
This article was published in the above mentioned Springer issue.

The material, including all portions thereof, is protected by copyright;

all rights are held exclusively by Springer Science + Business Media.

The material is for personal use only;

commercial use is not permitted.

Unauthorized reproduction, transfer and/or use

may be a violation of criminal as well as civil law.

ISSN 0926-8782, Volume 27, Number 3

Distrib Parallel Databases (2010) 27: 271–343
DOI 10.1007/s10619-010-7060-9

Beyond soundness: on the verification of semantic

business process models

Ingo Weber · Jörg Hoffmann · Jan Mendling

Published online: 20 January 2010
© Springer Science+Business Media, LLC 2010

Abstract The verification of control-flow soundness is well understood as an impor-
tant step before deploying business process models. However, the control flow does
not capture what the process activities actually do when they are executed. Seman-
tic annotations offer the opportunity to take this into account. Inspired by semantic
Web service approaches such as OWL-S and WSMO, we consider process mod-
els in which the individual activities are annotated with logical preconditions and
effects, specified relative to an ontology that axiomatizes the underlying business
domain. Verification then addresses the overall process behavior, arising from the
interaction between control-flow and behavior of individual activities. To this end,
we combine notions from the workflow community with notions from the AI ac-
tions and change literature. We introduce a formal execution semantics for annotated
business processes. We point out four verification tasks that arise, concerning pre-
condition/effect conflicts, reachability, and executability. We examine the borderline
between classes of processes that can, or cannot, be verified in polynomial time. For
precondition/effect conflicts, we show that the borderline is the same as that of the

Communicated by Asuman Dogac.

The major part of this work was conducted while the first and second authors worked for SAP
Research, Karlsruhe.

I. Weber
School of Computer Science & Engineering, University of New South Wales, Sydney, NSW 2052,
Australia
e-mail: ingo.weber@cse.unsw.edu.au

J. Hoffmann
INRIA, Centre de Recherche Nancy—Grand Est, 54506 Nancy, France
e-mail: joerg.hoffmann@inria.fr

J. Mendling (�)
Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
e-mail: jan.mendling@wiwi.hu-berlin.de

 Author's personal copy

mailto:ingo.weber@cse.unsw.edu.au
mailto:joerg.hoffmann@inria.fr
mailto:jan.mendling@wiwi.hu-berlin.de

272 Distrib Parallel Databases (2010) 27: 271–343

logic underlying the ontology axioms. For reachability and executability, we identify
a class of processes that can be verified in polynomial time by a fixpoint algorithm
which we design for that purpose. We show that this class of processes is maximal in
the sense that, when generalizing it in any of the most relevant directions, the valida-
tion tasks become computationally hard.

Keywords Business process management · Semantic technologies

1 Introduction

The formalism and verification techniques we describe in this paper are rather techni-
cal, and the background and intended usage of the proposed technology is not trivial
to explain. For these reasons, in what follows we introduce these aspects in some de-
tail. We start with the motivation and background of our work in Sect. 1.1. We give an
overview of the approach and its usage in Sect. 1.2. We summarize our formalization
and contributions in Sect. 1.3.

1.1 Motivation and background

Nowadays, process-aware information systems utilize process models, which are
composed of activities and their associated control flow. This has proven to be an
efficient abstraction for rapid implementation of processes [42]. A challenge is to
assure correctness. As far as control-flow is concerned, verification of correctness is
well understood as an important step before deploying executable business process
models, i.e., process models serving as templates for handling individual process
instances. The soundness criterion and its derivatives, e.g. [24, 53, 61, 74], are typi-
cally used to check whether proper completion is possible or even guaranteed. Tools
like Woflan [83] provide the functionality to efficiently verify soundness based on
Petri nets theory.

A limitation of soundness verification is that it covers only the control-flow per-
spective of the process model—in that sense, soundness is a necessary but insufficient
condition for correctness. Better support for designing correct models is urgently
needed since there are considerable error rates in process models from practice [52].
To assure that a process model indeed behaves as expected, it is necessary to take
into account what the individual activities in the process—the activities whose or-
der of execution is governed by the process—actually do when they are executed:
What are the prerequisites for the activities to execute successfully? How do they
affect the state of the world in case they are executed? Traditional workflow models
do not contain any information about this, apart from the naming of the activities.1

Such activity naming may be sufficient for simple applications in closed domains,
where the behavior of the activities is not overly complex and/or known in detail
to all persons involved. For more complex applications, however, a more powerful

1Indeed, traditional models rather emphasize their black box character to simplify the implementation
task.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 273

means of describing the semantics of activities is in order. This is particularly true if
the individual activities in the process will be executed by different agents (persons or
computers) in a heterogeneous and distributed environment. The first question then
is: How should we describe the semantics of activities?

Essentially this same question has been addressed, since several years, in the area
of semantic Web services. Approaches such as OWL-S [1, 72] and the Web Service
Modeling Ontology (WSMO) [21, 66] are in wide-spread use. At a particular level
of abstraction, called “service profile” in OWL-S and “capability level” in WSMO,
Web services are perceived as functionalities with a single entry and exit point. This
corresponds well to the individual activities in a workflow. The profile/capability of
a Web service is described in terms of a precondition—a logical formula capturing
the prerequisites of the service—as well as an effect (sometimes also referred to as
a “postcondition”)—a logical formula capturing how the service affects the state of
the world. The formulas are stated relative to the vocabulary of an ontology, which
formalizes the underlying domain, i.e., the “world” in which the service executes.
The use of ontologies facilitates a precise formulation of the domain structure and its
characteristic properties, through ontology axioms. Such formulations are useful for
capturing preconditions/effects, and they may reduce ambiguities in the communica-
tion among heterogeneous agents.

Following recent work in the area of Semantic Business Process Management
(SBPM) [11, 84],2 we adopt these notions from the semantic Web services area for
explicating the behavior of individual process activities. We assume that activities are
annotated with logical preconditions and effects. The research question we address is
that of verification: Does the control flow interact correctly with the behavior of the
individual activities? Precisely, we address the following four verification tasks:

• Effect conflicts: Are there activities whose effects are in conflict, but that may be
executed in parallel?

• Precondition conflicts: Are there activities whose effect and precondition are in
conflict, but that may be executed in parallel?

• Reachability: Is there an activity that will never be reached by the execution?
• Executability: Is there an activity whose precondition may be false at a time when

the activity is scheduled for execution?

Note that, in this verification, we go far beyond what is possible based on activity
names. We are able to conveniently express and check how particular aspects of the
preconditions/effects of some activities affect particular aspects of other activities.
For example, activity A may not be reachable because activity B has an effect inval-
idating the preconditions of activities C and D, if the workflow is such that B must
be executed before C and D, and either C or D must be executed before A. In brief:
based on “local” annotations, we are able to detect “global” conflicts.

2For information about the SBPM area, see e.g. the SUPER IP (EU-funded Integrated Project, http://
www.ip-super.org), Semantic Business Process Management Working Group (http://www.sbpm.org),
SBPM workshop [31].

 Author's personal copy

http://www.ip-super.org
http://www.ip-super.org
http://www.sbpm.org

274 Distrib Parallel Databases (2010) 27: 271–343

1.2 Overview of the approach

Our verification techniques are aimed at helping with the creation of correct business
process models. Hence they will be used by a human process modeler. This will hap-
pen interactively, i.e., on-line while the human modeler is creating or adapting the
process within a BPM modeling environment. The general setting is that the mod-
eler frequently uses the verification as a push-button operation for cross-checking the
process and pointing out any bugs, should they exist. To enable such verification, the
modeler uses some convenient paradigm for annotating the preconditions/effects of
individual tasks (we get back to this below). Note here that the verification can serve
as much for debugging the annotations—these may have a value per se by making
explicit the intended meaning of the process—as it serves for debugging the control-
flow structure. The modeling continues until the process is complete, and proved by
the verification to be correct with respect to all four verification tasks.

Figure 1 illustrates the interplay between business process models, annotations,
and verification. The figure shows an example of a business process model (top of
the figure), which has been partly annotated with terms from an ontology (middle of
the figure). Upon calling our verification techniques, a list of problems is returned
(bottom of the figure). As shown in the picture, the ontology consists of two tax-
onomies (a, b, c vs. d, e, f, g, h). To indicate that x ⊑ y, i.e., that x is a sub-concept
of y, an arrow from x to y is displayed. Further, the ontology states mutual exclusion
between c and g, indicated by a dashed double arrow.

In the shown process model, a precondition conflict exists because, although T4
and T5 are parallel, the effect of T4—c—contradicts the precondition of T5—g.
Hence, if T4 happens to be executed prior to T5, then T5’s precondition will not
be satisfied at the point where T5 is scheduled for execution, i.e., when T5’s incom-
ing edge carries a token. Similarly, T7 is not executable because T4 is necessarily
executed beforehand, which will invalidate T7’s precondition.3

Why is such a situation—an activity being scheduled for execution at a time when
its precondition is not satisfied—problematic? The problem arises (1) if the process is
being executed by a standard (non-semantic) engine, e.g. based on BPEL, or (2) if the
execution engine is aware of the semantic annotations but cannot observe their truth
value at execution time. In both cases, the activity will be enacted regardless of the

unsatisfied precondition. This may lead to undefined behavior and errors. Scenario
(1) is, clearly, all we are going to get in industrial applications, in the foreseeable
future. In particular it corresponds to our current use cases at SAP, which we will
detail later on (Sect. 7). Scenario (2) is quite likely if the process coordinates activities
across a heterogeneous system landscape: while it is conceivable that the meaning of
activities is being shared at the modeling level, realizing such communication at IT
level is much more challenging and may not even be wanted.

Using our technology requires computational resources for the verification, and
human resources for creating the annotations. Regarding computation, most impor-

3Note that, due to subsumption, there aren’t any other bugs in the process model, with respect to our four
verification tasks. Note also that preconditions are not understood as events that trigger activity execution.
Rather, they are evaluated when workflow execution has reached the corresponding activity.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 275

Fig. 1 Illustration of the interplay between business process models, annotations, and verification. The
modeler (partly) annotates the process (top of picture) with terms from the ontology (middle). Verification
is called for debugging, yielding a list of problems (bottom). In the picture, the ontology consists of two
taxonomies (a, b, c vs. d , e, f , g, h) and mutual exclusion between c and g. Note that the annotation is
partial, i.e., the modeler does not have to annotate every task node with precondition and effect

tantly there is a tight constraint on response time—human patience. This partly mo-
tivates our quest for tractable classes, cf. the next section. As for modeling effort,
note first that there is a huge difference between (a) creating the ontology and (b)
annotating the preconditions/effects in the process. (a) is done once and for all for
an entire domain, while (b) must be done all the time. Fortunately, our experience is
that, once (a) has been accomplished, (b) is comparatively easy. As we demonstrate
in Sect. 7, annotations can be selected in simple drop-down menus; previous work
[12] has shown that value ranking based on relevance parameters such as process
context can be quite effective. It should also be noted in this context that the process
annotation may be partial, as indicated in Fig. 1. We do not require all activities to
be annotated. Instead, the modeler may annotate preconditions/effects in a piecemeal
fashion as required.

 Author's personal copy

276 Distrib Parallel Databases (2010) 27: 271–343

1.3 Summary of formalization and contribution

Our contribution is threefold:

(1) We devise a formal execution semantics for annotated business processes. This
is technically not challenging, but remarkable because it requires to combine no-
tions from the workflow community with notions from the AI actions and change
community. We combine control flow, i.e., token passing, with the AI notion of
state changes induced by logical preconditions/effects in the presence of a do-
main axiomatization. To the best of our knowledge, ours is the first work consid-
ering this combination.

(2) We investigate the borderline between classes of processes that can, or cannot, be

verified in polynomial time. This constitutes the main technical body of the paper.
Apart from the theoretical relevance of the investigated borderline, it is important
in our application setting, cf. Sect. 1.2. We determine that the complexity of pre-
condition/effect conflict checking is the same as that of the logic underlying the
ontology axioms. We identify a maximal tractable class of processes regarding
reachability and executability checking.

(3) We provide initial evidence of the practicality of our approach. Our techniques
are implemented within three SAP Research prototypes. The prototypes show
how our technology can be accessed via standard user interactions, and how se-
mantic annotations can be obtained at low cost leveraging existing models at
SAP.

In what follows, we explain our formalization and these contributions in more detail.
First, some words are in order regarding our formalism. Our annotated business

processes combine syntax for (a) control flow and (b) semantic annotations. Regard-
ing (a), we presume that the reader is basically familiar with process modeling lan-
guages like BPEL [58], EPCs [41, 69], BPMN [59], UML Activity Diagrams [10], or
YAWL [77]. Our formalization is oriented at BPEL. We cover several major model-
ing elements, namely parallel splits/joins, xor splits/joins, and structured loops in
the form of sub-processes that may be repeated. As for (b), we allow: precondi-
tions/effects annotated at individual activities (governing when an activity can be
executed/how it affects the world); conditions annotated at the outgoing edges of
xor splits (governing which edge is taken); and conditions annotated at loops (gov-
erning whether a loop is repeated or exited). All these are logical formulas, which
for the sake of simplicity we restrict to be conjunctions of literals. Our ontology
axioms take the form of universally quantified clauses. These can be used to state
many typical domain properties, such as subsumption ∀x : ¬p(x)∨q(x), disjointness
∀x : ¬p(x)∨¬q(x), or coverage ∀x : ¬p(x)∨q1(x)∨· · ·∨qn(x). The investigation
of richer annotations, e.g. using Description Logic [4], is an open topic.

We define an execution semantics for annotated processes, i.e., we define what the
state space of a process is. Each state consists of two parts: (a) the positions of the
tokens; and (b) the logical state, a truth value assignment to the propositions formed
with the ontology vocabulary. For (a), our formalism relies on a straightforward token
passing semantics. As for (b), this is trivial without ontology axioms: simply modify
the state with the effect literals of the activity that was executed. With axioms, how-
ever, logical state transitions are a long-standing topic for a whole research area, see

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 277

e.g. [15, 32, 46, 91]. A useful way to think about the ontology axioms is as “phys-
ical laws”. As a simple example, the ontology might say that a claim can never be
accepted and rejected at the same time. Say an activity rejects a claim. The effect of
that activity contradicts “one half” of the axiom, necessitating truth of the other half.
Hence, by physical law, the claim is not accepted any longer. With more complex
“laws”, in particular dependencies between more than two properties of the domain,
contradictions between effects and axioms are no longer so easily handled. In a nut-
shell, the problem is that the contradictions can be solved in several ways, yielding
several possible outcome states. It is not clear which of these should be considered
physically possible. In our work, we adopt the “possible models approach” (PMA)
suggested by Winslett [91], which is in wide-spread use and, in particular, underlies
most formalisms relating to the execution of semantic Web services, e.g. [5, 23, 47].
The PMA admits all outcome states that differ from the previous state in a minimal
way. Intuitively, “minimality” here ensures that the world does not change without
a reason. In the above example, physical law will invalidate acceptance of the claim
under consideration; it will not affect, e.g., the status of any other claim.

To briefly position our formalism with respect to the literature, first note that tra-
ditional verification techniques, as considered in the workflow community (e.g. [78])
and the model checking community (e.g. [18]), do not deal with ontologies.4 Without
ontology axioms, on the other hand, our formalism can be compiled into Petri nets
and other known paradigms. This is obvious for our token-passing semantics and easy
to see for preconditions etc; a related approach [57] has previously appeared. How-
ever, our results regarding tractability cannot be derived from the literature via such
compilation. We get back to this below. There is a body of related work addressing
business process models extended beyond control flow, namely [6, 9, 20, 40, 43, 48,
49, 62, 64, 68]. None of them combines control flow token passing with AI actions
and change as we do, and none of them addresses similar verification tasks.

Our core technical contribution is the investigation of the borderline between
tractable and intractable verification. For effect and precondition conflicts, it turns out
that this borderline is the same as that of the logic underlying the ontology axioms.
Whether or not two activities are parallel depends only on the control flow, not on
the semantic annotations. Control-flow parallelism can be determined in polynomial
time. This follows from earlier results in Petri net theory: Kovalyov and Esparza [44]
devise an algorithm for free-choice Petri nets that determines concurrency in cubic
time. We improve on this result by devising an algorithm that exploits the particular
structure of our control-flows, and runs in quadratic time. Once parallelism has been
determined, checking for precondition/effect conflicts reduces to satisfiability tests.
With our particular formalism for axioms, this means that we inherit the well-known
tractability/intractability results for clausal formulas.

For reachability and executability, matters are more complicated, because those
tasks are more tightly linked to the overall behavior of the process. We show that
neither can be checked in polynomial time (unless P = NP) if we allow either of:

4Many existing verification techniques are heavily based on logic, i.e., on the manipulation of formulas
representing certain properties of the system, like the set of states that can be reached within a given
number of steps. However, semantic descriptions formalize the behavior of the system, not its properties.

 Author's personal copy

278 Distrib Parallel Databases (2010) 27: 271–343

unrestricted axioms; Horn axioms; xor conditions; or loop conditions. We further
show that, even in the class of what we call basic processes, with binary axioms and
without xor/loop conditions, it is NP-hard to test reachability and it is coNP-hard to
test whether or not a particular individual activity is executable. Our positive result
is that, for basic processes, we can test in polynomial time whether all activities are
executable. The proof is constructive, i.e., we devise a polynomial-time verification
algorithm. None of these results have been stated, or follow directly from, results in
the literature. For the case where there are preconditions and effects, but no ontology
axioms, results from Petri net theory can be re-used to identify two tractable classes
for reachability checking. This has been recognized by [57]. One of these classes is a
proper subset of basic processes; the other class is complementary.

Our algorithms are implemented as a back-end prototype that is used in three
front-end tools at SAP Research. One of these addresses a different application (that
we had not originally foreseen), namely a brokerage configuration task in service
marketplaces [89]. The two other applications use the back-end within a process
modeling environment, in an online setting exactly as described above in Sect. 1.2.
One of these front-ends is an SAP Research prototyping platform called Maestro,
the other is a research extension to the commercial SAP NetWeaver platform. Both
applications show how the annotation of preconditions etc. can be done via standard
GUI interactions, e.g., selecting the annotation literals in simple drop-down menus.
The SAP NetWeaver application, moreover, demonstrates very nicely how we can
leverage existing models at SAP. The ontology underlying the tool is taken from a
pre-existing model at SAP, describing the status variables of more than 400 business
objects which are typically affected by process activities at SAP. Apart from the fact
that this ontology comes “for free”, it is based on already established terminology,
with which process modelers are likely to be familiar.

The paper is organized as follows. Section 2 introduces our formalism for semantic
business process models. Section 3 formalizes the four verification tasks we consider,
and states a few basic facts about their dependencies. Section 4 presents our results for
the verification of effect and precondition conflicts. Section 5 contains our negative
results on the computational complexity of reachability and executability checking,
while Sect. 6 contains the positive results, i.e., the polynomial-time verification algo-
rithm for basic processes. Section 7 gives details on our prototypes, and discusses the
difficulty of creating semantic annotations. Section 8 discusses related work, Sect. 9
concludes the paper. For the sake of readability, the text gives only proof sketches.
Full proofs are available in Appendix.

2 Annotated process graphs

We introduce our formalism for semantic business process models. As stated, the
formalism combines control-flow (adopted from the workflow community) with pre-
conditions/effects (adopted from the semantic Web service and AI communities). For
the sake of readability, we first consider the former in isolation, then enrich it with
the latter.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 279

2.1 Process graphs

Our formalization of control-flow in process models covers xor splits, xor joins, par-
allel splits, parallel joins, and structured loops in the form of sub-graphs that may
be repeated. The former four constructs (splits and joins) are a core set of the most
consensual routing elements of various process modeling languages like EPCs [41,
69], BPMN [59], UML Activity Diagrams [10], and YAWL [77]. Indeed, these con-
structs are among those that are most frequently used in BPMN [93]. As for the latter
construct (structured loops), these are oriented at the widely adopted BPEL language.
BPEL directly enforces such a structure; recent process graph parsing techniques can
be applied to untangle loops and move them into sub-processes [82, 92].

Our analysis and algorithms apply to any process model that can be expressed in
terms of our constructs. Notationally, we build on [81], which—after straightforward
extensions for structured loops—offers a concise and easy to read syntax for express-
ing the particular constructs we are interested in. (In contrast to the more generic
nature of notations like Petri nets, which would complicate the formulation of the
particular distinction lines that are relevant for us.) Formally, the syntax of process
graphs is defined as follows.

Definition 1 There are two kinds of Process Graphs: atomic process graphs, and
complex process graphs.

1. An atomic process graph is a directed graph P = (N,E), where N is the dis-
joint union of {n0, n+} (start node, stop node), NT (task nodes), NPS (parallel

splits), NPJ (parallel joins), NXS (xor splits), and NXJ (xor joins). For n ∈ N ,
in(n)/out(n) denotes the set of incoming/outgoing edges of n. We require that:
P is acyclic; for every split node n, |in(n)| = 1 and |out(n)| > 1; for every
join node n, |in(n)| > 1 and |out(n)| = 1; for every n ∈ NT , |in(n)| = 1 and
|out(n)| = 1; |in(n0)| = 0 and |out(n0)| = 1 and vice versa for n+; every node
n ∈ N is on a path from the start to the stop node.

2. Say Q1, . . . , Qm are process graphs. Then a complex process graph is a triple P =
(N,E,λ), where (N,E) is like an atomic process graph except that there is an
additional kind of nodes, NL, called loop nodes, where |in(n)| = 1 and |out(n)| =
1 for every n ∈ NL. λ is a bijection from NL into {Q1, . . . , Qm}.

Q1, . . . , Qm are sub-graphs of P ; a sub-graph of any Qi is (recursively) also a sub-
graph of P . For any process graph Q, we denote by Sub(Q) the set of graphs contain-
ing Q as well as all its sub-graphs. We use superscripts in order to distinguish con-
structs belonging to particular sub-graphs; e.g., N Q2 is the node set of sub-graph Q2.
Further, we use N to denote the set of all nodes appearing in P itself or in any of its
sub-graphs, and we use E to denote the set of all edges appearing in P itself or in any
of its sub-graphs. For any set of nodes, we use the sub-scripts T , PS, PJ , XS, XJ ,
and L to distinguish the different kinds of nodes, as above.

We require that the direct sub-graph relation is a tree; precisely, the graph (Sub(P),

{(Q, Q′) | ex. n ∈ N Q : λQ(n) = Q′}) is a tree with root P . Further, we require that,
for any Q, Q′ ∈ Sub(P) with Q �= Q′, N Q ∩ N Q′

= ∅, i.e., the same node may not
be re-used across several sub-graphs.

 Author's personal copy

280 Distrib Parallel Databases (2010) 27: 271–343

Fig. 2 Our running example: a claims handling process adapted from [45]

If in(n) = {e}, i.e., in(n) is a singleton set, then we overload in(n) to denote its sin-
gle element, i.e., we identify in(n) with e. Similarly, if out(n) = {e} then we identify
out(n) with e. We denote e0 := out(n0) and e+ := in(n+).

Atomic process graphs are (sub-)graphs without loop nodes, whereas complex
process graphs can contain loop nodes. A loop node is “implemented” by a sub-
graph, which, again, may be complex or atomic. The λ-function maps from loop
nodes to sub-graphs. We require the compositional sub-graph structure to be a tree.
We will generally refer to the root of the tree as the “top-level process”, and refer to
it with P ; sub-processes will generally be referred to with Q. We do not distinguish
between atomic and complex process graphs unless necessary, and we assume by
convention a void function λ for atomic process graphs. If the context is clear, we
omit the superscript indicating the process referred to. Note the difference between
the set of nodes and edges of a single process graph, N,E, and the nodes and edges of
all sub-graphs combined, N , E . Note also that for singleton sets of incoming/outgoing

edges, we overload in/out to denote both the respective set and its element. While this
abuses notation, it makes many of our formal statements a lot more readable, and will
be used frequently.

Example 1 Figure 2 shows our running example, serving to illustrate many of our
definitions. The example is based on a process model from the IBM Insurance Appli-
cation Architecture [39] (a large collection of best practice process models from in-
surance industry); the model was published in [45]. It defines how a claim is handled
by an insurer. For the purpose of our presentation, we slightly adapted and simplified
the model.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 281

The process starts when a loss event occurs (step 1 in Fig. 2). The insurance com-
pany is notified of the claim (step 2). Then a sub-process is repeated until either the
claim has been accepted, or its rejection has been approved. In the sub-process, first
the claim is recorded and validated. Then the insurer chooses to either accept or reject
the claim.5 In the former case, an according benefit is offered and paid, and the claim
is closed (steps 10–15). In the latter case, the rejection needs to be either approved
(step 9) or disapproved (step 7). If the rejection is disapproved, additional data needs
be provided (step 8). Once the sub-process completes, the claim is archived in the fi-
nal step, number 17 in Fig. 2. Note that step 14 can be executed in parallel to step 15,
due to the parallel split and join nodes.

The semantics of process graphs are, similarly to Petri Nets, defined as a token
game. Like the notation, this definition follows [81].

Definition 2 Let P = (N,E,λ) be a process graph. A token marking t of P is a
function t : E
→ N (the natural numbers). The start marking t0 is t0(e) = 1 if e = eP

0 ,
t0(e) = 0 otherwise. Let Q, Q′ ∈ Sub(P). Let t and t ′ be token markings. We say that

there is a transition (or token-transition) from t to t ′ via n, written t
n

→ t ′, iff one of
the following holds:

1. Tasks, parallel splits and joins (tokens from INs to OUTs).
n ∈ NT ∪ NPS ∪ NPJ , for all ein ∈ in(n) we have t (ein) > 0 and

t ′(e) =

⎧

⎪

⎨

⎪

⎩

t (e) − 1 e ∈ in(n)

t (e) + 1 e ∈ out(n)

t (e) otherwise

2. Xor splits (token from IN to one OUT).
n ∈ NXS , t (in(n)) > 0, and there exists e′ ∈ out(n) such that

t ′(e) =

⎧

⎪

⎨

⎪

⎩

t (e) − 1 e = in(n)

t (e) + 1 e = e′

t (e) otherwise

3. Xor joins (token from one IN to OUT).
n ∈ NXJ and there exists e′ ∈ in(n) such that t (e′) > 0 and

t ′(e) =

⎧

⎪

⎨

⎪

⎩

t (e) − 1 e = e′

t (e) + 1 e = out(n)

t (e) otherwise

5In the original model, this choice is encoded into a task node with non-deterministic outcome, governing
which branch of the xor split to take. From the perspective of verification, i.e., as far as the possible
execution traces are concerned, the two models are equivalent. The model as in Fig. 2 is more convenient
for our illustration purposes.

 Author's personal copy

282 Distrib Parallel Databases (2010) 27: 271–343

4. Entering a loop (push token downwards).
n ∈ N

Q
L with λQ(n) = Q′, t (in(n)) > 0, and

t ′(e) =

⎧

⎨

⎩

t (e) − 1 e = in(n)

t (e) + 1 e = eQ′

0
t (e) otherwise

5. Repeating a loop (put token back on start).
n = nQ

+ , t (in(n)) > 0, and

t ′(e) =

⎧

⎨

⎩

t (e) − 1 e = in(n)

t (e) + 1 e = eQ
0

t (e) otherwise

6. Exiting a loop (push token upwards).
n = n

Q
+ with Q = λQ′

(n′), t (in(n)) > 0, and

t ′(e) =

⎧

⎨

⎩

t (e) − 1 e = in(n)

t (e) + 1 e = out(n′)

t (e) otherwise

An execution path, or token-execution path, is a transition sequence t0
n1
→ t1

n2
→

t2 · · · tk−1
nk
→ t . A token marking t is reachable, or token-reachable, if there exists

an execution path ending in t . We say t ′ is reachable from t (t → t ′) if there exists a

transition sequence such that t
n1
→ t1

n2
→ t2 · · · tk−1

nk
→ t ′.

The tokens are carried by edges, and the execution status of the process is given
by the position of all tokens, the token marking. t (e) denotes the number of tokens on
an edge e for a given token marking t . A node which passes a token from (one or all
of) its incoming edge to (one or all of) its outgoing edge is said to be executed. Token
passing from edge e to e′ and from token marking t to t ′ is denoted as t ′(e) = t (e)−1
and t ′(e′) = t (e′) + 1.

Task nodes are executed when a token on the incoming edge is consumed and
a token on the outgoing edge is produced. The execution of an xor (parallel) split
node consumes the token on its incoming edge and produces a token on one (all)
of its outgoing edges, whereas an xor (parallel) join node consumes a token on one
(all) of its incoming edges and produces a token on its outgoing edge. A loop node
consumes a token from its incoming edge and produces a token on the start edge of
the sub-graph that is associated with the loop node. The execution of the end node of
a sub-graph consumes a token from its incoming edge e+, and produces a token either
on the start edge e0 of the same process graph (repeating the sub-graph’s execution)
or on the outgoing edge of the loop node (exiting the loop). Note that this is a “do-
while” semantics: the loop is executed at least once.

Soundness, first introduced by Van der Aalst in [74], is an important correctness
criterion for business process models. The soundness property is defined for workflow
nets, i.e., a Petri nets with one source and one sink. A workflow net is sound iff: (1) for

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 283

every token marking reachable from the source, there must exist a firing sequence to
the sink (option to complete); (2) there is no reachable token marking which has a
token both in the sink and in some other edge (proper completion); and (3) there are
no dead transitions, i.e., for every transition there is an execution path that can fire it
[74]. We adopt this definition. Van der Aalst shows that soundness of a Workflow net
is equivalent to liveness and boundedness of the corresponding short-circuited Petri
net. It follows easily from earlier results [79] that process graphs as per Definitions 1
and 2 map to free-choice Petri nets, where no output branch of an xor split n ∈ NXS

can be disabled by other choices in the process graph.
We will later utilize a property of soundness related to so-called contact situations.

A contact situation is a marking in which a node has tokens on its incoming edges as
well as on its outgoing edges. Such a situation can never occur in a sound process.

Proposition 1 Let P = (N,E,λ) be a sound process graph. Then the following does

not exist: a token-reachable token marking t , a node n ∈ N , and edges e ∈ in(n), e′ ∈
out(n) such that t (e) > 0 and t (e′) > 0.

Proof Assume a sound process graph P with a node n such that t (e) > 0 and
t (e′) > 0 for e ∈ in(n), e′ ∈ out(n). Since there is a path from n to the sink n+ and

P is sound, the nodes on the path can propagate the token from e′ to n+. Since P is
free-choice, this firing sequence does not require the token from e. This means that
there can still be a token on edge e after the sink n+ has received a token via the firing
from e′. The latter is a contradiction to condition (2) of the soundness assumption. �

2.2 Semantic annotations

For the semantic annotations, we use standard notions from logic, involving logical
predicates and constants. Predicates provide the formal vocabulary, referring to prop-
erties of tuples of constants. Constants correspond to the entities of interest at process
execution time.6 We denote predicates with G,H, I and constants with c, d, e. Facts

are predicates grounded with constants, Literals are possibly negated facts. If l is a
literal, then ¬l denotes l’s opposite (¬p if l = p and p if l = ¬p); if L is a set of
literals then ¬L denotes {¬l | l ∈ L}. We identify sets L of literals with their con-
junction

∧

l∈L l. Given a set P of predicates and a set C of constants, P [C] denotes
the set of all literals based on P and C; if arbitrary constants are allowed, we write
P [].

A theory T is a closed (no free variables) first-order formula. Given a set C of
constants, T [C] denotes T with quantifiers interpreted over C. For the purpose of our
formal semantics, T can be arbitrary. For computational purposes, we will consider
the following standard restrictions. A clause is a universally quantified disjunction of
atoms, e.g., ∀x.¬G(x) ∨ ¬H(x). There are two classes of clauses that are important
in our analysis, because their propositional variants (without variables) are known to
be tractable: Horn clauses [37] and binary clauses [3]. A clause is Horn if it contains

6Hence our constants correspond to BPEL “data variables” [58]; note that the term “variables” in our
context is reserved for variables as used in logic, quantifying over constants.

 Author's personal copy

284 Distrib Parallel Databases (2010) 27: 271–343

at most one positive literal. A clause is binary if it contains at most two literals.
A theory is Horn (binary) if it is a conjunction of Horn (binary) clauses.

An ontology Ω is a pair (P, T) where P is a set of predicates (Ω’s formal ter-
minology) and T is a theory over P (constraining the behavior of the application
domain encoded by Ω). For upper-bounding the complexity of reasoning over T ,
we will assume fixed arity: a fixed bound on the arity of the predicates P . This is
a realistic assumption because, according to modeling experience in AI and related
areas, predicate arities are typically small. For example, in Description Logics [4] the
maximum arity is 2.

Definition 3 An annotated process graph is a tuple P = (N,E,λ,Ω,α) where
(N,E,λ) is a process graph, Ω = (P, T) is an ontology, and the annotation α =
{pre, eff, rcon, (con,pos)} is defined as follows (where Π denotes the powerset):

– pre is a partial function pre : NT ∪ {nP
+ }
→ Π(P []) mapping a task node or global

end node to a set of literals (its precondition).
– eff is a partial function eff : NT ∪ {nP

0 }
→ Π(P []) mapping a task node or global
start node to a set of literals (its effect).

– rcon is a partial function rcon : NL
→ Π(P []) mapping a loop node to a set of
literals (its repetition condition).

– con is a partial function con : {e ∈ E |ex. n ∈ NXS : e ∈ out(n)}
→ Π(P []) mapping
an xor split’s outgoing edge to a set of literals (its condition).

– pos is a partial function pos : {e ∈ E |ex. n ∈ NXS : e ∈ out(n)}
→ {1, . . . , |out(n)|}
mapping an xor split’s outgoing edge to an integer (its position, encoding the eval-
uation order of the xor split).

We require that:

– There is no n such that pre(n) is defined and T ∧ pre(n) is unsatisfiable.
– There is no n such that eff(n) is defined and T ∧ eff(n) is unsatisfiable.
– There is no n such that rcon(n) is defined and T ∧ rcon(n) is unsatisfiable.
– There is no e such that con(n) is defined and T ∧ con(e) is unsatisfiable.
– con(e) is defined iff pos(e) is defined.
– There do not exist n, e, e′ such that e, e′ ∈ out(n), pos(e) and pos(e′) are defined,

and pos(e) = pos(e′).

Any task node, as well as the top-level end node, may have a precondition pre.
Any task node, as well as the top-level start node, may have an effect eff. Loop nodes
may have a repetition condition rcon, and the outgoing edges of an xor split may
have a condition con and an evaluation position pos. Note here the “may have”. All
the annotation functions are partial. This captures the situation where only parts of
the process can be sensibly annotated, or where a developer wants to run verification
tests on a model whose annotations have not yet been completed. This is important—
forcing a user to fully annotate a process up front would adversely affect acceptance.7

7One may speculate that annotating an empty set of literals is equivalent to leaving the annotation un-
defined. Indeed, this is true (with some modifications regarding the role of pos for xor splits)—except

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 285

As stated, the annotation of task nodes—atomic actions that might be implemented
by Web service invocations—in terms of logical preconditions and effects closely fol-
lows semantic Web service approaches such as OWL-S [1, 72] and WSMO [21, 66].
As also stated, all the involved sets of literals (pre(n), eff(n), con(e), rcon(n)) will
be interpreted as conjunctions. (It is easy to extend our formalism to allow arbitrary
formulas for pre(n), eff(n), con(e), rcon(n). Verification involving such formulas is
likely to lead to harder decision problems; this remains a topic for future work.)

We now formally define the semantics of annotated process graphs.

Definition 4 Let P = (N,E,λ,Ω,α) be an annotated process graph. Let C be the
set of all constants appearing in any of the annotated pre(n), eff(n), rcon(n), con(e).
A state s of P is a pair (ts, is) where t is a token marking and i is a logical inter-

pretation i : P [C]
→ {0,1}. A start state s0 is (t0, i0) where t0 is as in Definition 2,
and i0 |= T [C], and i0 |= eff(nP

0) in case α(nP
0) is defined. Let Q, Q′ ∈ Sub(P). Let

s and s′ be states. We say that there is a transition from s to s′ via n, written s
n

→ s′,
iff one of the following holds:

1. Parallel splits and joins (straightforward; no change of logical interpretation).

n ∈ NPS ∪ NPJ , for all ein ∈ in(n) we have ts(ein) > 0, is = is′ , and ts
n

→ ts′

according to Definition 2.
2. Xor joins (straightforward; no change of logical interpretation).

n ∈ NXJ , there exists e′ ∈ in(n) such that ts(e
′) > 0, is = is′ , and ts

n
→ ts′

according to Definition 2.
3. Xor splits (depends on condition; no change of logical interpretation).

n ∈ NXS , ts(in(n)) > 0, is = is′ , and

ts′(e) =

⎧

⎪

⎨

⎪

⎩

ts(e) − 1 e = in(n)

ts(e) + 1 e = e′

ts(e) otherwise

where either e′ ∈ out(n) and α(e′) is undefined, or e′ = argmin{pos(e) | e ∈
out(n), α(e) is defined, is |= con(e)}.

4. Entering a loop (condition not tested due to do-while semantics; no change of

logical interpretation).
n ∈ N

Q
L so that λQ(n) = Q′, with ts(in(n)) > 0, is = is′ , and

ts′(e) =

⎧

⎪

⎨

⎪

⎩

ts(e) − 1 e = in(n)

ts(e) + 1 e = e
Q′

0

ts(e) otherwise

for loop conditions. If such a condition is undefined, then we allow the process to non-deterministically
choose whether to exit or repeat (cf. Definition 4 below). This cannot be encoded into any fixed set of
literals. From a more general perspective, we prefer the notation using partial functions because it is more
explicit.

 Author's personal copy

286 Distrib Parallel Databases (2010) 27: 271–343

5. Repeating a loop (condition must be true; no change of logical interpretation).
n = n

Q
+ so that Q = λQ′

(n′), ts(in(n)) > 0, where either α(n′) is undefined or
is |= rcon(n′), with is = is′ , and

ts′(e) =

⎧

⎨

⎩

ts(e) − 1 e = in(n)

ts(e) + 1 e = e
Q
0

ts(e) otherwise

6. Exiting a loop (condition must be false; no change of logical interpretation).
n = n

Q
+ so that Q = λQ′

(n′), ts(in(n)) > 0, where either α(n′) is undefined or
is �|= rcon(n′), with is = is′ , and

ts′(e) =

⎧

⎨

⎩

ts(e) − 1 e = in(n)

ts(e) + 1 e = out(n′)

ts(e) otherwise

7. Executing a task (affects the logical interpretation, may have ambiguous out-

come).

n ∈ NT , ts(in(n)) > 0, ts
n

→ ts′ according to Definition 2, and either: α(n)

is undefined and is = is′ ; or is |= pre(n) and is′ ∈ PMA-min(is, T [C] ∧ eff(n)),
where PMA-min(is, T [C] ∧ eff(n)) is the set of all i that satisfy T [C] ∧ eff(n)

and that are minimal with respect to the partial order defined by i1 ≤ i2: iff {p ∈
P [C] | i1(p) �= is(p)} ⊆ {p ∈ P [C] | i2(p) �= is(p)}.

An execution path is a transition sequence s0
n1
→ s1

n2
→ s2 · · · sk−1

nk
→ s, where s0 is

a start state. A state s is reachable if there exists an execution path ending in s. We

say s′ is reachable from s (s → s′) if there exists a transition sequence such that s
n1
→

s1
n2
→ s2 · · · sk−1

nk
→ s′. By S P we denote the set of reachable states; if the process

referred to is clear from the context, we will sometimes omit the superscript P .

A state s of the process now consists of the token marking t in combination with
the logical interpretation i. The interpretation assigns truth values to all logical facts
formed from the relevant predicates and constants. To avoid clumsiness of language,
we will usually drop the “logical” in “logical interpretations”. Also, we will often
overload s with is , writing e.g. s |= φ instead of is |= φ.

An execution of the process starts with a token on the outgoing edge of the start
node, and with any interpretation that complies with the start node’s effect (if any)
and the implications of the logical theory. Parallel splits and joins, as well as xor joins,
remain unaffected by the annotation. An xor split, in contrast, non-deterministically
either selects an outgoing edge without annotation, or produces a token on the out-
going edge e with lowest position pos(e) whose condition con(e) is satisfied by the
current interpretation, is . Note that this is a hybrid between a deterministic and a non-
deterministic semantics, depending on how many output edges are annotated. If all
edges are annotated, then we have a case distinction as handled in, e.g., BPEL, where
the first case (smallest position) with satisfied condition is executed (Sect. 11.2 in
[58]). If no edges are annotated, then the analysis must foresee that a case distinction
may be created later on during the modeling. No assumptions can be made on the

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 287

form of that case distinction, so any possibility must be taken into account. Defini-
tion 2 just generalizes these two extremes in the straightforward way.

Entering a loop node also remains the same as in Definition 2, since each loop
is executed at least once (do-while semantics). If the annotation of the loop node
is undefined, then we can non-deterministically choose whether to repeat or exit the
loop. If the repetition condition rcon is defined, then the loop is repeated iff the current
state’s interpretation satisfies rcon.

The execution of any routing node does not affect the logical interpretation. In
contrast, the execution of an annotated task node (which is possible only if the current
state satisfies the precondition pre) changes the interpretation according to the effect
eff and the implications of T . The tricky bit lies in the definition of the possible
outcome states i′. The semantics defines this to be the set of all i′ that comply with

T and eff(n), and that differ minimally from i. This draws on the AI literature for
a solution to the frame and ramification problems. The latter problem refers to the
need to make additional inferences from eff(n), as implied by T . This is reflected in
the requirement that i′ complies with both. The frame problem refers to the need to
not change the previous state arbitrarily—e.g., if an activity makes a payment via a
credit card C1, then any other credit card C2 should not be affected. This is reflected
in the requirement that i′ differs minimally from i, such that there is no i′′ that makes
do with fewer changes. As explained in the introduction, this semantics follows the
so-called possible models approach (PMA): the set PMA-min(is, T [C] ∧ eff(n)) in
the handling of task nodes as per Definition 4 is exactly as defined in the original
PMA paper by Winslett [91]. The PMA underlies most formalisms relating to the
execution of semantic Web services [5, 23, 47]. Alternative semantics from the AI
literature (see [32] for an excellent overview) could be used in principle; this is a
topic for future research.

We next give two examples. The first provides the semantic annotations for our
running example.

Example 2 Consider again Fig. 2. The semantic annotations of the task nodes are
listed in Table 1. The ontology specifies the following axioms:

(1) ∀x : ¬claimAccepted(x) ∨ ¬claimRejected(x)

(2) ∀x, y : ¬benefitOffered(x, y) ∨ ¬benefitPosted(x, y)

∀x, y : ¬benefitOffered(x, y) ∨ ¬benefitPaid(x, y)

∀x, y : ¬benefitPosted(x, y) ∨ ¬benefitPaid(x, y)

(3) ∀x : claimRejectionDisapproved(x) ⇒ ¬claimRejected(x)

Axiom (1) means that no claim may be both accepted and rejected at the same time;
in other words, a claim may be in at most one of its possible states. Similarly, axioms
(2) mean that no benefit may be in more than one of its possible states. Axiom (3)
expresses a somewhat more subtle dependency, namely that a claim is no longer
rejected if its rejection has been disapproved.

The following example illustrates the subtleties of the PMA semantics.

Example 3 We first illustrate the ramification problem. We show how ontology ax-
ioms may lead to “side effects”, i.e., to literals that are not mentioned explicitly in the

 Author's personal copy

288 Distrib Parallel Databases (2010) 27: 271–343

Table 1 Preconditions and effects of all task nodes in the process from Fig. 2. Node labels abbreviated

Node Precondition Postcondition

1. Loss event lossEvent(e)

2. Notification lossEvent(e) claim(c)

5. Record claim claim(c) claimRecorded(c),

claimValidated(c)

6. Reject claim claim(c) claimRejected(c)

7. Disapprove rejection claimRejected(c) claimRejectionDisapproved(c)

8. Additional data claim(c) claimChanged(c)

9. Approve rejection claimRejected(c) claimRejectionApproved(c)

10. Accept claim claim(c) claimAccepted(c)

11. Offer benefit claimAccepted(c) benefit(b), benefitOffered(b, c)

12. Prepare discharge benefitOffered(b, c) dischargePrepared(c)

13. Record payment benefitOffered(b, c), benefitPosted(b, c)

dischargePrepared(c)

14. Close claim claimFinalized(c) claimClosed(c)

15. Payment benefitPosted(b, c) benefitPaid(b, c)

17. Archive claim claim(c) claimArchived(c)

effect annotation of a task node n, but that change their value nevertheless when n is
executed.

Say we have some process Pexpl using the ontology presented in Example 2 (the
exact form of Pexpl is not relevant in what follows). Say we have a task node n

that is annotated with eff(n) = {claimRejected(c)}, i.e., that rejects a claim. Say we
execute n in a state s where the claim is accepted, i.e., is(claimAccepted(c)) = 1.

Which are the possible outcome states s′, with s
n

→ s′? By the definition of
PMA-min(is, T [C] ∧ eff(n)) in Definition 4, any such state s′ must satisfy the
conjunction of effect eff(n) and axioms T . In particular, s′ must satisfy ∀x :
¬claimAccepted(x) ∨ ¬claimRejected(x), cf. the previous example; we refer to this
axiom with φ in the following. Together with the effect claimRejected(c), φ of
course implies that s′ must satisfy is′(claimAccepted(c)) = 0. That is, the value of
claimAccepted(c) is changed as a side-effect of applying n. Sloppily formulated,
when we apply the effect claimRejected(c) to s, then φ is invalidated and we need to
“repair” it by switching the value of claimAccepted(c).

To illustrate the frame problem, we now show how ontology axioms may lead to
ambiguities in the outcome state, namely to several alternative outcome states de-
pending on how and to what extent the previous state is kept intact. Note first that the
clause φ is binary (contains only two literals). This means that, whenever one of the
literals is invalidated, the other literal follows necessarily. That is, there is only one
option to “repair” the clause. For that reason, binary clauses do not lead to ambigui-
ties. This is not so for clauses with more than two literals.

Say we extend Pexpl by an axiom stating that, if two distinct reviewers accept
a claim, then the claim is accepted overall. That is, we have the new predicates

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 289

claimAcceptedRevA(.) and claimAcceptedRevB(.), as well as the new axiom:

∀x : claimAcceptedRevA(x) ∧ claimAcceptedRevB(x) ⇒ claimAccepted(x)

We refer to this axiom with φ′ in what follows. Suppose about our state s from above
that is(claimAcceptedRevA(c)) = 1 and is(claimAcceptedRevB(c)) = 1. Upon exe-
cuting n, as pointed out above, c is no longer accepted. So φ′ is no longer true and we
must “repair” it. Since, in difference to φ, φ′ is not binary, this spawns a non-trivial
behavior of the minimal change semantics. There are three options to “repair” φ′:
falsify claimAcceptedRevA(c), falsify claimAcceptedRevB(c), or falsify both. The
first two options each yield a resulting state s′ ∈ PMA-min(is, T [C] ∧ eff(n)). The
third option does not yield a resulting state s′ because that option is not a minimal
change.

3 Verification tasks

We now formalize our four verification tasks, relating to precondition conflicts, effect
conflicts, reachability, and executability. As a helper notation, we first need to define
when two task nodes are parallel.

Definition 5 Let P = (N,E,λ,Ω,α) be an annotated process graph. For e1, e2 ∈ E ,
we say that e1 and e2 are parallel, written e1 ‖ e2, if there exists a token-reachable
token marking t such that t (e1) > 0 and t (e2) > 0. For n1, n2 ∈ NT , we say that n1

and n2 are parallel, written n1 ‖ n2, if in(n1) ‖ in(n2).

Definition 6 Let P = (N,E,λ,Ω,α) be an annotated process graph.

– A node n is reachable iff either n = n0 or there exist a reachable state s and an
edge e ∈ in(n) so that ts(e) > 0.

– A node n is executable iff either n �∈ NT ∪ {nP
+ } or, for all reachable states s with

ts(in(n)) > 0, we have that s |= pre(n).

P is reachable iff all n ∈ N are reachable. P is executable iff all n ∈ N are exe-
cutable.

Let n1, n2 ∈ NT , n1 ‖ n2. We say that

– n1 has a precondition conflict with n2 if T ∧ eff(n1) ∧ pre(n2) is unsatisfiable;
– n1 and n2 have an effect conflict if T ∧ eff(n1) ∧ eff(n2) is unsatisfiable.

Consider first precondition and effect conflicts. For illustration it is useful to con-
sider the special case where T is empty. A precondition conflict, e.g., then means
there exists l ∈ eff(n1) ∩ ¬pre(n2). Generally, precondition and effect conflicts indi-
cate that the semantic annotations of different task nodes are in conflict: n1 jeopar-
dizes the precondition of n2, or n1 and n2 jeopardize each other’s effects. If n1 and
n2 are ordered with respect to each other, then this kind of conflict cannot result in
ambiguities and should not be taken to be a flaw. Hence Definition 6 postulates that
n1 ‖ n2.

 Author's personal copy

290 Distrib Parallel Databases (2010) 27: 271–343

It is debatable to some extent whether precondition/effect conflicts represent flaws,
or whether they are a natural phenomenon of the modeled process. We view them as
flaws, because in a parallel execution it may happen that the conflicting nodes are
enacted at the same time.

Consider now the notions of reachable and executable task nodes n. Reachability
is important because, if n is not reachable, then it is superfluous; this certainly in-
dicates a problem in the process model.8 As for executability, if n is not executable
then the process may reach a state where n is active—it has a token on its incoming
edge—but its prerequisites for execution are not given. If the process is being exe-
cuted by a standard (non-semantic) engine (cf. Sect. 1.2), e.g. based on BPEL, then
the implementation of n will be enacted regardless of the unsatisfied precondition,
which may lead to undefined behavior and errors. In general, the possibility to acti-
vate a task without establishing its precondition indicates that the process model does
not take sufficient care of achieving the relevant conditions in all possible cases.

For illustration, consider our running example, i.e., the process from Fig. 2 and
its annotation as per Table 1. The task node “21. Close claim” has a precondi-
tion claimFinalized(c), but there is no activity whose effect provides this assertion.
Thus, this task will not be able to execute when it is activated during runtime. While
this may be due to faulty annotation (e.g., “19. Prepare claim discharge” may have
claimFinalized(c) as an additional effect), it may also be the case that another activity
“Finalize claim” is actually missing.

Reachability and executability are both temporal properties on the behavior of the
process, and of course it may be of interest to allow arbitrary verification properties
via a suitable temporal logic (see e.g., [60, 80]). We leave this open for future work.
The focus on reachability and executability is, in that sense, an investigation of special
cases. Note that these special cases are of practical interest, and perhaps more so than
the fully general case allowing arbitrarily complex quantification which may rarely
be used in practice.

Reachability can sometimes be established as a side-effect of executability.

Proposition 2 Let P = (N,E,λ,Ω,α) be a sound annotated process graph where

α is undefined for all edges and loop nodes. If P is executable, then P is reachable.

Proof Let n ∈ N \{n0}. By definition, there exists a sequence �e of edges from n0 to n.
By soundness and executability, and because none of the edges in �e, nor any loop
nodes passed by �e, are annotated with a condition, one can easily use �e to construct
an execution path that reaches n. �

The overall methodology we propose for debugging a given process model is to
first remove any precondition and effect conflicts, and thereafter to ensure the process
is executable. Proposition 2 then implies that the process is correct with respect to all
four verification tasks considered herein—provided there are no xor/loop conditions.

8To understand our definition of reachability, note that all nodes except parallel joins can be token-executed
as soon as one of their incoming edges is active. For parallel joins, soundness implies that, if an incoming
edge is active, then the join can be token-executed eventually.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 291

The latter restriction is of no consequence as far as the identification of tractable
classes is concerned, because, as we will see, in the presence of xor/loop conditions
we cannot verify reachability/executability efficiently anyway.

4 Checking precondition and effect conflicts

We now start the investigation of the computational complexity associated with our
verification tasks. Recall that this is important (apart from its theoretical interest) be-
cause response times in the targeted application must be instantaneous, cf. Sect. 1.2.

In this section, we are concerned with checking the existence of precondition and
effect conflicts. We devise an algorithm consisting of two parts:

(1) We determine which pairs of tasks in the process are parallel.
(2) For each such pair the respective preconditions and effects are tested for conflicts.

Step (1) runs in time polynomial in the size of the process. Step (2) consists of two sat-
isfiability tests of the ontology axioms in conjunction with the preconditions/effects.
Hence the overall complexity is the same as that of testing satisfiability in the logic
underlying the semantic annotations. We now consider the two steps in detail.

For step (1), one can re-use results from the Petri net literature. Namely, Kova-
lyov and Esparza [44] show that, for free-choice Petri nets, step (1) can be done in
time cubic in the size of the process. In our own work, we devised an algorithm that
exploits the particular structure of our control-flows, making do with quadratic time.
Since this is not of central relevance for our focus herein—it does not concern the
borderline between tractable and intractable classes—we give only a brief summary.
A full presentation can be looked up in a longer version of this paper [88].

In Petri nets, the “concurrency relation” is the set of pairs of places that may
contain a token at the same time, i.e., for which there exists a reachable marking
putting a token on both places. Kovalyov and Esparza [44] devise an algorithm that
computes the concurrency relation in time O(|E | ∗ (|E | + |N |)2), provided the net is
free-choice. The algorithm is initialized with a set of known pairs of parallel nodes
(transitions and places). It then performs local propagations based on a candidate set
that evolves from this initial set. For example, if a place in the pre-set of a transition
t is parallel to some other node n (i.e., a transition or place), then the post-set of t is
set to be parallel to n.

We devise an algorithm called M-propagation, which computes parallelism for
each subgraph Q ∈ Sub(P) in isolation, and re-constructs the overall parallelism from
that. The runtime performance of the algorithm is O(|E |2 +�Q∈Sub(P)|N

Q| ∗ |EQ| ∗

maxQ), where maxQ is the maximum number of incoming or outgoing edges any
node in Q has. Presuming that the latter number (the branching factor in splits and
joins) is fixed, this means that our algorithm runs in time quadratic in the size of the
process, by contrast to the cubic time taken by [44]’s algorithm. This improvement
is possible because our control-flows are less general than free-choice Petri nets.9

9We are not aware of any work computing concurrency, for general free-choice nets, with a better runtime
bound than [44]; neither are the authors of [44] aware of any such work. In personal communication, Javier
Esparza conjectured that a faster algorithm does not exist.

 Author's personal copy

292 Distrib Parallel Databases (2010) 27: 271–343

The enabling property is that our loops are structured. We will show that, due to this
structure, the concurrency relation of the overall process can be directly constructed
from the separate concurrency relations computed for each sub-process individually.
Within each sub-process, the process graph is cycle-free, which means that we can
compute concurrency according to a topological order of the sub-process.

Consider a sub-process Q. M-propagation determines pair-wise parallelism for
all edges within Q. The outcome of the algorithm is a function M∗ mapping pairs of
edges to Booleans, where M∗(e, e′) = 1 iff e ‖ e′. M∗ is computed by a propagation
algorithm, in which M∗ is maintained in the form of a matrix. Initially, all edges are
set to not be parallel to themselves; everything else is set to be unknown. Each prop-
agation step performs changes corresponding to some node n in the process whose
predecessors have all been processed already. Note here that such a strategy is pos-
sible because the graph is acyclic. The propagation step sets matrix entries for the
outgoing edges of n based on the matrix entries of its incoming edges. Task nodes,
loop nodes, and xor splits/joins do not affect parallelism and so the entries are sim-
ply copied; the only subtlety is that, for xor joins n, the outgoing edge is parallel to
an edge e �∈ in(n) iff at least one of its incoming edges is parallel to e. For parallel
splits, the outgoing edges are marked to be pairwise parallel; otherwise the entries
are copied. The outgoing edge of a parallel join n is parallel to an edge e �∈ in(n) iff
all its incoming edges are parallel to e. We get:

Theorem 1 Let P = (N,E,λ) be a sound process graph, and let Q ∈ Sub(P). For

all n1, n2 ∈ N
Q
T we have n1 ‖ n2 iff M∗(in(n1), in(n2)) = 1. The time required to

compute M∗ is O(|EQ|2 + |N Q| ∗ |EQ| ∗ maxQ), where maxQ is the maximum

number of incoming or outgoing edges any node in Q has.

The runtime bound here holds because each propagation step takes time at most
|EQ| ∗ maxQ; |N Q| steps are performed. The time for initializing the matrix is
O(|EQ|2). To see that it suffices to compute the parallelism for each subgraph in
isolation, observe the following. Say e is the incoming edge of a task node n ∈ N

Q
T .

Say e′ is the incoming edge of a loop node n′ ∈ N
Q
L , and say that Q′ is a sub-process

of λQ(n′), or is λQ(n′) itself. If e and e′ are parallel, then any edge e′′ ∈ EQ′
is

parallel to e. If e and e′ are not parallel, then no edge e′′ ∈ EQ′
can be parallel to e.

Hence the overall parallelism relation can be read off the sub-graph relation and the
parallelism within sub-graphs. Since the sub-graph relation can be stored in a way so
that it can be looked up in constant time, the overall parallelism relation can be con-
structed from the relations of the individual sub-graphs in time O(|E |2). Hence we
obtain the overall bound O(|E |2 + �Q∈Sub(P)|N

Q| ∗ |EQ| ∗ maxQ) as stated above.
Note that parallelism according to Definition 5 is not affected by the semantic anno-
tations, and hence M-propagation does not need to consider those; we will get back
to this shortly. First, note how we can detect precondition and effect conflicts.

Corollary 1 Let P = (N,E,λ,Ω,α) be a sound annotated process graph, and let

M∗ be the accumulated M-propagation result for P . Then, for any two task nodes

n1, n2 ∈ NT :

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 293

• n1 has a precondition conflict with n2 iff M∗(in(n1), in(n2)) = 1 and T ∧eff(n1)∧
pre(n2) is unsatisfiable;

• n1 and n2 have an effect conflict iff M∗(in(n1), in(n2)) = 1 and T ∧ eff(n1) ∧
eff(n2) is unsatisfiable.

Using Corollary 1, it is obvious how to perform step (2) in our overall algorithm.
We detect precondition and effect conflicts simply by performing a loop over all pairs
of edges e, e′, and executing the described satisfiability tests for every pair where
M∗(in(n1), in(n2)) = 1.

Since the computation of M∗ is polynomial, and the number of edge pairs is
quadratic, the only source of exponential worst-case complexity is the satisfiabil-
ity testing. In other words, the borderline between tractable classes and intractable
classes is the same as that of the satisfiability tests. When restricting, as we do, the
preconditions and effects to be conjunctions of logical atoms, then the borderline is
identical to that of the logic used for formulating the ontology axioms. Note that this
property does not depend on the particular logic we selected in our framework.

The logic we chose here—clausal formulas—has been investigated in depth in
the literature. In our particular setting, quantification is over a finite set of constants,
hence we can compile into propositional logic. That compilation is exponential only
in the nesting depth of the quantifiers in the clauses. For binary clauses, the nesting
depth is bounded as soon as predicate arity is bounded, and hence binary formulas
form a tractable class for fixed arity. This is a useful result because it concerns a
non-trivial class of formulas. Binary clauses can be used to specify many common
ontology properties, such as subsumption relations ∀x : G(x) ⇒ H(x), attribute im-
age type restrictions ∀x, y : G(x,y) ⇒ H(y), and role symmetry ∀x, y : G(x,y) ⇒
G(y,x). With what we have just derived, precondition and effect conflicts can be
detected efficiently in processes using only such clauses.

A potentially yet much more useful class of formulas is that of Horn clauses. These
allow the specification of implications of the form G1 ∧ · · · ∧ Gk ⇒ H , as well as
integrity constraints of the form ¬G1 ∨ · · · ∨ ¬Gk . Clearly, this language is quite
powerful. To ensure that compilation into propositional logic is polynomial-time, we
need to directly assume a bound on nesting depth. This assumption is more debatable
than fixed predicate arity, but is given in some typical examples such as the Horn rule
defining role transitivity ∀x, y, z : G(x,y) ∧ G(y, z) ⇒ G(x, z).

One important aspect of precondition and effect conflicts, as handled here, is the
underlying definition of “parallelism”. Definition 5 defines this exclusively based on
the control-flow, i.e., two edges are parallel iff there exists a token-reachable token

marking that puts a token on both. An alternative definition would be to say that
two edges are parallel iff there exists a reachable state that puts a token on both.
We refer in what follows to the former as token parallelism, and to the latter as ex-

ecution parallelism. The difference between the two is that execution parallelism, in
difference to token parallelism, takes into account the logical states. This can make
a difference in the presence of xor split and loop conditions, and in the presence of
non-executable task nodes: such constructs allow traversal only by a subset of the
token execution paths, and hence there may be less pairs of parallel edges. If a pair
of edges is execution-parallel, then it is token-parallel; but not vice versa.

 Author's personal copy

294 Distrib Parallel Databases (2010) 27: 271–343

To some extent, it is a matter of taste which notion of parallelism one uses as
the underlying definition for precondition and effect conflicts. Token parallelism has
two advantages. First, it is more conservative, not relying on the annotation of xor
splits and loops, or on non-executable task nodes, to prevent the co-occurrence of
conflicting preconditions/effects. Second, token parallelism leads to easier verifica-
tion problems. Determining whether or not two edges are execution-parallel is hard.
Namely, it is easy to see that the hardness results reported in Sect. 5 for reachability
hold for that problem as well. It remains an open question how to develop verifi-
cation techniques for dealing with precondition/effect conflicts based on execution
parallelism.

5 Computational hardness of executability and reachability checking

Precondition and effect conflicts are “local” in the sense that they concern only the
respective pair of nodes; whether or not some pair of nodes has a conflict does not
influence whether or not some other pair has. This is not so for reachability and
executability. If a node n is not reachable, then neither is any other node that can be
reached only on paths through n. If a node n is not executable, then it can be traversed
only by a particular subset of the execution paths that reach it, and hence some later
node may become unreachable, or may become executable. In that sense, reachability
and executability are more “global” phenomena. As we shall see now, this leads to
some quite unfavorable properties regarding computational complexity. We consider
four different decision problems:

(1) Is P executable, i.e., are all nodes n ∈ N executable?
(2) Is a particular n ∈ N executable?
(3) Is P reachable, i.e., are all nodes n ∈ N reachable?
(4) Is a particular n ∈ N reachable?

The difference between (1) and (2) is that, for (2), we admit the case where some
other node n′ ∈ N is not executable. Similar for (3) and (4). Most of the time, this
difference does not have an impact on computational complexity. But in one partic-
ular case, (2) is coNP-hard while (1) is in P. That case is the class of what we have
termed “basic processes”:

Definition 7 Let P = (N,E,λ,Ω,α), Ω = (P, T), be an annotated process graph.
P is basic if α is undefined for all edges and loop nodes, and T is binary.

In words, basic processes restrict the ontology axioms to mention at most two
literals in each clause, and they restrict the annotations to not define any conditions
for choosing xor branches or for determining whether or not a loop is repeated. As
per Definition 4, this means that xor-branches are fully non-deterministic, i.e., the
execution is free to choose which branch to take. Likewise, the execution is free to
choose whether to repeat a loop or exit it. Intuitively, this simplifies the verification
problem because the available choices are the same regardless of what the logical
state is. The reason why binary clauses are easier for the verification is that, with

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 295

axioms consisting only of such clauses, the outcome of an activity—i.e., the logical
state after execution of the activity—can be computed in polynomial time. The latter
is obviously not the case for general clauses, and neither, as we shall see, is it the case
for Horn clauses. We will get back to these issues below. For the moment, recall that
binary clauses are a non-trivial language that can be used to specify many common
ontology properties, cf. Sect. 4.

We prove in the remainder of this section that all the decision problems (1)–(4) are
hard for any sensible generalization of basic processes, and that decision problems
(2)–(4) are hard even for basic processes. We prove in the next section that decision
problem (1) for basic processes is in P. In that sense, basic processes form a maximal
tractable class for this kind of verification. Our focus is exclusively on this fact, i.e.,
for the hard cases we prove only hardness and do not consider membership. Estab-
lishing the precise complexity classes of the various problems is a topic for future
research.

We now formally state the hardness results, and explain what the sources of com-
plexity are. We first consider the decision problems relating to executability, then
those relating to reachability.

Theorem 2 Assume a sound annotated process graph P = (N,E,λ,Ω,α) without

effect conflicts, where N \ {n0, n+} ⊆ NT ∪ NXS ∪ NXJ ∪ NL, eff(n0) is a complete

assignment, all predicates have arity 0, and either P is atomic or for all n ∈ NL we

have Nλ(n) = {n
λ(n)
0 , n

λ(n)
+ }. The following problem is �

p

2 -hard even if P is known to

be reachable:

– Is P executable, or is n ∈ N executable, given that P is basic except that T may

involve arbitrary clauses?

The following problems are coNP-hard even if P is known to be reachable:

– Is P executable, or is n ∈ N executable, given that P is basic except that T may

involve arbitrary Horn clauses?
– Is P executable, or is n ∈ N executable, given that P is basic except that con(e)

may be defined for some e ∈ E?
– Is P executable, or is n ∈ N executable, given that P is basic except that con(n)

may be defined for some n ∈ NL?
– Is n ∈ N executable, given that P is basic?

Proof Sketch: The first two results, �
p

2 -hardness when T is unrestricted and coNP-
hardness when T is Horn, are entirely due to the complexity of computing activity
outcomes, i.e., determining whether or not a particular literal is necessarily true after
a task node has been executed. The control-flows used in the proof constructions are
trivial, with only 3–4 nodes arranged in a sequence. The hardness is proved via the
design of a particular set of axioms, and of the task node preconditions and effects.
Those constructions are adapted from the proofs given by Eiter and Gottlob [28] to
show that “belief update” is �

p

2 -hard (coNP-hard) for unrestricted (Horn) formulas.
In both cases, the axioms take a rather intricate form, assuming as input a Quantified
Boolean Formula (QBF) formula ψ = ∀X.∃Y.φ[X,Y] for the unrestricted case, and
a QBF formula ψ = ∀X.φ[X] for the Horn case. One task node nt has a single effect

 Author's personal copy

296 Distrib Parallel Databases (2010) 27: 271–343

Fig. 3 Schematic illustration of 3SAT reduction for Theorem 2

literal t , and the following task node n has a precondition q . The constructions are
such that ψ is valid iff q is necessarily true after nt . The latter is, of course, the case
iff n is executable.

Intuitively, the source of complexity in both cases is the need to figure out what
is true in all possible “minimal” changes to the previous state. Any candidate for
an outcome state can be tested for minimality easily, but the number of candidates is
exponential. This complexity combines unfavorably with the complexity of reasoning
about the axioms, and hence we get �

p

2 (rather than coNP) for unrestricted clauses
and coNP(rather than P) for Horn clauses.

For all the other results, essentially the same construction can be used, reduc-
ing the complement of 3SAT to the respective decision problem. Figure 3 shows an
illustration. The construction assumes as input a CNF formula ψ . It starts with a
parallel split/join including one xor split/join for every variable pi in the CNF for-
mula, allowing the execution to set p to be either true or false. In this way, we allow
to generate all possible truth value assignments. Afterwards, we filter those assign-
ments, removing all but those that comply with all clauses in ψ . The construction
used for doing so is easiest to understand for the case of xor splits annotated with
conditions. For every clause C = {l1, l2, l3} in the formula, we include an xor split
split(C) with four outgoing branches. Three of those are annotated with the condi-
tion li , for li ∈ {l1, l2, l3}, and lead to the xor split for the next clause. The fourth edge
is annotated with ¬l1 ∧¬l2 ∧¬l3, and leads directly to a final xor join just in front of
the end node. The node marked g in Fig. 3 lies at the end of the sequence of xor splits
split(C), and is hence reachable if and only if the CNF is satisfiable. To obtain our
proof for executability, we now simply introduce a new variable q , obtain a formula
ψ ′ by inserting q into every clause, perform our construction for ψ ′, and make q a
precondition of the node marked g. Then, g is executable iff q is true in all satisfying
assignments to ψ ′, which is the case iff ψ is unsatisfiable. Note that g is definitely
reachable because we are free to set q to be true.

If we are not allowed to annotate the outgoing edges of xor splits, then we have to
find a replacement for those annotations. If we are allowed to annotate loop nodes,
then we can replace the xor edge conditions with loops. Where before we had an
outgoing edge annotated with li , we now have a loop with condition ¬li , meaning
that the loop will be exited, and hence the path will be traversed, only if li is true.
For xor edges annotated with a conjunction of literals, i.e., with ¬l1 ∧ ¬l2 ∧ ¬l3, the
construction is only slightly more complicated.

Finally, consider the case where we may neither annotate xor edges not loop nodes,
but our decision problem is to figure out whether some particular node n ∈ N is

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 297

executable. This decision problems allow the presence of other task nodes n′ that are
not executable. We can use such task nodes to filter truth value assignments, much in
the same way as we did before. Indeed, wherever previously we had an xor outgoing
edge e annotated with condition φ, we replace e with a construction e′ → n → e′′

where pre(n) = φ. In this way, the execution paths that pass through e are the same as
those that pass through e′′. The only difference is that, in the new construction, some
task nodes are definitely not executable—e.g., the task nodes encoding the conditions
of the first clause are not, since any precondition li they have may be invalidated by
setting the respective variable to the opposite value.

All of the constructions are made so that, trivially, all nodes are reachable. In that
sense, the hardness of executability does not depend on the hardness of reachability.
All the constructions comply with the restrictions mentioned in the claim (in par-
ticular, the parallel split/join in Fig. 3 can be replaced by a sequence). Except for
the result regarding hardness of executability checking in basic processes, it does not
matter to the constructions whether we ask for executability of a particular node, or of
the whole process. Note that the last three results hold even for empty T , i.e., without
any clauses in the ontology. �

Note that the last proof argument, i.e., the one regarding executability of a par-
ticular node n ∈ N in a basic process (decision problem (2) in the above), does not
work if we ask whether all nodes are executable (decision problem (1) in the above).
In such a setting, we can no longer use task nodes to “filter” execution paths, like we
did here. Indeed, as indicated, decision problem (1) will turn out to be solvable in
polynomial time, for basic processes.

Our hardness results for reachability are closely related to those for executability.

Theorem 3 Assume a sound annotated process graph P = (N,E,λ,Ω,α) without

effect conflicts, where N \ {n0, n+} ⊆ NT ∪ NXS ∪ NXJ ∪ NL, eff(n0) is a complete

assignment, all predicates have arity 0, and either P is atomic or for all n ∈ NL we

have Nλ(n) = {n
λ(n)
0 , n

λ(n)
+ }. The following problem is �

p

2 -hard:

– Is P reachable, or is n ∈ N reachable, given that P is basic except that T may

involve arbitrary clauses?

The following problems are NP-hard:

– Is P reachable, or is n ∈ N reachable, given that P is basic except that T may

involve arbitrary Horn clauses?
– Is P reachable, or is n ∈ N reachable, given that P is executable, and basic except

that con(e) may be defined for some e ∈ E?
– Is P reachable, or is n ∈ N reachable, given that P is executable, and basic except

that con(n) may be defined for some n ∈ NL?
– Is P reachable, or is n ∈ N reachable, given that P is basic?

Proof Sketch: Like for executability, the first two results, �
p

2 -hardness when T is
unrestricted and NP-hardness when T is Horn, are entirely due to the complexity
of computing activity outcomes, i.e., determining whether or not a particular lit-
eral is necessarily true after a task node has been executed. The constructions are

 Author's personal copy

298 Distrib Parallel Databases (2010) 27: 271–343

essentially the same as in the proof of Theorem 2. We consider a QBF formula
ψ = ∀X.∃Y.φ[X,Y] for the unrestricted case, and a QBF formula ψ = ∀X.φ[X]
for the Horn case. We still have the task node nt , and the following task node n. The
only difference is that, now, n has a precondition ¬q , rather than q . Then, ψ is not
valid iff q is not necessarily true after nt , which is of course the case iff ¬q might
be true after nt . Hence at least one execution path can traverse through n iff ψ is
not valid, and so the node behind n is reachable iff ψ is not valid. Importantly, n is
not executable: irrespectively of the precise form of ψ we can construct a path where
n’s incoming edge is active but ¬q is false. In that sense, this proof of hardness for
deciding reachability relies on the hardness of executability.

If we are allowed to annotate xor outgoing edges with conditions, then we can
use exactly the same proof argument as used for the respective result of Theorem 2,
except that we do not have to introduce the new variable q—as already stated in the
proof of Theorem 2, the node marked g in Fig. 3 is reachable iff the CNF formula ψ

is satisfiable. If we are allowed to have annotated loop nodes or non-executable task
nodes, then, as before, we can use those to simulate xor conditions. Note here that,
in the constructions using xor/loop conditions, the process is executable, i.e., those
results do not rely on the hardness of executability.

All the constructions comply with the restrictions mentioned in the claim. In none
of the constructions does it matter whether we ask for reachability of a particular
node, or of the whole process. Note that the last three results hold even for empty T ,
i.e., without any clauses in the ontology. �

As discussed in the proof sketch, for those results where executability is not ex-
plicitly mentioned in Theorem 3, the proof of hardness for deciding reachability is
due to the hardness of deciding executability. This is a necessity, not a coincidence
of our proof arguments. If the process in question is executable, then reachability
follows trivially. Namely, in the respective classes of processes, no conditions are
allowed at xor splits and at loops. With Proposition 2, this means that executability
implies reachability. Hence any reduction of a computationally hard problem to these
decision problems must make use of non-executable task nodes.

Table 2 provides an overview of our complexity results. This is rather dominated
by intractable cases. From a practical perspective, these results mean that, for all
the listed classes of processes, if we wish to build technology able to automatically
verify any process in the class, then (unless P = NP) that technology will have to
have runtime that is worst-case exponential in the size of the process. While that does
not necessarily mean that the technology will be useless, obtaining sufficiently quick
response times is certainly a challenge. We get back to this in Sect. 9.

Note that all the hardness results hold even without effect conflicts. The same re-
striction applies also to our positive result, i.e., our polynomial algorithm works cor-
rectly only when there are no effect conflicts. Hence, in the debugging of a process
model under creation, effect conflicts should be found and removed first, and there-
after executability should be checked. Our positive result ensures that—to ascertain
or disprove correctness of the overall process—this last step can be performed effi-
ciently. We will now discuss that result in detail.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 299

Table 2 Overview of our complexity results. The results for deciding whether n ∈ N is reachable are the
same as those for deciding whether P is reachable. All results are valid for (only for, in the case of the
membership result) processes without effect conflicts. For all hardness results, we can further impose that
N \ {n0, n+} ⊆ NT ∪ NXS ∪ NXJ ∪ NL , that eff(n0) is a complete assignment, that all predicates have

arity 0, and that either P is atomic or for all n ∈ NL we have Nλ(n) = {n
λ(n)
0 , n

λ(n)
+ }. Every hardness result

for executability holds even if P is known to be reachable; the same is true vice versa for the reachability
results, except those marked (*), where executability implies reachability by Proposition 2

Class of P P exec? n ∈ N exec? P reach?

Basic but T unrestricted �
p
2

-hard �
p
2

-hard �
p
2

-hard (*)

Basic but T Horn coNP-hard coNP-hard NP-hard (*)

Basic but con(e) may be def coNP-hard coNP-hard NP-hard

Basic but con(n) may be def coNP-hard coNP-hard NP-hard

Basic in P coNP-hard NP-hard (*)

6 Polynomial-time executability checking for basic processes

As stated, we now presume that the process under consideration is basic, and that
it does not contain any effect conflicts. We design a polynomial-time algorithm de-
termining whether or not the process is executable. Using this verification test as a
debugging facility, the process modeler can remove flaws from the process until it is
executable. Then, by Proposition 2, the process is also reachable, and thus has been
established to be correct with respect to all four verification tasks considered herein.

Our verification algorithm computes, for every edge e in the process, what we
call e’s state intersection: the literals that must hold true whenever e carries a token.
Formally:

S I (e) :=
⋂

s∈S,ts (e)>0

s

where a state is written as the set of literals it satisfies, i.e., s = {l ∈ P [C] | is |= l}.
Note that executability of a task node n is equivalent to pre(n) ⊆ S I (in(n)).

The state intersections are computed by a fixpoint algorithm that performs prop-
agation steps over the process structure, maintaining for every edge e a set I (e) of
literals. We call the algorithm I -propagation. Its formal definition may be a little hard
to read at first, but its underlying ideas are straightforward. At any point during the
execution of the algorithm, I (e) is an approximation of S I (e). The approximation is
aimed to be sound, i.e., to guarantee that literals outside of I (e) are not contained in
e’s state intersection.10 At its start, I -propagation assigns a trivially sound approxi-
mation: I (e0) is set to eff(n0), i.e., the effect of the start node n0; for all other edges
e, I (e) is set to P [C], i.e, the set of all possible literals. Thereafter, the propagation
commences. Each propagation step corresponds to a simple form of local reason-
ing about the consequences of (hypothetically) executing a particular process node
n, determining which literals may be invalidated by such execution. This results in

10That guarantee is not actually given in general, but is given under the conditions formally stated below
in Theorem 4. I -propagation is easiest to understand by thinking of it as a sound approximation.

 Author's personal copy

300 Distrib Parallel Databases (2010) 27: 271–343

a new approximation I ′(out(n)) of the state intersection of n’s outgoing edge. That
new approximation is, in general, unrelated to the previous one I (out(n)): neither is
guaranteed to contain the other. That is to say, the new approximation may (A) be
tighter than the previous one, i.e., I (out(n)) \ I ′(out(n)) �= ∅. But also, due to loop-
ing behavior, the new approximation may (B) be less tight than the previous one, i.e.,
I ′(out(n)) \ I (out(n)) �= ∅. We will give examples for (A) and (B) below. To obtain
the best of both approximations, we simply intersect them, i.e., we update our ap-
proximation of S I (out(n)) to be I (out(n)) ∩ I ′(out(n)). Clearly, with this updating
rule, the sets I (e) shrink monotonically over the propagation steps. The propagations
are performed until a fixpoint is reached, i.e., until no more literals can be removed.

A detailed explanation of I -propagation, including a number of examples, will
be given below. Now, we give the formal definition. For the remainder of the paper,
given a node n we write eff(n) := {l ∈ P [C] | T ∧ eff(n) |= l} if α(n) is defined; else
we set eff(n) := ∅.

Definition 8 Let P = (N,E,λ,Ω,α) be an annotated process graph. Say α uses
the constants C. We define the function I0 : E
→ 2P [C] as I0(e) = eff(n0) if e =
out(n0), I0(e) = P [C] otherwise. Let I, I ′ : E
→ 2P [C], n ∈ N . We say that I ′ is the
propagation of I at n iff one of the following holds:

1. n ∈ NPS ∪ NXS and

I ′(e) =

{

I (e) ∩ I (in(n)) e ∈ out(n)

I (e) otherwise

2. n ∈ NPJ and

I ′(e) =

{

I (e) ∩ (
⋃

e′∈in(n) I (e′)) e = out(n)

I (e) otherwise

3. n ∈ NXJ and

I ′(e) =

{

I (e) ∩ (
⋂

e′∈in(n) I (e′)) e = out(n)

I (e) otherwise

4. n ∈ NT and

I ′(e) =

⎧

⎨

⎩

I (e) ∩ (eff(n) ∪ (I (in(n)) \ ¬eff(n))) e = out(n)

I (e) \ ¬eff(n) e ‖ in(n)

I (e) otherwise

5. n ∈ N
Q
L so that λQ(n) = Q′ and

I ′(e) =

{

I (e) ∩ I (in(n)) e = e
Q′

0
I (e) otherwise

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 301

Fig. 4 Outcome of I -propagation on a part of the example process from Fig. 2. The literals lossEvent,
claim, claimRecorded, and claimValidated are present in all shown sets, and are omitted

6. n = n
Q
+ so that Q = λQ′

(n′) and

I ′(e) =

⎧

⎨

⎩

I (e) ∩ I (in(n)) e = eQ′

0
I (e) ∩ I (in(n)) e = out(n′)

I (e) otherwise

If I ′ is the propagation of I at n, then I ′ is valid, written I
n

→ I ′, iff I �= I ′.

An I -propagation path is a sequence I0
n1
→ I1

n2
→ I2 . . . Ik−1

nk
→ Ik so that, for all

0 ≤ j < k, Ij+1 is the valid propagation of Ij at nj+1. If I ∗ is the endpoint of an
I -propagation path, and if I ∗ is a fixpoint, i.e., for all nodes n the propagation of I ∗

at n is not valid, then I ∗ is called an I -propagation result.

Figure 4 shows the outcome of I -propagation on part of our example process. The
literals lossEvent(c), claim(c), claimRecorded(c), and claimValidated(c) are true for
all shown edges, hence they are omitted in the figure. We now explain the various
propagation steps of Definition 8 in detail. The cases discussed in the following cor-
respond directly to the cases in Definition 8.

Splits: If n is a parallel split or an xor split, the propagation simply forwards I from
the incoming edge to every outgoing edge. This is because splits do not change the
state of the world. Note in this context that the outgoing edges of the parallel split
in Fig. 4, i.e., the incoming edges of nodes 14 and 15, have different I sets. This is
due to the effect of node 15: propagation over that node affects the incoming edge
of node 14 as per the second line of Definition 8 case 4; see also the explanation of
task nodes below.

Parallel joins: Say e′ is n’s outgoing edge. We intersect I (e′) with the union of the
sets I (e) for all of n’s incoming edges e. This is justified per the assumed absence of

 Author's personal copy

302 Distrib Parallel Databases (2010) 27: 271–343

Fig. 5 I -propagation over an xor join on a part of the example process from Fig. 2, showing only the
literals for claims in terms of acceptance, rejection, rejection approval, and rejection disapproval. Left:
directly on the xor join of Fig. 2. Right: a variant where the original xor join has been split up to illustrate
the behavior at xor joins

effect conflicts. A parallel join can only fire if there is a token on all of its incoming
edges; for all such cases we know that the literals I (e) of these edges hold. Since
there are no effect conflicts, the sets I (e) do not contradict each other. Hence, for a
literal l to be guaranteed to hold after execution of n, it suffices if l is guaranteed to
hold on one of the incoming edges. (In the presence of effect conflicts, the outcome
of parallel branches depends on the order of execution.) See the parallel join in Fig. 4
(subsequent to steps 14 and 15) for illustration: the I sets of the 2 incoming edges
are combined, cf. benefitPaid(b, c) and claimClosed(c).

Xor joins: We set I (e′) to the intersection of the sets I (e) for all of n’s incoming
edges. This is adequate because a literal l holds after an xor join only if all paths
leading to the join guarantee that l holds (any one of the paths may be executed).11

Figure 5 shows this behavior in two variants, for the part of the process including
the sub-graph’s end node 16 and the preceding xor join. On the left-hand side, no
literal is in the intersection of the I sets of all three edges, and hence the I set of
the outgoing edge is empty. On the right-hand side, for better illustration a variant
is shown where the single xor join has been split up into two xor joins. In that
variant, ¬claimAccepted(c) holds on both incoming edges of the first join node,
and hence holds also on the outgoing edge of that node. Note that this is not the
case for claimRejected(c), because, due to the ontology axioms in our example,
claimRejectionDisapproved(c) implies ¬claimRejected(c).

Task nodes: These are the most complicated propagation steps. By effn we denote
n’s explicit and implicit effects, containing not only eff(n) but also all its implica-
tions together with T . Note here that, if T consists of binary clauses and predicate

11Note here that we throw away any information we might have regarding what happened only in some
of the alternative executions (consider Fig. 5). For executability checking, that information is irrelevant.
It is an open topic to explore extended algorithms maintaining more information. Note that the size of
such information is likely to grow exponentially in the number of consecutive xor joins, unless clever
restrictions or approximations are made.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 303

Fig. 6 I -propagation across an
end node, in an illustrative toy
example

arity is fixed, then effn can be computed in polynomial time. Say n has the incom-
ing edge e and the outgoing edge e′. Three different actions need to be performed.
(1) We write effn into I (e′). (2) We copy every literal l from I (e) to I (e′), unless ¬l

is already present in I (e′). (3) We go through the list of all edges e′′ that are parallel
to e (by M-propagation we know which edges to consider), and remove from I (e′′)

all literals l where ¬l is contained in effn.
(1) and (2) are direct consequences of the semantics of annotated task nodes, cf.
Sect. 2.2. (1) must be done simply because any effect forces a direct change on the
world. (2) must be done since the world is required to change minimally, i.e., if a
property is true before and is not affected, then it is still true. (3) deals with the
case where an edge e′′ parallel to e′ inherited a literal l which is in conflict with
effn (l cannot be established by the effect of a task node connected to e′′ since that
would be an effect conflict). In this situation, l is not guaranteed to hold whenever
e′′ carries a token: n may be fired, leading to ¬l. This is best understood using an
example. Consider Fig. 4. The task node n we consider is step 15, “Operate outgo-
ing payment”. The preceding parallel split, let’s denote it by n′, has two outgoing
edges. One of those leads to n; the other one, which we denote with e′′, leads to
step 14, “ Close claim”. Say n′ fires, putting a token on both of the edges. In this
situation, we know due to the execution of step 13, “Record benefit payment”, that
benefitPosted(b, c) holds. Due to T , ¬benefitPaid(b, c) is also certain to hold. Ac-
cordingly, I -propagation over n′ (as explained above) keeps these literals in I (e′′).
However, say n fires next. Then e′′ still carries a token, but both literals have been
inverted. Hence benefitPosted(b) and ¬benefitPaid(b) may be false when e′′ car-
ries a token. The two literals must thus be removed from I (e′′). (3) does that. The
annotation of e′′ in Fig. 4 shows the outcome.

Loop nodes: For a loop node n with λ(n) = Q, we intersect I (e
Q
0) with I (in(n)).

This is adequate because an execution of the process will always enter into a loop,
due to the defined do-while-semantics.

End nodes of sub-graphs: At an end node of a sub-graph, the loop can either be re-
peated or exited. In basic process graphs, this decision is non-deterministic. We thus
intersect both I (out(n′)) and I (e

Q
0) with I (e

Q
+), where λ(n′) = Q.

The behavior of this procedure is illustrated with a toy example in Fig. 6: a loop
node (1, n) contains a sub-graph (Q) with only a start (2), task (3, n′), and end
node (4). I (in(n)) comprises two literals G,H , which are copied onto I (e

Q
0). The

task node (3) has the effect eff(n′) = {¬G,F }, thus replacing G with ¬G on its
outgoing edge, and adding F . This results in the set I = {F,¬G,H } at the outgoing

 Author's personal copy

304 Distrib Parallel Databases (2010) 27: 271–343

edge of n′; in what follows we refer to this set as I+. The propagation over the end
node of the loop copies, as described above, I+ to the start edge e

Q
0 of the loop—

more precisely, I+ is intersected with I (e
Q
0), yielding a changed I (e

Q
0) (denoted

as I ′ in Fig. 6). Notably, bot (A) and (B) from the discussion above Definition 8
can be observed, i.e., neither I+ nor I (e

Q
0) are a priori tighter approximations of

S I (eQ
0). As for (A), I+ serves to remove further invalid literals from I (eQ

0): G was
beforehand presumed to be a member of the state intersection, which it is not. As
for (B), I+ contains the additional literals ¬G,F which I (eQ

0) already concluded

to not be contained in S I (e
Q
0).

It is important to note here that step (2) for task nodes can be done in such a
simple way only because T is restricted to disjunctions of at most 2 literals. The
minimal change semantics as per Definition 4 can get quite intricate in the pres-
ence of more complex T —cf. the proofs of Theorems 2 and 3. For illustration,
reconsider Example 3. We execute a task node with effect claimRejected(c) in a
state s where both claimAcceptedRevA(c) and claimAcceptedRevB(c) hold. Sup-
pose that the two facts necessarily hold prior to n, i.e., claimAcceptedRevA(c),

claimAcceptedRevB(c) ∈ I (in(n)). As discussed in Example 3, execution of n inval-
idates either claimAcceptedRevA(c) or claimAcceptedRevB(c). In particular, after
n, neither of the two facts is guaranteed to hold—although their opposites are not
implied by T ∧ eff(n)! Step (2) does not recognize this, and wrongly includes both
facts into I (out(n)). Situations like this (and other more complicated situations) can-
not appear when T consists of binary clauses only; hence for basic process graphs
(1) and (2) suffice.

We now analyze the properties of I -propagation formally. We first observe that I -
propagation yields a unique result, terminates in polynomial time, and is correct pro-
vided the process is executable. The reader may be alerted at this point since, as stated
above, we wish to use I -propagation for testing whether the process is executable.
We will show below that this is indeed possible. The analysis of I -propagation is
more natural, and easier to understand, when first considering the more restricted
case where executability holds a priori.

Theorem 4 Let P = (N,E,λ,Ω,α) be an executable basic sound annotated

process graph without effect conflicts. Say we run I -propagation on P . There ex-

ists exactly one I -propagation result I ∗. For all e ∈ E , S I (e) = I ∗(e). With fixed

arity, the time required to compute I ∗ is polynomial in the size of P .

Proof Sketch: The main result is correctness. First, we prove that, provided P is
executable and basic, it does not affect the state intersections to remove T and replace
each eff(n) with eff(n). The behavior for a single state and task node is the same in
both cases because, intuitively, eff(n) captures all forced consequences of T , and with
binary clauses every consequence of T is forced. The claim for the overall process
follows because the process structure is not changed, and logical states do not affect
the possible token executions when there are no xor/loop conditions and when all
task nodes are executable. We can hence, without loss of generality, assume that T is
empty (we get back to this below the proof).

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 305

Our core argument focuses on the literals that are “deleted” during I -propagation,
i.e., the literals l and edges e for which there exists an I -propagation step so that,
after that step, l �∈ I (e). We show soundness and completeness of the literal deletion:
for soundness, if l is removed at e then there exists a reachable state s with ts(e) > 0
and s �|= l; vice versa for completeness.

Completeness is shown as follows. Given any execution path s0
n1
→ s1 · · · sk−1

nk
→

sk , we construct a sequence I1, . . . , Ik by performing I -propagation of Ij at nj if
that is possible, i.e., if it results in any changes, and setting Ij+1 := Ij otherwise.
Obviously, a sub-sequence of I1, . . . , Ik corresponds to an I -propagation path. We
show by induction over j that, for all e where tsj (e) > 0, we have sj |= Ij (e); in
particular, if sj �|= l then l �∈ Ij (e). The proof distinguishes the different kinds of
nodes nj . For example, say nj is a task node, and tsj+1(e) > 0. Then either e =
out(nj), or e ‖ out(nj). In the former case, we have the induction hypothesis for
in(nj) because we must have tsj (in(nj)) > 0; in the latter case we have that property
for e itself. In both cases, it is easy to see that sj+1 |= Ij+1(e) because the propagation
step over nj deletes all literals that become false when executing nj .

Soundness is more tricky to prove. We assume an I -propagation path I0
n1
→ I1 · · ·

Ik−1
nk
→ Ik . We prove by induction over j that, for every e and l where l �∈ Ij (e),

there exists an execution path ending in a state s so that ts(e) > 0 and s �|= l. Again,
we distinguish the different kinds of nodes nj . The most tricky kind are parallel
joins. By the definition of I -propagation over parallel join nodes, we either have (a)
l �∈ Ij (e) or (b) e = out(nj) and for every ei ∈ in(nj) : l �∈ Ij (ei). In case (a), the
induction hypothesis shows the existence of an execution path as desired, so there is
nothing to prove. For case (b), we need to construct a reachable state s′ where s′ �|= l

and ts′(ei) > 0 for all ei ∈ in(nj); in s′, we can execute nj and are done. However,
the induction hypothesis gives us such a state only for every individual ei ∈ in(nj).
For each ei ∈ in(nj), we have a state si with tsi (ei) > 0 and si �|= l. We prove in a
separate lemma that, for every set of edges ei that are pairwise parallel and where
such states si exist, we can construct a state s′ as desired. The proof is by induction
over the process structure. The lemma makes use of the absence of effect conflicts:
if l ∈ eff(n), l ∈ eff(n′) but l �∈ S I (out(n)), l �∈ S I (out(n′)) due to effect conflicts,
then we may never be able to falsify l at both e and e′ together (an example for this
is given below this proof sketch).

The soundness arguments for the other kinds of nodes nj are similar but have a
more direct connection between induction hypothesis and claim. For xor split/end
nodes, to construct the desired execution paths we exploit the fact that, in a basic
process, an execution path may choose any outgoing edge/may choose to repeat or
exit the loop; similar for executability and task nodes.

Uniqueness follows directly from correctness. As for computation time, the main
observation consists in an upper bound for the number of propagation steps performed
by I -propagation until a fixpoint I ∗ is reached. Denote with ‖I‖ the total number
of literals annotated by I , in sum over all edges in the process. Since I -propagation
steps always intersect their outcome with the previous outcome, and since every valid
step must make at least one change, it is obvious from Definition 8 that whenever

we have I
n

→ I ′ we must have ‖I‖ > ‖I ′‖. If ‖I ′‖ = 0, then certainly a fixpoint is
reached. Obviously ‖I0‖ ≤ |E | ∗ |P [C]|, so this is the desired upper bound. With

 Author's personal copy

306 Distrib Parallel Databases (2010) 27: 271–343

fixed arity, |P [C]| is O(|P | ∗ |C|), where C is the set of constants mentioned by
α. Overall, we can derive that the runtime of I -propagation is O(|P [C]|3 + |N | ∗
|P [C]| ∗ maxeff +(|P [C]| ∗ maxE +|E | ∗ |P [C]|) ∗ |E | ∗ |P [C]|), where maxeff is the
maximum number of effect literals any task node has, and maxE is the maximum
number of incoming or outgoing edges any node has. �

Note that the runtime is low-order polynomial. If we assume that |P | is fixed, then
the runtime is roughly cubic in the size of the process graph.

It may seem odd that we can assume an empty T without loss of generality. It is
important to note here that this holds only for the purpose of executability checking.
When removing T (and accordingly extending effects), the space of reachable states
does not stay the same, because T imposes restrictions on how particular pairs of
literals can be combined. However, that does not affect the state intersections.

To illustrate why we need to disallow effect conflicts, consider the following ex-
ample. We have a parallel split node nsplit, a parallel join node njoin, and four task
nodes n1¬p , n2¬p , n1p , n2p where each ni¬p has the effect ¬p and each nip has
the effect p. The edges are (nsplit, n1¬p), (nsplit, n2¬p), (n1¬p, n1p), (n2¬p, n2p),
e1 := (n1p, njoin), e2 := (n2p, njoin). That is, we have two parallel branches, on each
of which p is first made false and then made true. Consider the edges going into the
join node, e1 and e2. Even though e1 is the outgoing edge of a task node with ef-
fect p, we have p �∈ S I (e1) because n2¬p may be executed while e1 still carries a
token—note here the effect conflict between n1p and n2¬p . The same is true of e2,
i.e., p �∈ S I (e2). So for each ei there exists a reachable state where ei is active and p

is false. However, there does not exist a reachable state where both ei are active and p

is false! If both ei are active then either n1p or n2p was executed last, so p is necessar-
ily true. In consequence, p ∈ S I (out(njoin)); since p �∈ S I (e) for any e ∈ in(njoin),
this means that, in the presence of effect conflicts, the state intersection of the out-
going edge of a parallel split is no longer a function of the state intersections of the
incoming edges. It is currently an open issue whether this problem can be overcome
by maintaining supplementary information during I -propagation, in addition to the
sets I (e); see also the outlook in Sect. 9.

Theorem 4 presumes that the process is executable. For checking whether that is
the case, of course we cannot make that assumption. The key observation here is
that, if the process is not executable, and even if xor/loop conditions are defined, the
outcome of I -propagation is conservative.

Lemma 1 Let P = (N,E,λ,Ω,α) be an annotated process graph without effect

conflicts, which is basic except that α may be defined for edges and loop nodes. Say

we run I -propagation on P , and I ∗ is an I -propagation result. Then, for all e ∈ E ,
S I (e) ⊇ I ∗(e).

Proof Sketch: This is surprisingly easy to show by considering the modified process
P0 = (N,E,λ,Ω,α0) which is like P except that all preconditions and all xor/loop
conditions have been removed. Obviously, Theorem 4 applies to P0 and so in par-
ticular we get completeness of literal deletion, i.e., S I P0(e) ⊇ I ∗

0 (e) for all e ∈ E ,

where S I P0(e) is the state intersection for P0, and I ∗
0 is an I -propagation result for

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 307

P0. The claim then follows because the execution paths of P are a subset of those
of P0; hence the state intersections in P are supersets of the respective ones in P0;
hence S I (e) ⊇ S I P0(e) ⊇ I ∗

0 (e). �

Putting Theorem 4 and Lemma 1 together, we immediately get our two main re-
sults regarding executability checking.

Theorem 5 Let P = (N,E,λ,Ω,α) be a basic annotated process graph without

effect conflicts. Say we run I -propagation on P , and I ∗ is an I -propagation result.
Then P is executable iff for all n ∈ NT ∪ {nP

+ } : pre(n) ⊆ I ∗(in(n)).

Proof Sketch: First, clearly P is executable iff, for every n ∈ NT ∪ {nP
+ } : pre(n) ⊆

S I (in(n)). If P is executable, then Theorem 4 applies, meaning that I ∗(in(n)) =
S I (in(n)) and hence pre(n) ⊆ I ∗(in(n)). If P is not executable, then Lemma 1
applies, meaning that I ∗(in(n)) ⊆ S I (in(n)). So if l ∈ pre(n) \ S I (in(n)), then
l ∈ pre(n) \ I ∗(in(n)) and hence pre(n) �⊆ I ∗(in(n)). �

Theorem 6 Let P = (N,E,λ,Ω,α) be an annotated process graph without effect

conflicts, which is basic except that α may be defined for edges and loop nodes.
Say we run I -propagation on P , and I ∗ is an I -propagation result. Then, for all

n ∈ NT ∪ {nP
+ }, if pre(n) ⊆ I ∗(in(n)) then n is executable.

Proof Sketch: Say that n is not executable. Then l ∈ pre(n) \ S I (in(n)), for some l.
With Lemma 1 we have I ∗(in(n)) ⊆ S I (in(n)). Hence l ∈ pre(n) \ I ∗(in(n)), and
pre(n) �⊆ I ∗(in(n)) in contradiction. �

Theorem 5 means that, for basic processes, we can use I -propagation for exe-
cutability checking, as desired. We simply run I -propagation up to its fixpoint and
check whether all precondition literals remained at the respective edges. Theorem 6
constitutes a weaker kind of verification, providing a sufficient but not necessary test
for correctness. Note, however, that this test is applicable to individual task nodes,
not only to the overall process. If, for any individual task node n, pre(n) ⊆ I ∗(in(n)),
then n is executable. This result holds (provided T is binary) even in the presence of
xor conditions, loop conditions, and (other) non-executable task nodes. Hence, even
under such circumstances, we can use Theorem 6 to ascertain the correctness of some
nodes, and to point out potential bugs regarding others.

7 Prototypical implementation

The presented work is implemented as a back-end prototype that is used in three
front-end applications at SAP Research. The back-end component implements the
algorithms devised herein, on a generic level as presented. The front-end components
are integrated prototypes with graphical user interfaces tailored for specific scenarios.

The back-end prototype is implemented in Java. The implementation is compara-
tively simple: the main algorithms, i.e., M-propagation and I -propagation, each con-
sist only of a few hundred lines of code. Even without any code optimizations, the

 Author's personal copy

308 Distrib Parallel Databases (2010) 27: 271–343

backend component performs quite well. For example, a non-trivial process with 40
nodes and 46 edges was processed in 0.2 seconds on a Pentium M CPU running at
1.6 GHz, with negligible memory consumption. Considering in addition to this that
the worst-case behavior is low order polynomial in the number of nodes and edges,
performance is unlikely to be problematic in typical real-world settings.

Two of the front-end prototypes use our verification methods within a process
modeling environment, in an online setting where the modeler frequently checks for
bugs, as described in Sect. 1.2. Note that it is of paramount importance that the an-
notation function α as per Definition 3 is allowed to be partial: otherwise, we would
force the modeler to completely annotate every task in the process up-front, rather
than adding the annotations as needed and useful.

Presuming that the process in question is basic as per Definition 7, based on our
techniques the modeler debugs a process as follows: (1) find and remove any precon-
dition/effect conflicts; and (2) thereafter remove any bugs leading to non-executable
task nodes. Once (1) and (2) are completed, reachability follows by Proposition 2.
Hence, at that point, the resulting process is correct with respect to all four verifica-
tion tasks identified herein.

In what follows, we give a brief outline of the three front-end prototypes, in turn.
We conclude the section with a discussion of the practical difficulty of writing on-
tologies.

7.1 Maestro

Maestro is a process modeling tool, developed at SAP Research, for the BPMN no-
tation. Maestro is mainly used for early prototyping. The tool has been extended to
allow for semantic annotation, as proposed in [12]. It has been integrated with ser-
vice discovery [50] and service composition [33] facilities, as well as the verification
functionality described herein. The tool was presented in the form of a demonstration
at DASFAA 2009 [14]. A screenshot of the tool is shown in Fig. 7. In the screenshot,
a semantic annotation can be seen for the “Customer Quote” document, shown as a
BPMN data object above the “Submit quote to customer” task. The object and task
are associated via an edge showing the semantic annotation: “< approved (Customer
Quote)” indicates that “approved” is a precondition; “> sent (Customer Quote)” in-
dicates that “sent” is an effect. Both annotations refer to the status of the Customer
Quote object, prior respectively after execution of the task. In the situation shown,
I -propagation has just been performed, and the task “Submit quote to customer” is
highlighted in red to indicate that it is not executable. The reason for that—the pre-
condition whose truth is not guaranteed—is shown in the text window at the bottom
of the screenshot.

7.2 SAP NetWeaver BPM process composer

SAP NetWeaver BPM Process Composer is the modeling part of SAP’s future prod-
uct for Business Process Management:

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 309

Fig. 7 Screenshot of Maestro for BPMN. Semantic annotations are associated with edges between BPMN
data objects and tasks. The task “Submit quote to customer” is highlighted in red to indicate that it is not
executable

“SAP NetWeaver BPM delivers a suite of state-of-the-art, standards-based tools that

enable customers to quickly and efficiently model processes and execute them

without time-consuming, error-prone coding. It leverages the service-enabled

functionality of SAP Business Suite applications, and of third-party software, to

create and modify processes. This ultimately leads to significant increases in speed,

flexibility, quality and time to value.”

We implemented a research extension to the tool suite, comprising semantic anno-
tation of tasks, service composition methods [33], as well as our verification methods.
The extensions may undergo a pilot customer evaluation project in the next years.
Due to the complexity of such a commercialization process, and due to re-structuring
activities within SAP, a more definite statement cannot be made at the time of writing.

Screenshots are shown in Fig. 8. The bottom part of the figure shows how a non-
executable task is highlighted, in a fashion similar (if differently visualized) to Mae-
stro above. A more remarkable feature of the prototype is the ease of creating seman-

tic annotations. As shown in the top part of Fig. 8, from the point of view of the user
this amounts to selecting values in drop-down menus. The user double-clicks a task
to open the window shown in the bottom right of the screenshot. She can then se-
lect the “Initial conditions” (the preconditions) and “Goals” (the effects) for the task.
Both is done via selecting business objects from a drop-down menu (left hand side
in each of “Initial conditions” respectively “Goals”), and afterwards selecting their
desired status value from another drop-down menu (right hand side, shown open for

 Author's personal copy

310 Distrib Parallel Databases (2010) 27: 271–343

Fig. 8 Screenshots of the SAP NetWeaver BPM Process Composer, with our extensions. Semantic an-
notation (top) is done via simple drop-down menus. Executability checking (bottom) is a push-button
operation highlighting erroneous tasks

“Initial conditions”). This interface, of course, assumes that the business objects and
their possible states have been modeled beforehand. Such modeling is, fortunately
for our approach, a well-established activity at SAP anyway; we will get back to this
below in Sect. 7.4. What’s important to note for now is that, once such a model has
been established, doing the actual annotations is a matter of a few commonly used
mouse movements.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 311

The question remains how easy the concept of semantic annotations, and their suit-
able content, will be to grasp, for SAP customers. The prospects appear to be good.
The annotations are made in terms of business object states. That is the language of
business users—standard terms from business administration, logistics, etc.—not the
language of developers. It can be expected that SAP customers will be familiar with
the language, and find it easy to deal with. That said, an actual customer evaluation
has not yet been performed, and remains an open topic.

7.3 Automatic service configuration for service brokers

This application differs considerably from the BPM scenarios above, for which the
presented work was originally performed. However, the application uses the same
back-end component. The application addresses service marketplaces, which are
nowadays steadily gaining momentum. In a service marketplace, services from a va-
riety of service providers can be registered, published, advertised, discovered, and
brokered. Marketplace brokers manage the “front-desk” of service marketplaces, bro-
kering the trade between service providers and consumers. In separate work [89], we
provide technology aimed at lowering the entrance barrier for service providers, i.e.,
reducing their effort for registering services with a broker. Such registration requires
utilization of the broker’s service delivery management components. For doing so,
a suitably combined process must be composed. Our technology helps with this ac-
tivity, based on simple semantic annotations not unlike the ones used in the afore-
mentioned prototypes. The technology can automatically filter the available options,
and it can automatically suggest process fragments. The back-end provided herein,
specifically I -propagation, is required by both these features for determining the pos-
sible execution states of the involved processes.

7.4 How to obtain the ontologies?

The creation of ontologies is a time-consuming and error-prone task. Clearly, this
may seriously impede the practical usefulness and uptake of our technology—a prob-
lem we share with many approaches in the Semantic Web area. The cost of modeling
is the prize to pay, and at this stage it cannot be predicted how serious the problem is,
or under which circumstances. That said, our specific approach has two aspects that
make the problem seem manageable at least in some applications:

1. Ontologies are a possibility, not a requirement. Our methodology allows the spec-
ification of ontologies; it does not enforce them. Recall that ontologies (P, T)

consist of two parts: their terminology (the predicates P) and their axiomatization
(the theory T). Clearly, the main difficulty is to obtain T ; P will often be easy
to come by based on pre-existing terminology (cf. point 2 below). For our algo-
rithms to work, only P is required. More importantly, the problem we address
remains substantial, even without axiomatizations, both in theory and practice.
All our hardness results regarding xor/loop conditions, as well as reachability and
individual-task executability checking, hold with empty T . Similarly, axiomatiza-
tions are no source of complications for I -propagation. That algorithm is tailored

 Author's personal copy

312 Distrib Parallel Databases (2010) 27: 271–343

for the use with binary clauses, which may be compiled away prior to even start-
ing the algorithm (cf. the proof of Theorem 4). From a practical perspective, it
is quite conceivable that one may make do without complicated axiomatizations.
For example, such axiomatizations are not present in our extension to the SAP
NetWeaver BPM Process Composer. Even when reducing the annotation to sim-
ple keywords—predicates without any arguments—the verification may still yield
useful insights into the process structure, so long as the same keywords are used
across different tasks in the process.

2. We can leverage existing models at SAP. As hinted above in Sect. 7.2, our ap-
proach combines naturally and effortlessly with existing models and methodolo-
gies at SAP, particularly those underlying SAP NetWeaver. In the relevant applica-
tions, data is warehoused in the form of the content of business objects. Individual
transactions change these contents, and thereby the information contained in the
warehouse. Each task in a business process corresponds—depending on the level
of abstraction of the process—to a single transaction or to a combination thereof.
In any case, the behavior of the task can be naturally expressed in terms of how it
affects the relevant business objects. Now, annotating the latter in full is not fea-
sible; a single object may contain thousands of attributes. However, motivated by
precisely that complexity, SAP has developed models at an intermediate level of
abstraction, where the content of each object is represented in terms of a number
of high-level status variables. While these models were originally designed for
very different purposes, we can use these very same models as the input for our

technology. Indeed, this is exactly what underlies the implementation shown in
Fig. 8. In other words, leveraging existing models at SAP, we obtain the ontology
for free! Plus, the ontology is exhaustive (>400 business objects and their status
variables), and the potential customers are already familiar with its terminology.

Interestingly, the SAP model even gives an example of how ontologies—and
specifically the clausal theories we consider herein—can be put to productive use.
There are several kinds of dependencies between status variables that are not repre-
sented in the current model. Current work at SAP Research addresses this shortcom-
ing. The dependencies can be conveniently expressed in terms of the clausal theories
we consider herein. Formalizing all the dependencies of course involves intensive
cooperation with the relevant development groups at SAP. This is currently ongoing.

8 Related work

We give an overview of related work, and we discuss in detail the most relevant
technical connections to our work. Such a connection mainly exists to the area of
Petri nets, which has been used as the basis for control-flow verification, and where
tractable classes have been identified. Since our focus is on checking the properties
of a model, the field of model checking is, of course, related as well. Finally, there
is a growing body of work extending process models and their verification beyond
control-flow. We review these three areas in turn, after briefly discussing our own
related work.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 313

8.1 Own related work

Some predecessors of the presented work have discussed, from a general perspective,
the use of semantic technology in BPM [84, 87]. Our tools have been showcased as
demonstrations, partially related to this work [13, 14].

Earlier versions of the presented work have been published at the Semantic BPM
Workshop 2008 [86], and at ECOWS 2008 [85]. The present paper goes far beyond
these works not only in terms of detail of write-up, but also in terms of technical
results. Most importantly, the previous versions restricted the processes to be plain
DAGs, i.e., to not contain any loops. The addition of loops required a significant ex-
tension to nearly all technical devices of the paper, most particularly to I -propagation
whose correctness is much easier to understand and prove when not dealing with
loops.

There are some works that build on I -propagation, for the purpose of compliance
checking. One line of work [34, 90] uses the outcome of I -propagation to approxi-
mate the truth status of clausal compliance constraints, i.e., clauses constraining the
desired process states (not to be confused with the clauses herein, which form part of
the execution semantics of the process). Another line of work modifies I -propagation
(without loops) to propagate reparation chains over deontic logic primitives [30].
None of these works has I -propagation, as devised herein, as its original contribu-
tion.

8.2 Petri nets

Petri net theory has come up with a wealth of complexity results for various classes of
Petri nets, including in particular tractability results for a number of restricted classes.
We already discussed in Sect. 4 how one of these results [44] can be exploited to de-
termine parallel task nodes in our framework, which is half of the job of finding all
precondition/effect conflicts. Task node parallelism does not depend on the annota-
tion, hence this is an application of Petri net theory to non-annotated process graphs.
We can also obtain an application to annotated process graphs, via compiling such
graphs into Petri nets. However, the results obtainable in this way are substantially
weaker than what we proved herein.

How can annotated process graphs be compiled into Petri nets? First, in the pres-
ence of ontology axioms, clearly such a compilation is not possible, at least not in a
straightforward/natural way. Petri nets do not cater for a “minimal change semantics”
of transitions between states. Note that this is quite fundamental, as is reflected e.g.
by the complexity of determining the truth of a literal in the outcome state, which
is coNP-hard for Horn axioms and �

p

2 -hard in general, cf. the proof of Theorem 2.
Encoding this into a Petri net would require to encode each task node into some form
of worst-case exponential search.

If there are no ontology axioms (or, as far as executability checking is concerned, if
the axioms are binary, cf. the proof of Theorem 4), then a straightforward compilation
exists. Encode each task as a transition, and encode edges as places. Joins and splits
can then be encoded using the rules defined in [75]. Loops, i.e., transitions into and
out of sub-graphs, are encoded in the straightforward fashion. Next, enumerate all

 Author's personal copy

314 Distrib Parallel Databases (2010) 27: 271–343

facts that can be built from the predicates and constants. Create an additional place
for each fact, as well as one for its negation. Add an arc for each precondition/effect
literal to the respective place; similarly, encode xor/loop conditions.

Apart from the process structure, we also need to express our verification tasks in
terms of Petri net queries. Reachability in the annotated process model is equivalent
to the question whether the control flow pre-place of a task may ever carry a token.
Executability in the annotated process model is equivalent to the question whether,
whenever the control flow pre-place of a task carries a token, the precondition pre-
places carry a token as well. To ask whether a particular task node n is executable,
we need to ask for every precondition p of n whether a state is reachable where the
control flow pre-place of n carries a token, but p does not. To ask whether the overall
process is executable, we need to ask these questions for every task node.

To test reachability in our annotated process graph, we hence need to be able to
test, in a Petri net, whether a given place can be active. This is a fairly common query
for Petri nets. To test executability, we need to be able to test whether a given place
p can be active while another place p′ is not. This is a rather unusual query. It is
related to what has been termed “implicit places” (see e.g. [8, 29, 76]). An implicit
(or “redundant”) place is a place p′ that always carries a token if any other place
p does, where p and p′ occur together in the input of any transition. Note that this
notion refers to all transitions and places p, while what we are interested in is the
connection (if any) between p′ and one particular place p. It is an open question
whether techniques for detecting implicit places can be adapted to perform this kind
of test. We remark that the only known polynomial-time technique to detect implicit
places is the detection of “structural implicit places” [8, 76], which are a special case
of implicit places; i.e., this technique corresponds to a sufficient but not necessary
criterion for executability and is hence not a verification method in our sense.

What we can derive are two tractable classes for checking reachability. A closely
related topic was previously investigated by [57], who are concerned amongst other
things with a Petri net based formalization of compositions of semantic Web services,
and with verification of reachability. Narayanan and McIlraith [57] use a formalism
that does not encompass any ontology axioms, but that is otherwise closely related to
ours. They use a Petri net encoding similar to what we sketched above. They state two
tractability results, based on restricting the process in a way so that the compiled Petri
net becomes free-choice [25], respectively conflict-free [38]. These results, in the
form stated in [57], are slightly flawed—the stated restrictions do not suffice to make
the Petri net free-choice/conflict-free. However, the results can easily be repaired, by
imposing more restrictions. We have:

(1) If every literal l appears in at most one task node precondition, xor condition, or
loop condition, then the compiled Petri net is free-choice.

(2) If the process has no loops and no xor splits, and for every fact p we have that
either p is not made false by any task node, or is contained in the precondition of
at most one task node, then the compiled Petri net is conflict-free.

Both for free-choice and conflict-free Petri nets, it can be decided in polynomial time
whether there exists a reachable marking activating a given place. Hence, (1) and
(2) identify tractable classes for checking reachability in annotated process graphs.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 315

These tractability results are not implied by our results—we propose to establish
reachability as a side-effect of establishing executability, in a class of processes where
reachability checking is NP-hard. Note that class (2) is a subset of the tractable class
we identify,12 and a very restricted one at that. Hence this class is considerably more
impractical than ours. Class (1), on the other hand, could be useful since it allows
xor/loop conditions, albeit in a restricted form. The tractability of reachability in class
(1) clearly is complementary to the results proved herein.

8.3 Model checking

Model checking is concerned with checking the properties of some formal model
of a piece of software or hardware under consideration; see [18] as an entry point
into the vast amount of literature. There are two key differences to our work. First,
model checking has not been concerned with ontologies, i.e., with ontology axioms
that form part of the model to be checked. Like for Petri nets, this is a fundamental
difference to our approach, and a natural encoding into traditional model checking
formalisms is not possible. Hence we can only consider the restricted case where the
axioms are empty (or, as far as executability checking is concerned, where all axioms
are binary clauses).

The second major difference to model checking is that model checking has tradi-
tionally not been concerned with the identification of tractable fragments, which is
the core contribution of our work. Model checking is usually concerned with very
general formalisms, which are far from tractable. The focus then is on theoretical
analysis of algorithms addressing such formalisms, and on the development of search
techniques for enhancing empirical performance, such as symbolic representations
(e.g. [16, 17]), constraint propagation (e.g. [19, 51, 71]), search space reduction (e.g.
[36, 73]), and clever implementation techniques (e.g. [7]). In our view, the main im-
portance of model checking for our work lies in the potential of applying (adaptations
of) these search techniques to the intractable cases identified by Theorems 2 and 3.
We have already performed an initial experiment in this direction; we will get back
to this in the outlook, Sect. 9.

8.4 Beyond control-flow

Verification of process models has been studied for quite a while, mostly from a
control flow perspective. In this context, different notions of soundness have been
proposed; for an overview see [78]. There is a growing body of contributions beyond
pure control-flow verification. Those relate to semantic checks and data flow analysis.

The approach of [48, 49] checks a notion of semantic correctness that builds on
annotations to tasks as being mutually exclusive or dependent. In the first case they
cannot co-occur in a trace, in the second case they must appear in a certain order.
For semantic correctness the process must comply with the annotations. This ap-
proach provides somewhat similar features as linear temporal logic [80]. This kind

12There are no ontology axioms; with no loops and no xor splits, clearly there cannot be any xor/loop
conditions; the restriction on facts implies that there can’t be any effect conflicts.

 Author's personal copy

316 Distrib Parallel Databases (2010) 27: 271–343

of annotations can be simulated using a subset of our framework (using only precon-
ditions/effects, with an empty ontology). In that sense, [48, 49] can be viewed as a
special case of our framework.

In the area of access control the approach of [9] extends process models with pred-
icates, constants, and variables. The meaning of these constructs relates to constraints
on role assignments, while in our model they directly affect the executability of tasks.
The work of [56] describes methods to check compliance of a process against rules
for role assignment. This is related to our approach in that an ontology could (to some
extent) be defined to model such rules; but not vice versa since we build on general
logic while [56] covers some practical special cases. The paper by [67] addresses
amongst others life cycle compliance. This can be partly reformulated in terms of
preconditions, effects, and ontological axioms. Our running example illustrates some
constraints related to the life cycle of business objects, i.e., when certain actions can
only be performed if the business object is in the required state.

In [54], the preconditions and effects of service compositions are calculated on the
basis of atomic services of which the compositions consist. Similar to our approach,
the preconditions and effects of the atomic services are formulas, and the processes
are assumed to be sound, have a single start and end node, respectively, and the rout-
ing constructs are and/xor join/split. However, Meyer [54] does not deal with loops
and neither with ontological axiomatizations. There is no formal discussion of the
algorithms or their properties. In particular, there is no proof of correctness and no
consideration of complexity. The algorithm is based on computing the reachability
graph of the composition’s workflow, which is exponential in size of the workflow.
This is in contrast to our investigation of polynomial time algorithms.

In [43], based on annotations of task nodes with logical effects, the authors use a
propagation algorithm somewhat reminiscent of our I -propagation. There are, how-
ever, a number of important differences between the two approaches. Koliadis and
Ghose [43] allow CNF effects which are considerably more expressive than our
purely conjunctive effects. On the other hand, their propagation algorithm is expo-
nential in the size of the process (the size of the propagated constructs multiplies
at every XOR join). Further, Koliadis and Ghose [43] circumvent the consideration
of loops, by assuming that entire sub-processes are annotated with effects. That is,
sub-processes are handled as if they were atomic task nodes. This makes the analysis
simpler, but, obviously, seriously impedes the ability to model sub-processes at a fine
granular level. Koliadis and Ghose [43] do not consider preconditions, and they do
not consider ontology axioms constraining the domain behavior. Finally, [43] do not
provide a formal semantics for their effect annotations, and consequently, in differ-
ence to us, do not prove any formal correctness properties for their algorithms.

Another related line of work is data flow analysis, where dependencies are exam-
ined between the points where data is generated, and where it is consumed; some
ideas related to this are implemented in the ADEPT system [63]. Data flow analysis
builds on compiler theory [2] where data flows are typically examined for sequen-
tial programs mostly; it does neither consider theories T nor logical conflicts, and
hence explores a direction complementary to ours. To some extent, our concepts can
be applied in this area by expressing data dependencies as preconditions, effects, and
ontological axioms.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 317

ADEPT also provides a major contribution on the problem of process schema
evolution [65]. In the latter area, also techniques from AI planning have already been
combined with workflow concepts [6, 20, 40]. These combinations, however, have
a very different purpose—and hence take a very different form—than the combina-
tion of workflows with AI that we develop herein. Whereas we aim at verification
and hence define a formal state-based execution semantics, the previous approaches
aimed at automatically creating new/adapted processes based on plan-like represen-
tations of the dependencies between process steps. Apart from that, a distinguishing
feature of our approach is the handling of axiomatizations. Recall (cf. the discussion
below Definition 4) that this impacts the formalization quite substantially, necessi-
tating to deal with actions and change in the presence of state axioms. Finally, none
of these previous works investigated the borderline between tractable and intractable
cases.

9 Conclusion and discussion of open questions

Reducing the time span for design and deployment of process models is a very rel-
evant problem [22, 70]. Towards this end, we devise a verification method exploit-
ing semantic annotations. Our formalism is unique in the way it combines notions
from the workflow community and from the AI literature, providing an execution se-
mantics that integrates control-flow with logical preconditions and effects relative to
an ontology. Based on the formalism, one can detect execution problems in process
graphs with sound control flow, hence enabling verification beyond soundness.

We have investigated the tractability borderline of such verification, which is im-
portant because response time is a critical factor in practice. For precondition/effect
conflicts, we have shown that the borderline is the same as that of reasoning in
the logic underlying the ontology axioms. We have determined the class of basic
processes, where, presuming effect conflicts have already been removed, executabil-
ity of the overall process can be checked in polynomial time. The latter is not the case
for any of the most relevant extensions of basic processes, so the class is maximal in
that sense. Our algorithms are implemented within two BPM modeling environment
prototypes, which show that user-friendly interfaces can be designed, and that ontolo-
gies can (sometimes) be obtained cheaply, by leveraging existing models.

One line of current research regards the enhancement of the SAP model underlying
our SAP NetWeaver application, making explicit the dependencies between status
variables. The most important open issue, in our view, is that of customer evaluation.
As we stated in Sect. 7, such evaluation of our SAP prototypes is on the agenda, but at
the time of writing it is not foreseeable when the evaluation will actually take place.
Apart from that, several technical points are left open by our current results.

One question is whether executability of basic processes can be verified efficiently
also in the presence of effect conflicts. If so, then the debugging facility provided
becomes more flexible, allowing to check executability without prior removal of ef-
fect conflicts, and allowing to tolerate effect conflicts (to not view them as bugs) in
case such behavior is intended. Further, such a solution would enable us to deal with
precondition/effect conflicts based on execution parallelism (cf. Sect. 4) rather than

 Author's personal copy

318 Distrib Parallel Databases (2010) 27: 271–343

token-parallelism. This is because, for executable basic processes, the two notions of
parallelism are equivalent. Hence the modeler could establish executability first, and
thereafter use the algorithms from Sect. 4 to tackle precondition/effect conflicts based
on execution parallelism.

An important open line of research regards the intractable cases we identified.
Computational hardness is certainly a challenge for verification in an online setting,
but not necessarily a deal-breaker. If the process models are not too large, and if the
verification makes use of advanced search techniques (like symbolic representations,
constraint propagation, search space reduction, or process decomposition), then the
response times may be tolerable. We have made some initial experiments encoding
processes with empty ontology (no axioms) for the explicit-state model checker SPIN
[35]. The results are not encouraging, taking excessive runtime and/or memory even
in fairly small processes. However, certainly that is not the end of the story. The
performance of SPIN can possibly be improved by using different encodings, or some
algorithmic extensions to SPIN (e.g. [26]). Also, one option we deem particularly
promising is the use of SAT solvers (e.g. [27, 55]) for the verification, in the style of
the bounded model checking approach [19]. In some cases, a single SAT call suffices
for testing whether a particular node is executable. For example, we have already
shown that this the case for basic processes without loops.

Another topic is to enhance the debugging information returned by the verifica-
tion. The techniques presented herein provide only minimal information, namely the
process nodes that are directly involved in a failure. It would be more desirable to
return some approximation of what may cause the failure, and perhaps to make sug-
gestions for bug fixes. We have made some initial steps in that direction, based on
the local information obtained by I -propagation, i.e., the information pertaining to
particular edges in the process. Using this information, unsatisfied preconditions can
be traced back to activities that contribute to validating/invalidating them [34].

Last but not least, a long term research topic remains to investigate richer semantic
annotations. In particular, an investigation of Description Logic [4], variants of which
are widely used in the semantic Web community (e.g. [1, 21, 66, 72]), would be
desirable.

Acknowledgements We would like to thank the anonymous reviewers for their excellent feedback and
insights. Further, we want to acknowledge the contributions of Ulrich Benz during the early beginnings of
this work. Part of this work has been supported by the EU Integrated Project SUPER and the Australian
SmartServices CRC.

Appendix: Proofs

A.1 Control-flow properties

If two edges are parallel, then, in particular situations, we can “choose” which one to
activate last:

Lemma 2 Let P = (N,E,λ) be a sound process graph. Let e �= e′ ∈ E so that e ‖ e′,
and e ∈ out(n) where n �∈ NPS . Let t ′ be a token-reachable token marking where

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 319

t ′(e) > 0 and t ′(e′) > 0. Then there exists a token-reachable token marking t so that

t
n

→ t ′.

Proof Since e ‖ e′, we know that t ′ as claimed exists. Say t ′ is reached on the exe-

cution path �p = 〈t0
n0
→ t1

n1
→ ·· ·

nk−1
→ tk〉 where t0 is the start marking and tk = t ′. By

prerequisite we have tk(e) > 0. Define i to be the highest index of a marking that
activates e, i.e., ni−1 = n and consequently ti(e) > 0, such that e remains activated
until tk . That is, we have: (*) for all i ≤ j ≤ k : tj (e) > 0.

Now, consider the token markings ti−1 and ti , as well as the nodes ni−1 = n and ni .
We know that n is executable in ti−1, and that ni is executable in ti . We prove that
we can re-order n and ni in �p, and still obtain a valid execution path. Once this
is proved, we are done: iterating the argument, we can move n upwards in �p and,
ultimately, execute it last.

Consider the re-ordered sequence 〈t0
n0
→ ·· ·

ni−2
→ ti−1

ni
→ t ′i

ni−1
→ t ′i+1〉. It suffices to

show that:

1. ni is token-executable in ti−1,
2. ni−1 = n is token-executable in t ′i , and
3. t ′i+1 = ti+1.

As for 1., we know that ni is token-executable in ti , which differs from ti−1 only in
that n is executed beforehand. Observe that executing n puts a token only on e. This
is obvious for non-split nodes, which have only a single outgoing edge. For xor splits
it is clear because otherwise we would not have ti(e) > 0, in contradiction to (*). This
covers all cases because by prerequisite n is not a parallel split. Now, ni cannot have e

as an incoming edge: tokens from incoming edges are always removed by definition,
except for xor joins. But incoming edges of xor joins cannot be parallel: the process
is assumed to be sound so that would be a contradiction to Proposition 1. Thus, if ni

had e as an incoming edge, then we would not have ti+1(e) > 0, in contradiction to
(*). Hence ni must be executable in ti−1 already, as desired.

As for 2., we know that n is token-executable in ti−1. This differs from t ′i only
in that ni is not executed beforehand. Now, token-executability of n (of any node)
depends of course only on the activation of n’s incoming edges, and execution of
ni (of any node) removes tokens only from its incoming edges. Hence, if n is not
executable in t ′i , then we can derive that in(n) ∩ in(ni) �= ∅, which is of course not
possible since every edge has exactly one target node.

As for 3., we have already seen that ni does not consume any tokens set by n.
Likewise, it is obvious that n does not consume any tokens set by ni , or else n could
not be executed prior to ni in �p. Hence the effects of the nodes on the token structure
are mutually independent, from which the claimed property follows. This concludes
the argument. �

In the next lemma, and at some points further below, we will make use of flow

orderings. Given a process graph, a flow ordering is a bijective function # : E
→
{0, . . . , |E| − 1}, numbering the edges such that (i) every incoming edge of a node
has a lower number than any of the node’s outgoing edges, and (ii) all outgoing edges
of a split node are consecutively enumerated. Flow orderings obviously exist, since

 Author's personal copy

320 Distrib Parallel Databases (2010) 27: 271–343

(N,E) is acyclic. For example, a flow ordering results from a breadth-first traversal
of the process graph. We assume in the rest of the paper that, for every process graph
under consideration, a flow ordering # is fixed. This is just a simple device to be
able to more conveniently state certain proof arguments. We use the following helper
notations. #−1 is the inverse function of #, i.e., #−1(i) = e iff #(e) = i. If E is a set
of edges, then #Emax := max{#(e) | e ∈ E} is the maximum number of any edge in
E, and analogously for #Emin. For example, given a node n, #in(n)max = max{#(e) |
e ∈ in(n)} is the maximum number of any incoming edge.

Lemma 3 Let P = (N,E,λ) be a sound process graph, and let Q ∈ Sub(P). Let

e �= e′ ∈ EQ so that e ‖ e′, e ∈ out(n) where n ∈ N
Q
PS , and #Q(e′) < #out(n)min. Let

t ′ be a token-reachable token marking where t ′(e) > 0 and t ′(e′) > 0. Then there exist

token-reachable token markings t, t ′′ so that t
n

→ t ′′ where t ′′(e) > 0 and t ′′(e′) > 0.

Proof Since e ‖ e′, we know that t ′ as claimed exists. Say t ′ is reached on the execu-

tion path �p = 〈t0
n0
→ t1

n1
→ ·· ·

nk−1
→ tk〉 as in the proof to Lemma 2. Since, obviously,

parts of the path outside the sub-process Q in question do not matter, and �p ends
within Q, in the following we will ignore the part of �p outside Q, i.e., we act as if
the path was completely contained within Q.

Virtually all arguments in the proof to Lemma 2 remain intact, with a single ex-
ception, namely the proof that ni is token-executable in ti−1. Precisely, the only part
of the proof of Lemma 2 that makes use of the prerequisite n �∈ NPS , is the argument
given here to show that execution of n does not put a token on any edge e′′ ∈ in(ni).
We need to find a different argument for this.

Such an argument can be based on the new prerequisite of our claim here, namely
that #Q(e′) < #out(n)min. What we prove is that: (*) a suitable �p′ can be constructed

so that, for all nodes nj in �p′, #in(nj)max < #out(n)min. This immediately proves the
claim: if e′′ ∈ out(n) ∩ in(ni), then, by construction of #, it follows that #Q(e′′) ≥
#out(n)min in contradiction to (*).

Say nj �= n is the node in �p with maximal #in(nj)max. If #in(nj)max < #out(n)min,

there is nothing to prove. Else, construct �p′ by removing nj , i.e., set �p′ := 〈t0
n0
→

·· ·
nj−1
→ tj

nj+1
→ t ′j+2

nj+2
→ ·· ·

nk−1
→ t ′k〉.

First, observe that �p′ is still a valid execution path, i.e., for j + 2 ≤ l ≤ k − 1, we
have that nl is executable in t ′l . If that were not the case, then obviously there would
exist an l so that in(nl) ∩ out(nj) �= ∅, i.e., nj produces a token needed by nl . How-
ever, by construction of #, #in(nj)max < #out(nj)min. So, if e′′ ∈ in(nl) ∩ out(nj),
then #in(nl)max ≥ #Q(e′) > #in(nj)max which is a contradiction since #in(nj)max is
assumed to be maximal.

Second, observe that t ′k(e) > 0 and t ′k(e
′) > 0. Obviously, the only chance for

that not to happen is if e, respectively e′, is contained in out(nj). So t ′k(e) > 0
is obvious since nj �= n. As for t ′k(e

′) > 0, assume that e′ ∈ out(nj). Then, by

construction of #, we have #Q(e′) > #in(nj)max. Further, by assumption we have
#in(nj)max ≥ #out(n)min. Finally, by prerequisite we have #out(n)min > #Q(e′). We
can conclude that #Q(e′) > #Q(e′) which is of course a contradiction.

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 321

Iterating the argument, we can remove from �p all nodes where #in(nj)max ≥
#out(n)min, and still obtain an execution path at whose end both e and e′ are active.
This proves (*) and hence concludes the argument. �

A.2 Binary theories can be compiled away

We sometimes need to distinguish the state spaces of different processes. We then
indicate the process as a superscript: S I Q(e) denotes the state intersection relative
to Q, i.e., the set of literals that are always true when e is activated in an execution
path of Q.

Lemma 4 Let Q = (N,E,λ,Ω,α), Ω = (P, T), be an executable basic anno-

tated process graph. Denote by C the set of all constants appearing in any of

the annotated pre(n), eff(n). Let Q′ = (N,E,λ,Ω ′, α′) be the modification of Q

where Ω ′ = (P,1) and α′ ≡ α except that, for all n ∈ NT , eff′(n) := {l ∈ P [C] |
T [C] ∧ eff(n) |= l} if eff(n) is defined, and eff′(n) := {l ∈ P [C] | T [C] |= l} other-

wise. Then, for every e ∈ E , we have: S I Q(e) = S I Q′
(e).

Proof In what follows, we denote a state by the set of literals it makes true. We first
prove the following: given a reachable state s with a token on in(n) for a task node
n, in Q exactly one state s′ can be reached by executing n in s, namely the state
s′ := (s \ ¬eff′(n)) ∪ eff′(n).

Recall that, by definition, the states s′ reachable by executing n in s are all those
where s′ ∈ PMA-min(s, T [C]∧eff(n)), which is defined to be the set of all states that
satisfy T [C] ∧ eff(n) and that differ in a set-inclusion minimal set of values from s.

First, for any s′ ∈ PMA-min(s, T [C] ∧ eff(n)) it is clear by definition that
eff′(n) ⊆ s′. The definition of s′ as given above changes only those values. It suf-
fices to show that s′ |= T [C]: then, we have s′ |= T [C] ∧ eff(n), and clearly the set
of changed values is a proper subset of any other state with the same property. As-
sume to the contrary of the claim that (l ∨ l′) ∈ T [C] and s′ �|= l ∨ l′, i.e., ¬l ∈ s′ and
¬l′ ∈ s′; note here that T is binary and hence every clause has at most two literals.
If ¬l ∈ eff′(n), then l′ ∈ eff′(n)—because, given the clause l ∨ l′, l′ is a logical con-
sequence of ¬l. With eff′(n) ⊆ s′ we obtain a contradiction, proving that ¬l cannot
be contained in eff′(n). Similarly, we can disprove ¬l′ ∈ eff′(n). Hence, by construc-
tion of s′, {¬l,¬l′} ⊆ s. But then, s �|= T [C] which is a contradiction because s is
reachable.

With the above, we know that, for any reachable state s and any task node n,
the (single) transition induced in Q is exactly the same as the transition induced in
Q′. Hence, obviously since the graph structure is not changed in any other way, any
possible difference in the sets S I (e) would have to be due to different start states. So
let us consider the start states in Q and Q′.

The start states in Q are all those with s0 |= T [C], and s0 |= T [C] ∧ eff(n0) in
case α(n0) is defined. In Q′, by construction the start states are all those where s0 |=
1 ∧ eff′(n0), with eff′(n0) = {l ∈ P [C] | T [C] |= l} in case α(n0) is undefined, and
eff′(n0) = {l ∈ P [C] | T [C] ∧ eff(n0) |= l} in case α(n0) is defined.

 Author's personal copy

322 Distrib Parallel Databases (2010) 27: 271–343

Obviously, this means that the set of start states of Q′ is a superset of the set of start
states of Q—any start state of Q is a start state of Q′, but not vice versa. However,
likewise obviously, the set of literals true in all start states is the same in both cases,
i.e., we have S I Q(e0) = S I Q′

(e0).
Let e be any edge in the graph. Consider, for the moment, only the workflow

structure of the graphs, i.e., the token executions. Since Q′ does not change the graph
structure, the set of token execution paths leading from (a state with a token on) e0

to (a state with a token on) e is the same in both Q and Q′. Let’s call this set of
paths �P . By prerequisite, every task node is executable, there are no conditions at the
outgoing edges of xor splits, and there are no conditions at loop nodes. Thus we know
that every path �p ∈ �P can be executed from every possible start state s0, in both Q

and Q′. The change that �p makes to s0 is the accumulated effect of the task nodes
executed on �P . From the above, we know that this is the same in both Q and Q′. We
can write the resulting state s as s = (s0 \¬eff(�p))∪ eff(�p), where eff(�p) denotes the
accumulated effect of �p—what exactly that latter effect is does not play a role in our
argument below. The important point is that eff(�p) is a function, i.e., is well-defined.

Consider now the sets S I Q(e) and S I Q′
(e). With the above, we know that

S I Q(e) =
⋂

s0, �p

((s0 \ ¬eff(�p)) ∪ eff(�p)),

where s0 ranges over the start states of Q and �p ranges over �P . Now, first, we can
separate the “positive effects”—which occur irrespectively of the start state—out and
get

S I Q(e) =

(

⋂

s0, �p

(s0 \ ¬eff(�p))

)

∪

(

⋂

�p

eff(�p)

)

.

Further, we can re-write
⋂

s0, �p(s0 \ ¬eff(�p)) to
⋂

s0, �p(s0 ∩ L(�p)) where L(�p) is the
complement of ¬eff(�p). We can re-write

⋂

s0, �p(s0 ∩L(�p)) to (
⋂

s0
s0)∩ (

⋂

�p L(�p)).
Hence, overall, we have derived that

S I Q(e) =

((

⋂

s0

s0

)

∩

(

⋂

�p

L(�p)

))

∪

(

⋂

�p

eff(�p)

)

.

In the same way, we can derive

S I Q′
(e) =

((

⋂

s′
0

s′
0

)

∩

(

⋂

�p

L(�p)

))

∪

(

⋂

�p

eff(�p)

)

,

where s′
0 ranges over the start states of Q′. We need to prove that S I Q(e) = S I Q′

(e).
Replacing both sides of the equation with the expressions we have just derived, the
terms concerning �p occur on both sides and can be removed. Thus we find that our de-
sired equality is equivalent to

⋂

s0
s0 =

⋂

s′
0
s′

0, which we have already proved above.

This concludes the argument. �

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 323

A.3 Correctness of I-propagation

We define aggregate-eff(Q), the aggregated effect literals of a sub-graph Q, as fol-
lows:

aggregate-eff(Q) :=
⋃

n∈N Q
T

eff(n) ∪
⋃

n∈N Q
L

aggregate-eff(λQ(n)).

Lemma 5 Let Q = (N,E,λ,Ω,α) be an executable basic sound annotated process

graph without effect conflicts, and let t ≥ 0. Let E0 ⊆ E be a set of edges so that

there exists a state s ∈ S where, for all e ∈ E0, ts(e) > 0. Let l be a literal so that, for

each e ∈ E0, there exists a state s′ ∈ S where s′ �|= l and ts′(e) > 0. Then, there exists

a state s0 ∈ S where s0 �|= l and, for all e ∈ E0, ts0(e) > 0.

Proof Let l be an arbitrary literal, and let t ≥ 0 be arbitrary. We prove that the claim
holds for all possible E0, by induction over the process structure, as reflected in the
enumeration function #. As the induction base case, we prove that the claim holds for
every set E0 where #E0

max ≤ 0. As the inductive step, we prove that, for every node n,
if the claim holds for every E0 where #E0

max ≤ #out(n)min − 1, then the claim holds
for every E0 where #E0

max ≤ #out(n)max.
Base case. Since e0 is not parallel to any other edge (no edge can carry a token

at the same time as e0 does), the only set E0 containing e0 is the singleton {e0}, for
which the claim holds trivially.

Inductive case. Let n ∈ N . As stated, the induction hypothesis is that the claim
holds for every E0 where #E0

max ≤ #out(n)min − 1. We prove that, under this hypoth-
esis, the claim holds for every E0 where #E0

max ≤ #out(n)max.
To avoid clumsiness of language, we will use the following conventions. When-

ever we write “E0”, we mean a set of edges with #E0
max ≤ #out(n)min − 1 for which

the prerequisite of the claim holds: there exists a state s ∈ S where, for all e ∈ E0,
ts(e) > 0; and, for each single e ∈ E0, there exists a state s′ ∈ S where s′ �|= l

and ts′(e) > 0. Similarly, whenever we write “E0′
”, we mean a set of edges with

#E0′

max ≤ #out(n)max for which the prerequisite of the claim holds. Further, since the

induction hypothesis covers all other cases, we assume that E0′
∩ out(n) �= ∅. Fi-

nally, since the case of E0′
⊆ out(n) is trivial for all kinds of nodes n, we assume that

E0′
�⊆ out(n). We distinguish the different kinds of nodes n:

1. n ∈ NT . We distinguish three cases:
(a) l ∈ eff(n). This case is trivial because no E0′

exists. Assume the opposite was
the case. Then there exists a state s′ ∈ S where ts′(out(n)) > 0 and s′ �|= l.
Since, directly after executing n, l is true, this means that a task node parallel
to n has made l false. Hence we have an effect conflict, in contradiction to the
prerequisite.

(b) ¬l ∈ eff(n). Let E0′
be an arbitrary set of edges, with out(n) ∈ E0′

and so that
there exists a state s ∈ S where ts(e) > 0 for every e ∈ E0′

. In order to reach
s, n must be executed. Since n is not a parallel split, we can apply Lemma 2
to any pair of out(n) and out(n) �= e ∈ E0′

. Hence there exists an execution
path to s on which n comes last. By prerequisite, n is executable, and so we

 Author's personal copy

324 Distrib Parallel Databases (2010) 27: 271–343

can execute it at this point. Obviously, and s0 �|= l. Hence the claim holds for
E0′

, and we are done.
(c) {l,¬l} ∩ eff(n) = ∅. For this case, we prove that there is a mapping from sets

E0 to sets E0′
. Precisely, we prove that we can construct each set E0′

as E0′
=

E0 \ {in(n)} ∪ {out(n)} where E0 is a set satisfying the prerequisite of the
claim. Once this is proved, the claim follows easily: by induction hypothesis,
we know that there exists a state s0 ∈ S where s0 �|= l and ts0(e) > 0 for all
e ∈ E0; in that state, we can execute n; the resulting state obviously satisfies
the requirements of the claim.

It remains to prove the desired mapping. Let E0′
be a set of edges with

E0′
∩ out(n) �= ∅ so that: there exists a state s ∈ S where, for all e ∈ E0′

,
ts(e) > 0; and, for each single e ∈ E0′

, there exists a state s′ ∈ S where s′ �|= l

and ts′(e) > 0. We need to prove that E0 := E0′
\ {out(n)} ∪ {in(n)} has the

same properties. The existence of the desired state s ∈ S follows by appli-
cation of Lemma 2 to E0′

and s: we get a path to s on which n is applied
last; the predecessor state activates all edges in E0 and hence serves as the
desired state s for E0. Regarding the existence of the state s′ ∈ S with s′ �|= l

and ts′(out(n)) > 0, there are two possible reasons for that. First, there exists
a state s′′ ∈ S with s′′ �|= l and ts′(in(n)) > 0; in that case there is nothing to
prove. Second, there exists a task node n′ parallel to n that falsifies l in its
effect. But then, n′ can be executed directly before n, and hence we are back
in the first case, i.e., we can construct a state s′′ ∈ S as appropriate.

2. n ∈ NL. We distinguish three cases similar as for task nodes; the respective proofs
are similar as well:
(a) On every path through λ(n), the last change to l makes l true; in particular,

l ∈ aggregate-eff(λ(n)). This case is trivial because no E0′
exists. Assume the

opposite was the case. Then there exists a state s′ ∈ S where ts′(out(n)) > 0
and s′ �|= l. Since, directly after executing λ(n), l is true, this means that a
task node parallel to n has made l false. Hence we have an effect conflict, in
contradiction to the prerequisite.

(b) There exists a path �p through λ(n) where the last change makes l false; in
particular, ¬l ∈ aggregate-eff(λ(n)). Let E0′

be an arbitrary set of edges, with
out(n) ∈ E0′

and so that there exists a state s ∈ S where ts(e) > 0 for every
e ∈ E0′

. In order to reach s, n must be executed. Since n is not a parallel split,
we can apply Lemma 2 to any pair of out(n) and out(n) �= e ∈ E0′

. Hence
there exists an execution path to s on which n comes last. By prerequisite, λ(n)

is executable, and so we can execute �p at this point. Obviously, the resulting
state s0 has s0 �|= l. Hence the claim holds for E0′

, and we are done.
(c) {l,¬l} ∩ aggregate-eff(λ(n)) = ∅. This case is proved exactly as for task

nodes. The only difference is that, rather than executing just n without af-
fecting the value of l, we execute some path through λ(n) without affecting
the value of l. This does not affect the proof arguments.

3. n ∈ NXS . There is a mapping from sets E0′
to sets E0. Namely, we can construct

each E0′
respectively as E0′

= E0 \ {in(n)} ∪ {e′}, where e′ ∈ out(n). This, like
above, follows from Lemma 2 regarding parallelism, i.e., the existence of the state
s in the prerequisite of the claim. Regarding the existence of the states s′ in the

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 325

prerequisite of the claim, the argument is the same as before: a state s′ which
falsifies l and activates one of the outgoing edges can always be constructed from
a state which falsifies l and activates the incoming edge.

By induction hypothesis we know that there exists a reachable state s0 ∈ S

where s0 �|= l and, for all e ∈ E0, ts0(e) > 0. In that state, we can execute n. Be-
cause, by prerequisite, the process graph is basic, in particular no conditions are
annotated at the outgoing edges of any xor split. Hence, regardless of how s0 in-
terpretes the logical propositions, we can choose to execute n in a way so that a
token is put on e′. The resulting state obviously satisfies the requirements of the
claim.

4. n ∈ NXJ . Like for xor splits, we have a mapping from sets E0′
to sets E0: every

set E0′
can be constructed from a set E0 as E0′

= E0 \ {e} ∪ {out(n)}, where
e ∈ in(n). The proof for that is as before, and the claim follows as before.

5. n ∈ NPJ . This case is also handled analogously: every set E0′
can be constructed

from a set E0 as E0′
= E0 \ in(n) ∪ {out(n)}. That correspondence is proved as

before, and the claim follows as before.
6. n ∈ NPS . In this case, every set E0′

can be constructed from a set E0 as E0′
=

E0 \ {in(n)} ∪ E′, where E′ ⊆ out(n); we argue this mapping below. With this
mapping, the proof proceeds as before. By induction hypothesis we know that
there exists a reachable state s0 ∈ S where s0 �|= l and, for all e ∈ E0, ts0(e) > 0.
In that state, we can execute n and put a token on every edge in E′. The resulting
state obviously satisfies the requirements of the claim.

It remains to prove that every set E0′
can be constructed from a set E0 as

E0′
= E0 \ {in(n)} ∪ E′, where E′ ⊆ out(n). Let E0′

be any set of edges with
E0′

∩out(n) �= ∅ and #E0′

max ≤ #out(n)max so that: there exists a state s ∈ S where,

for all e ∈ E0′
, ts(e) > 0; and, for each single e ∈ E0′

, there exists a state s′ ∈ S

where s′ �|= l and ts′(e) > 0. We prove that E0 := E0′
\out(n)∪ in(n) has the same

properties. The existence of the state s ∈ S follows by application of Lemma 3 to
Q, E0′

, and s: we get a path on which n is applied last and whose end state acti-
vates all edges in E0′

; the predecessor state activates all edges in E0. Regarding
the existence of the state s′ ∈ S with s′ �|= l which activates the edges in E′, there
are two possible reasons for that. First, there exists a state s′′ ∈ S with s′′ �|= l and
ts′(in(n)) > 0; in that case there is nothing to prove. Second, there exists a task
node n′ parallel to n that falsifies l in its effect. But then, n′ can be executed di-
rectly before n, and hence we are back in the first case, i.e., we can construct a
state s′′ as appropriate. This concludes the argument. �

Lemma 6 Let P = (N,E,λ,Ω,α) be an executable basic annotated process graph.
Say we run I -propagation on P , and I ∗ is an I -propagation result. Then, for all

e ∈ E , S I (e) ⊇ I ∗(e).

Proof Since P is executable and basic, we can apply Lemma 4. That is, we can
compile the binary ontology into extended action effects without affecting the sets
S I (e). Hence in what follows we can assume without loss of generality that the
ontology is empty.

Let e ∈ E and let l ∈ P [C], where C are the constants used by α. Assume that there

exists an execution path s0
n1
→ s1

n2
→ s2 · · · sk−1

nk
→ sk = s so that ts(e) > 0 and is �|= l.

 Author's personal copy

326 Distrib Parallel Databases (2010) 27: 271–343

We show that, then, there exists an I -propagation path I0
n′

1
→ I ′

1

n′
2

→ I ′
2 · · · I ′

l−1

n′
l

→ Il =
I ′ so that l �∈ I (e).

Note first that, given a function I : E
→ 2P [C] and a node n, there exists at most
one I ′ so that I ′ is the propagation of I at n, i.e., I ′ is completely determined; I ′

exists iff propagating I at n results in any changes.
Consider now the sequence of nodes n1, . . . , nk . We construct a sequence

I0, I1, . . . , Ik as follows. For all 0 ≤ j < k, if propagating Ij at nj results in changes,
then set Ij+1 to the outcome of that propagation; else, set Ij+1 := Ij . Obviously,

we get an I -propagation path I0
n′

1
→ I ′

1

n′
2

→ I ′
2 · · · I ′

l−1

n′
l

→ I ′
l = I by removing from

I0, I1, . . . , Ik those steps where no changes occur. We then have Ik = I , and hence it
suffices to prove that l �∈ Ik(e).

In what follows, we denote tj := tsj and ij := isj . We prove by induction that, for
all 0 ≤ j ≤ k: for all e where tj (e) > 0, we have ij |= Ij (e).

Base case, j = 0. The only e′ with tj (e
′) > 0 is the start edge e0. Since I0(e0) =

eff(n0), the claim follows.
Inductive case, j → j + 1. We distinguish the different kinds of executions of the

node n := nj+1:

1. n ∈ NPS ∪ NXS . Consider the edges e′ where tj+1(e
′) > 0. We either have (a)

tj (e
′) > 0, or (b) e′ ∈ out(n). In case (a), the claim follows immediately from the

induction hypothesis because ij+1 = ij and Ij+1(e
′) = Ij (e

′). As for case (b),
since n can be executed in sj , we have that tj (in(n)) > 0, and hence by induction
assumption we know that ij |= Ij (in(n)). The claim then follows because ij+1 =
ij and, for all e′ ∈ out(n), Ij+1(e

′) ⊆ Ij (in(n)).
2. n ∈ NT . Consider the edges e′ where tj+1(e

′) > 0. We either have (a) tj (e
′) > 0,

or (b) e′ = out(n). In case (a), the claim follows immediately from the induction
hypothesis because ij+1 = eff(n) ∪ (ij \ ¬eff(n)), writing an interpretation as the
set of literals it satisfies; and Ij+1(e

′) = Ij (e
′) \ ¬eff(n) because, with tj (e

′) > 0
and tj (in(n)) > 0, we have e′ ‖ in(n). As for case (b), since tj (in(n)) > 0 by in-
duction assumption we know that ij |= Ij (in(n)). The claim then follows because
ij+1 = eff(n) ∪ (ij \ ¬eff(n)) and Ij+1(out(n)) ⊆ eff(n) ∪ (Ij (in(n)) \ ¬eff(n)).

3. n ∈ NPJ . Consider the edges e′ where tj+1(e
′) > 0. We either have (a) e′ �= out(n)

and tj (e
′) > 0, or (b) e′ = out(n). In case (a), Ij+1(e

′) = Ij (e
′) and hence the

claim follows from the induction hypothesis and ij+1 = ij . As for case (b), since n

can be executed in sj , we have that tj (e
′) > 0 for all e′ ∈ in(n). Hence by induction

assumption we know that ij |= Ij (e
′) for all e′ ∈ in(n). The claim then follows

because ij+1 = ij and Ij+1(out(n)) ⊆
⋃

e′∈in(n) Ij (e
′).

4. n ∈ NXJ . Consider the edges e′ where tj+1(e
′) > 0. We either have (a) e′ �= out(n)

and tj (e
′) > 0, or (b) e′ = out(n). In case (a), Ij+1(e

′) = Ij (e
′) and hence the

claim follows from the induction hypothesis and ij+1 = ij . As for case (b), since
n can be executed in sj , we have that tj (e

′) > 0 for at least one e′ ∈ in(n). By
induction assumption we know that ij |= Ij (e

′) for that e′. The claim then follows
because ij+1 = ij and Ij+1(out(n)) ⊆

⋂

e′∈in(n) Ij (e
′).

5. n ∈ N
Q
L with λQ(n) = Q′. Consider the edges e′ where tj+1(e

′) > 0. We either

have (a) tj (e
′) > 0, or (b) e′ = e

Q′

0 . In case (a), the claim follows immediately

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 327

from the induction hypothesis because ij+1 = ij and Ij+1(e
′) = Ij (e

′). As for
case (b), since n can be executed in sj , we have that tj (in(n)) > 0, and hence
by induction assumption we know that ij |= Ij (in(n)). The claim then follows

because ij+1 = ij and Ij+1(e
Q′

0) ⊆ Ij (in(n)).

6. n = nQ
+ and tj+1(e

Q
0) > tj (e

Q
0). Consider the edges e′ where tj+1(e

′) > 0. We

either have (a) tj (e
′) > 0, or (b) e′ = eQ

0 . In case (a), the claim follows immedi-
ately from the induction hypothesis because ij+1 = ij and Ij+1(e

′) = Ij (e
′). As

for case (b), since n can be executed in sj , we have that tj (in(n)) > 0, and hence
by induction assumption we know that ij |= Ij (in(n)). The claim then follows

because ij+1 = ij and Ij+1(e
Q
0) ⊆ Ij (in(n)).

7. n = n
Q
+ with Q = λQ′

(n′) and tj+1(out(n′)) > tj (out(n′)). Consider the edges e′

where tj+1(e
′) > 0. We either have (a) tj (e

′) > 0, or (b) e′ = out(n′). In case (a),
the claim follows immediately from the induction hypothesis because ij+1 = ij
and Ij+1(e

′) = Ij (e
′). As for case (b), since n can be executed in sj , we have that

tj (in(n)) > 0, and hence by induction assumption we know that ij |= Ij (in(n)).
The claim then follows because ij+1 = ij and Ij+1(out(n′)) ⊆ Ij (in(n)). �

Lemma 7 Let P = (N,E,λ,Ω,α) be an executable basic sound annotated process

graph without effect conflicts. Say we run I -propagation on P , and I ∗ is an I -

propagation result. Then, for all e ∈ E , S I (e) ⊆ I ∗(e).

Proof Since P is executable and basic, we can apply Lemma 4. That is, we can
compile the binary ontology into extended action effects without affecting the sets
S I (e). Hence in what follows we can assume without loss of generality that the
ontology is empty.

Assume an I -propagation path I0
n1
→ I1

n2
→ I2 · · · Ik−1

nk
→ Ik . We prove the fol-

lowing. For every 0 ≤ j ≤ k and for every edge e ∈ E and literal l ∈ P [C] where
l �∈ Ij (e), there exists an execution path ending in a state s so that ts(e) > 0 and
s �|= l. The proof is by induction over j .

Base case, j = 0. By definition, I0(e) = P [C] except for e = e0, where I0(e0) =
eff(n0). Hence the only pairs e, l with l �∈ I0(e) are those where e = e0 and l �∈ eff(n0).
Obviously, every start state s0 has ts0(e0) > 0. If l �∈ eff(n0) then by definition at least
one start state s0 exists where s0 �|= l. This shows the claim.

Inductive case, j → j + 1. By induction hypothesis, we know that, for every edge
e ∈ E and literal l ∈ P [C] where l �∈ Ij (e), there exists an execution path ending in
a state s so that ts(e) > 0 and s �|= l. We distinguish the different kinds of nodes
n := nj+1:

1. n ∈ NPS ∪ NXS . Say that e ∈ E and l ∈ P [C] where l �∈ Ij+1(e). By the definition
of I -propagation over split nodes, we either have (a) l �∈ Ij (e) or (b) e ∈ out(n)

and l �∈ Ij (in(n)). In case (a), the induction hypothesis shows the existence of an
execution path as desired, so there is nothing to prove. As for case (b), by induction
hypothesis there exists an execution path ending in a state s so that ts(in(n)) > 0
and s �|= l. We can execute n in s. Since there are no conditions at the outgoing
edges of xor splits, if n is an xor split then we can choose to put a token on e; if
n is a parallel split then tokens are put on all outgoing edges, in particular on e.

 Author's personal copy

328 Distrib Parallel Databases (2010) 27: 271–343

Hence we can construct an execution path ending in a state s′ where ts′(e) > 0 and
s′ �|= l. This concludes the argument.

2. n ∈ NT . Say that e ∈ E and l ∈ P [C] where l �∈ Ij+1(e). By the definition of I -
propagation over task nodes, we have one of the following cases: (a) l �∈ Ij (e);
or (b) e ‖ out(n) and l ∈ ¬eff(n); or (c) e = out(n) and l ∈ ¬eff(n); or (d) e =
out(n) and l �∈ Ij (in(n)). In case (a), the induction hypothesis proves the claim. In
case (b), we construct some execution path that activates both e and out(n), and
which executes n last. A token execution path of P doing so exists by Lemma 2;
any token execution of P corresponds directly to an execution path because by
prerequisite there are no conditions at the outgoing edges of xor splits, there are
no conditions at loop nodes, and all task nodes are executable. In case (c), we
simply construct some execution path that executes n last; at least one such path
exists because by prerequisite P is sound, all task nodes are executable, there are
no conditions at the outgoing edges of xor splits, and there are no conditions at
loop nodes. In case (d), finally, by induction hypothesis there exists an execution
path ending in a state s so that ts(in(n)) > 0 and s �|= l. Since n is executable by
prerequisite, we can execute n in s, getting to a state s′ where ts′(e) > 0 and s′ �|= l.
This concludes the argument.

3. n ∈ NPJ . Say that e ∈ E and l ∈ P [C] where l �∈ Ij+1(e). By the definition of I -
propagation over parallel join nodes, we either have (a) l �∈ Ij (e) or (b) e = out(n)

and for every ei ∈ in(n) : l �∈ Ij (ei). In case (a), the induction hypothesis shows the
existence of an execution path as desired, so there is nothing to prove. As for case
(b), by induction hypothesis for every ei ∈ in(n) there exists an execution path
ending in a state si so that tsi (ei) > 0 and si �|= l. We can thus apply Lemma 5, and
obtain an execution path to a state s with s �|= l and ts(ei) > 0 for all ei ∈ in(n). We
can execute n in s, getting to a state s′ where ts′(e) > 0 and s′ �|= l. This concludes
the argument.

4. n ∈ NXJ . Say that e ∈ E and l ∈ P [C] where l �∈ Ij+1(e). By the definition of I -
propagation over xor join nodes, we either have (a) l �∈ Ij (e) or (b) e = out(n) and
for at least one e′ ∈ in(n) : l �∈ Ij (e

′). In case (a), the induction hypothesis shows
the existence of an execution path as desired, so there is nothing to prove. As for
case (b), by induction hypothesis there exists an execution path ending in a state
s so that ts(e

′) > 0 and s �|= l. We can execute n in s, getting to a state s′ where
ts′(e) > 0 and s′ �|= l. This concludes the argument.

5. n ∈ N
Q
L with λQ(n) = Q′. Say that e ∈ E and l ∈ P [C] where l �∈ Ij+1(e). By

the definition of I -propagation over loop nodes, we either have (a) l �∈ Ij (e) or

(b) e = eQ′

0 and l �∈ Ij (in(n)). In case (a), the induction hypothesis shows the
existence of an execution path as desired, so there is nothing to prove. As for case
(b), by induction hypothesis there exists an execution path ending in a state s so
that ts(in(n)) > 0 and s �|= l. We can execute n in s, getting to a state s′ where
ts′(e) > 0 and s′ �|= l. This concludes the argument.

6. n = n
Q
+ with Q = λQ′

(n′). Say that e ∈ E and l ∈ P [C] where l �∈ Ij+1(e). By the
definition of I -propagation over end nodes, we have one of the following cases:
(a) l �∈ Ij (e); or (b) e = e

Q
0 and l �∈ Ij (in(n)); or (c) e = out(n′) and l �∈ Ij (in(n)).

In case (a), the induction hypothesis shows the existence of an execution path
as desired, so there is nothing to prove. As for cases (b) and (c), by induction

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 329

hypothesis there exists an execution path ending in a state s so that ts(in(n)) > 0
and s �|= l. Since n is executable by prerequisite, we can execute n in s. Since by
prerequisite there are no conditions at loop nodes, we can choose to repeat the loop
or exit the loop, i.e., we can put a token on e

Q
0 or out(n′) as desired for case (b)

respectively for case (c). We hence, in both cases, get to a state s′ where ts′(e) > 0
and s′ �|= l. This concludes the argument. �

Theorem 4. Let P = (N,E,λ,Ω,α) be an executable basic sound annotated

process graph without effect conflicts. Say we run I -propagation on P . There ex-

ists exactly one I -propagation result I ∗. For all e ∈ E , S I (e) = I ∗(e). With fixed

arity, the time required to compute I ∗ is polynomial in the size of P .

Proof First, it is a direct consequence of Lemmas 6 and 7 that, for all e ∈ E , S I (e) =
I ∗(e), for any I -propagation result I ∗. From this it follows directly that there exists
exactly one such I ∗.

For time complexity, there are three issues to consider: (1) the time taken for com-
piling binary clauses away, (2) the time taken within any single propagation step, and
(3) the maximal number of propagation steps performed. (1) consists of computing,
for every task node n, the set eff(n) of literals that are implied by eff(n) ∧ T . This
can be done as follows. We view T as a directed graph whose nodes are literals and
whose edges correspond to the clauses. The number of nodes of the graph is the num-
ber of literals |P [C]|, where C is the set of constants mentioned by α. We compute
the transitive closure of that graph, in time O(|P [C]|3). Then, for every effect eff(n)

and for every literal l, we ask whether there is an edge (¬l, l) in the transitive closure,
or whether for any literal l′ ∈ eff(n) there is an edge (l′, l) in the transitive closure.
This is done in time O(|N | ∗ |P [C]| ∗maxeff), where maxeff is the maximum number
of effect literals any task node has.

As for (2), loop nodes and end nodes take time O(|P [C]|) since sets can be
intersected in linear time using, e.g., a bitvector representation. Parallel and xor
joins/splits, accordingly, take time O(|P [C]| ∗ maxE), where maxE is the maxi-
mum number of incoming or outgoing edges any node has. Task nodes take time
O(|E | ∗ |P [C]|).

As for (3), define, for any function I : E
→ 2P [C], ||I || :=
∑

e∈E |I (e)|. That is,
||I || counts the total number of literals annotated by I , in sum over all edges in the
process. I -propagation admits a propagation step from I to I ′ only if I �= I ′. Since
we always have, for all e ∈ E , that I (e) ⊇ I ′(e), this means that ||I ′|| ≤ ||I || − 1. If
||I ′|| = 0, then certainly a fixpoint is reached. Now, obviously ||I0|| ≤ |E | ∗ |P [C]|.
Hence |E | ∗ |P [C]| is an upper bound on the number of propagation steps performed.

Overall, we get that the runtime is in O(|P [C]|3 +|N |∗|P [C]|∗maxeff +(|P [C]|∗
maxE +|E | ∗ |P [C]|) ∗ |E | ∗ |P [C]|). With fixed arity, |P [C]| is O(|P | ∗ |C|), which
concludes the argument. �

A.4 I-propagation can be used for executability checking

Lemma 1. Let P = (N,E,λ,Ω,α) be an annotated process graph without effect

conflicts, which is basic except that α may be defined for edges and loop nodes. Say

 Author's personal copy

330 Distrib Parallel Databases (2010) 27: 271–343

we run I -propagation on P , and I ∗ is an I -propagation result. Then, for all e ∈ E ,

S I (e) ⊇ I ∗(e).

Proof The only differences of this claim compared to Lemma 6 is that we do not
require P to be executable, and that conditions may be annotated at xor splits and
loops.

Let P0 = (N,E,λ,Ω,α0) be like P except that pre0(n) has been set to ∅ for all
n ∈ NT , and that α0 is undefined on all xor edges and loop nodes. Obviously, P0 is
executable and basic. Hence we can apply Lemma 6, and get that S I P0(e) ⊇ I ∗

0 (e)

where I ∗
0 is an I -propagation result for P0. Since P0 differs from P only in terms of

the task node preconditions and the xor/loop conditions, which are not considered by
I -propagation, we have I ∗

0 = I ∗ where I ∗ is an I -propagation result for P , and hence

S I P0(e) ⊇ I ∗(e). In what follows, we show that S I P0(e) ⊆ S I P (e). Obviously, this
proves the claim.

Consider the execution paths through P and P0. Let us denote the set of these
paths with �P and �P0, respectively. P0 does not alter the structure of P in any way
other than removing preconditions and xor/loop conditions. So the only difference is
that some paths are disallowed in P —but are allowed in P0—due to preconditions
or conditions that are not satisfied along the path. Hence we have �P ⊆ �P0. Consider
now a particular edge e ∈ E , and consider the sets of states

(A) {s | s ∈ S P , ts(e) > 0}
(B) {s | s ∈ S P0 , ts(e) > 0}

With what we just said about paths, we have that (B) is a superset of (A). Now, by
definition, S I P (e) is the set of literals satisfied by all states in (A), and S I P0(e)

is the set of literals satisfied by all states in (B). Since (B) is a superset of (A), this
means that S I P0(e) ⊆ S I P (e), which is what we needed to show. This concludes
the argument. �

Theorem 5. Let P = (N,E,λ,Ω,α) be a basic annotated process graph without

effect conflicts. Say we run I -propagation on P , and I ∗ is an I -propagation result.

Then P is executable iff for all n ∈ NT ∪ {nP
+ } : pre(n) ⊆ I ∗(in(n)).

Proof Recall that a task node n ∈ NT is executable iff, for all reachable states s so
that ts(in(n)) > 0, we have s |= pre(n). In other words, whenever a path of transitions
reaches n with a token, n’s precondition is satisfied. P is executable if all its nodes
are executable. Obviously, a node n is executable iff pre(n) ⊆ S I (in(n)).

First, consider the direction from left to right. P is executable, so we can apply
Lemma 7 and get that I ∗(e) ⊇ S I (e) for all e ∈ E . Let n ∈ NT ∪ {nP

+ } be arbitrary.
We have S I (in(n)) ⊆ I ∗(in(n)). Since n is executable, we have pre(n) ⊆ S I (in(n)).
Hence pre(n) ⊆ I ∗(in(n)) as desired.

Now, consider the direction from right to left. We can apply Lemma 1, and get that
I ∗(e) ⊆ S I (e) for all e ∈ E . Assume to the contrary of the claim that n ∈ NT ∪ {nP

+ }
so that pre(n) ⊆ I ∗(in(n)), but n is not executable, i.e., ex. l ∈ pre(n) \ S I (in(n)).
We have that l ∈ pre(n) and hence l ∈ I ∗(in(n)). With the above, this implies that
l ∈ S I (e), in contradiction. Hence all n ∈ NT ∪{nP

+ } are executable, which concludes
the proof. �

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 331

Theorem 6. Let P = (N,E,λ,Ω,α) be an annotated process graph without effect

conflicts, which is basic except that α may be defined for edges and loop nodes.

Say we run I -propagation on P , and I ∗ is an I -propagation result. Then, for all

n ∈ NT ∪ {nP
+ }, if pre(n) ⊆ I ∗(in(n)) then n is executable.

Proof Recall that a task node n ∈ NT is executable iff, for all reachable states s so
that ts(in(n)) > 0, we have s |= pre(n). In other words, whenever a path of transitions
reaches n with a token, n’s precondition is satisfied.

We can apply Lemma 1, and get that I ∗(e) ⊆ S I (e) for all e ∈ E . Assume to
the contrary of the claim that n ∈ NT ∪ {nP

+ } so that pre(n) ⊆ I ∗(in(n)), but n is
not executable, i.e., ex. l ∈ pre(n) \ S I (in(n)). We have that l ∈ pre(n) and hence
l ∈ I ∗(in(n)). With the above, this implies that l ∈ S I (e), in contradiction. Hence n

is executable, which concludes the proof. �

A.5 Complexity results

Lemma 8 Assume a sound atomic annotated process graph P = (N,E,λ,Ω,α)

without effect conflicts, where N \ {n0, n+} ⊆ NT , eff(n0) is a complete assignment,
all predicates have arity 0, and P is basic except that T is not binary. Even if P is

known to be reachable, deciding whether P is executable, or whether some n ∈ N is

executable, is �
p

2 -hard for general T , and coNP-hard if T is Horn. Deciding whether

P is reachable, or whether some n ∈ N is reachable, is �
p

2 -hard for general T , and

NP-hard if T is Horn.

Proof Let us first consider the general case, with no restrictions on T . The proofs are
by reduction of validity of a QBF formula ∀X.∃Y.φ[X,Y], where φ is in CNF. The
process graphs P in our construction are very similar for reachability and executabil-
ity; we first consider the common parts, then explain the details below.

We have a node nt ∈ N which is connected to the start node n0 via an edge
(n0, nt) ∈ E. We set pre(nt) = ∅. The main trick of the proof lies in the definitions
of Ω , eff(n0), and eff(nt). Those are adapted from the constructions used in the
proof of Lemma 6.2 from [28]. The predicates P of Ω are all 0-ary, i.e., they have
no arguments and are hence logical propositions. Precisely, we have the predicates
X = {x1, . . . , xm} and Y = {y1, . . . , yn} from the formula ∀X.∃Y.φ[X,Y], as well as
new predicates {z1, . . . , zm, q, t}. We define eff(n0) to contain all xi , all yi , all zi , q ,
and ¬t . So all facts except t are made true by the start state s0; note that the start state
is complete. We define eff(nt) to be {t}. The complex part of the construction lies in
the theory T of Ω . We define

T :=

(

m
∧

i=1

(¬t ∨ xi ∨ zi)

)

∧

(

m
∧

i=1

(¬t ∨ ¬xi ∨ ¬zi)

)

∧

(

∧

C∈φ

(¬t ∨ ¬q ∨ C)

)

∧

(

n
∧

i=1

(¬t ∨ ¬yi ∨ q)

)

 Author's personal copy

332 Distrib Parallel Databases (2010) 27: 271–343

where φ is viewed as a set of clauses C. More readably, the theory is equivalent to:

t ⇒

[(

m
∧

i=1

xi ≡ ¬zi

)

∧ (q ⇒ φ) ∧

((

n
∨

i=1

yi

)

⇒ q

)]

.

Note that eff(nt) is consistent with the theory: any interpretation that sets r and all yi

to 0 satisfies T ∧ eff(nt). Hence nt complies with Definition 3.
We now prove that (*) ∀X.∃Y.φ[X,Y] is valid iff q is true in any state s that results

from executing nt . From this, the desired hardness results will be easy to obtain. We
denote with S the set of states s that may be reached by executing nt .

The theory conjuncts xi ≡ ¬zi make sure that each s ∈ S makes exactly one of
xi, zi true. In particular, the different assignments to X are incomparable with re-
spect to set inclusion. Hence, we have that for every assignment aX of truth values
to X, there exists a state s ∈ S that complies with aX: aX is satisfiable together with
T ∧eff(nt), and any other assignment a′

X is more distant from s0 in at least one propo-
sition (e.g., if a′

X(xi) = 1 and aX(xi) = 0 then aX is closer to s0 than a′
X regarding

the interpretation of zi).
We first prove that, if q is true in any state s that results from executing nt , then

∀X.∃Y.φ[X,Y] is valid. Let aX be a truth value assignment to X. With the above, we
have a state s ∈ S that complies with aX . By assumption, s makes q true. Therefore,
due to the theory conjunct q ⇒ φ, we have is |= φ. Obviously, the values assigned to
Y by is satisfy φ for aX .

For the other direction, say ∀X.∃Y.φ[X,Y] is valid. Assume that, to the contrary
of the claim, there exists a s ∈ S so that is �|= q . But then, due to the theory conjunct
(
∨n

i=1 yi) ⇒ q , we have that s sets all yi to false. Now, because ∀X.∃Y.φ[X,Y] is
valid, there exists a truth value assignment aY to Y that complies with the setting of
all xi and zi in s. Obtain s′ by modifying s to comply with aY , and setting q to 1.
We have that is′ |= T ∧ eff(nt). But then, s′ is closer to s0 than s, and hence s �∈ S in
contradiction. This concludes the argument for (*).

To prove �
p

2 -hardness of deciding executability, we now simply connect nt via an
edge (nt , n+) to the stop node, and set pre(n+) = {q}. By (*), n+ is executable iff
∀X.∃Y.φ[X,Y] is valid; since the other nodes have no preconditions and are trivially
executable, and since all nodes are trivially reachable, the claim follows.

To prove �
p

2 -hardness of deciding reachability, an only slightly more complex
construction is required. We introduce another node n¬q ∈ N , and connect (nt , n¬q)

as well as (n¬q , n+). We set pre(n¬q) = {¬q}, and eff(n¬q) = pre(n+) = ∅. Then,
by (*), n+ is reachable iff ∀X.∃Y.φ[X,Y] is not valid; the other nodes are trivially
reachable; this concludes the argument.

Let’s consider now the case where T is restricted to be Horn. The graphs (N,E)

that we use for reachability/executability remain exactly the same. What changes is
the semantic annotation. The latter is obtained by the following adaptation of the
proof of Lemma 7.1 from [28]. The proof works by a reduction of satisfiability of
a CNF formula φ[X]. We use the 0-ary predicates X = {x1, . . . , xm}, and new 0-ary
predicates Y = {y1, . . . , yn, z1, . . . , zn, q, t}. As before, pre(nt) = ∅ and eff(nt) =
{t}. We define eff(n0) to contain all xi , all yi , all ¬zi , ¬q , and ¬t ; note that this is a

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 333

complete assignment. The theory is:

(

¬t ∨

(

n
∨

i=1

¬zi

)

∨ q

)

∧

(

n
∧

i=1

((¬t ∨ ¬xi ∨ ¬yi) ∧ (¬t ∨ ¬xi ∨ zi) ∧ (¬t ∨ ¬yi ∨ zi))

)

∧

(

∧

C∈φ

(¬t ∨ C[−Y/ + X])

)

where φ is viewed as a set of clauses C, and C[−Y/ + X] for a clause C denotes
the modification of C where every occurrence of a positive literal xi is replaced with
¬yi . More readably, the theory is equivalent to:

t ⇒

[((

n
∧

i=1

zi

)

⇒ q

)

∧

(

n
∧

i=1

((¬xi ∨ ¬yi) ∧ (xi ⇒ zi) ∧ (yi ⇒ zi))

)

∧

(

∧

C∈φ

C[−Y/ + X]

)]

Obviously, this theory is in Horn format: every clause contains at most one positive
literal. Note that eff(nt) is consistent with the theory: e.g., the interpretation that sets
all propositions except t to 0 satisfies T ∧ eff(nt). Hence nt complies with Defini-
tion 3.

The key in this transformation is that φ is made Horn by replacing positive occur-
rences of xi with ¬yi . If the truth value of yi is different from the value of xi , for
each i, then C[−Y/ + X] is satisfied by this assignment iff C is satisfied. The role
of zi is to indicate whether xi and yi are indeed different. The role of q is to indicate
whether the latter is the case for all i.

We now prove that (**) φ[X] is unsatisfiable iff ¬q is true in any state s that re-

sults from executing nt . From this, the desired hardness results will be easy to obtain.
We denote with S the set of states s that may be reached by executing nt .

We first prove that, if there exists s ∈ S so that is |= ¬q , then φ is satisfiable. Let
L0 be the set of literals on whose interpretation s agrees with s0. We can conclude
that T ∧ eff(nt) ∧

∧

l∈L0
l ∧ ¬q is unsatisfiable, since otherwise we can construct a

state s′ that has s′ |= L0 ∧ ¬q and that is hence closer to s0 than s. The only part
of T ∧ eff(nt) that forces implication of q is (

∧n
i=1 zi) ⇒ q . Thus we infer that

T ∧ eff(nt)∧
∧

l∈L0
l |=

∧n
i=1 zi . The only part of T ∧ eff(nt) that forces implication

of zi is if either xi or yi are true. Hence, for all i, either xi or yi are implied by
T ∧ eff(nt) ∧

∧

l∈L0
l. Hence, in particular s satisfies, for all i, either is |= xi or

is |= yi . Hence the value of xi and yi is different for all i, and hence, with the above,
the assignment that s makes to X satisfies φ.

For the other direction, assume that φ is satisfiable, by the truth value assignment
aX . We construct a state s so that s |= q and s ∈ S. First, we set that for all xi , is |= xi

 Author's personal copy

334 Distrib Parallel Databases (2010) 27: 271–343

Fig. 9 Schematic illustration of 3SAT reduction for Lemma 9, reachability checking

iff aX(xi) = 1. Then, we set that for all yi , is |= yi iff aX(xi) = 0. We set that for all
zi , is |= zi . Finally, we set is |= q and is |= t . It is easily verified that is |= T ∧eff(nt):
φ is satisfied because the values of xi and yi are different, for each i. Further, s is
maximally close to s0. This can be seen as follows. First, we cannot change any of
the values of a zi or of q , because those are implied by the distinct values of each xi

and yi . Second, we cannot set any xi or yi to true in isolation, because that would be
in conflict with the respective other value. So any change we make to the setting of
xi and yi would involve switching one xi or yi to false, and hence being further away
from s0 in that proposition. This concludes the argument for (**).

To prove �
p

2 -hardness of deciding executability, as before connect nt via an edge
(nt , n+) to the stop node. We set pre(n+) = {¬q}. By (**), n+ is executable iff φ[X]
is unsatisfiable; since the other nodes have no preconditions and are trivially exe-
cutable, and since all nodes are trivially reachable, the claim follows.

To prove �
p

2 -hardness of deciding reachability, we introduce another node nq ∈
N , and connect (nt , nq) as well as (nq , n+). We set pre(nq) = {q}, and eff(nq) =
pre(n+) = ∅. Then, by (*), n+ is reachable iff φ[X] is satisfiable; the other nodes are
trivially reachable; this concludes the argument. �

Lemma 9 Assume a sound atomic annotated process graph P = (N,E,λ,Ω,α)

without effect conflicts, where N \{n0, n+} ⊆ NT ∪NXS ∪NXJ , eff(n0) is a complete

assignment, all predicates have arity 0, and P is basic except that con(e) may be

defined for some e ∈ E. Even if P is known to be reachable, deciding whether P is

executable, or whether some n ∈ N is executable, is coNP-hard. Even if P is known to

be executable, deciding whether P is reachable, or whether some n ∈ N is reachable.

Proof The proof for reachability checking is by the following reduction from 3SAT.
Assume a CNF φ with n propositions p1, . . . , pn, and k clauses c1, . . . , ck where
ci = li1 ∨ li2 ∨ li3. We obtain an atomic basic annotated process graph with some
annotated edges, (N,E,λ,Ω,α), as follows. The ontology contains only 0-ary pred-
icates, namely P := {p1, notp1, . . . , pn, notpn}; we identify literal ¬pi with propo-
sition notpi . The construction is illustrated in Fig. 9.
The set of nodes N and their annotation (of which we show only the non-empty ones)
is:

1. start node n0; eff(n0) = ∅
2. parallel split node nps

3. xor-split nodes nxs1 · · ·nxsn

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 335

4. for 1 ≤ i ≤ n: task nodes npi and nnotpi ; eff(npi) = {pi}, eff(npi) = {notpi}
5. xor-join nodes nxj1 · · ·nxjn

6. parallel join node npj

7. for 1 ≤ i ≤ k: xor-split node nxs′
i

8. for 1 ≤ i ≤ k − 1: xor-join node nxj ′
i

9. task node ng

10. xor-join node nxj ′

11. stop node n+

The set of edges E and their annotation is given below. Again, empty annotation is
not shown; also, the position of the annotated edges does not matter and is hence not
specified.

1. (n0, nps)

2. for 1 ≤ i ≤ n: (nps,nxsi)

3. for 1 ≤ i ≤ n: (nxsi, npi) and (nxsi, nnotpi)

4. for 1 ≤ i ≤ n: (npi, nxji) and (nnotpi, nxji)

5. for 1 ≤ i ≤ n: (nxji, npj)

6. (npj,nxs1)

7. for 1 ≤ i ≤ k: (nxs′
i, nxj ′); con((nxs′

i, nxj ′)) = {¬li1,¬li2,¬li3}
8. for 1 ≤ i ≤ k − 1: for 1 ≤ j ≤ 3: (nxs′

i, nxj ′
i); con((nxs′

i, nxj ′
i)) = {lij }

9. for 1 ≤ i ≤ k − 1: (nxj ′
i , nxs′

i+1)

10. for 1 ≤ j ≤ 3: (nxs′
k, ng); con((nxs′

k, ng)) = {lkj }
11. (ng,nxj ′)

12. (nxj ′, n+)

Since all preconditions are empty, it is obvious that P is executable. By construction,
P is reachable iff ng is reachable. The latter is the case iff φ is satisfiable. The anno-
tation of the start node can be set to be eff(n0) = {¬p1, ¬notp1, . . . , ¬pn, ¬notpn},
and hence to be complete. The parallel split/join can be replaced by a simple sequenc-
ing of all the xors setting proposition values.

For executability checking, we can use a similar reduction. Given a CNF φ, let p

be a new proposition; obtain φ′ by inserting p into every clause of φ. Then construct,
for φ′, the process graph as above, with the only difference being that ng has the
annotation pre(ng) = {p}. With this construction, we have that (1) ng is reachable
(trivially, by making p true and choosing the p-branch for every clause); (2) with
that, clearly all nodes are reachable; and (3) ng is executable iff every satisfying
assignment to φ′ makes p true. The latter is, obviously, the case iff φ is unsatisfiable.
Since ng is the only node with a precondition, all other nodes are trivially executable
and hence the claim follows. �

Lemma 10 Assume a sound annotated process graph P = (N,E,λ,Ω,α) without

effect conflicts, where N \ {n0, n+} ⊆ NT ∪ NXS ∪ NXJ , for all n ∈ NL we have

Nλ(n) = {n
λ(n)
0 , n

λ(n)
+ }, eff(n0) is a complete assignment, all predicates have arity 0,

and P is basic except that con(n) may be defined for some n ∈ NL. Even if P is

known to be reachable, deciding whether P is executable, or whether some n ∈ N is

executable, is coNP-hard. Even if P is known to be executable, deciding whether P

is reachable, or whether some n ∈ N is reachable.

 Author's personal copy

336 Distrib Parallel Databases (2010) 27: 271–343

Proof This can be proved via a 3SAT reduction very similar to that used for proving
Lemma 9. We simply replace each edge condition with a loop node n where λ(n)

points to an empty sub-process—consisting only of start and end node. The idea is
to only allow exiting the loop if the edge condition holds true. The only tricky bit
here lies in the interpretation of edge conditions and repetition conditions. An edge
condition con(e) means that the edge can be taken when con(e) is true. A repetition
condition con(n) means that the loop is repeated if con(n) is true. Our construction
necessitates us to say the opposite, i.e., we want to state a condition under which
the loop may be exited. The solution is, of course, to use ¬con(e) as the repetition
condition. If con(e) contains several literals, then ¬con(e) is a disjunction, which is
not supported by repetition conditions. However, we can obtain the desired effect by
creating, in this case, one loop node for every literal in con(e).

In detail, the reduction works as follows. We assume a CNF φ with n propositions
p1, . . . , pn, and k clauses c1, . . . , ck where ci = li1 ∨ li2 ∨ li3. The construction fol-
lows the same scheme as depicted in Fig. 9, and the reader is advised to consider this
figure when reading the following. The set of nodes N and their annotation (of which
we show only the non-empty ones) is:

1. start node n0; eff(n0) = ∅
2. parallel split node nps

3. xor-split nodes nxs1 · · ·nxsn
4. for 1 ≤ i ≤ n: task nodes npi and nnotpi ; eff(npi) = {pi}, eff(npi) = {notpi}
5. xor-join nodes nxj1 · · ·nxjn

6. parallel join node npj

7. for 1 ≤ i ≤ k: xor-split node nxs′
i

8. for 1 ≤ i ≤ k: loop node nli with con(nli) = {¬li1,¬li2,¬li3}; for 1 ≤ j ≤ 3:

loop node nl
j
i with con(nl

j
i) = {lij }

9. for 1 ≤ i ≤ k − 1: xor-join node nxj ′
i

10. task node ng

11. xor-join node nxj ′

12. stop node n+

As stated, λ points to an empty sub-process for every loop node. The set of edges E

is:

1. (n0, nps)

2. for 1 ≤ i ≤ n: (nps,nxsi)

3. for 1 ≤ i ≤ n: (nxsi, npi) and (nxsi, nnotpi)

4. for 1 ≤ i ≤ n: (npi, nxji) and (nnotpi, nxji)

5. for 1 ≤ i ≤ n: (nxji, npj)

6. (npj,nxs1)

7. for 1 ≤ i ≤ k − 1: (nxs′
i, nli) and (nli, nxj ′

i)

8. for 1 ≤ i ≤ k: (nxj ′
i , nl1

i), (nl1
i , nl2

i), (nl2
i , nl3

i), (nl3
i , nxj ′)

9. for 1 ≤ i ≤ k − 1: (nxj ′
i , nxs′

i+1)

10. (nxs′
k, nlk) and (nlk, ng)

11. (ng,nxj ′)

12. (nxj ′, n+)

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 337

Since all preconditions are empty, it is obvious that P is executable. By construc-
tion, P is reachable iff ng is reachable. The repetition conditions at nodes nli ensure
that one can exit the loop iff clause i is satisfied. The repetition conditions at the
sequenced nodes nl1

i , nl2
i , nl3

i ensure that one can traverse the entire sequence iff
clause i is violated. Hence ng is reachable iff φ is satisfiable. The annotation of the
start node can be set to be eff(n0) = {¬p1, ¬notp1, . . . , ¬pn, ¬notpn}, and hence
to be complete. The parallel split/join can be replaced by a simple sequencing of all
the xors setting proposition values.

For executability checking, we can use a similar reduction. Given a CNF φ, let p

be a new proposition; obtain φ′ by inserting p into every clause of φ. Then construct,
for φ′, the process graph as above, with the only difference being that ng has the
annotation pre(ng) = {p}. With this construction, we have that (1) ng is reachable
(trivially, by making p true and choosing the p-branch for every clause); (2) with
that, clearly all nodes are reachable; and (3) ng is executable iff every satisfying
assignment to φ′ makes p true. The latter is, obviously, the case iff φ is unsatisfiable.
Since ng is the only node with a precondition, all other nodes are trivially executable
and hence the claim follows. �

Lemma 11 Assume a basic sound atomic annotated process graph P = (N,E,λ,
Ω , α) without effect conflicts, where N \ {n0, n+} ⊆ NT ∪ NXS ∪ NXJ , eff(n0) is

a complete assignment, and all predicates have arity 0. Even if P is known to be

reachable, deciding whether n ∈ N is executable is coNP-hard. Deciding whether P

is reachable, or whether n ∈ N is reachable, is NP-hard.

Proof This can be proved via a 3SAT reduction very similar to that used for prov-
ing Lemma 9. The difference to that lemma is that P is basic, so we cannot make
use of edge conditions or of repetition conditions. The main property underlying the
situations considered is that non-executable task nodes are allowed. We can simply
use those just like edge conditions, to filter the set of execution paths that may tra-
verse a certain branch of the process. Note here that, for executability, we consider
only the decision problem asking whether a particular node (rather than the entire
process) is executable. For reachability, it is noteable that we can not restrict consid-
eration to executable processes—if the process is executable then it is also reachable,
cf. Proposition 2.

In detail, the reduction works as follows. We assume a CNF φ with n propositions
p1, . . . , pn, and k clauses c1, . . . , ck where ci = li1 ∨ li2 ∨ li3. The construction fol-
lows the same scheme as depicted in Fig. 9, and the reader is advised to consider this
figure when reading the following.

The set of nodes N and their annotation (of which we show only the non-empty
ones) is:

1. start node n0; eff(n0) = ∅
2. parallel split node nps

3. xor-split nodes nxs1 · · ·nxsn
4. for 1 ≤ i ≤ n: task nodes npi and nnotpi ; eff(npi) = {pi}, eff(npi) = {notpi}
5. xor-join nodes nxj1 · · ·nxjn

6. parallel join node npj

 Author's personal copy

338 Distrib Parallel Databases (2010) 27: 271–343

7. for 1 ≤ i ≤ k: xor-split node nxs′
i

8. for 1 ≤ i ≤ k: for 1 ≤ j ≤ 3: task node nxstij ; pre(nxstij) = {lij }
9. for 1 ≤ i ≤ k: task node nxst ′i ; pre(nxst ′i) = {¬li1,¬li2,¬li3}

10. for 1 ≤ i ≤ k − 1: xor-join node nxj ′
i

11. task node ng

12. xor-join node nxj ′

13. stop node n+

The set of edges E and their annotation is:

1. (n0, nps)

2. for 1 ≤ i ≤ n: (nps,nxsi)

3. for 1 ≤ i ≤ n: (nxsi, npi) and (nxsi, nnotpi)

4. for 1 ≤ i ≤ n: (npi, nxji) and (nnotpi, nxji)

5. for 1 ≤ i ≤ n: (nxji, npj)

6. (npj,nxs1)

7. for 1 ≤ i ≤ k: (nxs′
i, nxst ′i) and (nxst ′i , nxj ′)

8. for 1 ≤ i ≤ k − 1: for 1 ≤ j ≤ 3: (nxs′
i, nxstij) and (nxstij , nxj ′

i)

9. for 1 ≤ i ≤ k − 1: (nxj ′
i , nxs′

i+1)

10. for 1 ≤ j ≤ 3: (nxs′
k, nxstkj) and (nxstkj , ng)

11. (ng,nxj ′)

12. (nxj ′, n+)

Obviously, P is reachable iff ng is reachable iff φ is satisfiable. The annotation of the
start node can be set to be eff(n0) = {¬p1, ¬notp1, . . . , ¬pn, ¬notpn}, and hence
to be complete. The parallel split/join can be replaced by a simple sequencing of all
the xors setting proposition values.

For executability checking, we use a similar reduction. Given a CNF φ, let p be
a new proposition; obtain φ′ by inserting p into every clause of φ. Then construct,
for φ′, the process graph as above, with the only difference being that ng has the
annotation pre(ng) = {p}. With this construction, ng is executable iff every satisfying
assignment to φ′ makes p true. The latter is, obviously, the case iff φ is unsatisfiable.
Since all nodes are reachable (ng can be reached by setting p to be true), this proves
the claim. �

Theorem 2. Assume a sound annotated process graph P = (N,E,λ,Ω,α) without

effect conflicts, where N \ {n0, n+} ⊆ NT ∪ NXS ∪ NXJ ∪ NL, eff(n0) is a complete

assignment, all predicates have arity 0, and either P is atomic or for all n ∈ NL we

have Nλ(n) = {n
λ(n)
0 , n

λ(n)
+ }. The following problem is �

p

2 -hard even if P is known to

be reachable:

– Is P executable, or is n ∈ N executable, given that P is basic except that T may

involve arbitrary clauses?

The following problems are coNP-hard even if P is known to be reachable:

– Is P executable, or is n ∈ N executable, given that P is basic except that T may

involve arbitrary Horn clauses?
– Is P executable, or is n ∈ N executable, given that P is basic except that con(e)

may be defined for some e ∈ E?

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 339

– Is P executable, or is n ∈ N executable, given that P is basic except that con(n)

may be defined for some n ∈ NL?
– Is n ∈ N executable, given that P is basic?

Proof Follows directly from Lemmas 8, 9, 10, and 11. �

Theorem 3. Assume a sound annotated process graph P = (N,E,λ,Ω,α) without

effect conflicts, where N \ {n0, n+} ⊆ NT ∪ NXS ∪ NXJ ∪ NL, eff(n0) is a complete

assignment, all predicates have arity 0, and either P is atomic or for all n ∈ NL we

have Nλ(n) = {n
λ(n)
0 , n

λ(n)
+ }. The following problem is �

p

2 -hard:

– Is P reachable, or is n ∈ N reachable, given that P is basic except that T may

involve arbitrary clauses?

The following problems are NP-hard:

– Is P reachable, or is n ∈ N reachable, given that P is basic except that T may

involve arbitrary Horn clauses?
– Is P reachable, or is n ∈ N reachable, given that P is executable, and basic except

that con(e) may be defined for some e ∈ E?
– Is P reachable, or is n ∈ N reachable, given that P is executable, and basic except

that con(n) may be defined for some n ∈ NL?
– Is P reachable, or is n ∈ N reachable, given that P is basic?

Proof Follows directly from Lemmas 8, 9, 10, and 11. �

References

1. Ankolekar, A., et al.: DAML-S: Web service description for the semantic web. In: ISWC, 2002
2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison–

Wesley/Longman, Boston (1986)
3. Aspvall, B., Plass, M., Tarjan, R.: A linear-time algorithm for testing the truth of certain quantified

boolean formulas. Inf. Process. Lett. 8, 121–123 (1979)
4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description

Logic Handbook. Cambridge University Press, Cambridge (2003)
5. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description logics and action

formalisms: first results. In: AAAI, 2005
6. Beckstein, C., Klausner, J.: A planning framework for workflow management. In: Proceedings of the

Sixteenth International Joint Conference on Artificial Intelligence, 1999
7. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL implementa-

tion secrets. In: Proceedings of the 7th International Symposium on Formal Techniques in Real-Time
and Fault Tolerant Systems (FTRTFT’02), pp. 3–22, 2002

8. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G.
(eds.) Advances in Petri Nets 1986 Part I: Petri Nets, Central Models and Their Properties. Lecture
Notes in Computer Science, vol. 254, pp. 360–376. Springer, Berlin (1987)

9. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authorization constraints in
workflow management systems. ACM Trans. Inf. Syst. Secur. 2(1), 65–104 (1999)

10. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Addison–
Wesley, Reading (2005)

11. Born, M., Dörr, F., Weber, I.: User-friendly semantic annotation in business process modeling. In:
Hf-SDDM-07: Proceedings of the Workshop on Human-friendly Service Description, Discovery and
Matchmaking—in Workshop Proceedings at WISE-07, December 2007

 Author's personal copy

340 Distrib Parallel Databases (2010) 27: 271–343

12. Born, M., Dörr, F., Weber, I.: User-friendly semantic annotation in business process modeling. In:
Hf-SDDM’07: Workshop on Human-friendly Service Description, Discovery and Matchmaking at
WISE’07, Nancy, France, December 2007

13. Born, M., Hoffmann, J., Kaczmarek, T., Kowalkiewicz, M., Markovic, I., Scicluna, J., Weber, I.,
Zhou, X.: Semantic annotation and composition of business processes with Maestro. In: European
Semantic Web Conference (ESWC) Demo Track, June 2008

14. Born, M., Hoffmann, J., Kaczmarek, T., Kowalkiewicz, M., Markovic, I., Scicluna, J., Weber, I., Zhou,
X.: Supporting execution-level business process modeling with semantic technologies. In: Database
Systems for Advanced Applications (DASFAA-09) Demo Track, 2009

15. Brewka, G., Hertzberg, J.: How to do things with worlds: on formalizing actions and plans. J. Log.
Comput. 3(5), 517–532 (1993)

16. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35,
677–691 (1986)

17. Burch, J., Clarke, E., Mcmillan, K., Dill, D., Hwang, L.: Symbolic model checking: 1020 states and
beyond. In: Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, pp.
1–33, 1990

18. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
19. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Form.

Methods Syst. Des. 19(1), 7–34 (2001)
20. Conradi, R., Liu, C., Hagaseth, M.: Planning support for cooperating transactions in EPOS. Inf. Syst.

20(4), 317–336 (1995)
21. Fensel, D., et al.: Enabling Semantic Web Services: The Web Service Modeling Ontology. Springer,

Berlin (2006)
22. Da Rold, C.: European IT services survey signals irreversible changes. Technical Report Markets

Note, M-20-0616, Gartner Research, 19 June 2003
23. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the update of description logic ontologies

at the instance level. In: AAAI, 2006
24. Dehnert, J., van der Aalst, W.M.P.: Bridging the gap between business models and workflow specifi-

cations. Int. J. Cooperative Inf. Syst. 13(3), 289–332 (2004)
25. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New York (1995)
26. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit-state model checking in the validation

of communication protocols. Int. J. Softw. Tools Technol. (2004)
27. Een, N., Sörensson, N.: An extensible SAT solver. In: Giunchiglia, E. (ed.) Proceedings of the 6th

International Conference on Theory and Applications of Satisfiability Testing (SAT-03), Portofino,
Italy, May 2003

28. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates, and coun-
terfactuals. Artif. Intell. 57(2–3), 227–270 (1992)

29. Garcia-Valles, F., Colom, J.M.: Implicit places in net systems. In: Petri Nets and Performance Models,
1999. Proceedings. The 8th International Workshop on, pp. 104–113 (1999)

30. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory compliance for business
process models through semantic annotations. In: BPD-08: 4th International Workshop on Business
Process Design, September 2008

31. Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Stojanovic, N. (eds.) Proceedings of the Work-
shop on Semantic Business Process and Product Lifecycle Management (SBPM 2007), Innsbruck,
Austria, June 2007

32. Herzig, A., Rifi, O.: Propositional belief base update and minimal change. Artif. Intell. 115(1), 107–
138 (1999)

33. Hoffmann, J., Weber, I., Scicluna, J., Kaczmarek, T., Ankolekar, A.: Combining scalability and ex-
pressivity in the automatic composition of semantic web services. In: ICWE’08: 8th International
Conference on Web Engineering, Yorktown Heights, NY, USA, July 2008

34. Hoffmann, J., Weber, I., Governatori, G.: On compliance checking for clausal constraints in annotated
process models. Information Systems Frontiers, Special Issue on Governance, Risk, and Compliance,
2009

35. Holzmann, G.: The Spin Model Checker—Primer and Reference Manual. Addison–Wesley, Reading
(2003)

36. Holzmann, G., Peled, D.: An improvement in formal verification. In: Formal Description Techniques,
pp. 197–211 (1994)

37. Horn, A.: On sentences which are true of direct unions of algebras. J. Symb. Log. (1951)

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 341

38. Howell, R., Rosier, L.: Problems concerning fairness and temporal logic for conflict-free Petri nets.
Theor. Comput. Sci. 64(3), 305–329 (1989)

39. IBM. Insurance Application Architecture (IAA), v 7.1 (2004). http://www-03.ibm.com/industries/
financialservices/doc/content/solution/278918103.html, accessed: 28.10.2008

40. Jaccheri, M.L., Conradi, R.: Techniques for process model evolution in EPOS. IEEE Trans. Softw.
Eng. 19(12), 1145–1156 (1993)

41. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf der Grundlage
“Ereignisgesteuerter Prozessketten (EPK)”. Veröffentlichungen des Instituts für Wirtschaftsin-
formatik, Heft 89, Saarbrücken, Germany, January 1992. http://www.iwi.uni-sb.de/iwi-hefte/
heft089.pdf

42. Kindler, E.: Model-based software engineering and process-aware information systems. Trans. Petri
Nets Other Models Concurr. II 2, 27–45 (2009). Special Issue on Concurrency in Process-Aware
Information Systems

43. Koliadis, G., Ghose, A.: Verifying semantic business process models in inter-operation. In: IEEE Intl.
Conf. Services Computing (SCC 2007), pp. 731–738, 2007

44. Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency relation of free-
choice signal transition graphs. In: Proc. of the International Workshop on Discrete Event Systems,
WODES’96, pp. 1–6, Edinburgh, Scotland, UK, 1996

45. Kumaran, S., Liu, R., Wu, F.Y.: On the duality of information-centric and activity-centric models of
business processes. In: Proc. Conf. on Advanced Information Systems Engineering (CAiSE-08), pp.
32–47, 2008

46. Lin, F., Reiter, R.: State constraints revisited. J. Log. Comput. 4(5), 655–678 (1994)
47. Lutz, C., Sattler, U.: A proposal for describing services with DLs. In: DL, 2002
48. Ly, L.T., Rinderle, S., Dadam, P.: Semantic correctness in adaptive process management systems. In:

BPM06: Proc. 4th Int’l Conf. on Business Process Management, pp. 193–208, Vienna, Austria, 2006
49. Ly, L.T., Rinderle, S., Dadam, P.: Integration and verification of semantic constraints in adaptive

process management systems. Data Knowl. Eng. 64(1), 3–23 (2008)
50. Markovic, I., Karrenbrock, M.: Semantic web service discovery for business process models. In:

Hf-SDDM’07: Workshop on Human-friendly Service Description, Discovery and Matchmaking at
WISE’07, Nancy, France, December 2007

51. Marques-Silva, J., Sakallah, K.A.: GRASP—a search algorithm for propositional satisfiability. IEEE
Trans. Comput. 48(5), 506–521 (1999)

52. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Prediction,
and Guidelines for Correctness. Lecture Notes in Business Information Processing, vol. 6. Springer,
Berlin (2008)

53. Mendling, J., van der Aalst, W.M.P.: Formalization and verification of EPCs with OR-joins based on
state and context. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) Proceedings of the 19th Conference
on Advanced Information Systems Engineering (CAiSE 2007), Trondheim, Norway. Lecture Notes
in Computer Science, vol. 4495, pp. 439–453. Springer, Berlin (2007)

54. Meyer, H.: On the semantics of service compositions. In: Web Reasoning and Rule Systems, First
International Conference (RR-07), pp. 31–42, 2007

55. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT
solver. In: Proceedings of the 38th Conference on Design Automation (DAC-01), Las Vegas, Nevada,
USA, 2001. IEEE Computer Society, Los Alamitos (2001)

56. Namiri, K., Stojanovic, N.: A model-driven approach for internal controls compliance in business
processes. In: SBPM-07: Proc. Workshop on Semantic Business Process and Product Lifecycle Man-
agement, Innsbruck, Austria, June 2007. ISSN 1613-0073

57. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition of web services. In:
11th International World Wide Web Conference (WWW-02), pp. 77–88, 2002

58. OASIS. Web Services Business Process Execution Language Version 2.0, April 2007
59. OMG. Business Process Modeling Notation, V1.1. http://www.bpmn.org/, January 2008. OMG Avail-

able Specification, Document Number: formal/2008-01-17
60. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Annual Symposium on

the Foundations of Computer Science, pp. 46–57. IEEE Computer Society Press, Providence (1977)
61. Puhlmann, F., Weske, M.: Investigations on soundness regarding lazy activities. In: Dustdar, S., Fi-

adeiro, J.L., Sheth, A. (eds.) Business Process Management, 4th International Conference, BPM 2006.
Lecture Notes in Computer Science, vol. 4102, pp. 145–160. Springer, Berlin (2006)

62. Reichert, M., Rinderle, S., Dadam, P.: ADEPT workflow management system: flexible support for
enterprise-wide business processes. In: BPM, 2003

 Author's personal copy

http://www-03.ibm.com/industries/financialservices/doc/content/solution/278918103.html
http://www-03.ibm.com/industries/financialservices/doc/content/solution/278918103.html
http://www.iwi.uni-sb.de/iwi-hefte/heft089.pdf
http://www.iwi.uni-sb.de/iwi-hefte/heft089.pdf
http://www.bpmn.org/

342 Distrib Parallel Databases (2010) 27: 271–343

63. Reichert, M., Rinderle, S., Dadam, P.: ADEPT workflow management system: flexible support for
enterprise-wide business processes (tool presentation). In: BPM03: Proc. Int’l Conf. on Business
Process Management, Eindhoven, Netherlands, June 2003, pp. 370–379. Springer, Berlin (2003)

64. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with ADEPT2. In:
ICDE, 2005

65. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adaptive workflow sys-
tems. Distrib. Parallel Databases 16(1), 91–116 (2004)

66. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier, C.,
Bussler, C., Fensel, D.: Web service modeling ontology. Appl. Ontol. 1(1) (2005)

67. Ryndina, K., Küster, J.M., Gall, H.: Consistency of business process models and object life cycles.
In: MoDELS Workshops. Lecture Notes in Computer Science, vol. 4364, pp. 80–90. Springer, Berlin
(2006)

68. Sadiq, S., Orlowska, M., Sadiq, W.: Specification and validation of process constraints for flexible
workflows. J. Inf. Syst. 30(5), 349–378 (2005)

69. Scheer, A.-W.: ARIS Business Process Modelling. Springer, Berlin (2000)
70. Sinur, J., Hill, J.B.: Align BPM and SOA Initiatives Now to Increase Chances of Becoming a Leader

by 2010. Gartner Predicts 2007, 10 November 2006
71. Strichman, O.: Accelerating bounded model checking of safety formulas. Form. Methods Syst. Des.

24(1), 5–24 (2004)
72. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services (2003)
73. Valmari, A.: A stubborn attack on state explosion. In: Proceedings of the 2nd Workshop on Computer

Aided Verification (CAV’90), pp. 156–165, 1990
74. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) Application and

Theory of Petri Nets 1997. Lecture Notes in Computer Science, vol. 1248, pp. 407–426. Springer,
Berlin (1997)

75. van der Aalst, W.M.P.: Formalization and verification of event-driven process chains. Inf. Softw. Tech-
nol. 41(10), 639–650 (1999)

76. van der Aalst, W.M.P.: Interorganizational workflows: an approach based on message sequence charts
and Petri nets. Syst. Anal. Model. Simul. 34(3), 335–367 (1999)

77. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language. Inf. Syst. 30(4),
245–275 (2005)

78. van der Aalst, W.M.P., van Hee, K.: Workflow Management: Models, Methods, and Systems (Coop-
erative Information Systems). MIT Press, Cambridge (2002)

79. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.: An alternative way to analyze workflow
graphs. In: Banks-Pidduck, A., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.): Proceedings of the 14th
International Conference on Advanced Information Systems Engineering (CAiSE’02). Lecture Notes
in Computer Science, vol. 2348, pp. 535–552. Springer, Berlin (2002)

80. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and verification of proper-
ties: an approach based on temporal logic. In: Meersman, R., Tari, Z., Hacid, M.-S., Mylopoulos, J.,
Pernici, B., Babaoglu, Ö., Jacobsen, H.-A., Loyall, J.P., Kifer, M., Spaccapietra, S. (eds.) OTM Con-
ferences (1). Lecture Notes in Computer Science, vol. 3760, pp. 130–147. Springer, Berlin (2005)

81. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis for business
process models though SESE decomposition. In: Krämer, B., Lin, K.J., Narasimhan, P. (eds.): 5th
International Conference on Service-Oriented Computing (ICSOC). Lecture Notes in Computer Sci-
ence, vol. 4749, pp. 43–55. Springer, Berlin (2007)

82. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas, M., Reichert, M.,
Shan, M.-C. (eds.) Business Process Management, 6th International Conference, BPM 2008, Milan,
Italy, September 2–4, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5240, pp. 100–115.
Springer, Berlin (2008)

83. Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing workflow processes using Woflan.
Comput. J. 44(4), 246–279 (2001)

84. Weber, I., Hoffmann, J., Mendling, J., Nitzsche, J.: Towards a methodology for semantic business
process modeling and configuration. In: Proceedings of the ICSOC 2007 Workshops. Lecture Notes
in Computer Science. Springer, Berlin (2008)

85. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the semantic consistency of executable
process models. In: ECOWS-08: Proceedings of the 6th IEEE European Conference on Web Services,
pp. 102–111, November 2008

86. Weber, I., Hoffmann, J., Mendling, J.: Semantic business process validation. In: SBPM-08: 3rd Inter-
national Workshop on Semantic Business Process Management at ESWC-08, June 2008

 Author's personal copy

Distrib Parallel Databases (2010) 27: 271–343 343

87. Weber, I., Markovic, I., Drumm, C.: A conceptual framework for semantic business process configu-
ration. J. Inf. Sci. Technol. (JIST) 5(2), 3–20 (2008)

88. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of semantic business
process models. Technical report, 2009. Available at http://www.imweber.de/texte/tr-dpd.pdf

89. Weber, I., Barros, A., May, N., Hoffmann, J., Kaczmarek, T.: Composing services for third-party
service delivery. In: ICWS-09: IEEE International Conference on Web Services, Application and
Industry Track, Los Angeles, CA, July 2009

90. Weber, I., Governatori, G., Hoffmann, J.: Approximate compliance checking for annotated process
models. In: Advances in Enterprise Engineering—Proceedings of the GRCIS workshop at CAiSE’08,
June 2008

91. Winslett, M.: Reasoning about actions using a possible models approach. In: AAAI, 1988
92. Zhao, W., Hauser, R., Bhattacharya, K., Bryant, B.R., Cao, F.: Compiling business processes: untan-

gling unstructured loops in irreducible flow graphs. Int. J. Web Grid Serv. 2(1), 68–91 (2006)
93. zur Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use of the busi-

ness process modeling notation. In: Proceedings of the 20th International Conference on Advanced
Information Systems Engineering (CAiSE’08), 2008

 Author's personal copy

http://www.imweber.de/texte/tr-dpd.pdf

	Beyond soundness: on the verification of semantic business process models
	Abstract
	Introduction
	Motivation and background
	Overview of the approach
	Summary of formalization and contribution

	Annotated process graphs
	Process graphs
	Semantic annotations

	Verification tasks
	Checking precondition and effect conflicts
	Computational hardness of executability and reachability checking
	Polynomial-time executability checking for basic processes
	Prototypical implementation
	Maestro
	SAP NetWeaver BPM process composer
	Automatic service configuration for service brokers
	How to obtain the ontologies?

	Related work
	Own related work
	Petri nets
	Model checking
	Beyond control-flow

	Conclusion and discussion of open questions
	Acknowledgements
	Appendix: Proofs
	Control-flow properties
	Binary theories can be compiled away
	Correctness of I-propagation
	I-propagation can be used for executability checking
	Complexity results

	References

