaN micro-LED Diameter¼ 84lm; color ¼ blue (450 nm) OFDM 400MHz 3 Gbit/s 2014 (Ref. 22)

GaN micro-LED with
polymer color converter

Diameter¼ 50 lm; color ¼ white
after light conversion

OFDM 531MHz 1.68 Gbit/s 2014 (Ref. 185)

GaN micro-LED Diameter¼ 99lm; color ¼ blue (450 nm) OOK 150MHz 1.5 Gbit/s 2013 (Ref. 186)

GaN micro-LED Array¼ 16� 16; diameter¼ 72lm;
color ¼ blue (450 nm)

OOK 245MHz 1 Gbit/s 2010 (Ref. 23)

GaN nanowire LED Diameter¼ 400 nm–1.5 lm; length¼ 15 lm;
density¼ 1.10 wire/lm2; color ¼ blue (448 nm)

OOK … 1 Gbit/s 2015 (Ref. 94)

GaN laser diode Type ¼ OSRAM optosemiconductors,
PL 450B; spectral linewidth¼ 0.67 nm;

color ¼ blue (450 nm)

OFDM 1.5GHz 9 Gbit/s 2015 (Ref. 187)

GaN laser diode with
a remote phosphor

Type ¼ OSRAM optosemiconductors,
PL 450B; color ¼ white after light conversion

OFDM 1.3GHz 5.2 Gbit/s 2015 (Ref. 188)

GaN laser diode with
a remote phosphor

Type ¼ Thorlabs, LP450-SF-15;
color ¼ white after light conversion

OFDM 1GHz 4 Gbit/s 2015 (Ref. 189)
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measurements are normally carried out. Moreover, in combination
with MEMS for in vivo investigation inside the body, the hybrid-
joined optogenetic devices should be made as small as possible to have
less or noninvasive measurements. This is, of course, not possible
when conventional large LEDs are used, as the emitted light from these
types of devices will illuminate the whole object system, leading to
unwanted biological mechanisms. Moreover, by having smaller
dimensions, the required power to activate the LED-based sensor will
dramatically shrink resulting in ultimate low-power sensors. Hybrid
integration of micro-LEDs with a CMOS-based electronic driving cir-
cuit and image detector can be also realized to produce very compact
chip-based optical sensors or microscopes. In this case, highly efficient
optical sensors are expected, as the droop efficiency can be reduced
and overall light outcoupling efficiency (EQE) can be maintained at a
high value for micro-/nano-LEDs. For a holographic lensless mini
microscope, the use of an integrated InGaN micro-LED can be an
alternative for the conventional setup of already established micro-
scopes, where surface-mounted LEDs (SMD LEDs) are normally cou-
pled with an optical fiber or pinhole element to create such a point
light source, so that the device can be made more compact and the
photon loss in the whole system can be reduced. Additionally, higher
modulation speed and bandwidth of micro-LEDs (up to G) open a
new route to realize fast optical sensors used for the detection of single
flowing bioparticles inside a microfluidic chip. However, the current
challenges are still the realization of individually addressable nano-
LED arrays and their joining and packaging technique as well as the
improvement of light outcoupling of such devices.

1. Compact lensless microscopes

Recently, LED arrays have been used as a light source in various
configurations of LED-based imaging systems,191–200 which subse-
quently have been considered as a versatile platform for computational
microscopy.201 Several types of LEDs with different wavelengths have
been reported, where mostly red-green-blue LEDs (RGB LEDs) are
employed191 for biological applications. In LED array-based micro-
scopes, the addressable LEDs are positioned in the source plane of a
microscope to realize various label-free imaging modes by controlling
the illumination toward the sample. Multicontrast imaging (i.e.,
bright-field, dark-field, and differential phase contrast191,196,197) and
Fourier ptychographic-based high-resolution imaging with a large field
of view have also been demonstrated using LED array platforms.
However, those microscopes are still bulky because they are equipped
with complex optics limiting their usage in other applications, where
mobility, harsh environments, and quick analysis become important
factors. Therefore, some researchers have attempted to develop LED-
based mobile microscopes by assembling available optical and elec-
tronic components into low-cost lightweight microscopes [Fig. 12(a)].
It has been a trend to integrate mobile microscopes with smartphones.
Those smartphone-based devices can exhibit an imaging quality simi-
lar to that produced by more expensive high-quality benchtop micro-
scopes.202–204 LED light, given appropriate source dimensions and
optical bandwidth, can be utilized as a spatially coherent light source
for coherent imaging techniques.205,206 Furthermore, the possibility of
utilizing multicolored RGB LEDs as a multiwavelength source does
not only add the ability to obtain color images,207 but also offers the
possibility to reconstruct the phase information in dense samples.192

Among other microscopy methods, digital inline-holography
provides a promising way of using micro-LED arrays as a spatially
coherent light source in combination with an image sensor to build a
compact digital microscope [Fig. 12(a)].208,209 It does not rely on com-
plicated and expensive optical elements such as mirrors and lenses. In
lensless holographic microscopy, the recorded spatial information is
the interaction of the incident micro-LED emission with the object.
The new wave front includes interference between a reference light
wave of known properties (i.e., the unperturbed light wave that passes
through the transparent sample substrate), and the light wave that has
been partly absorbed and scattered by unknown objects or samples
placed on the object plane.201 As a consequence, the intensity is modu-
lated in space and includes interference patterns; with that informa-
tion, the optical properties of the unknown object can be inferred [Fig.
12(b)] by reconstruction of the wave front in the object plane.
Dissimilar to other types of holography, the reference wave used here
is “in-line” with the scattered wave generated by the object.210 Thus,
this technique is known as digital in-line-holography. In this micros-
copy, besides the possibility of creating an inexpensive and robust
measuring setup,211 the opportunity of utilizing the optical phase
information leads to new possibilities in sample analysis.212 The
microscope resolution and field of view are practically decoupled from
each other and only depend on the spatial resolution of the optical
sensor.213 Therefore, the field of view can be enlarged simply by using
sensors with a larger active area. On top of that, the incorporation of
multiple illumination angles can be utilized for tomographic 3D recon-
struction.149 The obtained 3D images can reveal sample structures that
would be otherwise obscured in microscopic images.

Due to fast device development, such cost-effective LED-based
portable or mobile microscopes203 have been employed in a wide
range of biomedical diagnostics, including for investigating schistoso-
miasis disease (S. haematobium and S. mansoni),202 pathogenic bacte-
ria (Cronobacter spp.),214 3D motion of free-swimming sperm cells,215

biomolecular interaction of protein A/G with immunoglobulin G
(IgG) antibody,216 flagellated protozoa (Trypanosoma brucei spp.),217

histochemical stains,218 encapsulated islets,219 type 2 diabetes mellitus
disease (pancreatic islets),220 mouse astrocyte cells,221,222 neuroblas-
toma and prorocentrum minimum cells223 biofilms,224 and NIH 3T3
cells.225 Moreover, accurate holographic color imaging using on-chip
lensless microscopes could already be demonstrated using an absor-
bance spectrum-based colorization technique, which is done by assem-
bling a colored image out of an estimated absorbance spectrum
generated by multiple measurements with different wavelengths [Figs.
12(c) and 12(d)].218 It has been tested to image several pathological
samples including tissue samples of liver, kidney, artery, lung, and
esophagus. Another simpler technique that can be employed to create
holographic color images is a direct RGB combination method, in
which the spectral reflectance or transmittance of the sample is dis-
cretely sampled at three chosen wavelengths (i.e., RGB) and the col-
ored images are directly composed by taking those measurements as
the single RGB color channels. Nevertheless, this method has a draw-
back in terms of color accuracy with respect to the color perception of
the human eye.226

Different shapes and configurations of the LEDs have been
reported in-state-of-the-art compact microscopes (e.g., ring-shaped
LED array,202 RGB LED array [Fig. 12(e)],228 fiber-coupled LED
array,227 domed LED array229). However, to further increase the
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degree of integration and miniaturization, a reduction of LED sizes
into micro-LEDs is necessary. GaN micro-LED arrays based on pin-
hole structures have been recently reported to be applied in a compact
digital in-line holographic microscope for real-time monitoring of cell
cultures.221,230 In comparison with commercially available SMD LEDs,
those pinhole-LEDs could enhance the spatial coherence length of the
light source and therefore allow for more flexible and compact geome-
tries. If pixels in a micro-LED array can be individually controlled, sev-
eral captured images from LEDs with different pixel positions can be
used to develop a new image with pixel super-resolution. In this case,
only the micro-LED module has to be switched, instead of moving the
sample, as it is done in a more conventional approach to pixel super-
resolution. Using this technique, deep subpixel resolution can be
achieved [Fig. 12(b)]. The pixel super-resolution technique was origi-
nally proposed for other microscopy approaches where the resolution
is pixel-limited.201 In a conventional pixel super-resolution technique,

a sequence of images is acquired from the same object, where after
each successive image, the object is moved across the image sensor by
distances equal to a noninteger number of pixels. Subsequently, from
the sequence of lower-resolution images, a single higher-resolution
image of the observed object can be synthesized. Due to the near one-
to-one magnification in LED-based lensless on-chip imaging systems,
the obtained resolution of the reconstruction is equal to the resolution
of the recorded hologram, so that a high-resolution hologram will
yield a high-resolution image of the sample (i.e., so-called “pixel
super-resolution”). Nowadays, different techniques to yield higher
pixel resolutions have been reported (e.g., using wavelength scan-
ning,231 color demultiplexing process,232 machine learning,233 and
deep learning204,234,235). The latter method, which is one of the
machine learning types, has now become one of the mostly discussed
and researched ways to improve the quality of images produced by the
holographic microscope, as a matter of fact that the improvement of

FIG. 12. (a) Photograph and schematic diagram of the LED-based lensless super-resolution microscope with a weight of 95 g and 23 fiber-optic-coupled LEDs. (b) A raw holo-
graphic image (left) generated by the lensless mini microscope in (a) and higher resolution holographic image (right) after multiple shifted lensless holograms have been proc-
essed using a computational pixel super-resolution algorithm. Republished with permission from Bishara et al., Lab Chip 11(7), 1276 (2011).227 Copyright 2011 Royal Society
of Chemistry. (c) Schematic of accurate-color lens-free holographic microscopy based on RGB LEDs and (d) its image acquisition and reconstruction process applying an
absorbance spectrum estimation-based colorization method to obtain a color-accurate sample image. Reprinted with permission from Coskun et al., Sci. Rep. 4, 6789
(2014).216 Copyright 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (e) Configuration of a multicontrast smartphone microscope with color-coded LED illumination patterns.
Reproduced with permission from Jung et al., Sci. Rep. 7(1), 7564 (2017).228 Copyright 2017 Author(s), licensed under a Creative Commons Attribution 4.0 License.
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microscope hardware (e.g., photodetector) has somehow almost
reached its saturation point. Besides, artificial neural networks can be
used for, e.g., quantifying moving cells automatically in a lensless
microscope.222 Taking advantage of high-end semiconductor technol-
ogy, the LED pixel dimension can be further scaled down to a few
hundreds of nanometers by means of electron beam lithography
(EBL) patterning, in which that EBL processing has already been
proven in the fabrication of a nanostructured color filter matrix with
the grating period ranging from 360nm to 640nm.236

Lensfree holographic microscopes can be realized by two chips:
the micro-LED array and the photodetector, without lenses or other
complex optical components, and can therefore potentially be fabri-
cated very cost efficient. In addition, the produced images will have
large space-bandwidth products, can recover the phase of investigated
objects, and can reconstruct 3D volumes.208,236 Finally, it should be
emphasized that by employing a CMOS image sensor chip with small
pixel size (e.g., �1.1lm)201 and the computational LED-based lens
free imaging technique,201,237 a higher spatial resolution of up to
�225nm can be obtained. Thus, although the cost and size of the
device will be further shrunk down, the quality of the produced images
will be kept at very high resolution like those generated by the gold
standard microscopes for diagnostics and screening purposes. In con-
trast to these optical microscopes, however, the chip microscope based
on GaNmicro-/nano-LEDs will have a much wider field of view, faster
image generation and—as important—can be operated in harsh envi-
ronments, e.g., inside biological incubators. This might lead to a revo-
lution in point-of-care medical analysis or environmental analysis,
which is definitely an important area of application of micro-LED
modules. Moreover, highly efficient light sources can be realized by
scaling down the size of micro-LEDs to nano-LEDs, as the droop can
be minimized and the EQE can be increased. The fabrication of such a
very small InGaN LED array with individually controlled pixels is
however still a challenge, especially when a green LED is required like
in common biological sensors. The upcoming research to solve the
green gap issue will be very important to support the applications of
compact mini microscopes.

2. Optoelectronic tweezers

In miniaturized biological and chemical analytical systems, meth-
ods for a quick, noncontact, and noninvasive micromanipulation of
cells play a significant role toward further understanding of cell behav-
ior. Currently, relatively powerful and bulky laser systems are normally
used for this. Compact micro-LED arrays can contribute to be an
alternative excitation source for a portable optoelectronic tweezer,
which is principally a micromanipulator utilizing light-induced dielec-
trophoretic forces on a photoconductive substrate. This technique is
considered to be relatively novel compared to other existing noncon-
tact manipulation methods based on, e.g., electrical/pure dielectropho-
retic,238–240 surface acoustic wave,241 ultrasonic wave,242 optical,243

and magnetic forces.244Using the optoelectronic tweezers, various bio-
logical samples (e.g., particles,245–247 cells,245,247–253 proteins,254 and
DNA molecules255,256) have been investigated in real-time using light
images that are projected on transparent electrodes, e.g., indium tin
oxide (ITO) and amorphous silicon coated glass (a-Si:H) [Figs. 13(a)
and 13(b)].257 Besides micro-LED arrays,23,257–259 other light sources
have been reported to trigger and pattern virtual electrodes [e.g., LCD

display,260 digital micromirror device (DMD) projectors,245,247,261 and
laser beams262].

Although all available noncontact cell manipulation techniques
have their own distinct advantages and disadvantages, the optoelec-
tronic tweezer, especially if composed of micro-LED array, has shown
its superiority among others. In comparison to conventional electrical
or dielectrophoretic trapping, the optoelectronic tweezer can modify
the light field simply by moving it from one pixel to the others.240,257

Furthermore, several biological objects or particles can be manipulated
in parallel depending on the micro-LED pattern. These two working
options are not possible with magnetic or normal optical tweezers,
which only offer one degree of control. Trapping by optoelectronic
tweezers in general has been indicated to be 470 times stiffer than a
conventional optical tweezer with a similar light intensity262 and capa-
ble of manipulating high numbers of cell and particles in parallel (i.e.,
15 000 trapped objects at once with only 1mW of light).245,261 An
optoelectronic tweezer based on an 8� 8 GaN micro-LED matrix has
been reported to be able to manipulate and trap multiple particles
[e.g., 10lm polystyrene beads and live cells, see Figs. 13(c) and 13(d)].
During trapping experiments, a light power density of 0.4–0.6 W/cm2

was sufficient to excite the cells on photoconductive electrode and to
investigate their velocity profiles [Fig. 13(e)].

As the first demonstration of the micro-LED-based optoelec-
tronic tweezer was mainly used to manipulate the “bare” cells,257 a fur-
ther improvement was made by developing a projection system based
on individually controlled GaN micro-LED arrays to manipulation of
fluorescently labeled cells [Fig. 13(f)].258 The additional key compo-
nents for this setup are two integrated objective lenses that can demag-
nify and project the light emitted from the micro-LED arrays onto the
optoelectronic tweezer device, resulting in a smaller pixel size used to
activate each cell trap. Moreover, differentiating from the other
fluorescent-cell manipulators that normally combine two separate sys-
tems for trapping and fluorescence excitation,249 the micro-LED-based
projection system could demonstrate single-cell manipulation and
fluorescence imaging using the same illumination source where two
emission wavelengths have been investigated (450nm and 520 nm).258

This demagnification-based optoelectronic tweezer system has been
successfully tested in a proof-of-concept biomedical measurement to
study T-lymphocyte and dendritic cells, which are commonly used by
pharmacists or medical researchers to investigate the immune system
toward infection or vaccination.263 A viscous drag method was
employed to measure the cell velocity and trapping profile, in which
Stokes’ law was required to determine the dielectric force.264 It should
be noted that the cell velocity is directly proportional to the increase in
the dielectrophoretic force on the “virtual imaged electrode” created
by the projected micro-LEDs [Fig. 13(g)]. During trapping, the cells
are attracted to the imaged LED pixels [Figs. 13(h) and 13(i)].
Furthermore, different types of cells in a mixed population can be dis-
tinguished by introducing two different contrasting fluorescent dyes
[see Fig. 13(j)]. All these developments and experiments have demon-
strated the feasibility of integrating GaNmicro-LED arrays in compact
and low-cost systems to build noncontact and noninvasive microma-
nipulator system for the investigation of biological objects, including
cells.

For further development, GaN micro-LED arrays can be inte-
grated directly with microlens array to realize novel optical tweezers,
so that each pixel can be switched on/off individually at different
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times. This is definitely not possible when the conventional large LEDs
are used (for example SMD LEDs). Having lower efficiency droop and
high modulation speed and bandwidth up to gigahertz, the GaN
micro-LEDs can be used to manipulate physically the cells and par-
ticles that are flowing in the liquid (i.e., the objects are not only in

steady-state) with very high precision and high spatial resolution when
the pitch of the micro-LED can be kept as short as possible. However,
besides complicated GaN LED nanoprocessing to realize the nano-
LED array, challenges are still on how to obtain sufficient light inten-
sity that is comparable with that produced from laser as the LED size

FIG. 13. (a) Photograph and (b) sketch of the integrated miniaturized optoelectronic tweezer using a CMOS-controlled LED array as the excitation source. The conditions dur-
ing cell trapping experiments (c) before and (d) after some micro-LED pixels have been turned on. The used illuminating chip contains an array of 8� 8 GaN micro-LED pixels
on a 200 lm center-to-center pitch, flip-chip bonded to a CMOS control circuit. (e) Average cell velocity as a function of imaged pixel diameter with an applied AC voltage of
13 V between ITO electrodes. Reproduced with permission from Zarowna-Dabrowska et al., Opt. Express 19(3), 2720–2728 (2011).257 Copyright 2011 Author(s), licensed
under a Creative Commons Attribution 4.0 License. (f) Setup of the micro-LED projection system comprising two microscope objectives as demagnification tools for having a
smaller size of pixels imaged onto the optoelectronic tweezer device. (g) Maximum average velocity of DO11.10 T-lymphocyte hybridoma cells affected by dielectrophoretic
force as a function of applied voltage at a LED modulation speed of 30 kHz. Image sequence depicting the conditions of cells (h) before and (i) after micro-LEDs have been
turned on as well as (j) the yielded fluorescence image of T-lymphocyte (orange) and dendritic cell (green). Reproduced with permission from Jeorrett et al., Opt. Express 22,
1372–80 (2014).258 Copyright 2014 Author(s), licensed under a Creative Commons Attribution 4.0 License.
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is reduced and how to overcome the temperature increase inside the
microfluidic chips or petri dish caused by the emitted light.

3. Fluorescence-based sensors

There has been growing interest for novel fluorescence-based sen-
sors in the fields of biomedicine and life sciences, as these methods can
be used not only for particle and tissue imaging,265–267 but also for cel-
lular imaging and tracking,265,268–271 molecular imaging,272 and DNA
sequencing.273–275 In fluorescence analytical systems, samples are
labeled with fluorescent molecules that can absorb an excitation light
from an illumination source and subsequently emit fluorescence signal
at a longer wavelength, which is then detected and quantified using a
photodetector. Depending on the light excitation and emission record-
ing mechanism, the fluorescence measurements can be divided into
two main types: steady-state and time-resolved fluorescence measure-
ments.276 A steady-state fluorescence characterization is conducted by
exciting the fluorescent-labeled sample with a continuous illumination
and recording the emitted spectra. Meanwhile, time-resolved fluores-
cence measurement offers higher sensitivity and selectivity than
steady-state measurement because this technique is able to record high
temporal resolution after a pulsed excitation comes from the light
source. Thus, it will provide more detailed information about fluores-
cent molecular interactions and the surrounding chemical environment
of the fluorophore (e.g., local viscosity in cell membranes and pH
level).277–280 In time-resolved experiments, the fluorescence decay pro-
file is used to extract the fluorescence lifetime,178 e.g., via time-
gated281,282 or time-correlated single photon counting techniques.283,284

For standard fluorescence microscopy tools, pulsed laser diodes
with different wavelengths (deep UV, visible, and near infrared) and
pulse repetition rates285–289 are normally employed as fluorescence
excitation sources. Previously, mercury arc lamps with broadband
continuous emission have also been used.290 However, their low effi-
ciency, low stability, and large size have led to unsuitability for creating
small portable biochemical monitoring systems. As an alternative,
InGaN/AlGaN LEDs with an optical pulse of 4 ns, a repetition rate of
10 kHz, a peak current of 2A, and a peak optical power of 40 mW
were employed by Araki and Misawa in 1995 to demonstrate, for the
first time, LED-based fluorescence lifetime measurement of quinine-
sulfate solution.291 Furthermore, the next improvement in terms of
LED miniaturization for fluorescence measurement was achieved
when an individual addressable blue microdisk LED array with a
wavelength of 460nm, a pixel number of 64� 64, and a pixel size of
20lm was realized,292 which however was still driven by an external
driver circuit293 for obtaining a pulse width of 2 ns and an average
optical power of 40 nW under bias of 4V.294 In that system, a fast
photomultiplier tube was utilized as the detector to capture the emitted
fluorescence signal during lifetime measurement of the mitochondria
staining dye Rhodamine 123.294 In combination with microfluidics
and a hydrogenated amorphous silicon (a-Si:H) pin photodiode, GaN
micro-LEDs could be also used as a fluorescence biosensor to detect
fluorescence from a streptavidin R-phycoerythrin conjugate that
bound to biotinylated antibody-coated microbeads.295 Other than
micro-LED arrays, some research groups have used vertical cavity
semiconductor devices [e.g., vertical-cavity surface-emitting laser
(VCSEL)] to be integrated into fluorescence-based microanalytical
devices.296,297 Besides on rigid substrates, the microscale VCSEL array

has been also integrated on flexible, liquid-proof polyethylene tere-
phthalate (PET) substrates for realizing flexible opto-fluidic fluores-
cence sensors.156

Utilizing currently developed advanced microfabrication meth-
ods and fast electronics, complete portable integrated optoelectronic
systems have been built and demonstrated as a full optical lab-on-a-
chip for measurements of fluorescence lifetime of fluorescence colloi-
dal quantum dots based on time correlated single-photon counting, in
which the CMOS-controlled UV micro-LED array as the illumination
source was combined with silicon-based SPAD as the detector [Figs.
14(a)–14(f)].298–300 In terms of the sensing system architecture, there
are at least two different options that can be considered depending on
the location of the SPAD and the capturing process of the emitted
fluorescence light {i.e., reflection mode [see Fig. 14(b)] and transmis-
sion mode [see Fig. 14(e)]}.

For reflection mode, the fluorescence sample is located on top of
the flipped transparent sapphire substrate [Fig. 14(b)]. Thus, once the
sample has been excited by the light coming from the micro-LEDs,
any returning or reflected fluorescence light will pass through the stack
of LED layer and its sapphire substrate, approaching the SPAD array
[Fig. 14(c)]. The typical fluorescence decay curves from the time-
resolved measurements performed using individually addressable
16� 4 UV micro-LED array bump-bonded with CMOS chip [Fig.
14(a)] where each LED pixel has a diameter of 72lm on a 100lm
pitch and a peak emission at 370nm (Ref. 301) are shown in Fig.
14(g). In the joining process of the micro-LED with CMOS, oxygen
plasma etching can be employed to remove the polyimide layer that
originally covers the SPAD top surface, so that the photon detection
probability of the underlying SPADs can be enhanced [Fig. 14(b)].
Detailed specifications related to the structures and performance of
the employed SPAD have been described in Ref. 302.

For transmission mode, two-chip sandwich microsystem archi-
tecture can be realized by incorporating the Si-CMOS driving circuit,
micro-LED array, a microcavity slide for the fluorescence sample, opti-
cal filter, and SPAD in a sequential cascade assembly [Fig.
14(e)].299,300 This approach has been introduced by Rae et al. where
they used a micro-LED array with a pixel number of 8� 8, a pixel
diameter of 72lm, a pitch of 200lm, and a peak wavelength of
450 nm as a light source [Fig. 14(d)],303 even though pixel downscaling
to 20lm with a larger number of 128� 96 array was also demon-
strated.304 Moreover, the optical filter could be employed to decrease
measurement errors caused by the detection of scattered light from the
original excitation. In this system, the micro-LED device was mounted
on the dedicated printed circuit board (PCB) daughter card facing
down to the SPAD detector chip that was located on a field-
programmable gate array (FPGA) board [Fig. 14(f)] and was used to
measure fluorescence lifetimes [Fig. 14(h)].

From all demonstrated results of those two systems (i.e., reflec-
tion and transmission modes), it is obvious that the development of
nanosecond chip-based fluorescence sensors integrating CMOS-
driven GaN micro-LED arrays and Si SPAD detectors has reached a
much greater level of integration and miniaturization compared to
other fluorescence-based analysis systems.291,294–296 In terms of the
excitation source, micro-LED arrays are versatile, as the wavelength,
pixel number, and size can be easily adjusted. The device fabrication
processing steps can be applied to any planar MOCVD-grown LED
wafer. Meanwhile, from the detector side, SPADs provide several
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significant advantages over other photodetectors (e.g., conventional pho-
tomultipliers,291,305 CMOS photodiodes,306 and 0.18lm CMOS image
sensors307). They are extremely fast and sensitive to single-photon from
the fluorescence signal (ns time-resolved detection possible), robust (not
being destroyed by high light levels and insensitive to magnetic fields),
and relatively straightforward to be fabricated (compatible with large
scale Si CMOS production).308,309 Moreover, SPAD detectors made of
InGaAs/InP capable of detection in the near infra-red range have also
been reported for quantum communication,310 regardless of the inability
of integrating their fabrication processes in silicon-based CMOS technol-
ogy due to material incompatibility.310–313 Furthermore, a low-cost con-
figuration for continuous steady-state fluorescence measurement has

been reported as an on-chip wide-field holographic fluorescent imaging
platform without any lens and mechanical scanner, which can perform
high-throughput screening of cells.314

4. Optogenetics

Apart from imaging, micro-LED arrays have been used to stimu-
late and sense neurons, serving as a high resolution light source for
optogenetic applications, such as for neural stimulation in brain,315–319

retinal prosthesis,320–322 and in the auditory system (spiral ganglion
neurons in cochlea).323–327 The recent improvement of various techni-
ques in optogenetics to both control and readout the neural activities

FIG. 14. Single-chip fluorescence microsensor system consisting of (a) 16� 4 UV micro-LED array bump-bonded to the CMOS driving array, where (b) the transparent sap-
phire substrate allows the fluorescence emission to pass and reach the SPAD below in reflection mode. (c) Photograph of the single-chip fluorescence sensor system when
the Adirondack Green quantum dots on a microcavity slide are excited by UV micro-LEDs. Reprinted with permission from Rae et al., J. Phys. D: Appl. Phys. 41, 94011
(2008).298 Copyright 2008 IOP Publishing. Two-chip fluorescence microsensor system comprising (d) 8� 8 blue micro-LED array bump-bonded to the CMOS driving array, in
which (e) the microcavity slide sealed by a coverslip to put the sample of interest is located between sapphire of the micro-LED and Si-CMOS SPAD detector. An optical filter
prevents excitation light from approaching the detector array. (f) The printed circuit board (PCB) daughter card is physically supported by the stacked header pins that can be
adjusted. Reproduced with permission from Rae et al., Sensors 9, 9255–9274 (2009).299 Copyright 2009 Authors, licensed under a Creative Commons Attribution 4.0 License.
Instrument response function and fluorescent decay curves for (g) quantum dots at three different emission wavelengths in single-chip system configuration. Reprinted with per-
mission from Rae et al., J. Phys. D: Appl. Phys. 41, 94011 (2008).298 Copyright 2008 IOP Publishing. (h) Quantum dots and Rhodamine samples in two-chip sensor system
configuration. Reproduced with permission from Rae et al., Sensors 9, 9255–9274 (2009).299 Copyright 2009 Author(s), licensed under a Creative Commons Attribution 4.0
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have revolutionized and transformed neuroscience into a new era
of light.328,329 In comparison to the widespread electrical stimula-
tion, utilizing light as a stimulation tool provides several benefits.
It is noninvasive, can be targeted with a very high spatial and tem-
poral precision (especially when the devices are miniaturized into
micro-/nanoscale), can be employed simultaneously at multiple
locations, can be tailored to emit different wavelengths, and can
inform and record the activity of specific molecules. Moreover, this
development has been evolved over the past decade to overcome
the issues and limitations in both in vivo (i.e., using a whole, living
organism, typically applied in animal studies or clinical stud-
ies315,316) and in vitro (i.e., in a controlled environments outside of
the living organism mimicking its real condition using cell culture
or micro-/nanofluidic device330–332) experiments.

For the aforementioned optogenetic applications, light power
densities of a few milliwatts per square millimeter are favorable to
stimulate channelrhodopsin-2 (ChR2), which is a membrane channel
protein whose gating is controlled by illumination.325,333–337 Its expres-
sion in neurons enables the permeation of different monovalent and
divalent cations,334,338 causing a rapid and reversible light-controlled
depolarization (i.e., reduction of cell membrane potential), hence regu-
lating the activation/inactivation of neurons in specific loca-
tions.323,330,339,340 In most cases, the photosensitive ChR-2 has been
employed as an indicator in LED-based optogenetics as it has an active
peak at around 460–470nm, which is compatible to blue light emitted
by InGaN/GaN LEDs.340,341 The other protein molecules (opsins) in
the cell membranes that are sensitive to the light are halorhodopsins
[e.g., natromonas pharaonis halorhodopsin (NpHR)],342 which can
react well with illumination of 590nm.343

During neural stimulation, the minimum spiking irradiance of
ChR2 using 470nm light is in the range of 0.1–1 mW/mm2, which
corresponds to the minimum light source luminance of 106–107 cd/
m2.322,340 Even though this irradiance level can also be obtained by
other illumination sources (e.g., lasers,344 xenon arc lamps,341 and bulk
high-powered LEDs345), these conventional approaches still can only
offer low spatial resolution. In 2008, Poher et al. had successfully fabri-
cated GaN micro-LED arrays in two different designs {i.e., 64� 64
matrix addressable and 120� 1 stripe addressable micro-LEDs [Figs.
15(a) and 15(b)]} that were demonstrated for imaging of stained pol-
len grains346 and in vitro hippocampal neurons,330 respectively, with
three different wavelength options of 370nm (UV), 470 nm (blue),
and 520nm (green) [Fig. 15(c)]. Matrix-addressed micro-LED arrays
were formed by first insulating columns (lines) as the common cath-
ode through Cl2/Ar-based ICP dry etching until sapphire, and then
etching rectangular mesas only until n-GaN to form individual LEDs.
A thin SiO2 insulating layer was thereafter deposited on the whole sub-
strate. Metal line anodes, which form ring-shaped p-contacts on top of
rectangular mesa structures, were deposited across the mesa structures
to finally connect all the LEDs, as well as to reduce any cross talk or
leak effect.330,340,347 The stripe micro-LED arrays of the UV and blue
emitters could produce sufficient irradiances of 5 and 11 nW/lm2,
respectively, to induce photoactivation of caged fluorescein (a strong
fluorophore used in cell imaging and microfluidics measurements), as
well as to evoke spikes in hippocampal ChR2-expressing neurons that
were prepared from rat embryos.330 However, each LED stripe still
had a large dimension (i.e., length of 3600lm, width of 17lm, and
total area per LED stripe of 61200 lm2) leading to inability to create

localized illumination to individual neurons or smaller parts of
dendrites.

To improve spatial resolution, a 64� 64 GaN micro-LED array
with 20lm pixel diameter and 50lm center-to-center spacing [Fig.
15(c)] has been developed and used for a next phase of optogenetic
experiments, where two types of neurons (i.e., hippocampal neurons
obtained from tissue of Sprague-Dawley rats and ChR2-transfected
retinas of knocked-out mice340) have been excited. The employed
LEDs emitted light at 470 nm with a full width half maximum
(FWHM) of 22 nm, so that they had an overlap with the peak sensitiv-
ity of ChR2.350 A single micro-LED could produce an output power of
70lW and irradiance of 250 mW/mm2, which was sufficient to sur-
pass the stimulation threshold of ChR2. In addition, a demagnification
approach has been chosen to further reduce the pixel size and simulta-
neously increase the spatial resolution [Figs. 15(d) and 15(e)]. As a
consequence, this has led to the possibility of examining a single neu-
ron in more detail as well as neural networks with a smaller size.330,340

In terms of the architecture of individually controlled micro-LEDs, a
directly addressed 16� 16 GaN micro-LED array with 150lm pitch
and 25lm diameter was also reported using a similar method from
matrix-addressed lLEDs.351 However, in this concept, each LED pixel
has a separate anode connection and is equipped with a common cath-
ode (n-contact). Flip-chip bonding was used to integrate the micro-
LEDs in a 281-pin ceramic pin grid array (PGA) package, leading to a
light emission through the sapphire substrate. From the experiment
using retinal ganglion cell (RGC) neurons transfected with ChR2, this
directly addressed micro-LED array has been found to effectively cre-
ate 500ms pulses at a frequency of 1Hz.351

However, despite all promising photoactivation results of neu-
rons, the demonstrations shown by Poher et al. and Grossman et al.
were still performed in vitro.330,340 In future, those concepts should be
applicable to in vivo experiments as they can provide more insights on
the real neural condition and effects of the photoactivated neurons in
cells. Therefore, some research groups have attempted to develop
microdevices with integrated micro-LED arrays that can be used to
stimulate neurons in vivo.315–317,325,348,352–354

Based on implanting strategies of the optical devices into the
targeted deep brain regions, implants can be classified into three
different types: waveguide-based implants, implanted micro-LEDs,
and coupling of micro-LEDs with implanted optical wave-
guides.318,355,356 Before individually addressable micro-LEDs were
introduced, in vivo optogenetics were performed by waveguide-
based multipoint stimulation devices made of optical fibers.357–366

This requires tethering of the targeted animal onto an optical
bench to be coupled with light injection system, in which the typi-
cal used light sources are lasers (e.g., 473-nm ps-pulsed laser366). It
should be emphasized that this approach has a severe drawback as
the animal movement results in fiber bending and stretching,
which can lead to cross-talk between the different waveguide chan-
nels and generate inhomogeneous light distribution.365,366

Meanwhile, several techniques involving neural probes were
demonstrated to directly implant the LED array inside the target area
[Fig. 15(f)].315,316,348 These micro-LED-integrated neural probes can
be merged with flexible substrates like in OLED structures,367,368 com-
bined with multimodal sensors, and powered wirelessly, which will
provide benefits during slight movement made by the investigated ani-
mals.316,317,356,369 The substrates used for implants can be varied
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depending on the targeted depth and shape of regions (e.g., silicon
microneedles,348,349,352,370 thin plastic films,315 polyethylene tere-
phthalate (PET) needles,316 polyimide substrate [Fig. 15(h)],324 and
transparent epoxy resin E301327) The tip is usually designed as a thin
but long shank, where its free end is created in a tapered shape to min-
imize tissue damage during insertion.354 The other end of the probe
consists of bonding pads allowing each micro-LED to be directly and
individually addressed. Moreover, multiple shanks can be realized to

increase the number of optical sites during optogenetic experiments
[Fig. 15(g)].349 In terms of a flexible probe, Klein et al. had recently
improved their previous devices324 for optical cochlear implant by
overcoming problems of pronounced thermomechanical probe bend-
ing.327 In recent work, they reported the use of highly transparent
epoxy resin E301 instead of polyimide as a substrate. Moreover, indi-
vidually matrix-controlled blue micro-LEDs were distributed along a
bendable probe shaft. Besides using micro-LED-based stimulation,

FIG. 15. (a) Cross-sectional sketch and (b) micrograph of the stripe-based addressable micro-LED array used for optogenetics. Reprinted with permission from Poher et al., J.
Phys. D: Appl. Phys. 41, 094014 (2008).330 Copyright 2008 IOP Publishing. (c) 64� 64 matrix of 20lm InGaN/GaN LED array with wavelengths of 370 nm (UV), 470 nm
(blue), and 520 nm (green). Reprinted with permission from Poher et al., J. Phys. D: Appl. Phys. 41, 094014 (2008).330 Copyright 2008 IOP Publishing. Imaging configurations
and their experimental results during neuron stimulations when (d) micro-LED array is imaged 1:1 on the neural sample using two lenses in 4f relay architecture and (e)
demagnification optical setup for 10:1 imaging using one lens and an objective is employed. Reprinted with permission from Grossman et al., J. Neural Eng. 7, 16004
(2010).340 Copyright 2010 IOP Publishing. (f) Schematic of an implanted micro-LED-based optical probe and its corresponding recording probe providing multisite stimulation
ability, in comparison with only an optical fiber providing a single optical stimulation site. Reprinted with permission from Ayub et al., Biomed. Microdevices 19(3), 49 (2017).
Copyright 2017 Springer Nature.348 (g) Scalable 6-shank micro-LED probe with 16 micro-LEDs per shank, resulting in 96 individually addressable stimulation sites. This is
used to demonstrate the scalability of micro-LED probe. Reproduced with permission from Scharf et al., Sci. Rep. 6, 28381 (2016).349 Copyright 2016 Author(s), licensed under
a Creative Commons Attribution 4.0 License. (h) Implantation of 230lm wide flexible probe with integrated micro-LEDs to a mouse cochlea. Reprinted with permission from
Goßler et al., J. Phys. D: Appl. Phys. 47, 205401 (2014).324 Copyright 2014 IOP Publishing.
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another strategy using infrared lasers was also reported to drive the
auditory neurons (cochlea). Although this concept has been applied
and researched in terms of its temporal fidelity, spatial excitation, and
energy requirement,323 it is still facing a severe problem in some
in vivo cases, where the strong infrared laser pulse inducing photoa-
coustic stimulation does not trigger the auditory activity of entirely
deafened cochleae effectively.371 Furthermore, an in vitro experiment
done using infrared light-excited cultured cells seems to require a
higher activation energy, leading to a different membrane-bound
optothermal mechanism of depolarization.339 This suggests the neces-
sity of performing optogenetic stimulation directly in the living organ-
ism (in vivo) to observe the phenomena of the biological neurons in its
natural environment.

Despite all those advantages offered by micro-LED arrays, a heat-
ing problem during operation still needs to be tackled, since it may
damage the surrounding tissue. Temperature increase during the
in vivo test is suggested to be kept below 0.5 �C.353,354 The minimum
distance between multiple LEDs depends strongly on the presence of a
dielectric material at the LED/tissue interface, which is limited by the
Lambertian emission profile of the micro-LEDs and tissue scatter-
ing.354 Furthermore, a hybrid technological approach consisting of
micro-LED array coupled into MEMS-implanted waveguides was
reported in recent years to try to overcome the faced issues.377–381

Schwaerzle et al. have fabricated 3� 3 independently controllable
LEDs integrated with a microstructured silicon housing and optical
glass fibers.379 That device has been placed on a highly flexible polyi-
mide ribbon cable. Similar work was reported by Kwon et al., in which
they coupled 4� 4 micro-LEDs with slanted SU8-based microneedle
waveguides. Their device could already be driven wirelessly and had
allowed for a precise and simultaneous light delivery to multiple corti-
cal layers of a rat.378 Very recently, another device alternative for opto-
genetics using a hybrid approach was reported, which is the so-called
Utah Optrode array. This device has integrated a 10� 10 glass wave-
guide array, a micro-LED array, and a pinhole, which then enables the
coupling of light into deep brain regions with excellent spatial con-
trol.377,380,381 This hybrid method however still has main limitations
related to the divergence of the light radiation pattern, which leads to a
reduced spatial control.379

Micro-LED arrays have been utilized not only in the neural cells
(brain and auditory system), but also for retinal ganglion cells to pro-
vide a retinal prosthesis (i.e., so-called optobionic vision).321,322 This
has been motivated by the conditions of blind patients.320,322 Since the
eyes are transparent, external photostimulation of ChR2 to render
light sensitivity onto the residual retinal neurons322,340 could be real-
ized. Thus, direct implantation may not be required. However, ChR2-
based retinal prostheses need to have a light source that is capable of
generating 2D stimulation patterns (resolution> 1000 points) with
micrometer (20lm) and millisecond (<1ms) resolution and with suf-
ficient radiance (>50 mW/mm2sr) to induce action potentials in neu-
rons.340 For eye-related optogenetics, zebrafish has been normally
used as a model to study these phenomena.319,382 An array of 90� 90
blue GaN micro-LEDs combined with CMOS driving circuit was
developed by AMS foundry for retinal prosthesis with an eye-tracking
system.383,384

Table III summarizes various micro-LEDs reported in the litera-
ture that are employed for optogenetics. They are mostly configured in
three different types (i.e., micro-LED array on penetrating probe,

surface-mounted micro-LED array, and micro-LED-coupled optrode
array). All of them employed blue InGaN/GaN LED substrates and
emitted blue light (405–470nm) with an intensity of 1–600 mW/mm2.
Optogenetic test validations were also conducted both in vivo and
in vitro. For the in vivo measurements, mouse brain (visual cortex)
was commonly used to be the object of neural characterizations.

All in all, micro-LED-based optogenetics is believed to
move quickly to more advanced devices in the next few years by
combining individually controllable micro-/nano-LEDs and
micro-/nanoelectromechanical systems (M/NEMS)-based structures
(e.g., micro-/nano-optics to collimate the light emission from micro-
LEDs385). All developed micro-LED arrays are currently still limited
to sizes of a few tens to a few hundred micrometers. However, these
LED dimensions will be further scaled down taking advantage of the
continuously ongoing development in 3D nanoprocessing that has
been applied for creating, e.g., vertical GaN nano-FETs.7,14,119,386

E. Chemical sensors for environmental monitoring

In contrast to high-end analytical chemical systems—like chro-
matography, where high detection capabilities are a must,387 sensors
for environmental monitoring are mainly driven by the right balance
between sufficient performance and acceptable cost.388–391 While the
former are regarded as singular investments, the later are expected to
be produced and deployed at mass scale, and thus, at reduced cost.

In this context, integrated light sources like micro-/nano-LEDs
are sought-after resources for chemical sensors. If those were available,
several chemo-electric transduction schemes, which are currently
barely exploited, could be implemented in a cost-effective manner. For
example, one of the most robust and affordable gas sensing technolo-
gies is those based on semiconductor materials.392 In this technology,
the electron structure of these solid materials can be dramatically
altered by the presence of chemical species on their surface. This phe-
nomenon can be used to transduce chemical signals into electronic (or
optical) ones that can then be monitored by many means, as described
in Secs. III E 1–III E 3. Moreover, as by scaling down the LEDs to
micro-/nano-LEDs, their efficiency droop can be reduced and overall
efficiency (EQE) can be increased. Thus, high-brightness but efficient
light sources can be realized and integrated into different types of opti-
cal sensors used for environment monitoring.

1. Conductometric chemical sensors

Conductometric gas sensors are solid-state devices based on a
semiconductor material—like a metal oxide (e.g., SnO2, ZnO, In2O3,
andWO3)

393,394 or a carbon allotrope (e.g., carbon nanotubes and gra-
phene),395 in which the presence of gases leads to electrical resistance
variations that are continuously monitored. It is well known that gas
species can adsorb at the surface of such materials, involving charge
exchanges with the bulk or dipolar interactions that are immediately
reflected in a change of electrical resistance. The choice of one or
another material, and its combination with other chemically active
substance—like catalysts (e.g., Pt and Pd)396,397 or molecular receptors
(e.g., amines and thiols)398–400—determines the sensibility of the sen-
sor toward one or another kind of gas. Similar principles have been
demonstrated in more complex configurations involving semiconduc-
tor junction devices. It has been demonstrated that GaN-based junc-
tion can be used as electronic gas sensors as well.401–404
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TABLE III. Micro-LEDs in different configurations used for optogenetics.

Light source LED dimensions

Light intensity
(maximum

or used in test) Emission color
Optogenetic test

validation Year (Reference)

Single micro-LED on penetrating
polyimide probe

Size¼ 1000lm� 600lm� 200lm 0.7 mW/mm2 Blue (465 nm) In vivo, mouse visual
cortex

2013 (Ref. 372)

Single micro-LED on penetrating
SU-8 probe

Size¼ 550lm� 290lm� 100lm 1 mW/mm2 Blue (450–495 nm) In vivo, mouse brain 2014 (Ref. 373)

Micro-LEDs on penetrating
polycrystalline diamond probe

Size¼ 550lm� 290lm� 100lm 0.6–1.5 mW/mm2 Blue (450 nm) In vivo, mouse brain 2015 (Ref. 374)

Micro-LED array on penetrating
shapphire probe

Array¼ 1� 5; diameter¼ 40 lm;
pitch¼ 250lm

600 mW/mm2 Blue (450 nm) None 2013 (Ref. 353)

Micro-LED array on penetrating
epoxy probe

Array¼ 1� 5; LED
size¼ 50 lm� 50 lm� 6.45lm

7–17.7 mW/mm2 Blue (450 nm) In vivo, mouse brain 2013 (Ref. 315)

Micro-LED array on penetrating
SU-8 probe

Array¼ 1� 5, 5� 5; diameter-
¼ 100 lm; pitch¼ 120lm

7–17.7 mW/mm2 Blue (450 nm) In vivo, mouse brain 2013 (Ref. 316)

Micro-LED array on penetrating
flexible polyimide probe

Array¼ 3� 5; LED diameter
¼ 50 – 150 lm

6 mW/mm2 Blue/violet
(405–465 nm)

In vivo, mouse cochlea 2014 (Ref. 324)

Micro-LED array on penetrating
silicon probe

Array¼ 1� 3; LED
size¼ 10lm� 15lm� 0.5 lm;

Pitch¼ 60 lm

1 mW/mm2 Blue (460 nm) In vivo, mouse brain
(CA1 pyramidal cell

layer)

2015 (Ref. 370)

Micro-LED array on penetrating
silicon probe

Array¼ 1� 16; LED diameter-
¼ 25lm; pitch¼ 50lm probe

number¼ 6;

400 mW/mm2 Blue (450 nm) In vivo, mouse cortex
(cortical GABAergic

neurons)

2016 (Ref. 349)

Micro-LED array on penetrating
flexible Si/polyimide probe

Array¼ 1� 10; LED
size¼ 270 lm� 220 lm� 50 lm;

pitch¼ 300 and 500lm

1 mW/mm2 Blue (460 nm) In vivo, mouse somato-
sensory cortex

2017 (Ref. 348)

Micro-LED array on penetrating
flexible transparent epoxy resin probe

Array¼ 12� 12; LED diameter-
¼ 50 lm; pitch¼ 100lm

407 mW/mm2 Blue (462 nm) None 2018 (Ref. 326)

Surface-mounted micro-LED array Arrays¼ 64� 64 matrix, 120� 1
stripe; Size¼ 17lm Pitch¼ 34 lm

5 – 30 mW/mm2 UV (370 nm),
blue (470 nm),
green (520 nm)

In vitro, ChR2 trans-
fected neuron

2008 (Ref. 330)

Surface-mounted micro-LED array Array¼ 64� 64; diameter¼ 20 lm;
pitch¼ 50lm

250 mW/mm2 Blue (470 nm) In vitro, CHR-YFP-
encoded neuron, retina

2010 (Ref. 340)

Surface-mounted micro-LED array Array¼ 16� 16; diameter¼ 25 lm;
pitch¼ 150lm

86 mW/mm2 Blue (465 nm) In vitro, retinal gan-
glion cell (RGC)

neuron

2010 (Ref. 351)

Surface-mounted micro-LED array Diameter¼ 200 lm; pitch¼ 700lm 1 mW/mm2 Blue (460 nm) In vivo, cortical
interface

2013 (Ref. 375)

Micro-LED-coupled optrode array Array¼ 4� 4; LED
size¼ 220lm� 270 lm� 50 lm; base

size¼ 300lm; tip size¼ 30 lm

1.4 mW/mm2 Blue (460 nm) In vivo, rat primary
visual cortex

2015 (Ref. 376)

Micro-LED-coupled Utah optrode
array

Array¼ 10� 10; LED diameter
¼ 70 – 100lm; base size¼ 75lm;

tip size< 1 lm

> 80 mW/mm2 Blue (450 nm) In vivo, mouse brain 2018 (Ref. 377)
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Anyhow, it is important to bear in mind that these gas-surface
interactions must occur continuously:405 gas molecules must desorb
from the surface shortly after being adsorbed to allow for other mole-
cules to take their place. This way, the resistance signal reflects of the
steady balance between adsorption and desorption of target molecules.
Due to thermodynamic reasons, this balance scales with the gas con-
centration in the environment, which is the true magnitude of interest.
Even more important: thanks to this dynamic picture, the sensor sig-
nal can retrace and return to its initial value if the gas concentration
suddenly vanishes. So that the sensor is reversible and reusable.

Unfortunately, at room temperature, the adsorption rate of a
chemical species usually is much larger than the desorption rate.
Therefore, an appropriate dynamic balance between adsorption and
desorption processes can only be achieved by adding external means
to increase desorption.406 After more than 50 years of development
and presence in the market, the state of the art sensors use heat as an
energy source.407 By means of a Joule heater and a temperature sensor,
the sensitive material is kept at a relatively high temperature (in the
range of a few hundreds of Celsius degrees, to avoid the influence of
ambient temperature fluctuations). This heating system is the major
source of energy consumption of such kind of technology, and a major
stopper for mobile, battery driven sensor systems. Today, low-end
commercial devices need to be powered with hundreds of milliwatts to
come into operation.408 By means of miniaturization, such figure is
lowered to a few tens of milliwatts in-state-of-the-art microintegrated
devices.409,410 At a research level, power consumptions in the range of
microwatts are reported for nanointegrated devices.411,412 However,
mass scale production of this nanodevices hampers their widespread
implementation.413

Besides heat, light can also be used to supply energy to the gas-
surface interactions occurring in these semiconductor sensors.414,415

UV and visible range photons [Fig. 16(a)] can be used both (1) to
stimulate the reaction and adsorption of incoming molecules on the
sensor surface, and (2) to break the bonds established between mole-
cules and surface atoms after adsorption.416 These are one-to-one
interactions occurring between photons, electrons, and molecules, in
contrast to the average statistical behavior occurring in temperature-
driven sensors, where the process can be regulated by controlling one
single easy-to-measure parameter like temperature. In light driven sen-
sors, the photon flux (i.e., number of photons impinging on the mate-
rial per unit of surface each unit of time) or equivalently the light
irradiance (i.e., the same magnitude expressed in watts arriving per
unit surface) must be controlled and balanced with the populations of
molecules and electrons415,416 [Fig. 16(d)].

Most of the first works exploring this approach are based on
macroscopic light sources, like discharge lamps or encapsulated LEDs,
placed at an arbitrary distance d of the sensing material [Fig. 16(b)].
This fact has two consequences. First, there is a general lack of details
on the light flux/irradiance conditions used in most of the works, ham-
pering the standardized comparison of results and the systematic
development of this approach. Second, these devices are hardly repro-
ducible and very inefficient energetically (with power consumptions
well above hundreds of milliwatts). Only a few recent works attempted
to harness as much light as possible, using reflectors underneath the
sensor layer,417 coating optical fibers with the sensor material418 or
stacking an (In)GaN LED with the sensor material film at macroscopic
distances (e.g., between centimeters and hundreds of microns).419–421

These approaches represented a relative increase in efficiency, but with
power consumptions still in the range of tens of milliwatts, since the
LEDs used were not designed or optimized for this application.

Very recently, an optimized configuration, so-called the micro-
light plate,26,422 has been proposed [Fig. 16(c)]. In the microlight
plates, the sensor material is stacked at a nanometric distance d on a
micro-LED source. Due to this minimum distance between the light
source and the sensor material, light spreading is minimized, harness-
ing all the light emitted to activate the sensor response. Also, the use of
a miniaturized micro-LED—with an area [w�l in Fig. 16(c)] that
matches that of the sensor material—minimizes the total current
needed to lit on the light source, and thus the power consumption.
This is therefore a beautiful example of the opportunities opened by
the current trend in LEDminiaturization. In fact, power consumptions
as low as tens of microwatts have already been demonstrated [Fig.
16(d)], using micro-LEDs made with conventional microprocessing
methods that can be easily scaled up.

With these results, it is interesting also to realize that, to supply a
similar amount of energy in order to the sensor material to achieve an
equivalent functionality, the electro-optical conversion of the LEDs is
much more power efficient than the electrothermal conversion of a
Joule heater. On top of the intrinsic efficiency of the LEDs, another big
difference is also that light can be confined and directed onto the area
of interest, whereas temperature is spreading out across macroscopic
regions of the device. Therefore, it is expected that such values can be
significantly improved in the future by means of further miniaturiza-
tion and higher localization of the light source.

Concerning specificity, a general trend points at an increased sen-
sitivity toward oxidizing species, when n-type metal oxides are used as
sensor materials [Fig. 16(d)]. This opens to door toward light activa-
tion methods that could increase the selectivity, one of the most chal-
lenging features in current sensors. In relation to GaN LEDs, which
precisely operate in the wavelengths of interest—UV, visible-, current
possibilities of microprocessing and microintegration open a promis-
ing path for fully integrated, cost effective, and power-efficient light-
driven conductometric sensors. Some of the open challenges to
address in this field are the prevention of undesired heating during
LED operation, and the true regulation of the emission, beyond a
mere monitoring of the electrical power applied.

2. Luminescent chemical sensors

The alterations in the electron structure of semiconductor mate-
rials by the presence of chemical adsorbates can also be monitored by
optical means. It has been reported that presence of molecules at the
surface of semiconductor materials can be interrogated by spectro-
scopic means.423,424 Specifically, the photoluminescence (PL) signal of
semiconductors like porous silicon,425 ZnO,426 SnO2,

427 and
GaN428–430 can be quenched by gaseous species.

Remarkably, this effect is quite specific to different kinds of mole-
cules and occurs at relatively fast timescales. In contrast to electrically
interrogated approaches, where the presence of gases can only be mea-
sured locally, right in the spot where the sensor is placed, photolumi-
nescence sensors can be used to sense broader areas. For example,
nanoprobes made of a heterostructured GaN nanoparticles can be pro-
duced in bulk amounts.431,432Due to their good optoelectronic proper-
ties, the PL signals of such nanoprobes is brilliant and can be easily
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recorded. As a matter of fact, the nanoprobes can be spread over a
region of interest and their gas-related PL signal collected (or imaged)
from a broad area. This approach allows for mapping the presence of
chemicals either in gas phase or in liquids, including biocompatible
applications. Also, the possibilities of band engineering in GaN-related

technologies (like InGaN) allow for stacking a number of PL regions
and tuning their respective emission peaks to optimize their detection,
and discrimination. In summary, this is a nice example on how recent
developments in GaN processing open the door to new, very flexible,
chemical transduction methods.

FIG. 16. (a) Chemical sensing mechanisms occurring under photoactivation. Photons promote (ii) photoadsorption and photodesorption of oxygen species from the sensor
material surface that bring the sensor to a surface equilibrium state with oxygen in air different than that found (i) in dark conditions at room temperature. In the presence of tar-
get molecules, (iii) photons enable additional reaction mechanisms between these molecules, oxygen and the sensor surface. Also, (iv) photons can promote continuous
desorption of target species. By combining these concurrent mechanisms, continuous charge exchanges between the semiconductor surface and the target molecules are
enabled. Reproduced with permission from Espid and Taghipour, Crit. Rev. Solid State Mater. Sci. 42(5), 416–432 (2017). Copyright 2017 Taylor & Francis Ltd.415 Schematic
and pictures of (b) a conventional setup based on macroscopic light sources, and (c) a power-efficient miniaturized configuration based on microlight plates. Reproduced with
permission from Markiewicz et al., Appl. Phys. Lett. 114, 053508 (2019). Copyright 2019 AIP Publishing.26 (d) Example sensor signal of a semiconductor material (ZnO)
exposed to NO2 under increasing light irradiances (Ee,ZnO) on a microlight plate. In dark conditions, no signal in the presence of the NO2 is recorded. As soon as light impinges
on the sensor material (obtained with just 30 lW of electrical power in the microlight plate configuration), a noticeable signal develops. This signal increase continues up to a
certain optimum irradiance. Higher illumination fluxes beyond this point diminish the signal, due to excessive photodesorption [mechanism (iv) in (a)]. Reproduced with permis-
sion from Markiewicz et al., Appl. Phys. Lett. 114, 053508 (2019). Copyright 2019 AIP Publishing.26 (e) Photoactivation tends to favor the responses toward oxidizing species,
opening the door to improved selectivity toward this kind of species. Reprinted with permission from Casals et al., ACS Sens. 4, 822� 826 (2019). Copyright 2019 American
Chemical Society.422
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Of course, the integration of this kind of optochemical sensor is
challenging, as it involves a light source for PL excitation, a filter for
spectral separation, and an optical detector for PL signal integration.
In this context, LED miniaturization can contribute positively in the
future; for example following approaches similar to the microlight
plates: A PL excitation source cut to size and placed at a very close dis-
tance of the PL-emitting sensor material would maximize the optical
coupling and thus the PL-signal. Also, power consumption would
directly downscale with the active area of the resulting device.
Moreover, size reduction can also contribute to speed up the LED
switching times, by reducing the parasitic capacities related to the LED
area, enabling faster switching rates (e.g., down to the range of a few
nanoseconds). This would open the door to use time-gated detection
methods178,179 that can save the need for optical filters to separate exci-
tation from emission at the detector side, simplifying the embodiment
of this type of sensor.

3. Airborne micro-/nanoparticle sensors

Airborne particles (aerosols) or particulate matter (PM), which
are ubiquitous in both outdoor and indoor workplaces, may produce
risks and potential adverse health effects, in particular of pulmonary
diseases, for workers.433 In the case of unexpected excessive concentra-
tions of hazardous particles, the potentially exposed persons should be
equipped with a personal portable airborne particle detector to prevent
an overexposure; hence they can leave the rooms immediately once
the sensors provide a warning signal or an alert because the upper con-
centration limit of particle exposure has been reached. In the aerosol
community, the metrics that should be measured for such airborne
particles are still debatable (i.e., either mass or number concentration
of particles) considering the research results from the medical and bio-
logical scientists on the toxicity effects of particles affected by those
two different parameters, besides the particles size. However, by doing
calibration with other monitoring instrument, both metrics could be
obtained with a few deviations because of the used approximation for
transferring or calculating the detected particle number concentration
(i.e., normally in particles/cm3) to particle mass concentration (i.e.,
usually in microgram per cubic meter), or vice versa.140,434,435 Among
other portable airborne particle sensors of different measurement
principles [e.g., unipolar diffusion charger combined with electrome-
ter,436–438 CMOS-compatible capacitive microsensors,439 gravimetric
sensors based on micro-/nanoelectromechanical systems (MEMS/
NEMS)434,440–453] optical sensors have attracted more attention in
recent years as a consequence of recent advanced developments of
optoelectronic components (e.g., micro-LED arrays) and their capabil-
ity of having high-speed detection (nanosecond–millisec-
ond).140,201,247,305,454–457 Moreover, they do not need to be cleaned so
frequently like the case of MEMS/NEMS sensors overloaded with par-
ticles after several hours of particle sampling,434,447,458–461 which leads
to the possibility of using optical sensors for long-term particle expo-
sure assessments. The stereotypes of optical methods as expensive,
bulky, and complicated airborne particle sensors like in the commer-
cially available scanning mobility particle sizer (SMPS) or condensa-
tion particle counter (CPC) have therefore been eliminated.462–464 In
the SMPS spectrometer, particle size distribution with ranging from
3nm to 1lm can be measured by combining electrical mobility
separation and laser diode-based optical sensing methods, where a

light-scattering technique is implemented to detect the particle drop-
lets [i.e., nanoparticles that have been condensed or grown to micro-
meter sized particles (about 10lm)]. The signal conversion from the
adsorbed light to an electric pulse is performed by a photodetector,
which is then recorded as a particle count. The whole particle size dis-
tributions can be scanned and measured by continuously ramping up
the applied high voltage in the differential mobility analyzer electrode
or the electrical field over a selected period of time.435,464,465

The latest developed optical sensors for airborne microparticle
detection are based on lensless microscopy using visible LED
arrays140,201,247,455–457 and fluorescence spectroscopy,305,454 which are
made in a more compact and portable architecture, as the geometry
and functionality of light sources (i.e., micro-LED array with individu-
ally controlled pixels) can be tailored specifically to the desired tasks
and final designs of the whole sensor apparatus. Moreover, their much
reduced size and fabrication cost have provided more advantages over
conventional laser-based induced fluorescence systems utilizing solid-
state lasers.466,467 Total footprints of approximately 20 cm� 13 cm
and 25 cm� 35 cm have been reported for spectral-filter [Fig. 17(a)]
and spectroscopic fluorescence [Fig. 17(b)] detection systems using
lenses, respectively.305,454 In those setups, 32 UV LEDs are arranged in
a linear array with a pixel size of 200lm� 50lm and pitch of
100lm, yielding a total array length of approximately 3.2mm. Each of
the 32 LEDs of the array is individually addressable while sharing a
common n-electrode. In general, for biological targets (i.e., bioaerosols
or particles), UV LEDs are more exciting due to the fact that typical
biological materials containing molecules (e.g., the amino acids trypto-
phan and tyrosine) exhibit light absorption only below 300nm,
whereas the nicotinamide adenine dinucleotide (NADH) has local
absorption at maximum 340nm. Those compounds possess character-
istic fluorescence emission spectra, which can lead to discrimination
between particles of targeted biological and nontargeted nonbiological
origins.468,469 Thus, two different UV micro-LED arrays with wave-
lengths of 290nm and 340nm [Figs. 17(c) and 17(d)] were designed
and fabricated fromMOCVD-grown AlGaN and AlGaInN, quantum-
well p-n junction heterostructures, respectively,470,471 to target
tryptophan and NADH fluorescence [Figs. 17(e) and 17(f)].305

Prior to demonstration of the UV micro-LED array for airborne
microparticle detection, InGaN blue LED arrays were also reported,472

in which the microlens array was coupled onto the top-side emission
of blue LEDs (semitransparent p-electrode) individually for enhancing
the light extraction. However, for the UV micro-LEDs, the light
extraction was performed through the transparent sapphire backside.
An opaque metal stack of Ni/Au was employed as p-contact, and
the LED array was bonded onto a structured silicon submount via
flip-chip bonding method using electrically and thermally conductive
epoxies for obtaining electrical contact and thermal management,
respectively. In addition to it, a single hyper-hemispherical sapphire
lens covering the entire LED array was integrated onto the polished
backside with refractive index of n¼ 1.56 UV-transparent epoxy
[Fig. 17(d)]. As the detector part of the system, a transmission grating
has been combined with multianode photomultiplier (PMT) for
acquiring 32-point spectra.305

Taking advantage of having simpler but powerful lensless archi-
tecture (i.e., entirely without objective lenses), the holographic micro-
scope can be shrunk down to smartphone sizes or even smaller,
leading to the possibility of making label-free single particle on-chip
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microscopes [Figs. 18(a)–18(d)].140,201,207,456 The key component
behind these microscopes is a small coherent, or partially coherent,
light source, which is employed to illuminate a transmissive sample
where the particles are collected using mechanical impaction method
[Fig. 18(a)]. The interference between undisturbed light passing
straight through the sample and the light scattered off by the objects
on the sample creates a fringe pattern that can be directly captured by
the image sensor located close to the sample holder. To reconstruct
the original object, computational backpropagation of this recorded
fringe pattern can be done. Phase recovery methods can then be intro-
duced to this lensless holographic computational microscopy
approach to realize a greater degree of robustness in the imaged sam-
ples. For the reported LED-based lensfree holographic on-chip micro-
scope for air quality monitoring,140 this compact system combines a
micropump, an impaction-based air-sampler and a lens-free holo-
graphic on-chip microscope, and a custom-written software based on
machine learning algorithm for remote data processing and particle
analysis [Fig. 18(b)].

From the reported experiments, this device can have an air-
borne particle flow of 13 l/min with particle sizing distribution
accuracy of up to �93%, providing highly sensitive and rapid
measurements of particle counts at low concentrations in air.
From a slightly different setup, one of the smallest computational
holographic LED microscopes that can be used for airborne nano-
particle detection has been demonstrated with a weight of 145 g
and a dimension of 17 cm� 6 cm� 5 cm, which is suitable for field
settings and point-of-care use, because the device can be brought
outside the labs easily.207 In this setup [Fig. 18(c)], the colorization
algorithm with a source shifting based multiheight pixel superreso-
lution technique has been merged to mitigate “rainbow”-like color
artifacts that are typical in holographic imaging. Moreover, LED
arrays with wavelengths of 624 nm (red), 527 nm (green), and
470 nm (blue) have been coupled with optical fiber to realize
point-light sources in holographic detection systems. By using
such mini systems, the sizing of individual nanoparticles as well as
viruses, monodisperse particle samples, and complex polydisperse

FIG. 17. Top-view setups of compact UV LED array-based airborne particle detection systems using (a) optical filters and (b) spectroscopic fluorescence detection. (c) Typical
electroluminescence spectra of employed LED elements of 290 nm and 340 nm linear arrays under 1 kA/cm2 injection current. Each LED pixel can be switched on and off after
one to the others. (d) Photograph of packaged UV micro-LED array covered by lens. (e) Optical filter-based system response to fluorophore-doped water droplets showing
real-time fluorescence channel recordings for single nicotinamide adenine dinucleotide (NADH) particles. (f) Ten single particle fluorescence spectra collected from ten succes-
sive particles of 0.025% NADH illuminated by a sequentially firing 340 nm UV LED array. Reproduced with permission from Davitt et al., Opt. Express 13, 9548 (2005).305

Copyright 2005 Author(s), licensed under a Creative Commons Attribution 4.0 License.
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particle mixtures (5 orders-of-magnitude higher number concen-
tration), can be resolved with a large particle size distribution
range (from 40 nm to millimeter-scale).456 Meanwhile, a similar
setup has been employed for real-time mapping of the air quality
at an air quality monitoring station approved by United States
Environmental Protection Agency (EPA) and in one of the United
States airports over 24 h demonstrating the robustness of LED-
based optical particle sensors [Figs. 18(d)].140

As a main component for optical particle detectors, lLEDs bring
in novel functions and enhanced performance, e.g., hybrid or mono-
lithic integration with CMOS electronics will be made feasible. In addi-
tion, for the holography-based lensless particle sensor, the use of
micro-LEDs enhances the spatial coherence length of the light source,
thus acting as a better point illumination source, in comparison with

commercially available large-sized LEDs, which leads to a quality
improvement of the obtained microscopy images of the deposited par-
ticles on the sample object.169,176

IV. CONCLUSION

We are presently witnessing a tremendous extension of GaN
based photonics, based on the fascinating success of solid-state lighting
technology and InGaN/GaN LEDs. GaN based LEDs offer highest effi-
ciency even when processed into micro- and nanoscale devices. This
opens up many new directions for research as well as application.
Based on the amazing cost reduction in GaN technology, it is quite
safe to expect that GaN micro-LED displays will be superior to LCD
and OLED displays, leading to a disruptive revolution in display tech-
nology. GaN micro-LED displays are at the same time very interesting

FIG. 18. (a) 2D and (b) 3D computer-aided-design (CAD) schematic drawings of lensfree holographic on-chip microscope for airborne microparticle detection showing (A)
rechargeable battery, (B) vacuum pump, (C) point-light sources consisting of fiber-coupled LEDs of red (624 nm), green (527 nm) and blue (470 nm), (D) mechanical impactor
for airborne particle sampling, (E) a sticky coverslip to place the impacted particles, and (F) the image sensor. Reprinted with permission from Wu et al. Light: Sci. Appl. 6(9),
e17046 (2017). Copyright 2017 Springer Nature.140 (c) Another type of portable lensfree super-resolution microscope with colorization algorithm having a weight of �145
grams and two separate LED array groups. The first LED array contains 17 green LEDs butt-coupled to a multimode fiber where its emission passes through a color filter for
enabling pixel super-resolution based on source shifting. The second LED array is composed of three LEDs (470 nm, 527 nm, and 625 nm) is used for enabling the acquisition
of a lower resolution color image. Reproduced with permission from Greenbaum et al., PLoS One 8, e76475 (2013).207 Copyright 2013 Author(s), licensed under a Creative
Commons Attribution 4.0 License. (d) Recorded hologram image of impacted airborne microparticles during sampling and its reconstructed results. Reprinted with permission
from Wu et al. Light: Sci. Appl. 6(9), e17046 (2017). Copyright 2017 Springer Nature.140
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for small displays, like their usage in augmented reality applications:
highest efficiency and highest brightness is expected to finally lead
to best performance. However, GaN micro-LED applications will
move far beyond that. There are many other fields where GaN
micro-LEDs are of particular advantage. They will serve as an
enabler for highly integrated microsensors with optical activation
of gas reactions, act as the main component for biological detectors
and optogenetics, and possibly even be the basis for a completely
new type of superresolution microscopy based on nano-LED
arrays. All that will only become reality if further research will be
devoted to the miniaturization of GaN micro-LEDs and their inte-
gration into sensors as well as into silicon microelectronics. Such
an integration will also have substantial impact on GaN high-
frequency (HF) and power electronics research (which, however,
has not been in the scope of this review). Appropriate research
efforts have to combine epitaxy, nanometrology, and chip process-
ing as well as CMOS design at the highest level, and with highest
precision. This imposes substantial challenges on research infra-
structure, calling for new and comprehensive research strategies.
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