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Community ecology is tasked with the considerable challenge of predicting the structure, and properties, of emerging 
ecosystems. It requires the ability to understand how and why species interact, as this will allow the development of 
mechanism-based predictive models, and as such to better characterize how ecological mechanisms act locally on the 
existence of inter-specific interactions. Here we argue that the current conceptualization of species interaction networks is 
ill-suited for this task. Instead, we propose that future research must start to account for the intrinsic variability of species 
interactions, then scale up from here onto complex networks. This can be accomplished simply by recognizing that there 
exists intra-specific variability, in traits or properties related to the establishment of species interactions. By shifting the scale 
towards population-based processes, we show that this new approach will improve our predictive ability and mechanistic 
understanding of how species interact over large spatial or temporal scales.

Interactions between species are the driving force behind  
ecological dynamics within communities (Berlow et  al. 
2009). Likely for this reason more than any other, the struc-
ture of communities have been described by species interac-
tion networks for over a century (Dunne 2006). Formally an 
ecological network is a mathematical and conceptual repre-
sentation of both species, and the interactions they establish. 
Behind this conceptual framework is a rich and expanding 
literature whose primary focus has been to quantify how 
numerical and statistical properties of networks relate to 
their robustness (Dunne et  al. 2002), productivity (Duffy 
et  al. 2007), or tolerance to extinction (Memmott et  al. 
2004). Although this approach classically focused on food 
webs (Ings et al. 2009), it has proved particularly successful 
because it can be applied equally to all types of ecological 
interactions (Kéfi et al. 2012).

This body of literature generally assumes that, short  
of changes in local densities due to ecological dynamics,  
networks are inherently static objects. This assumption calls 
into question the relevance of network studies at biogeo-
graphic scales. More explicitly, if two species are known to 
interact at one location, it is often assumed that they will 
interact whenever and wherever they co-occur (Havens 

1992); this neglects the fact that local environmental con-
ditions, species states, and community composition can 
intervene in the realization of interactions. More recently, 
however, it has been established that networks are dynamic 
objects that have structured variation in a, b and g diversity, 
not only with regard to the change of species composition at 
different locations but also to the fact that the same species 
will interact in different ways over time or across their area 
of co-occurrence (Poisot et  al. 2012). Of these sources of 
variation in networks, the change of species composition has 
been addressed explicitly in the context of networks (Gravel 
et al. 2011, Dáttilo et al. 2013) and within classical meta- 
community theory. However, because this literature still tends 
to assume that interactions happen consistently between  
species wherever they co-occur, it is ill-suited to address  
network variation as a whole and needs be supplemented 
with new concepts and mechanisms (Fig. 1).

Within the current paradigm, interactions are established 
between species and are an immutable ‘property’ of a species 
pair. Starting from empirical observations, expert knowledge, 
or literature surveys, one could collect a list of interactions 
for any given species pool. Several studies used this approach 
to extrapolate the structure of networks over time and space 

Although species interactions are the backbone of ecological communities, we have little insights on how 
(and why) they vary through space and time. In this article, we build on existing empirical literature to show 
that the same species may happen to interact in different ways when their local abundances vary, their trait 
distribution changes, or when the environment affects either of these factors. We discuss how these findings can 
be integrated in existing frameworks for the analysis and simulation of species interactions.
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Box 1.  A mathematical framework for population-level interactions

We propose that the occurrence (and intensity) of ecological interactions at the population level relies on several factors, 
including relative local abundances and local trait distributions. It is important to tease apart these different factors so as to 
better disentangle neutral and niche processes. We propose that these different effects can adequately be partitioned using 
a model for the adjacency matrix A, where the probability of an interaction between species i and j is
Aij µ [N (i, j)   (i, j)]  e
Where N is a function giving the probability that species i and j interact based only on their local abundances (that is, 
the probability of encounter), and  is a function giving the per encounter probability that species i and j interact based 
on their trait values. The term e accounts for all higher-order effects, such as indirect interactions, local impact of envi-
ronmental conditions on the interaction, and impact of co-occurring species. Both of these functions can take any form 
needed. In several papers, N (i, j) was expressed as ni  nj, where n is a vector of relative abundances (Canard et al. 2014).  
The expression of J can in most cases be derived from mechanistic hypotheses about the observation. For example, Gravel 
et al. (2013) used the niche model of Williams and Martinez (2000) to predict interactions with the simple rule that  

 (i, j)  1 if i can consume j based on allometric rules, and 0 otherwise. Following Rohr et al. (2010), the expression 
of  can be based on latent variables rather than actual trait values. This simple formulation could be used to partition, 
at the level of individual interactions, the relative importance of density-dependent and trait-based processes using vari-
ance decomposition. Most importantly, it predicts 1) how each of these components will vary over space and 2) how the 
structure of the network will be affected by, for example, changes in local abundances or trait distributions. The results 
provided by this framework will only be as good as the empirical data used, and there is a dire need for a methodological 
discussion about how “predictor” variables (traits, population sizes, etc.) should be measured in the field, in a way that is 
not biased by the observation of the interactions. This will prove challenging for some types of interactions; e.g. estimating 
the population size of parasites is often contingent upon catching and examining hosts. Understanding non-independence 
between these variables in a system-specific way is a crucial point.
This model can further be extended in a spatial context, as
Aijx µ [Nx(ix, jx)  x (ix, jx)]  eijx

,

in which ix is the population of species i at site x. In this formulation, the e term could include the spatial variation of 
interaction between i and j over sites, and the covariance between the observed presence of this interaction and the occur-
rence of species i and j. This can, for example, help address situations in which the selection of prey items is determined 
by traits, but also by behavioral choices. Most importantly, this model differs from the previous one in that each site x 
is characterized by a set of functions Nx, x that may not be identical for all sites considered. For example, the same 
predator may prefer different prey items in different locations, which will require the use of a different form for J across 
the range of locations. Gravel et al. (2013) show that it is possible to derive robust approximation for the J function even 
with an incomplete set of data, which gives hope that this framework can be applied even when all species information 
is not known at all sites (which would be an unrealistic requirement for most realistic systems). Both of these models can 
be used to partition the variance from existing data or to test which trait-matching function best describes the observed 
interactions. They also provide a solid platform for dynamical simulations in that they will allow re-wiring the interaction 
network as a function of trait change and to generate simulations that are explicit about the variability of interactions.

(Havens 1992, Piechnik et al. 2008, Baiser et al. 2012) by 
considering that the network at any location is composed of 
all of the potential interactions known for this species pool. 
This stands in stark contrast with recent results showing that 
1) the identities of interacting species vary over space and 2) 
the dissimilarity of interactions is not related to the dissimi-
larity in species composition (Poisot et al. 2012). The current 
conceptual and operational tools to study networks there-
fore leave us poorly equipped to understand the causes of 
this variation. In this paper, we propose to shift the research 
agenda towards understanding the mechanisms involved in 
the variability of co-occurring species interactions.

In contrast to the current paradigm, we propose that 
future research on interaction networks should be guided 
by the following principles: the existence of an interaction 
between two species is the result of a stochastic process 
involving 1) local traits distributions, 2) local abundances, 
and 3) higher-order effects by the local environment or spe-
cies acting ‘at a distance’ on the interaction; regionally, the 
observation of interactions is the result of the accumulation 

of local observations. This approach is outlined in Box 1. 
Although this proposal is a radical yet intuitive change in the 
way we think about ecological network structure, we demon-
strate in this paper that it is well supported by empirical and 
theoretical results alike. Furthermore, our new perspective is 
well placed to open the door to novel predictive approaches 
integrating a range of key ecological mechanisms. Notably, 
we propose in Box 2 that this approach facilitates the study 
of indirect interactions, for which predictive approaches have 
long proved elusive (Tack et al. 2011).

Since the next generation of predictive biogeographic  
models will need to account for species interactions  
(Thuiller et  al. 2013), it is crucial not to underestimate  
the fact that they are intrinsically variable and exhibit a  
geographic variability of their own. Indeed, investigating the 
impact of species interactions on species distributions only 
makes sense under the implicit assumption that species inter-
actions themselves vary over biogeographical scales. Models 
of species distributions will therefore increase their predictive 
ability if they account for the variability of ecological interac-
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Box 2. Population-level interactions in the classical modelling framework

As noted in the main text, most studies of ecological networks – particularly food webs – regard the adjacency matrix A  
as a fixed entity that specifies observable interactions on the basis of whether two species co-occur or not. Given  
this assumption, there is a lengthy history of trying to understand how the strength or organization of these interactions 
influence the dynamic behavior of species abundance (May 1973). Often, such models take the form

d t
dt

N t a A N ti
i i ij ij j

j i

N ( ) ( ) ( )  

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

where ai is the growth rate of species i (and could, in principle, depend on other species’ abundances N) and aij is the 
strength of the effect of j on i. In this or just about any related model, direct species–species interaction can influence 
species abundances but their abundances never feedback and influence the per capita interaction coefficients aij. They do, 
however, affect the realized interactions, which are defined by aij Ni(t) Nj(t), something which is also the case when con-
sidering more complicated functional responses (Koen-Alonso 2007).
More recently, there have been multiple attempts to approach the problem from the other side. Namely, to understand 
how factors such as species’ abundance and/or trait distributions influence the occurrence of the interactions themselves 
(Box 1). One potential drawback to that approach, however, is that it still adopts the assumption that the observation of 
any interaction Aij is only an explicit function of the properties of species i and j (traits and co-occurrence).
Since dynamic models demonstrate quite clearly that non-interacting species can alter each others’ abundances (e.g. via 
apparent competition, Holt and Kotler 1987), this is a deeply-ingrained inconsistency between the two approaches. Such 
a simplification does increase the analytical tractability of the problem (Allesina and Tang 2012), but there is little, if any, 
guarantee that it is ecologically accurate. In our opinion, the ‘higher-effects’ term e in the models presented in Box 1 is the 
one with the least straightforward expectations, but it may also prove to be the most important if we wish to accurately 
describe all of these indirect effects.
A similar problem actually arises in the typical statistical framework for predicting interaction occurrence. Often, one attempts 
to ‘decompose’ interactions into the component that is explained by species’ abundances and the component explained by 
species’ traits (e.g. Box 1). Just like how the underlying functions N and  could vary across sites, there could also be feed-
back between species’ abundances and traits, in the same way that we have outlined the feedback between interactions and 
species’ abundances. In fact, given the increasing evidence for the evolutionary role of species–species interactions in explain-
ing extant biodiversity and their underlying traits (Janzen and Martin 1982, Herrera et al. 2002), a framework which assumes 
relative independence of these different phenomenon is likely starting from an overly-simplified perspective.

tions. In turn, tighter coupling between species-distribution 
and interaction-distribution models will provide mode accu-
rate predictions of the properties of emerging ecosystems  
(Gilman et al. 2010, Estes et al. 2011) and the spatial vari-
ability of properties between existing ecosystems. By pay-
ing more attention to the variability of species interactions,  
the field of biogeography will be able to re-visit classical 
observations typically explained by species-level mecha-
nisms; for example, how does community complexity and 
function vary along latitudinal gradients, is there informa-
tion hidden in the co-occurrence or avoidance of species 
interactions, etc. This predictive effort is made all the more 
important as both the phenology (Parmesan 2007) and ranges  
(Devictor et  al. 2012) of species occupying different posi-
tions in their interactions networks are affected differently by 
climate change. Predicting that species will move and change 
while interactions remain the same is probably a very con-
servative approach to estimating the changes to come, and 
building explicitly on biological mechanisms is one possible 
way to overcome this limitation.

In this paper, we outline the mechanisms that are involved 
in the variability of species interactions over time, space, 
and environmental gradients. We discuss how they will 
affect the structure of ecological networks, and how these 
mechanisms can be integrated into new predictive and sta-
tistical models (Box 1). Most importantly, we show that this 
approach integrates classical community ecology thinking  

and biogeographic questions (Box 2) and will ultimately 
result in a better understanding of the structure of ecological 
communities.

The dynamic nature of ecological interaction 
networks

Recent studies on the sensitivity of network structure to 
environmental change provide some context for the study 
of dynamic networks. Menke et al. (2012) showed that the 
structure of a plant–frugivore network changed along a 
forest–farmland gradient. At the edges between two habi-
tats, species were on average less specialized and interacted 
more evenly with a larger number of partners than they did 
in habitat cores. Differences in network structure have also 
been observed within forest strata that differ in their proxim-
ity to the canopy and visitation by birds (Schleuning et al. 
2011). Tylianakis et  al. (2007) reports a stronger signal of 
spatial interaction turnover when working with quantitative 
rather than binary interactions, highlighting the importance 
of measuring rather than assuming (or simply reporting) 
the existence of interactions. Eveleigh et al. (2007) demon-
strated that outbreaks of the spruce budworm were associ-
ated with changes in the structure of its trophic network, 
both in terms of species observed and their interactions. 
Poisot et  al. (2011) used a microbial system of hosts and 
pathogens to study the impact of productivity gradients on 
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and space, either due to stochastic changes in population sizes 
or because population size responds deterministically (i.e. 
non-neutrally) to extrinsic drivers.

Benefits for network analysis
It is important to understand how local variations in  
abundance, whether neutral or not, cascade up to affect the 
structure of interaction networks. One approach is to use 
simple statistical models to quantify the effect of population 
sizes on local interaction occurrence or strength (Krishna 
et al. 2008). These models can be extended to remove the 
contribution of neutrality to link strength, allowing us to 
work directly on the interactions as they are determined by 
traits (Box 1). Doing so allows us to compare the variation 
of neutral and non-neutral components of network structure 
over space and time. To achieve this goal, however, it is essen-
tial that empirical interaction networks 1) are replicated and 
2) include independent measurements of population sizes.

An additional benefit of such sampling is that these data 
will also help refine neutral theory. Wootton (2005) made the 
point that deviations of empirical communities from neutral 
predictions were most often explained by species trophic inter-
actions which are notoriously, albeit intentionally, absent from 
the original formulation of the theory (Hubbell 2001). Merging  
the two views will increase our explanatory power, and provide 
new ways to test neutral theory in interactive communities; 
it will also offer a new opportunity, namely to complete the 
integration of network structure with population dynamics. 
To date, most studies have focused on the effects of a species’ 
position within a food web on the dynamics of its biomass or 
abundance (Brose et  al. 2006, Berlow et  al. 2009, Saavedra  
et al. 2011, Stouffer et al. 2011). Adopting this neutral per-
spective brings things full circle since the abundance of a 
species will also dictate its position in the network: changes 
in abundance can lead to interactions being gained or lost, 
and these changes in abundance are in part caused by existing 
interactions (Box 2). For this reason, there is a potential to 
link species and interaction dynamics and, more importantly, 
to do so in a way which accounts for the interplay between 
the two. From a practical point of view, this requires repeated 
sampling of a system through time, so that changes in relative 
abundances can be related to changes in interaction strength 
(Yeakel et al. 2012). Importantly, embracing the neutral view 
will force us to reconsider the causal relationship between 
resource dynamics and interaction strength since, in a neutral 
context, both are necessarily interdependent.

Traits matching in space and time

Once individuals meet, whether they will interact is widely 
thought to be the product of an array of behavioral, pheno-
typic, and cultural aspects that can conveniently be referred 
to as a ‘trait-based process’. Two populations can interact 
when their traits values allow it, e.g. viruses are able to over-
come host resistance, predators can capture their preys, trees 
provide enough shading for shorter grasses to grow. Non-
matching traits will effectively prevent the existence of an 
interaction, as demonstrated by Olesen et al. (2011). Under 
this perspective, the existence of interactions can be mapped 
onto trait values, and interaction networks will consequently 
vary along with variation in local trait distribution. In this 

realized infection; when the species were moved from high to 
medium to low productivity, some interactions were lost and 
others were gained. As a whole, these results suggest that the 
existence, and properties, of an interaction are not only con-
tingent on the presence of the two species involved but may 
also require particular environmental conditions, including 
the presence or absence of species not directly involved in 
the interaction.

We argue here that there are three broadly-defined classes 
of mechanisms that ultimately determine the realization of 
species interactions. First, species must be locally abundant 
enough for their individuals to meet; this is the so-called 
‘neutral’ perspective of interactions. Second, there must be 
phenological or trait matching between individuals, such 
that an interaction will actually occur given that the encoun-
ter takes place. Finally, the realization of an interaction is 
regulated by the interacting organisms’ surroundings and 
should be studied in the context of indirect interactions.

Population dynamics and neutral processes

Over the recent years, the concept of neutral dynamics has 
left a clear imprint on the analysis of ecological network 
structure, most notably in bipartite networks (Blüthgen 
et al. 2006). Re-analysis of several host–parasite datasets, for 
example, showed that changes in local species abundances 
triggers variation in parasite specificity (Vazquez et al. 2005). 
More generally, it is possible to predict the structure of trophic 
interactions (Canard et al. 2012) and host–parasite commu-
nities (Canard et al. 2014) given only minimal assumptions 
about the distribution of species abundance. In this section, 
we review recent studies investigating the consequences of 
neutral dynamics on the structure of interaction networks 
and show how variations in population size can lead directly 
to interaction turnover.

The basic processes
As noted previously, for an interaction to occur between indi-
viduals from two populations, these individuals must first 
meet, then interact. Assuming that two populations occupy 
the same location and are active at the same time of the day/
year, then the likelihood of an interaction is roughly propor-
tional to the product of their relative abundance (Vázquez 
et al. 2007). This means that individuals from two large pop-
ulations are more likely to interact than individuals from two 
small populations, simply because they tend to meet more 
often. This approach can also be extended to the prediction 
of interaction strength (Blüthgen et al. 2006, Vázquez et al. 
2007), i.e. how strong the consequences of the interaction  
will be. The neutral perspective predicts that locally- 
abundant species should have more partners and that locally-
rare species should appear more specialized. In a purely neutral 
model (i.e. interactions happen entirely by chance, although 
the determinants of abundance can still be non-neutral), the 
identities of species do not matter, and it becomes easy to 
understand how the structure of local networks can vary since 
species vary regionally in abundance. Canard et  al. (2012) 
proposed the term of ‘neutrally forbidden links’ to refer to 
interactions that are phenologically feasible but not realized 
because of the underlying population size distribution. The 
identity of these neutrally forbidden links will vary over time 
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dissimilarity. From a sampling point of view, having enough 
data requires that, when interactions are recorded, they are 
coupled with trait measurements. Importantly, these mea-
surements cannot merely be extracted from a reference 
database because interactions are driven by local trait values 
and their matching across populations from different spe-
cies. Within our overarching statistical framework (Box 1), 
we expect that 1) network variability at the regional scale 
will be dependent on the variation of populations’ traits, and 
2) variation between any series of networks will depend on 
the covariance between species traits. Although it requires 
considerably larger quantities of data to test, this approach 
should allow us to infer a priori network variation. This next 
generation of data will also help link variation of network 
structure to variation of environmental conditions. Price 
(2003) shows how specific biomechanical responses to water 
input in shrubs can have pleiotropic effects on traits involved 
in the interaction with insects. In this system, the difference 
in network structure can be explained because 1) trait values 
determine the existence of an interaction, and 2) environ-
mental features determine trait values. We have little doubt 
that future empirical studies will provide similar mechanistic 
narratives.

At larger temporal scales, the current distribution of traits 
also reflects past evolutionary history (Diniz-Filho and Bini 
2008). Recognizing this important fact offers an opportu-
nity to approach the evolutionary dynamics and variation 
of networks. Correlations between different species’ traits, 
and between traits and fitness, drive coevolutionary dynam-
ics (Gomulkiewicz et al. 2000, Nuismer et al. 2003). Both 
of these correlations vary over space and time (Thompson 
2005), creating patchiness in the processes and outcomes 
of coevolution. Trait structure and trait correlations are also 
disrupted by migration (Gandon et  al. 2008, Burdon and 
Thrall 2009). Ultimately, understanding of how ecological 
and evolutionary trait dynamics affect network structure will 
provide a mechanistic basis for the historical signal found in 
contemporary network structures (Rezende et al. 2007, Eklöf 
et al. 2011, Baskerville et al. 2011, Stouffer et al. 2012).

Beyond direct interactions

In this section, we argue that, although networks are built 
around observations of direct interactions like predation or 
pollination, they also offer a compelling tool with which 
to address indirect effects on the existence and strength of 
interactions. Any direct interaction arises from the ‘physi-
cal’ interaction of only two species, and, as we have already 
detailed, these can be modified by local relative abundances 
and/or species traits. Indirect interactions, on the other hand, 
are established through the involvement of another party  
than the two focal species, either through cascading effects 
(herbivorous species compete with insect laying eggs on 
plants) or through physical mediation of the environment 
(bacterial exudates increase the bio-availability of iron for all 
bacterial species; plants with large foliage provide shade for 
smaller species). As we discuss in this section, the fact that 
many (if not all) interactions are indirectly affected by the 
presence of other species 1) has relevance for understanding 
the variation of interaction network structure and 2) can be 
studied within the classical network-theory formalism.

section, we review how trait-based processes impact network 
structure, how they can create variation, and the perspective 
they open for an evolutionary approach.

The basic processes
There is considerable evidence that, at the species level, 
interaction partners are selected on the grounds of matching 
trait values. Random networks built on these rules exhibit 
realistic structural properties (Williams and Martinez 2000, 
Stouffer et al. 2005). Trait values, however, vary from popu-
lation to population within species; it is therefore expected 
that the local interactions will be contingent upon the spa-
tial distribution of the traits (Fig. 2). The fact that a species’ 
niche can appear large if it is the aggregation of narrow but 
differentiated individual or population niches is now well 
established (Bolnick et al. 2003, Devictor et al. 2010a) and 
has also reinforced the need to understand intra-specific trait 
variation to describe the structure and dynamics of commu-
nities (Woodward et al. 2010, Bolnick et al. 2011). Never-
theless, this notion has yet to percolate into the literature on 
network structure despite its most profound consequence: 
a species appearing generalist at the regional scale can easily 
be specialized in each of the patches it occupies. This reality 
has long been recognized by functional ecologists, which are 
now increasingly predicting the variance in traits of different 
populations within a species (Violle et al. 2012).

Empirically, there are several examples of intraspecific trait 
variation resulting in extreme interaction turnover. A par-
ticularly spectacular example was identified by Ohba (2011) 
who describes how a giant waterbug is able to get hold of, 
and eventually consume, juveniles from a turtle species. This 
interaction can only happen when the turtle is small enough 
for the morphotraits of the bug to allow it to consume the 
turtle, and as such will vary throughout the developmen-
tal cycle of both species. Choh et al. (2012) demonstrated 
through behavioral assays that prey which evaded predation 
when young were more likely to consume juvenile predators 
than the ‘naïve’ individuals; their past interactions shaped 
behavioral traits that alter the network structure over time. 
These examples show that trait-based effects on networks 
can be observed even in the absence of genotypic variation 
(although we discuss this in the next section).

From a trait-based perspective, the existence of an inter-
action is an emergent property of the trait distribution of 
local populations: variations in one or both of these distribu-
tions, regardless of the mechanism involved (development, 
selection, plasticity, environment), are likely to alter the 
interaction. Importantly, when interaction-driving traits are 
subject to environmental forcing (for example, body size is 
expected to be lower in warm environments, Angilletta et al. 
2004), there can be covariation between environmental con-
ditions and the occurrence of interactions. Woodward et al. 
(2012) used macrocosms to experimentally demonstrate that 
changes in food-web structure happen at the same time as 
changes in species body mass distribution. Integrating trait 
variation over gradients will provide more predictive power to 
models of community response to environmental change.

Benefits for network analysis
Linking spatial and temporal trait variation with network 
variation will help identify the mechanistic basis of network 
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Figure 1. An illustration of the metaweb concept. In its simplest form, a metaweb is the list of all possible species and interactions between 
them for the system being studied, at the regional level (far left side). Everything that is ultimately observed in nature is a realisation of the 
metaweb (far right side), i.e. the resulting network after several sorting processes have occurred (central panel). First, species and species 
pairs have different probabilities to be observed (top panels). Second, as a consequence of the mechanisms we outline in this paper, not all 
interactions have the same probability to occur at any given site (bottom panels, see Box 1).

Interaction1 2

Trait

Trait

Pop.

Pop.

Figure 3. The approach we propose (that populations can interact  
at the conditions that 1 their trait allow it and 2 they are locally 
abundant enough for some of their individuals to meet by chance) 
requires an increased focus on population-level processes. A com-
pelling argument that supports working at this level of organisation 
is that eco-evolutionary feedbacks are explicit. All of the compo-
nents of interaction variability we described are potentially related, 
either through variations of population sizes due to the interaction 
itself, or due to selection arising from these variations in population  
size. In addition, some traits involved in the existence of the  
interaction may also affect local population abundance.

Figure 2. The left-hand side of this figure represents possible inter-
actions between populations (circles) of four species (ellipses), and 
the aggregated species interaction network on the right. In this 
example, the populations and species level networks have divergent 
properties, and the inference on the system dynamics are likely  
to be different depending on the level of observation. More  
importantly, if the three populations highlighted in red were to co-
occur, there would be no interactions between them, whereas the 
species-level network would predict a linear chain.

The basic processes
Biotic interactions themselves interact (Golubski and Abrams 
2011); in other words, interactions are contingent on the 
occurrence of species other than those interacting. Because 
the outcome of an interaction ultimately affects local abun-
dances (over ecological time scales) and population trait 
structure (over evolutionary time scales), all interactions 
happening within a community will impact one another. 
This does not actually mean pairwise approaches are bound 
to fail, but it does clamor for a larger scale approach that 
accounts for indirect effects.

The occurrence or absence of a biotic interaction can 
either affect either the realization of other interactions 
(thus affecting the ‘interaction’ component of network  
b-diversity) or the presence of other species. There are  

several well-documented examples of one interaction allow-
ing new interactions to happen, e.g. opportunistic pathogens 
have a greater success of infection in hosts which are already 
immunocompromised by previous infections, (Olivier 
2012), or conversely preventing them, e.g. a resident sym-
biont decreases the infection probability of a new pathogen 
(Heil and McKey 2003, Koch and Schmid-Hempel 2011). 
In both cases, the driver of interaction turnover is the patchi-
ness of species distribution; the species acting as a ‘modi-
fier’ of the probability of interaction is only partially present 
throughout the range of the other two species, thus creating 
a mosaic of different interaction configurations. Variation 
in interaction structure can happen through both cascading 
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at which most of the relevant biogeographic processes 
happen – populations. In order to make reliable predictions  
about the structure of networks, we need to understand  
what triggers variability of ecological interactions. In this 
contribution, we have outlined that there are several direct 
(abundance-based and trait-based) and indirect (biotic  
modifiers, indirect effects of co-occurrence) effects to account  
for. We expect that the relative importance of each of  
these factors and how precisely they affect the probability of 
establishing an interaction are likely system-specific; none-
theless, we have proposed a unified conceptual approach to 
understand them better.

At the moment, the field of community ecology is severely 
data-limited to tackle this perspective. Despite the existence  
of several spatially- or temporally-replicated datasets  
(Schleuning et  al. 2011, 2012, Menke et  al. 2012), it is 
rare that all relevant information has been measured inde-
pendently. It was recently concluded, however, that even a 
reasonably small subset of data can be enough to draw infer-
ences at larger scales (Gravel et al. 2013). Paradoxically, as 
tempting as it may be to sample a network in its entirety, 
the goal of establishing global predictions might be better 
furthered by extremely-detailed characterization of a more 
modest number of interactions (Rodriguez-Cabal et  al. 
2013). Assuming that there are indeed statistical invariants 
in the rules governing interactions, this information will 
allow us to make verifiable predictions on the structure of 
the networks. Better still, this approach has the potential to 
substantially strengthen our understanding of the interplay 
between traits and neutral effects. Blüthgen et  al. (2008) 
claim that the impact of traits distribution on network  
structure can be inferred simply by removing the impact of 
neutrality (population densities), based on the idea that many 
rare links were instances of sampling artifacts. As illustrated 
here (e.g. Box 2), their approach is of limited generality, as 
the abundance of a species itself can be directly driven by fac-
tors such as trait-environment matching. In addition, there 
are virtually no datasets that follow a collection of interacting 
species through both space and time in a replicated fashion. 
This type of data, although exceedingly tedious to collect, 
would provide important indications of which mechanisms  
should be explored to improve our understanding the  
variability of species interactions.

Assuming that suitable and accessible empirical data will 
inevitably accumulate in the coming years, these approaches 
will rapidly expand our ability to predict the re-wiring of 
networks under environmental change. There are two broad 
mechanisms linking network structure to environmental 
change: changes in population sizes due to modification of 
demographic parameters, and plastic or adaptive responses 
resulting in shifted or disrupted trait distributions. The 
framework proposed in Box 1 predicts interaction prob-
abilities under different scenarios. Ultimately, being explicit 
about the trait–abundance-interaction feedback will pro-
vide a better understanding of short-term and long-term 
dynamics of interaction networks. We illustrate this in Fig. 
3. The notion that population sizes have direct effects on the 
existence of an interaction stands opposed to classical con-
sumer–resource theory, which is one of the bases of network 
analysis. Considering this an opposition, however, is errone-
ous. Consumer–resource theory considers a strong effect of 

and environmental effects: Singer et al. (2004) show that cat-
erpillars change the proportion of different plant species in 
their diet when parasitized in order to favor low quality items 
and load themselves with chemical compounds which are 
toxic for their parasitoids. However, low quality food results 
in birds having a greater impact on caterpillar populations 
(Singer et al. 2012). It is noteworthy that in this example, 
the existence of a parasitic interaction will affect both the 
strength, and impact, of other interactions. In terms of their 
effects on network b-diversity, indirect effects are thus likely 
to act on components of dissimilarity. A common feature of 
the examples mentioned here is that pinpointing the exact 
mechanism through which interactions affect each other 
often requires a good working knowledge of the system’s 
natural history.

Benefits for network analysis
As discussed in previous sections, improved understanding of 
why and where species interact should also provide a mecha-
nistic understanding of observed species co-occurrences. 
However, the presence of species is also regulated by indirect 
interactions. Recent experimental results showed that some 
predator species can only be maintained if another predator 
species is present, since the latter regulates a competitively 
superior prey and allows for prey coexistence (Sanders and 
van Veen 2012). These effects involving several species and 
several types of interactions across trophic levels are com-
plex (and for this reason, have been deemed unpredictable in 
the past, Tack et al. (2011)), and can only be understood by 
comparing communities in which different species are pres-
ent/absent. Looking at figure, it is also clear that the proba-
bility of having an interaction between species i and j (P(Lij)) 
is ultimately constrained by the probability that individuals 
of species i and j will meet assuming random movement, 
i.e. P(i ∩ j). Thus, the existence of any ecological interaction 
will be contingent upon other ecological interactions driving 
local co-occurrence (Araújo et al. 2011). Based on this argu-
ment, ecological networks cannot be limited to a collection 
of pairwise interactions. Our view of them needs be updated 
to account for the importance of the context surrounding 
these interactions (Box 2). From a biogeographic standpoint, 
it requires us to develop a theory based on interaction co- 
occurrence in addition to the current knowledge encom-
passing only species co-occurrence. Araújo et al. (2011) and  
Allesina and Levine (2011) introduced the idea that  
competitive interactions can leave a signal in species co- 
occurrence network. A direct consequence of this result is 
that, for example, trophic interactions are constrained by 
species’ competitive outcomes before they are ever con-
strained by e.g. predation-related traits. In order to fully 
understand interactions and their indirect effects, however, 
there is a need to develop new conceptual tools to repre-
sent effects that interactions have on one another. In a graph  
theoretical perspective, this would amount to establishing 
edges between pairs of edges, a task for which there is limited 
conceptual or methodological background.

Conclusions

Overall, we argue here that the notion of ‘species interaction 
networks’ shifts our focus away from the level of organization  
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ecosystems: incorporating trophic complexity. – Ecol. Lett. 10: 
522–538.

Dunne, J. A. 2006. The network structure of food webs. – In: 
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27–86.
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in food webs: robustness increases with connectance. – Ecol. 
Lett. 5: 558–567.
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web structure. – Proc. R. Soc. B 279: 1588–1596.

Estes, J. A. et  al. 2011. Trophic downgrading of Planet Earth.  
– Science 333: 301–306.

Eveleigh, E. S. et al. 2007. Fluctuations in density of an outbreak 
species drive diversity cascades in food webs. – Proc. Natl 
Acad. Sci. USA 104: 16976–16981.

Gandon, S. et  al. 2008. Host–parasite coevolution and patterns of  
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abundance on the intensity of interactions (Box 2), and itself 
is a source of (quantitative) variation. Furthermore, these 
models are entirely determined by variations in population 
sizes in the limiting case where the coefficient of interactions 
are similar. As such, any approach seeking to understand 
the variation of interactions over space ought to consider 
that local densities are not only a consequence, but also a  
predictor, of the probability of observing an interaction. 
The same reasoning can be held for local trait distributions, 
although over micro-evolutionary time-scales. While trait 
values determine whether two species are able to interact, 
they will be modified by the selective effect of species inter-
acting. Therefore, conceptualizing interactions as the out-
come of a probabilistic process regulated by local factors, as 
opposed to a constant, offers the unprecedented opportunity 
to investigate feedbacks between different time scales. This is 
especially important since all of the mechanisms mentioned 
above are also likely to change rapidly over spatial scales. The 
situation in which the phenologies of populations are syn-
chronized locally but not regionally (as shown by Singer and 
McBride 2012) is an excellent example of when we must 
integrate these mechanisms into our interpretation of spatial 
and temporal dynamics.

Over the past decade, many insights have been gained 
by looking at the turnover of different facets of biodiversity 
(taxonomic, functional, and phylogenetic) through space 
(Devictor et al. 2010b, Meynard et al. 2011). Here, we pro-
pose that there is another oft-neglected side of biodiversity: 
species interactions. The perspective we bring forth allows 
us to unify these dimensions and offers us the opportunity 
to describe the biogeographic structure of all components of 
community and ecosystem structure simultaneously.
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