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Abstract. We introduce a new framework for image classification that
extends beyond the window sampling of fixed spatial pyramids to include
a comprehensive set of windows densely sampled over location, size and
aspect ratio. To effectively deal with this large set of windows, we derive a
concise high-level image feature using a two-level extraction method. At
the first level, window-based features are computed from local descriptors
(e.g., SIFT, spatial HOG, LBP) in a process similar to standard feature
extractors. Then at the second level, the new image feature is determined
from the window-based features in a manner analogous to the first level.
This higher level of abstraction offers both efficient handling of dense
samples and reduced sensitivity to misalignment. More importantly, our
simple yet effective framework can readily accommodate a large number
of existing pooling/coding methods, allowing them to extract features
beyond the spatial pyramid representation.

To effectively fuse the second level feature with a standard first level
image feature for classification, we additionally propose a new learning
algorithm, called Generalized Adaptive �p-norm Multiple Kernel Learn-
ing (GA-MKL), to learn an adapted robust classifier based on multiple
base kernels constructed from image features and multiple sets of pre-
learned classifiers of all the classes. Extensive evaluation on the object
recognition (Caltech256) and scene recognition (15Scenes) benchmark
datasets demonstrates that the proposed method outperforms state-of-
the-art image classification algorithms under a broad range of settings.

Keywords: Image Classification, Spatial Pyramid, Sliding Window, Mul-
tiple Kernel Learning, Adapted Classifier.

1 Introduction

A well-established approach to image classification was introduced in [1], where
an image is subdivided into increasingly finer regions according to a spatial pyra-
mid representation (SPR), and then a Bag-of-Features (BoF) [2, 3] is computed
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within each of the subregions. In the past few years, many sophisticated feature
extraction techniques have been extended from this framework [4–10].

While the spatial pyramid representation has become widely used in image
classification, the grid cells within a pyramid correspond to a rather limited set
of spatial regions where features are defined: the cells have a fixed aspect ratio;
their areas vary only by multiples of four; and their locations must align with
a grid. Many of the possible spatial regions are excluded, though some of them
may provide important discriminative information.

Motivated by the success of sliding windows in object detection [11], we seek
in this paper a general framework for image classification that accounts for a
comprehensive set of windows densely sampled with respect to location, size,
and aspect ratio, while allowing existing methods for encoding and pooling to
be incorporated. However, two important issues arise from a direct approach.
One is that the feature vector would become extremely large, since it is formed
as a concatenation of features from each of the windows. Such large feature
vectors would make image classification computationally very inefficient. The
other issue that seriously impairs this approach is that different images are often
not aligned with each other in image classification scenarios. Feature vectors
with a strong spatial structure can therefore be detrimental when corresponding
features do not coincide in image position.1

To avoid these issues, we propose a simple but effective image feature derived
from densely sampled windows that is relatively compact and less sensitive to
misalignment. This feature represents an image-level abstraction of the window-
based features used in [1]. It is obtained via a two-level feature extraction method
in which the first level computes window-based features from local descriptors
(e.g., SIFT, spatial HOG, LBP), and the second level repeats the encoding and
pooling procedure on the window-based features to acquire the new image fea-
ture. Feature pooling over the image yields a feature vector with the same number
of elements as the codebook. Moreover, as in window-based features [1], exact
positional information within the image is left out of the image feature in the
same manner. This image feature implicitly captures useful spatial information,
and will be shown to enhance classification performance when added to SPR.
Furthermore, various pooling/coding techniques [6–10, 12] which extract features
only from fixed spatial pyramids can be easily extended to go beyond the spatial
pyramid representation within our proposed feature extraction framework.

For SVM classification, we propose a new learning method called Generalized
Adaptive �p-norm Multiple Kernel Learning (GA-MKL), which is motivated by
the recent success of MKL methods for various vision applications, such as object
categorization [13, 14] and action recognition [15]. GA-MKL allows for different
features such as our new second level feature and the standard first level feature
to be effectively combined for classification. Moreover, GA-MKL takes advantage
of pre-learned classifiers of other classes, based on the intuition that some classes

1 We note that certain image categories tend to share a common spatial arrangement,
such as people located in the middle of images, which works to the benefit of features
based on SPR.
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The 1st level feature extraction

The proposed 2nd level feature extraction

Fig. 1. Overview of the proposed two-level feature extraction framework

may share common information that can benefit each other. For example, classes
like “Swan”, “Duck” and “Goose” may share the same background of “Water”
and similar components like beaks. Therefore it may be beneficial to train an
adapted classifier for “Swan” that leverages on pre-learned classifiers for “Duck”
and “Goose”. GA-MKL takes advantage of this by learning an adapted classifier
using multiple sets of base kernels and multiple sets of pre-learned SVM classifiers
from other classes.

This work provides the first practical unsupervised feature extraction frame-
work for going beyond spatial pyramids with densely sampled windows in image
classification, in a general manner that easily accommodates existing encoding
and pooling schemes. Through extensive experiments conducted on two widely-
used benchmarks – Caltech256 [16] and 15Scenes [1, 17, 18] – we demonstrate the
effectiveness of our feature extraction framework based on the second level fea-
ture and leveraging pre-learned classifiers from other classes through GA-MKL.
These results show that our work consistently outperforms the state-of-the-art
over a broad range of test cases.

2 Related Work

Different variants of the spatial pyramid representation have been employed for
image classification. Though the original work of [1] found no performance im-
provement with pyramids expanded beyond the conventional three levels, others
have reported better classification when a fourth level is included [14, 19]. In
[20], adding overlapping spatial areas to the non-overlapped grid for the sec-
ond and third levels was shown to capture more spatial information. The novel
spatial pyramid layout used by the winner of VOC 2007 [21] has been adopted
by many recent state-of-the-art methods [22–24]. In [25], fan-shaped areas are
used in place of rectangular spatial areas in SPR. In contrast to these aforemen-
tioned methods, our work effectively and efficiently processes a complete set of
rectangular windows, instead of a handcrafted subset.

In feature extraction, spatial information has been accounted for on two lev-
els: in the local descriptor (such as the SIFT feature) and in the code of the local
descriptor (as done in SPR). Kulkarni et al. [26] used affine SIFT to handle pose
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and viewpoint variance. Boureau et al. [4] proposed a mid-level feature based
on sparse coding on local groups of SIFT features, instead of individual ones.
They also presented a pooling scheme that can effectively handle large code-
books [12]. Feng et al. [10] proposed geometric �p pooling that places different
importance on different geometric positions. Yang et al. [5] took advantage of
spatial pyramid co-occurrence for overhead aerial imagery. For object recogni-
tion, Bosch et al. [27] utilized a region of interest detection procedure before
applying BoW feature extraction. Our method differs from these techniques by
introducing a higher level of feature that accounts for densely sampled windows
of any location, size and aspect ratio.

The work in [28, 29] proposed to extract new types of higher level feature
representations to exploit spatial or spatial-temporal co-occurrences beyond lo-
cal descriptors. In both works, for final classification, their proposed features are
pooled to obtain a global histogram for the whole image (i.e., a 1x1 spatial pyra-
mid). In contrast, our method goes beyond spatial pyramids such that the final
feature is extracted from windows densely sampled over location, size and aspect
ratio. Jia et al. [30] also presented a method to go beyond spatial pyramids, by
learning optimal pooling parameters for an over-complete set of receptive field
candidates.

Another stream of research takes advantage of attribute or object level clas-
sifiers to extract high level features directly [31, 32] or use them indirectly for
visual word disambiguation [33]. All these methods involve supervised learning
of attribute classifiers using an extra training set collected from Google search
or other sources. By contrast, our feature extraction framework does not use any
extra training set, and the entire feature extraction process is unsupervised.

Several feature extraction techniques have been presented for purposes other
than image classification. Duchenne et al. [34] proposed a graph-matching
method that matches corresponding object points in different images for object
classification. Boiman et al. [35] applied the nearest-neighbor classifier directly
on different categories of SIFT features. Gehler et al. [36] combined different
kinds of features and showed high performance with multiple kernel combina-
tions. Bo et al. [37] framed image recognition as an image matching problem and
solved it by kernel matching.

Recent work [15, 38] demonstrated that it is generally beneficial to utilize
the pre-learned classifiers from other classes for event/action recognition. In
contrast to the �1-norm constraint used in existing methods like [15, 38], in
GA-MKL, we utilize the more general �p-norm constraint (e.g., p = 2 in this
work) which can preserve complementary and orthogonal information [39]. This
is particularly important when base kernels contain complementary information
as in our two level feature extraction framework. Furthermore, GA-MKL also
learns the weights for multiple sets of pre-learned classifiers. Using the pre-
learned classifiers for other classes also distinguishes GA-MKL from the existing
�p-MKL technique.
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3 Two-Level Feature Extraction

3.1 First Level Image Feature

For the first level, we employ BoF image feature extraction, which consists of four
key components – local feature extraction, dictionary learning, feature encoding
and feature pooling – which are illustrated in the upper part of Fig. 1. This is
performed using the SPR framework of [1]. First, local descriptors such as SIFT
are extracted from image patches. A visual word dictionary is then generated
from these local features via clustering. This visual dictionary thereafter is used
to encode each local feature into a coded vector by soft assignment [9]. Next,
max pooling [6] is performed on the coded vectors in each window of the spatial
pyramid. We note that other advanced encoding [6–9] or pooling [10, 12] methods
can be readily used in our framework to improve classification performance. In
this work, we take soft assignment [9] and max pooling [6] as an example to
illustrate our framework because of their efficiency and reasonable effectiveness.

A spatial pyramid subdivides the input image into a sequence of grids with
incrementally finer non-overlapping regions of the same size. As illustrated at
the left of Fig. 2, the grid at level l has 2l cells along each dimension, for a total
of D = 2l × 2l cells. The vectors generated for each window by max pooling are
all concatenated to form the first level image feature. This feature extraction
procedure is the same as that used in [9].

3.2 Second Level Image Feature

Dense Sampling of Spatial Areas. The conventional spatial pyramid repre-
sentation can greatly boost the performance of image classification, and with our
second level image feature we aim to go beyond SPR by transplanting the idea
of sliding windows [11] into image classification. Towards this end, we sample
the spatial areas densely with respect to location, aspect ratio and size. This
is achieved as follows. Suppose each spatial area is denoted by Area(x, y, w, h),
where (x, y) denotes the image position of the upper-left corner of the window,
and (w, h) denotes the window width and height. All 4-tuples of Area(x, y, w, h)
are enumerated to obtain a comprehensive set of spatial areas.

The dense sampling procedure is illustrated in the right part of Fig. 2. For
each window size (ŵ, ĥ), each image position (x̂, ŷ) is scanned as shown by the
red arrows. The window is iteratively shifted from left to right (X-direction),
and from top to bottom (Y-direction). Sampling of different window widths and
heights is illustrated along the black horizontal and vertical axes, respectively.
The size and aspect ratio of windows are shown at the top-left of each image.

By dense sampling, windows that tightly bound an object or other potentially
meaningful image patch are captured. This is shown by yellow rectangles in Fig. 2
for the bear’s head and leg, and also a log on the ground.

In practice, we do not exhaustively sample the spatial areas pixel by pixel.
Our implementation uses a step size of 30 pixels for x, y, w, h.
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Fig. 2. Illustration of dense spatial sampling. The left side shows spatial pyramid
sampling in [1]. The right side shows dense sampling as done in our proposed framework.

Second Level Coding and Pooling. We now have a set of spatial areas
from dense sampling. Feature pooling is then performed on each spatial area
to produce a feature vector which we refer to as a window-based feature. From
the window-based features (one per spatial area), we compute an image feature
vector that is the final output of feature extraction.

To go from window-based features to the final image feature, we propose to
do a second level of feature extraction. This second level differs from the first
level in that clustering is carried out on the window-based features instead of
local SIFT descriptors. The secondary codebook learned in this clustering step
is used to encode the window-based features. Finally, pooling of the encoded
window-based features is done over the entire image to determine the image
feature vector, which contains the same number of elements as the secondary
codebook. As mentioned previously, we use soft assignment [9] and max pooling
[6] in this work, but any encoding and pooling methods may be used instead.

Similar to the way the first level image feature relates each pyramid window
to SIFT codewords, the second level feature relates the entire image to window-
based codewords. The window-based codewords essentially represent a set of
“window clusters” that each have similar first level feature content. These “win-
dow clusters” can be considered as a form of higher level SIFT-based feature
defined over larger areas. We will later show in the experiments that this higher
level abstraction of standard window descriptors provides a useful complement
to first level image features.

3.3 Extension to Multiple Local Descriptors

The two-level feature extraction framework offers the generality to incorpo-
rate any kind of local descriptor, such as SIFT [40], Spatial HOG [41, 42] and
LBP [43]. Two-level feature extraction for spatial HOG follows the exact same
procedure as for SIFT. For LBP, histograms are extracted at the first level fea-
ture extraction, then LBP histograms are further processed by the proposed
second level feature extraction.
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4 Generalized Adaptive �p-norm Multiple Kernel
Learning

In the following, we define the �p-norm of the M dimensional vector d as ||d||p =

(
∑M

m=1 d
p
m)1/p, and specially denote the �2-norm of d simply as ||d|| for brevity.

We also use the superscript ′ to signify the transpose of a vector, and denote the
element-wise product between two vectors α and y as α�y = [α1y1, · · · , αlyl]

′.
Moreover, 1 ∈ R

l denotes an l dimensional vector with all elements of 1, and the
inequality d = [d1, . . . , dM ]′ � 0 indicates that dm � 0 for m = 1, . . . ,M .

Multiple Kernel Learning (MKL) has been widely utilized to fuse different
types of visual features. The traditional �1-norm MKL selects a very sparse
set of base kernels, which may discard some useful information. The recent �p-
norm Multiple Kernel Learning (�p-MKL) [39] utilizes the more general �p-norm
constraint (e.g., p = 2 in this work) for the kernel coefficients, which can preserve
complementary and orthogonal information [39] in contrast to �1-norm MKL.

In our work, we wish to additionally take advantage of existing SVM classifiers
trained from different types of visual features for different classes. Our intuition is
that different classes may share some common information that benefits others.
We thus propose a new learning method called Generalized Adaptive �p-norm
Multiple Kernel Learning (GA-MKL) to learn a robust adapted classifier that
not only fuses different types of visual features (e.g. first and second level image
features) but also incorporates pre-learned classifiers trained on different types
of features for all of the classes.

We consider one-versus-rest classification in this work. For any given class,
let us denote the training set as {(xi, yi)|li=1} where xi is the ith training image
with yi ∈ {+1,−1} being the corresponding label. Suppose that we have a total
number of H classes and S sets of pre-learned classifiers {f1

s (x), · · · , fH
s (x)}|Ss=1,

each set of which can be learned from some kind of image representation (In this
work, different representations are coming from different types of visual features).
Motivated by [38], we assume that the decision function for the new classifier is a
linear combination of all the pre-learned classifiers with a perturbation function
modeled by using the original visual feature, and define the decision function as

f(x) =
S∑

s=1

β′
sfs(x) +Δf(x), (1)

where fs(x) = [f1
s (x), · · · , fH

s (x)]′ is the sth decision value vector for the input
image x from the pre-learned classifiers, βs = [β1

s , · · · , βH
s ]′ is the corresponding

weight vector to be optimized, and Δf(x) can be any perturbation function from
the original visual feature space. If we utilize the decision function of Multiple
Kernel Learning as the perturbation function, and assume that a total number
of M base kernels are used, then Δf(x) =

∑M
m=1 dmw′

mϕm(x) + b, where ϕm(·)
is the mapping of the mth base kernel, d = [d1, . . . , dM ]′ is the vector of base
kernel coefficients, and d,wm|Mm=1, b are the variables of the MKL.

The new adapted classifier f(x) can be learned by minimizing the following
objective function:
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min
dm,μs

min
vm,b,ξi,βs

1

2

S∑

s=1

‖βs‖2
μs

+
λ

2

S∑

s=1

μ2
s +

1

2

M∑

m=1

‖vm‖2
dm

+ C

l∑

i=1

ξi

︸ ︷︷ ︸
J(Δf)

(2)

s.t. yi

(
S∑

s=1

β′
sfs(xi) +

M∑

m=1

v′
mϕm(xi) + b

)

� 1− ξi, ξi � 0, i = 1, · · · , l,

d � 0, ||d||2p � 1,μ � 0,

where C > 0 is the MKL regularization parameter, vm = dmwm, J(Δf) is the
MKL structural risk functional, and p � 1 is the norm parameter for the base
kernel coefficients introduced in �p-MKL [39]. Besides the structural risk term
J(Δf) for standard MKL, the coefficients βs|Ss=1 for the pre-learned classifiers
are also penalized as ‖βs‖2|Ss=1. Considering that the pre-learned classifiers from
different visual features have different classification capacity, we further intro-
duce an intermediate vector μ = [μ1, · · · , μS ]

′ to control the contributions of the
penalty terms from different pre-learned classifier sets. The regularization term
λ
2

∑S
s=1 μ

2
s with regularization parameter λ > 0 is included to avoid a trivial

solution for μ. In this way, we not only fuse different types of visual features but
also utilize the pre-learned classifiers of all the classes.

Since the optimization problem in (2) is convex w.r.t. vm, b, ξi,βs,d,μ, the
global optimum can be obtained by using the block-wise coordinate descent
algorithm [39]. We thus alternatively optimize these variables with the following
two steps.

Optimize vm, b, ξi,βs with Fixed d,μ: With fixed d,μ, the problem in (2)
is a convex problem w.r.t. vm, b, ξi and βs. By introducing the non-negative
Lagrangian multipliers αi|li=1, the dual can be derived as follows:

max
α

α′1− 1

2
(α� y)′

(
M∑

m=1

dmKm +

S∑

s=1

μsFs

)

(α� y) (3)

s.t. α′y = 0, 0 � α � C,

where α = [α1, . . . , αl]
′, y = [y1, . . . , yl]

′, Km(xi,xj) = ϕm(xi)
′ϕm(xj) and

Fs(xi,xj) = fs(xi)
′fs(xj). It can be seen that (3) is in a standard form of the

SVM dual problem with the kernel K =
∑M

m=1 dmKm +
∑S

s=1 μsFs. Therefore,
it can be solved via existing SVM solvers such as libsvm [44].

With the optimum α obtained from problem (3), we can recover the primal
variables vm,βs accordingly:

vm = dm

l∑

i=1

αiyiϕm(xi), m = 1, . . . ,M, (4)

βs = μs

l∑

i=1

αiyifs(xi), s = 1, . . . , S. (5)
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Algorithm 1. Block-wise coordinate descent algorithm for GA-MKL.

1: Initialize d1 and μ1; set t = 1.
2: repeat
3: Obtain αt by solving (3) using the SVM solver with dt and μt.
4: Calculate ‖vt

m‖2 by using (4) and solve for dt+1 by using (7).
5: Calculate ‖βt

s‖2 by using (5) and solve for μt+1 by using (8).
6: t = t + 1.
7: until The convergence criterion is reached.

Optimize d,μ with Fixed vm, b, ξi,βs: With fixed vm, b, ξi,βs, the problem
in (2) reduces to the following constrained convex minimization problem:

min
dm,μs

1

2

S∑

s=1

‖βs‖2
μs

+
λ

2

S∑

s=1

μ2
s +

1

2

M∑

m=1

‖vm‖2
dm

(6)

s.t. d � 0, ||d||2p � 1,μ � 0.

Similar to the derivations in [39], we obtain the closed-form solutions as follows:

dm =
||vm|| 2

p+1

(
∑M

r=1 ||vr ||
2p

p+1 )1/p
, m = 1, . . . ,M, (7)

μs =
3

√
||βs||2
2λ

, s = 1, . . . , S, (8)

where ‖vm‖2 and ‖βs‖2 can be calculated by using (4) and (5), respectively.
The entire optimization procedure is summarized in Algorithm 1. After ob-

taining the optimal d, μ and α using Algorithm 1, the final classifier for the test
images can be expressed as

f(x) =

l∑

i=1

αiyi

(
S∑

s=1

μsfs(x)
′fs(xi)

)

+

l∑

i=1

αiyi

(
M∑

m=1

dmKm(x,xi)

)

+ b.

5 Experiments

In this section, we evaluate the proposed two-level feature extraction framework
and GA-MKL on two broadly recognized image databases for object and scene
classification: Caltech256 [16] and 15Scenes [1, 17, 18].

5.1 Experimental Setup

Local Descriptor Extraction: Three types of local descriptors – dense SIFT
[40], spatial HOG [42] and LBP [43] – are used in our experiments. SIFT is
extracted from densely located patches centered at every 4 pixels in the image,
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with a patch size of 16×16 pixels. For spatial HOG, the HOG descriptors are
extracted from densely located patches centered at every 8 pixels in the image,
with a patch size of 8×8 pixels. Then the spatial HOG descriptor is formed by
stacking together 2×2 neighboring local HOG descriptors. For LBP, the uniform
LBP as described in [43] is adopted.

Dictionary Learning: K-means clustering is employed for both levels of feature
extraction. The dictionary size for all second level feature extractions is set to
4,096. The dictionary size for the first level SIFT feature extraction is set to
4,096 as well. All other dictionary sizes are set to 1,024.

Encoding: Localized soft assignment [9] is used for both levels of encoding.

Pooling: The first level feature extraction of LBP is pooled by average pooling.
In all other cases, the codes are pooled via max pooling. A three level spatial
pyramid of 1×1, 2×2 and 4×4 is used.

Feature Normalization and Designation: The first level image features of
the LBP local descriptor are normalized with the �1-norm equal to 1. The other
types of image features are each normalized with the �2-norm equal to 1.

The first level image feature is referred to as a Spatial Pyramid Representation
(SPR) feature. The first level feature together with the second level feature is
referred to as the Beyond Spatial Pyramid Representation (BSPR) feature.

Kernel Learning: �p-MKL and GA-MKL are implemented using the libsvm
software package [44]. Linear kernels with C set to 10 are used throughout the
experiments. In �p-MKL and GA-MKL, we fix p to 2. In GA-MKL, we empirically
set λ to 10 for both datasets. For the pre-learned classifiers in GA-MKL, there
are six sets in total, with each set learned by using each type of BSPR feature.
From the six sets of pre-learned classifiers and the six linear kernels generated
by the six kinds of BSPR features, the GA-MKL classifier is learned.

All experiments on each dataset are repeated five times with different ran-
domly selected training images and the same experimental settings. The results
are reported in terms of the mean and standard deviation from all five runs.

5.2 Results on the Caltech256 Dataset

Caltech256 [16] provides challenging data for object recognition. It consists of
30,608 images with 256 object categories and 80 to 827 images per category. In
our series of experiments on Caltech256, we take 30, 45 and 60 images from each
category for training and use the rest as test samples.

Performance comparisons with the baseline method are listed in the upper
part of Table 1. From it, one can see that the classification accuracy with BSPR
features consistently yields better results than the one with SPR features in all
three of the training scenarios. With �p-norm MKL, the improvements of the
BSPR feature over the SPR feature are 2.03%, 2.38% and 2.73% respectively.
This demonstrates that the proposed second level features provide additional in-
formation which is complementary to the SPR with the first level features. Also,
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Table 1. Classification accuracy (%) on the Caltech256 dataset. SPR feature (�p-MKL)
is the baseline method implemented in this paper. BSPR feature (�p-MKL) and BSPR
feature (GA-MKL) correspond to our proposed BSPR feature learned with �p-MKL
and our proposed GA-MKL. Note: - indicates unavailability of results.

Method 30 training 45 training 60 training

SPR feature (�p-MKL) 43.75 ± 0.20 47.23 ± 0.23 48.92 ± 0.31

BSPR feature (�p-MKL) 45.78 ± 0.18 49.61 ± 0.16 51.65 ± 0.35
BSPR feature (GA-MKL) 46.82 ± 0.23 50.69 ± 0.15 52.91 ± 0.59

Sparse coding [6] 34.02 ± 0.35 37.46 ± 0.55 40.14 ± 0.91
Improved Fisher Kernel [24] 40.80 ± 0.10 45.00 ± 0.20 47.90 ± 0.40
Efficient Match Kernel [37] 30.50 ± 0.40 34.40 ± 0.40 37.60 ± 0.50
Affine sparse codes [26] 45.83 49.30 51.36
Locality-constrained linear coding [7] 41.19 45.31 47.68
Geometric �p-norm Feature Pooling [10] 43.17 47.32 -
Nearest-neighbor [35] 42.70 - -
Random Forest [27] 44.00 - -
Graph-matching kernel [34] 38.10 ± 0.60 - -
Multi-way local pooling [12] 41.70 ± 0.80 - -

it is shown in the table that the results using the BSPR feature and our proposed
GA-MKL are better than those using BSPR and �p-MKL by 1.04%, 1.08% and
1.26%, which indicates that it is beneficial to learn an adapted classifier that
leverages on pre-learned classifiers from other classes. This is consisted with the
previous work [15, 38, 45]. In total, the proposed BSPR feature and GA-MKL
improves upon the baseline method by 3.07%, 3.46% and 3.99% respectively.

After learning the adapted classifiers, we observe that similar concepts have
higher weights than dissimilar ones. Taking for instance the concepts of “Swan”
and “Gorilla”, the two largest β values are as follows: Swan(βduck = 0.092,
βgoose = 0.078), Gorilla(βchimp = 0.195, βraccoon = 0.106). These learned values
also reflect the benefit of leveraging pre-learned classifiers of other classes.

Comparisons with State-of-the-Art: In the lower part of Table 1, compar-
isons with state-of-the-art methods are provided. The listed methods include the
most recently reported techniques as well as the highest achieving methods from
the past. Our method is seen to outperform all the existing methods with various
numbers of training samples. To be exact, Our method exceeds the existing best
results [26] (underlined in Table 1) by 0.99%, 1.39% and 1.55% for 30, 45 and
60 training samples, respectively.

5.3 Results on the 15Scenes Dataset

The 15Scenes dataset is composed of 15 classes of scenes and contains 4,485 im-
ages in total, reported in [1, 17, 18]. Following the common evaluation protocol
on this dataset, we randomly select 100 images from each class as training sam-
ples and use the rest as test samples. Table 2 presents performance comparisons.
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Fig. 3. Comparison with state-of-the-art results on 15Scenes

Table 2. Classification accuracy (%) on 15Scenes with 100 training images

Method Classification Accuracy

SPR feature (�p-MKL) 86.60 ± 0.66

BSPR feature (�p-MKL) 88.32 ± 0.72
BSPR feature (GA-MKL) 88.87 ± 0.56

Using �p-MKL, classification accuracy with the BSPR features exceeds that
of the baseline method with SPR features, which again demonstrates the ef-
fectiveness of our proposed two level feature extraction framework. The result
using the BSPR feature and GA-MKL is also better than that from the BSPR
feature and �p-MKL, which validates the effectiveness of GA-MKL in leveraging
pre-learned classifiers from other classes. In total, our proposed BSPR feature
with our GA-MKL brings an overall improvement in classification accuracy of
2.27% over the baseline.

Performance of Individual Features: For individual BSPR features, the
results are 83.2%, 84.6% and 70.4% (resp. 75.8%, 69.8%, 69.5%) using SIFT,
SHOG and LBP features at the first (resp. second) level. Note that the result
after combining all three first level features (86.6%) is better than the results
from each individual feature at the first level, which shows the effectiveness of
�p-MKL. Though the individual results at the second level are not as good as
those corresponding to the first level, they are complementary to the first level
features, and the combination of two levels of features using �p-MKL leads to a
better result (i.e., 88.32% vs. 86.6% in Table 2).

Comparisons with State-of-the-Art: In Fig. 3, comparisons with state-of-
the-art methods are provided. The listed methods include the latest techniques
and top performers. Our method still achieves the best results on this dataset.

5.4 Computation Time

The proposed two-level feature extraction framework involves a second round
of encoding and pooling that adds to the computation time. Processing speed
additionally depends on the codebook sizes in the first level and second level
feature extraction, the number of local descriptors in the first level, and the
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number of windows in the second level. For the methods and settings used in
this work, with the SIFT descriptor as an example, the CPU times for the first
level (5,184 SIFT descriptors with the feature dimension of 128) and second
level (3,025 windows with the window-based feature dimension of 4,096) feature
extraction are about 10s and 15s on a 300×300 image for Caltech256, with an
IBM workstation (3.33GHz CPU with 18GB RAM) and Matlab implementation.

6 Conclusion

We presented two technical contributions for image classification. The first is a
novel feature extraction framework that generalizes window-based features to the
image level in a manner that efficiently accounts for densely sampled windows
and allows for existing encoding and pooling techniques to be used. Secondly, we
proposed Generalized Adaptive �p-norm Multiple Kernel Learning (GA-MKL)
to incorporate the two different levels of features and to leverage multiple sets
of pre-learned classifiers from other classes. Our extensive experimental results
on benchmark datasets show that our work outperforms the state-of-the-art.
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