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SUMMARY

In this paper, we consider the problem of disturbance response and error amplification for a simple sys-
tem of coupled harmonic oscillators. We first suppose that identical oscillators are connected in a string in
which each oscillator attempts to track its predecessor by using the same control law that depends on the
relative position information from its immediate predecessor. Such an oscillator string is called a homoge-
neous oscillator string with predecessor-following architecture. Motivated by terminology from the problem
of vehicle platooning, we say that the synchronized oscillator system is string unstable if the effect of a dis-
turbance to the lead oscillator is amplified as it propagates along the string. With the use of a new Bode-like
integral relation that must be satisfied by the complementary sensitivity function, we provide sufficient con-
ditions for string instability. The sufficient conditions show that any string of oscillators that satisfies certain
time domain performance specifications and bandwidth limitations must necessarily be string unstable. We
further introduce a concept of time headway for the oscillator system and extend our analysis of string insta-
bility to consider the heterogeneous oscillator string and a more general communication range. Copyright ©
2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many researchers have studied the problem of synchronization in systems of coupled oscillators. As
noted in [1–3], this problem may be viewed as a special case of consensus control in multi-agent
systems, in which each oscillator communicates with a subset of its neighbors for the purpose of
achieving synchronization. The synchronization of oscillators finds applications in many different
areas [4–6], for example, synchronously flashing fireflies, microwave oscillations, and electrical
power networks. Depending on the communication topology, the oscillators may or may not be able
to achieve synchronization. The ability to do so also depends on the presence of communication
time delays and changes in the communication topology. In the present paper, we study the effect
of a disturbance on a system of coupled oscillators. Specifically, we wish to know whether the
effect of a disturbance to one oscillator will be amplified or diminished as it propagates through the
synchronized oscillator system.

Our approach to the problem of disturbance propagation for a system of oscillators is inspired by
the literature on the problem of string instability that may arise in vehicle platooning (e.g. [7–13]).
Specifically, we first consider a string of oscillators, in which one is the leader, and with which the
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remainder attempts to synchronize their oscillations by tracking only their immediate predecessor
in the string. It is known that this predecessor-following strategy will exhibit string instability under
certain conditions for vehicle platoons. More complex communication schemes, on the other hand,
may allow the design of control laws that are string stable. For example, when each vehicle may
communicate with both its immediate predecessor and successor, a controller supporting string sta-
bility exists. Early studies of string instability were undertaken in the context of specific control
laws, such as PID [8]. This made a comparison between different communication schemes problem-
atic, in that the observed string instability may have been due to a poor choice of controller gains
rather than the communication scheme adopted. The authors in [10], on the other hand, show that,
under appropriate hypotheses, certain communication topologies will lead to string instability for
any linear controller. To show this, they applied the theory of fundamental design limitations [14],
which enables such general statements to be made assuming only that the controller is stabilizing.
In [10], it is assumed that all the vehicles have the same model and use the same control law, and
it is shown that the predecessor-following control law will necessarily lead to problems of string
instability for constant spacing between vehicles. The authors of [11] greatly extend the results in
[10] by considering heterogeneous platoons and more general spacing policies and communication
topologies. However, this string instability analysis in vehicle platooning cannot directly be used to
study the disturbance response and error propagation problems in synchronized oscillator systems
mainly due to the fact that vehicles are modeled by integrators with one or two poles at origin and
harmonic oscillators’ model has two purely imaginary poles.

Many papers on oscillator synchronization use the first order, nonlinear Kuramoto model [5], or
an appropriate extension thereof [1, 2]. Other famous oscillator systems in nonlinear physics and
chaos include Toda chain [15] and Fermi–Pasta–Ulam models [16]. In order to apply the theory of
fundamental design limitations, we instead use the second order, linear oscillator model described
in [17]. This will enable us to use the fact that such oscillators have poles on the imaginary axis,
and to generalize the results from the theory of fundamental limitations that were used in [10, 11].
We start our analysis by studying the problem of string instability in a string of identical harmonic
oscillators, each trying to track its immediate predecessor using an identical control law correspond-
ing to the predecessor-following strategy used in vehicle platooning studies. By applying the theory
of fundamental design limitations [14], we develop a Bode-like integral relation that holds for any
stabilizing control law. This integral relation may be used to show that any string of oscillators that
satisfies certain time domain performance specifications, bandwidth limitations, and communication
delays must necessarily be string unstable.

String instability is clearly not a desirable feature in a string of oscillators. We therefore study
strategies that may enable string stability to be present. These are motivated by similar studies of
vehicle platooning that include the use of heterogeneous control laws, an extended communication
range, and time headway [10, 11]. In this paper, we develop an extension of the concept of time
headway that is applicable to oscillator systems, and show that including such headway in the control
law can also result in string stability. We then extend our string instability analysis to consider
the heterogeneous controller design and a more general communication range between oscillators.
Preliminary versions of this paper appear in two conference publications [18, 19].

The remainder of this paper is outlined as follows. In Section 2, we provide some background on
oscillator synchronization and review the integral constraint on the complementary sensitivity func-
tion that was used in [10] to study the string instability problem in vehicle platooning. This integral
constraint is not applicable to our problem, and thus in Section 3, we propose a more general integral
relation that may be applied to oscillator systems. We use this result to derive three sufficient condi-
tions for string instability in Section 4. Specifically, we assume that a controller has been designed
that satisfies certain time and frequency domain design specifications, and show that this assump-
tion implies a lower bound on the peak in magnitude response of the complementary sensitivity
function; if this lower bound exceeds one, then string instability is present. We then introduce the
time headway concept for the oscillator system to improve the string stability and extend our string
instability analysis to consider heterogeneous strings and a more general communication range in
Section 5. The results of the paper are illustrated with numerical examples in Section 6. Conclusions
and future research directions are given in Section 7.
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Notation: OLHP, CLHP, ORHP, and CRHP denote the open-left, closed-left, open-right, and
closed-right halves of the complex plane, respectively. We use Re and Im to represent the real and
imaginary parts of a complex number, respectively. We use log to denote the natural logarithm and
arg to denote the principal branch of the argument of a complex number. The relative degree r of a
rational transfer function is the degree of its denominator minus the degree of its numerator poly-
nomial. The notation P.s/ ? u.t/ is used to denote the time response with zero initial conditions of
a linear time-invariant system with transfer function P.s/ and input u.t/. The notation dxe repre-
sents the smallest integer no smaller than x. The product notation that includes matrices is defined
as follows:

Qn
iD1Mi ,MnMn�1 � � �M2M1.

2. PRELIMINARY RESULTS ON SYNCHRONIZATION OF OSCILLATORS AND
STRING INSTABILITY

The objective of synchronization is to find the conditions on network topology and coupling algo-
rithms that guarantee that the oscillators can collectively achieve synchronized behaviors. The
existing literature shows that the ability to achieve synchronization in oscillator systems depends
on both the communication topology and the control algorithms that prescribe how one oscillator
interacts with its neighbors [17]. Even if an oscillator system can achieve synchronization, other
issues such as disturbance response will affect its performance and practicality. In the following,
we will demonstrate the problem of disturbance response and error amplification in a synchronized
homogeneous oscillator system with a simple communication topology.

Consider the series connection, or string, of n single-loop feedback systems depicted in Figure 1.
We assume that these systems are all identical, with each plant described by a proper rational transfer
function of the form

P.s/ D P0.s/
1

s2 C ˛2
; (1)

where P0.s/ has no zeros at s D ˙j˛, and with rational and stabilizing controller C.s/. Each plant
thus contains the dynamics of a harmonic oscillator with natural frequency ˛ radians/second.

Suppose that we desire each oscillator in the string to track the position of its immediate prede-
cessor. Following the terminology used in vehicle platooning, we refer to the system in Figure 1 as
a predecessor-following control architecture. Denote the commanded position to the lead oscillator
by r1.t/, and the positions and tracking errors of the i th oscillator as yi .t/ and ei .t/, respectively.
Let dout .t/ denote a disturbance entering at the output of the first oscillator. Each error signal can
thus be expressed as

ei .t/ D

²
r1.t/ � y1.t/; i D 1;
yi�1.t/ � yi .t/; i > 2: (2)

Define the open loop transfer function L.s/ D P.s/C.s/, and the sensitivity and complementary
sensitivity functions by

S.s/ D
1

1C L.s/
; T .s/ D

L.s/

1C L.s/
; (3)

respectively. Then the Laplace transforms of the tracking error signals satisfy

E1.s/ D S.s/R1.s/ � S.s/Dout .s/;

Ek.s/ D T .s/Ek�1.s/; k > 2; (4)

Figure 1. Block diagram depicting a string of stabilized oscillators with length n.
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and thus

Ek.s/ D T
k�1.s/E1.s/; k > 1: (5)

The presence of the plant poles at ˙j˛ implies that T .˙j˛/ D 1 and S.˙j˛/ D 0. Hence,
the steady state error (SSE) in response to an input of the form r1.t/ D A sin.˛t C �/ will be
equal to zero for each oscillator in the string. In this way, the motion of all the oscillators in the
string will synchronize to that of the lead oscillator. We see from (4) that the command r1.t/ and
output disturbance dout .t/ affect the system symmetrically, and thus conclusions drawn about the
command response also apply to the disturbance response.

In such a homogeneous oscillator system, the synchronization problem reduces to the design of
a controller C.s/ such that T .s/ is stable. Suppose T .s/ is stable and there exists a frequency ! for
which jT .j!/j > 1. Then (5) implies that any disturbance to the lead oscillator at this frequency
will be amplified as it propagates to successive oscillators. As the number of oscillators increases,
the error will be amplified without bound, and the string in Figure 1 will be string unstable.

Similar phenomena of string instability have appeared in vehicle platooning. One approach to
study the string instability problem in vehicle platooning is to use the theory of fundamental limita-
tions [14] to derive conditions for string instability that apply to all linear time-invariant controllers.
In studies of string instability in vehicle platooning, one may derive sufficient conditions for string
instability using the following integral relation, dual to the Bode sensitivity integral, that must be
satisfied by the complementary sensitivity function [14, Theorem 3.1.5].

Theorem 1

(a) Consider a unity feedback system with plant P.s/ and stabilizing controller C.s/. Assume
that L.s/ is rational and proper, with N´ zeros in the ORHP, ¹´i W i D 1; : : : ; N´º. Assume
further that L.s/ may be factored as L.s/ D L0.s/=s

k , where k > 1 and L0.s/ has neither
poles nor zeros at s D 0. Then

Z 1
0

log jT .j!/j
d!

!2
D
�

2
T 0.0/C �

N´X
iD1

1

´i
; (6)

where T 0.0/ D lims!0 dT .s/=ds.
(b) Suppose, in addition, that k > 2. Then T 0.0/ D 0, and

Z 1
0

log jT .j!/j
d!

!2
D �

N´X
iD1

1

´i
: (7)

Because complex zeros must occur in conjugate pairs, it follows that the right-hand side of (7)
is real and nonnegative. It follows immediately from (7) that if L.s/ has a double integrator, then
necessarily there must exist a frequency for which jT .j!/j > 1. This fact was used in [10] to show
that a platoon of identical vehicles in the predecessor-following control architecture must be string
unstable. Recently, the results of [10] were generalized in [11] to provide sufficient conditions for
string instability with heterogeneous platoons and more general control architectures. The assump-
tion of a double integrator is reasonable for the study of vehicle platoons to model the vehicle with
torque as input and position as output. If only a single integrator is present, then an integral con-
straint still holds, but need not imply that jT .j!/j > 1 because of the term T 0.0/, which may be
negative. As discussed in [14], this term is inversely proportional to the velocity constant of a Type
1 feedback system.

Theorem 1 is not applicable to our study of oscillators because it is based on the double integrator
model, and the harmonic oscillator has a pair of pure imaginary poles. In the following section, we
will derive a new generalized complementary sensitivity integral, which can be used for harmonic
oscillator systems and includes the integrals in Theorem 1 as special cases.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2745–2769
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3. A NEW GENERALIZED COMPLEMENTARY SENSITIVITY INTEGRAL

We propose a new integral relation that the complementary sensitivity function must satisfy
whenever L.s/ contains a pair of poles on the imaginary axis.

Theorem 2
Consider a feedback system with plant P.s/ given by (1), and stabilizing controller C.s/. Suppose
that L.s/ has N´ ORHP zeros ¹´i W i D 1; : : : ; N´º and may be factored as

L.s/ D e�s�L0.s/
1

.s2 C ˛2/
k
; (8)

where k > 1,L0.s/ 1

.s2C˛2/
k is proper,L0.s/ is rational with no zeros at s D ˙j˛, and � > 0. Then

Z 1
0

log jT .j!/jW.!; ˛/d! D
�

2
Re .K˛/C �

N´X
iD1

�
´i

´2i C ˛
2

�
C
�

2
�; (9)

where

K˛ , lim
s!j˛

dT .s/

ds
; (10)

and the weighting function W.!; ˛/ is defined as

W.!; ˛/ D
!2 C ˛2

.!2 � ˛2/
2
: (11)

Suppose, in addition, that k > 2 and � D 0. Then K˛ D 0, and

Z 1
0

log jT .j!/jW.!; ˛/d! D �
N´X
iD1

�
´i

´2i C ˛
2

�
: (12)

Proof
See the Appendix. �

In the following section, we will use the integrals in Theorem 2 to derive three sufficient condi-
tions for string instability for a string of oscillators in Section 2. Also, it is worth noting that when
˛ is 0, the integrals in Theorem 2 reduce to those in Theorem 1.

4. HOMOGENEOUS OSCILLATOR STRING

An immediate result of Theorem 2 is the following sufficient condition for string instability for the
homogeneous oscillator system in Section 2.

Theorem 3
Consider the series connection of feedback systems in Figure 1, with plant (1) and stabilizing com-
pensator C.s/. IfL.s/ has at least two pairs of poles at˙j˛, then the string of oscillators in Figure 1
is string unstable.

Proof
Note that the right-hand side of (12) is nonnegative, the time delay term �

2
� is nonnegative, and that

W.!; ˛/ > 0 for all frequencies except ! D ˛. It follows that if L.s/ has at least two pairs of poles
at ˙j˛, then K˛ D 0. Hence, there must exist a frequency for which jT .j!/j > 1, and the string
of oscillators in Figure 1 is string unstable. �

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2745–2769
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Suppose that L.s/ contains only a single pair of poles at˙j˛, namely, those due to the plant (1).
Then K˛ defined in (10) may be negative and, as a consequence, jT .j!/j may be less than one at
all frequencies and string instability may not be present.

Recall that the term corresponding to K˛ in Theorem 1 is inversely proportional to the velocity
constant that describes the SSE of a Type 1 feedback system in response to a ramp input. The
following result provides a corresponding interpretation for K˛ and shows that it describes the SSE
in response to an input of the form r1.t/ D t sin˛t .

Theorem 4 (Interpretation of K˛)

(a) Consider the series connection of feedback systems in Figure 1, with plant (1) and stabilizing
compensator C.s/. Assume that r1.t/ D t sin˛t , and define the SSE for the first system as
the response that persists after the transient response decays, denoted by ess1 .t/. Then

ess1 .t/ D jK˛j sin .˛t C arg .�K˛// : (13)

(b) Suppose in addition that arg .�K˛/ D 0. Then in steady state y1.t/, is in phase with r1.t/,
and the steady state response yss1 .t/ is given by

yss1 .t/ D .t � jK˛j/ sin˛t: (14)

Proof

(a) The Laplace transform of t sin.˛t/ is given by 2˛s=
�
s2 C ˛2

�2
. This fact, together with (4),

yields

E1.s/ D .1 � T .s//
2˛s

.s2 C ˛2/
2
:

Noting that 1�T .s/ has zeros at˙j˛, it follows that the partial fraction expansion of E1.s/
has the form

E1.s/ D E
tr
1 .s/C

a1s C b1

s2 C ˛2
; (15)

whereEtr1 .s/ has poles only in the OLHP and thus contributes only to the transient response.
The constants a1 and b1 are given by

a1 D Im .�K˛/ ; b1 D ˛Re .�K˛/ : (16)

The steady state response ess1 .t/ may be evaluated by computing the inverse Laplace
transform of the second term on the right-hand side of (15).

(b) If arg .�K˛/ D 0, then (14) follows from (2).

�
Our next result uses Theorem 4, together with the fact that all the subsystems in Figure 1 are

identical, to show that the steady state tracking errors for each subsystem are identical.

Corollary 1

(a) Let ess
k
.t/ denote the steady state tracking error of the k’th subsystem in Figure 1 in response

to the input r1.t/ D t sin˛t . Then

essk .t/ D e
ss
1 .t/; k D 1; : : : ; n: (17)

(b) Suppose in addition that arg.�K˛/ D 0. Then in steady state, yk.t/ is in phase with r1.t/:

yssk .t/ D .t � kjK˛j/ sin˛t; k D 1; : : : ; n: (18)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2745–2769
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Proof
Theorem 4 shows that ess1 .t/ is a sinusoid with frequency ˛, and (a) follows from (5) and the fact
that T k�1.j˛/ D 1. Together, (2), (14), and (17) yield (b). �

Motivated by (18), we say that if arg.�K˛/ D 0, then the steady state phase error for each
oscillator is equal to zero. We now show that if the steady state phase error is nonzero, then the
string of oscillators will be string unstable. This is another sufficient condition for string instability.

Theorem 5
Suppose that arg.�K˛/ ¤ 0. Then there exists a frequency ! such that jT .j!/j > 1 and the system
of oscillators in Figure 1 is string unstable.

Proof
First consider the case arg.�K˛/ D � . ThenK˛ is real and positive, and the result follows immedi-
ately from (9). Suppose next that arg.�K˛/ ¤ 0; � . Then K˛ has a nonzero imaginary component.
Using the fact that T .j˛/ D 1, we have by definition (10) of K˛ that

K˛ D lim
s!j˛

d log jT .s/j

ds
C j lim

s!j˛

d argT .s/

ds
:

Letting s D � C j!, it follows from the Cauchy–Riemann equations [20, Section 21], [21, p. 41]
that

K˛ D lim
!!˛

@ argT .j!/

@!
� j lim

!!˛

@ log jT .j!/j

@!
:

Together, the facts that jT .j˛/j D 1 and that lim!!˛
@ log jT.j!/j

@!
¤ 0 imply that there exists a

frequency ! near ˛ such that jT .j!/j > 1. �
Theorems 3 and 5 provide two sufficient conditions for string instability. Suppose that neither of

these sufficient conditions is satisfied. Then it is easy to find examples of systems that are string
stable.

Example 1
Suppose that P.s/ D 1=.s2 C ˛2/ and C.s/ D ks, k > 0. Then T .s/ has stable poles, and
K˛ D �2=k, so that arg.�K˛/ D 0. It is easy to verify that jT .j!/j 6 1; 8!, and thus the system
is string stable.

4.1. A lower bound on the peak in complementary sensitivity

Our goal in the present section is to derive a lower bound on sup! jT .j!/j that holds whenever the
system is assumed to satisfy appropriate performance specifications. If this lower bound exceeds
unity, then we may conclude that the system in Figure 1 is string unstable. We will be interested in
the case for which neither sufficient condition for string instability derived in Theorems 3 and 5 is
satisfied; however, our methods will also yield a lower bound for the case in which L.s/ has at least
two pairs of poles at˙j˛.

We first assume that a specification on the SSE in response to an input t sin˛t must be satisfied.

Assumption 1 (Magnitude Bound on SSE)
Assume that the SSE (13) is uniformly bounded by q > 0:

jess1 .t/j 6 q; 8t > 0: (19)

Recall from Corollary 1 that the SSE for each of the oscillators is identical. The transient error,
defined by

etri .t/ , ei .t/ � essi .t/; (20)

will in general be different for different oscillators. We assume an IATE performance specification
on the sum of the integrals of the absolute values of the transient errors (IATE).

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2745–2769
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Assumption 2 (IATE Specification)
Let etri .t/ in (20) denote the transient error response of the i th oscillator in response to the command
r1.t/ D t sin.˛t/. We assume that the sum of the IATE must satisfy the specification

nX
iD1

Z 1
0

ˇ̌
etri .t/

ˇ̌
dt 6 u.n/; (21)

for some positive function u.n/.

We now show that Assumptions 1 and 2, combined with one additional hypothesis, imply an
upper bound on the gain of T .j!/.

Lemma 1
Suppose that Assumptions 1 and 2 are satisfied.

(a) Assume in addition that C.s/P.s/ possesses one pair of poles at ˙j˛, and that the phase
error is zero: arg.�K˛/ D 0. Then

jT .j!/j 6
�
1C �.u.n/; q; ˛; !/.!2 � ˛2/2

� 1
2n ; (22)

where

�.u.n/; q; ˛; !/ D
u.n/

˛!
C
n2q2

4!2
C j!2 � ˛2j

nu.n/q

2˛!2
C .!2 � ˛2/2

u.n/2

2˛2!2
:

(b) Assume instead that C.s/P.s/ possesses at least two pairs of poles at ˙j˛. Then

jT .j!/j 6
�
1C

.!2 � ˛2/2

2˛!
u.n/

� 1
n

: (23)

Proof

(a) The assumption that arg.�K˛/ D 0 implies that a1 D 0 and b1 D �˛K˛ , where a1 and b1
are defined in (16). Hence, the Laplace transform of each SSE satisfies

Essi .s/ D
b1

s2 C ˛2
: (24)

Furthermore, it follows from Assumption 1 and (13) that jb1j 6 ˛q. Recalling from
Corollary 1 that the SSE is identical for each oscillator, we have, for each i > 1, thatZ 1

0

e�stetri .t/dt D T .s/
i�1.1 � T .s//

2˛s

.s2 C ˛2/
2
�

b1

s2 C ˛2
:

The sum of all n error signals satisfies

nX
iD1

Z 1
0

e�stetri .t/dt D .1 � T .s/
n/

2˛s

.s2 C ˛2/
2
�

nb1

s2 C ˛2
:

Re-arranging the previous equation yields

T .s/n D 1 �
.s2 C ˛2/2

2˛s

 
nb1

s2 C ˛2
C

nX
iD1

Z 1
0

e�stetri .t/dt

!
;

and evaluating this equation at s D j! gives

T .j!/n D 1 �
.!2 � ˛2/2

j 2˛!

 
�nb1

!2 � ˛2
C

nX
iD1

Z 1
0

e�j!tetri .t/dt

!
:

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2745–2769
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Using Euler’s formula, we have

T .j!/nD1C
.!2�˛2/2

2˛!

nX
iD1

Z 1
0

sin.!t/etri .t/dtCj

 
.!2�˛2/2

2˛!

nX
iD1

Z 1
0

cos.!t/etri .t/dt

�
nb1.!

2 � ˛2/

2˛!

!
:

Furthermore, taking the absolute value, using the fact that jb1j 6 ˛q, and invoking (21) from
Assumption 2 yield

jT .j!/j2n D

 
1C

.!2 � ˛2/2

2˛!

nX
iD1

Z 1
0

sin.!t/etri .t/dt

!2

C

 
.!2 � ˛2/2

2˛!

nX
iD1

Z 1
0

cos.!t/etri .t/dt �
nb1.!

2 � ˛2/

2˛!

!2

6
�
1C

.!2 � ˛2/2

2˛!
u.n/

�2
C

�
.!2 � ˛2/2

2˛!
u.n/C

nqj!2 � ˛2j

2!

�2

D 1C .!2� ˛2/2
�
u.n/

˛!
C
n2q2

4!2

�
C j!2� ˛2j3

nu.n/q

2˛!2
C .!2 � ˛2/4

u.n/2

2˛2!2
;

from which (22) follows immediately.
(b) If the open loop transfer function C.s/P.s/ has at least two pairs of complex poles at ˙j˛,

then Essi .s/ defined in (24) is identically zero. Using this fact and following steps similar to
those used to prove (22) yields (23).

�
In either case, T .j˛/ D 1 due to the presence of the oscillator poles. The bounds (22) and (23)

constrain the rate at which jT .j!/j converges to one as ! approaches ˛, and are a consequence of
the requirement (21) that the transient response converges rapidly to zero.

The following assumption implies that the system in Figure 1 has the ability to track low fre-
quency commands with a specified error. On the other hand, although Lemma 1 is applicable for
any frequency, system properties in certain frequency ranges tend to be dominated by additional
constraints and limitations. For example, at low frequency T .s/ may be required to approximate a
unity gain low-pass filter. Hence, we make the following assumption for the low frequency behavior
of T .s/.

Assumption 3 (Low Frequency Behavior)
Let 0 < !l < ˛. For ! 2 .0; !l/, the following inequality holds

jT .j!/n � 1j < �; (25)

where 0 6 � < 1.

Finally, we assume that the system satisfies a bandwidth limitation.

Assumption 4 (Bandwidth Limitation)
The transfer function T .s/ obeys the high-frequency roll-off constraint

jT .j!/j 6
�!h
!

�r
; for all! > !h (26)

for some !h > ˛ and relative degree r > 1.
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The following theorem shows that Assumptions 1–4, together with one additional hypothesis,
imply the existence of a lower bound on the peak magnitude response of the complementary
sensitivity function (3).

Theorem 6
Suppose that Assumptions 1–4 are satisfied.

(a) Assume in addition that C.s/P.s/ possesses one pair of poles at ˙j˛, and that the phase
error is zero: arg.�K˛/ D 0. Then for any !m 2 .˛; !h/, we have the following inequality:

max
!2Œ!m;!h�

log jT .j!/j >
�H ��˛ ��L �

�
2
q C �

PN´
iD1

�
´i

´2
i
C˛2

�
C �

2
�R !h

!m
W.!; ˛/d!

; (27)

where �L, �˛ , and �H are bounds on the integral of log jT .j!/j over different frequency
ranges:

�L ,
1

n

Z !l

0

log.1C �/W.!; ˛/d!; (28)

�˛ ,
1

2n

Z !m

!l

log
�
1C �.u.n/; q; ˛; !/.!2 � ˛2/2

�
W.!; ˛/d!; (29)

�H , r
Z 1
!h

log
!

!h
W.!; ˛/d!: (30)

(b) Assume instead that C.s/P.s/ possesses at least two pairs of poles at ˙j˛. Then T .s/ must
satisfy the lower bound (27), where �H and �L are as defined in (28) and (30), and

�˛ ,
1

n

Z !m

!l

log

�
1C

.!2 � ˛2/2

2˛!
u.n/

�
W.!; ˛/d!: (31)

Proof
We establish this result by splitting the integration interval in (9). In particular,

Z !h

!m

log jT .j!/jW.!; ˛/d! D �
Z !l

0

log jT .j!/jW.!; ˛/d! �
Z !m

!l

log jT .j!/jW.!; ˛/d!

�

Z 1
!h

log jT .j!/jW.!; ˛/d! C
�

2
Re .K˛/

C �

N´X
iD1

�
´i

´2i C ˛
2

�
C
�

2
�: (32)

It follows from Assumption 3 and the triangle inequality that

�

Z !l

0

log jT .j!/jW.!; ˛/d! > ��L:

Similarly, Lemma 1 implies that

�

Z !m

!l

log jT .j!/jW.!; ˛/d! > ��˛;
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where �˛ is defined either by (29) or (31). Together, Assumption 1 and (13) imply that Re .K˛/ >
�q. Also note

Z !h

!m

log jT .j!/jW.!; ˛/d! 6 max
!2Œ!m;!h�

¹log jT .j!/jº
Z !h

!m

W.!; ˛/d!:

The result follows by combining the preceding inequalities and applying the high-frequency
bound (26). �

It follows from Theorem 6 that time and frequency domain specifications, such as those in
Assumptions 1–4, impose a lower bound on the peak value of jT .j!/j. For case (a), should this
lower bound prove to be greater than unity, then it provides another sufficient condition for string
instability. For case (b), already known to be string unstable, the lower bound provides an estimate
of the severity of the instability.

In fact, the lower bound (27) is conservative for the purpose of predicting string instabil-
ity in case (a). To see this, note that the first two terms on the right-hand side of (32) will
be nonnegative if jT .j!/j 6 1 in the frequency range .0; !m/. (If jT .j!/j > 1 in this fre-
quency range, then the system is known to be string unstable without considering behavior at
other frequencies.) Hence, we have the following corollary to the proof of Theorem 6. For
purposes of simplicity, we also assume that L.s/ has no ORHP zeros and the time delay �

is zero.

Corollary 2
In addition to the hypotheses of Theorem 6, assume that jT .j!/j 6 1; 8! 2 .0; !m/, and that
N´ D 0, � D 0. Then, for any !m 2 .˛; !H /, we have that

max
!2Œ!m;!h�

log jT .j!/j >
�H �

�
2
qR !h

!m
W.!; ˛/d!

: (33)

It follows immediately from (33) that a necessary condition for string stability is that

q >
2

�
�H ; (34)

where �H is defined by (30) and q is defined in Assumption 1. If (34) is not satisfied, then the
limit as !m ! !h of the right-hand side of (33) is equal to infinity, and thus the specifications are
infeasible. Hence, the desirability of string stability imposes a tradeoff between bandwidth limita-
tions of the form imposed in Assumption 4, and steady state tracking error requirements as imposed
in Assumption 1.

5. HETEROGENEOUS FEEDBACK LOOP AND EXTENDED COMMUNICATION RANGE

The string instability analysis in the previous section is limited to the homogeneous oscillator string
with predecessor-following control architecture depicted in Figure 1. It cannot be applied to hetero-
geneous oscillator strings where the controllers can be designed differently. In such a system, there
is no complementary sensitivity function T .s/ in (4) that describes how the error signal is amplified
from one oscillator to its successor. Hence, the heterogeneous oscillator string avoids error ampli-
fication at the same frequency, and some of the existing works use this approach to improve string
stability [22]. Other methods in the area of vehicle platooning to improve and even regain string
stability include speed-dependent separation policy and extended communication ranges. We want
to extend our analysis in the previous section to include heterogeneous feedback loop design, a new
tracking policy, and an extended communication range. For simplicity, we also assume there is no
time delay in the feedback loop.
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Figure 2. Block diagram depicting an oscillator string with time headway.

5.1. Time headway operator for harmonic oscillators

We start our analysis by introducing a new separation policy for a heterogeneous oscillator string
shown in Figure 2. Here, the plants can be different, and each contains the dynamics of a harmonic
oscillator with natural frequency ˛ radians/second. We write the scalar transfer function Pi .s/ as

Pi .s/ D NPi .s/
1

s2 C ˛2
; for i D 1; 2; � � � ; n; (35)

where NPi .s/ has no zeros at s D ˙j˛. We also assume the controllers can be designed differently
and each controller has harmonic oscillator dynamics. That is

Ci .s/ D NCi .s/
1

s2 C ˛2
; for i D 1; 2; � � � ; n: (36)

Because of the presence of the poles at ˙j˛ in the controller dynamics, the system can achieve
asymptotically zero tracking errors for any ramp-enveloped sinusoidal signal of the form r1.t/ D
.At C B/ sin .˛t/ asymptotically and perfect rejection of any disturbance signal di .t/ of the form
A sin .˛t/ [23]. Theorem 3 has shown that if the oscillator string is homogeneous, the whole system
is string unstable if ıi .t/ in Figure 2 is zero. ıi .t/ is the desired distance that the oscillator is kept
with its predecessor, and this signal represents the separation policy between oscillators.

We can design ıi .t/ to improve the string stability of the whole system. The concept is similar
to the time headway in vehicle platooning, that is to make the intervehicle spacing increase linearly
with the vehicle’s own velocity. In this section, we limit our discussion to track the ramp-enveloped
sinusoidal signal:

r1.t/ D
�
ıp C ıvt

�
sin.˛t/: (37)

Here, we term ıv the amplitude velocity of this ramp-enveloped sinusoidal signal. Further, we define
the following time headway operator rTH:

rTH Œf .t/	 ,
1

2

Z t

0

�
d2

d�2
f .�/C ˛2f .�/

�
d� (38)

where f .t/ is assumed twice differentiable. It follows that

rTH
�
.ıp;i C ıvt / sin.˛t/

	
D ıv sin.˛t/;

which is not difficult to prove. Note that the transfer function of the time headway operator rTH is
s2C˛2

2s
. Then we propose the following oscillator separation policy that ensures the amplitude of the

sinusoidal spacing signal ıi .t/ linearly increases with the amplitude velocity of yi .t/ in steady state:

ıi .t/ D Nıi � hirTH Œyi .t/	 : (39)

Here, hi is the time headway constant for each oscillator, and Nıi is a vector of sinusoidal signals
of the form A sin .˛t/. The separation policy (39) ensures that the amplitude velocities of yi .t/ are
all identical in steady state. We assume the time headway constants are the same: hi D h for each
oscillator in this string.
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With time headway, the complementary sensitivity function Th.s/ in Figure 2 is now given by

Th.s/ D
Pi .s/Ci .s/

1C Pi .s/Ci .s/
�
1C h s

2C˛2

2s

� : (40)

The transfer function Th.s/ describes how errors propagate in a manner similar to T .s/ in (5).
Applying Theorem 2 to the new Th.s/ yields the following integral: ‡

Z 1
0

log jTh.j!/jW.!; ˛/d! > �
�

2
h:

The integral in the preceding text shows that string stability is potentially feasible because the right-
hand side is negative due to the time headway operator.

5.2. Multivariable representation of the oscillator string

We also want to consider the more general communication range adopted in [11] and assume that
the oscillators are permitted to communicate with a few neighbors forward and backward. This
is different from the communication range used in Figures 1 and 2. With the extended communi-
cation strategies, the transfer function from a disturbance at the lead oscillator to the error in the
nth oscillator is no longer equal to the product of the individual transfer functions. Hence, in this
section, we examine the disturbance propagation from the first oscillator to the last one for an arbi-
trarily large string of oscillators. Doing so requires us to use a multivariable representation of the
oscillator string.

We augment the output, control, error, separation, and disturbance variables as

y.t/ D
�
y1.t/ y2.t/ � � � yn.t/

	T
;

u.t/ D
�
u1.t/ u2.t/ � � � un.t/

	T
;

e.t/ D
�
e1.t/ e2.t/ � � � en.t/

	T
;

d .t/ D
�
d1.t/ d2.t/ � � � dn.t/

	T
;

ı.t/ D
�
0 ı2.t/ � � � ın.t/

	T
:

(41)

We make the following assumptions by considering the extended communication ranges, heteroge-
neous feedback loop, and the new separation policy.

Assumption 5 (Communication Range)
We assume that the i th oscillator is permitted to communicate with cf oscillators in front and cr
oscillators behind itself. Here cr , cf are fixed natural numbers and cf > 1. Further, for simplicity,
we assume the number of oscillators n to be divisible by the forward communication range cf ,
which is n D Ncf . �

Assumption 6 (Heterogeneous Feedback Loop )
Considering the extended communication range in Assumption 5, the control policy can be written
using a multivariable transfer function matrix C.s/, where C.s/ is a .cf ; cr/-banded transfer matrix.
That is

u.t/ D C.s/ ? e.t/; (42)

‡It follows from the proof of Theorem 2 that the integral relation (9) holds for any stable, proper, rational transfer function
T.s/ that satisfies T.j˛/ D 1. Hence (a) holds for Th.s/ defined in (40).
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where u.t/ and e.t/ are the augmented control and error signals defined in (41). In addition, we
assume each nonzero element in C.s/ contains the dynamics of a harmonic oscillator with natural
frequency ˛ radians/second. Thus, we write C.s/ as

C.s/ D NC.s/ 1

s2 C ˛2
;

with NC.j˛/ non-singular. �

Assumption 7 (Oscillator Separation Policy)
We adopt the separation policy in (39). Further, we define H , the matrix of time headway, as
H D diag¹hiº > 0, and ı0 D

�
0 Nı2 � � � Nın

	T
to be a vector of sinusoidal signals of the form

A sin .˛t/. The separation policy can be rewritten as

ı.t/ D ı0 �HrTH

h
y.t/

i
; (43)

where y.t/ and ı.t/ are the augmented output and separation signals defined in (41). �

To describe the oscillator string under Assumptions 5–7, we first define the multivariable plant
transfer function: P.s/ D diag¹Pi .s/º, NP.s/ D diag¹ NPi .s/º. Then equation (35) can be rewritten as

y.t/ D P.s/ ? u.t/; (44)

where P.s/ can be factored as

P.s/ D NP.s/ 1

s2 C ˛2
:

Similarly, we define the error signal as

e.t/ D ı.t/ �My.t/C V n1 r1.t/; (45)

where V n1 D
�
1 0 � � � 0

	T
and M denotes the coupling matrix

M D

2
6664
1 0 � � � 0
�1 1 � � � 0
:::
: : :

: : : 0

0 � � � �1 1

3
7775 : (46)

The multivariable system representation of the oscillator string is shown in Figure 3. Using (42)–
(45), the output variable y.t/ can be related to the target separation variable ı0 and the lead oscillator
target position r1.t/ by the following equation

y.t/ D .I C L.s//�1 P.s/C.s/ ?
�
ı0 C V

n
1 r1.t/

�
; (47)

where

L.s/ D P.s/C.s/
�
M C

s2 C ˛2

2s
H

�
: (48)

Figure 3. Multivariable feedback loop representation of the oscillator string.
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Hence, we can define the closed-loop multivariable transfer function matrix Hyr.s/ as

Hyr.s/ D .I C L.s//�1 P.s/C.s/ D
�
I � .I C L.s//�1

��
M C

s2 C ˛2

2s
H

��1
: (49)

Assumptions 5–7 allow us to establish some properties of the closed-loop matrix Hyr.s/ at
frequency ˛.

Lemma 2 (Values of Hyr at s D j˛)
Consider Hyr as defined in (49). Then subject to Assumptions 5–7, we have

Hyr.j˛/ DM
�1; (50)

H0yr.j˛/ D �M�1HM�1: (51)

Proof
From the definition of Hyr.s/ in (49), we have

Hyr.s/ D



I C P.s/C.s/

�
M C

s2 C ˛2

2s
H

���1
P.s/C.s/

D

�
M�1 .P.s/C.s//�1 C I C s2 C ˛2

2s
M�1H

��1
M�1

D



I C .s2 C ˛2/2M�1

�
NP.s/ NC.s/

��1
C
s2 C ˛2

2s
M�1H

��1
M�1:

(52)

Evaluating (52) at s D j˛ gives (50) and differentiating (52) at s D j˛ gives (51). �
The lower left element of Hyr.s/ describes the response of the output of the last oscillator to an

output disturbance at the first oscillator:

Hynr1.s/ D
�
V nn
�T Hyr.s/V

n
1 ; (53)

where V n1 and V nn are the 1st and nth canonical basis vectors, respectively. We then apply Theorem 2
to the transfer function Hynr1.s/ and obtain the following theorem.

Theorem 7
Consider Hynr1.s/ as defined in (53). Then subject to Assumptions 5–7, we haveZ 1

0

log
ˇ̌
Hynr1.j!/

ˇ̌
W.!; ˛/d! > ��

2
n Nh; (54)

where Nh is the average time headway

Nh D
1

n

nX
iD1

hi : (55)

Proof
Note from the definition of M in (46) that

M�1 D

2
6664
1 0 � � � 0
1 1 � � � 0
:::
: : :

: : : 0

1 � � � 1 1

3
7775 :

Then from Lemma 2, we have

Hynr1.j˛/ D 1; and H0ynr1.j˛/ D �n Nh:

The result then follows by using (9). �
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5.3. Lower bound on disturbance amplification

In this section, we present a lower bound on the worst case disturbance amplification along the
string when the system is assumed to satisfy certain communication constraints, a high-frequency
bandwidth limitation, and certain transient performance in response to a ramp-enveloped sinusoidal
signal. If this lower bound grows at least linearly with the number of oscillators n, then we may
conclude that the system in Figure 3 is string unstable.

We first present some assumptions on the system structural properties induced by the commu-
nications range and high-frequency bandwidth limitation. From Assumption 5, it is easy to show
L.s/ is a .cf ; cr/-banded transfer matrix. Then L.s/ can be written as an N �N block matrix, with
N D n=cf :

L.s/ D

2
6666664

L1;1.s/ L1;2.s/ L1;3.s/ � � � 0

L2;1.s/ L2;2.s/ L2;3.s/ � � � 0

0 L3;2.s/ L3;3.s/
: : :

:::
:::

: : :
: : :

: : : LN�1;N .s/
0 � � � 0 LN;N�1.s/ LN;N .s/

3
7777775
; (56)

where each block element Li;j .s/ is a cf �cf dimensional transfer function matrix, and Li;j .s/ D 0
for j > i C lr , where lr D dcr=cf e is the communication range ratio introduced in Assumption 5.

It follows that I C L.s/ can be conveniently factorized in a block Lower Upper (LU) form
described in the following lemma [11].

Lemma 3 (Block LU Factorization of L.s/)
Under Assumption 5, let L.s/ be the .cf ; cr/-banded transfer function matrix defined in (56). Then

I C L.s/ ,ML.s/MU .s/ (57)

where MU .s/ is given as

MU .s/ D

2
6666664

I U1;2.s/ U1;3.s/ � � � 0
0 I U2;3.s/ � � � 0

0 0 I
: : :

:::
:::

: : :
: : :

: : :
:::

0 � � � 0 0 I

3
7777775
; (58)

and ML.s/ as

ML.s/ D

2
6666664

QS�11;1.s/ 0 0 � � � 0

L2;1.s/ QS�12;2.s/ 0 � � � 0

0 L3;2.s/ QS�13;3.s/
: : :

:::
:::

: : :
: : :

: : : 0

0 � � � 0 LN;N�1.s/ QS�1N;N .s/

3
7777775
; (59)

and QSk;k and Uk;j are defined recursively by

QS1;1.s/ D .1C L1;1.s//�1

U1;j .s/ D QS1;1.s/L1;j .s/ W j D 2; 3; : : : ; N
QSk;k.s/ D

�
1C Lk;k.s/ � Lk;k�1.s/Uk�1;k.s/

��1
W k D 2; 3; : : : ; N

Uk;j .s/ D QSk;k.s/
�
Lk;j .s/ � Lk;k�1.s/Uk�1;j .s/

�
W 1 < k < j 6 N:

(60)
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From these equations, it follows that the multivariable sensitivity function S.s/ D .I C L.s//�1
can be written as a product of upper and lower block triangular matrices

S.s/ DM�1
U .s/M�1

L .s/ D

2
66664
I � � � � �

0 I
: : :

:::
:::
: : :

: : : �
0 � � � 0 I

3
77775

2
66664
QS1;1.s/ 0 � � � 0

QS2;1.s/ QS2;2.s/
: : :

:::
:::

: : :
: : : 0

QSN;1.s/ � � � QSN;N�1.s/ QSN;N .s/

3
77775 ; (61)

where � denotes possibly nonzero transfer function blocks within the matrix M�1
U .s/. Further,

we have

SN;i .s/ D QSN;i .s/ D QSN;N .s/
N�1Y
kDi

QTkC1;k.s/ (62)

where

QTkC1;k.s/ , �LkC1;k.s/ QSk;k.s/ for k D 1; 2; � � � ; N � 1: (63)

Further, noting that QSk;k.s/ is exactly the lower right-hand block of the multivariable sensitivity
function S.s/ in (61), we assume the following uniform bounds on QSk;k.s/.

Assumption 8 (Uniform Bounds on QSk;k.s/)
There exists a finite number � > 0 such that�� QSk;k.s/��H1 6 � for k D 1; 2; � � � ; N: �

We also assume each QTkC1;k.j!/ satisfies a high-frequency bandwidth limitation based on its
definition in (63).

Assumption 9 (Loop High-Frequency Bound)
The loop transfer functions QTkC1;k.s/ with k 2 ¹1; 2; : : : ; N � 1º, defined in (63), obey the uniform
high-frequency bound

�� QTkC1;k.j!/�� 6 �!H
!

�r
; for all ! > !H ; (64)

for some !H > 0 independent of N and (relative degree) r > 1 and all k 2 ¹1; 2; : : : ; N � 1º. In
addition, we assume that 8! > !H���.P.s/C.s//1;1 .j!/V cf1 ��� 6 Np; (65)

for some Np <1.

We now show that Assumptions 8 and 9 imply a bound on the integral of the magnitude response
of Hynr1.s/ over a high-frequency range.

Corollary 3
Under Assumptions 5–9, we haveZ 1

!H

log
ˇ̌
Hynr1.j!/

ˇ̌
W.!; ˛/d! 6 log.� Np/

!H

!2H � ˛
2
C
.N � 1/r

2˛
log

!H � ˛

!H C ˛
: (66)

Proof
The proof is similar to the proof of Corollary 5 in [11]. By following the same line of logic, we have
the following inequality:
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ˇ̌
Hynr1.j!/

ˇ̌
6 � Np

�!H
!

�r.N�1/
; for all ! > !H : (67)

Then, we haveZ 1
!H

log
ˇ̌
Hynr1.j!/

ˇ̌
W.!; ˛/d! 6 Œlog .� Np/C .N � 1/r log!H 	

Z 1
!H

W.!; ˛/d!

� .N � 1/r

Z 1
!H

W.!; ˛/ log!d!:

The result in (66) follows by solving the integrals in the inequality in the preceding text. �

As P.s/C.s/ contains a double oscillator dynamics in Assumption 6, the oscillator string can
achieve asymptotically zero tracking error for a sinusoidal signal in the form of (37). We assume the
oscillator string satisfies a performance specification on the sum of integral absolute errors (IAE)
that describes how fast the errors converge to zero.

Assumption 10 (IAE Specification on Transient Response)
For i D 1; 2; � � � ; n, let erampi .t/ be the error response of the i th oscillator to a ramp-enveloped
sinusoidal signal: r1.t/ D t sin.˛t/. We assume that for all n oscillators, the integral of the absolute
value of erampi .t/ is bounded as

nX
iD1

Z 1
0

ˇ̌
e
ramp
i .t/

ˇ̌
dt 6 u.n/; (68)

for some positive function u.n/. �

One immediate consequence of Assumption 10 is a bound on the frequency response of Hynr1.s/.

Lemma 4
Let Assumption 10 hold. Then, for all ! 2 R

ˇ̌
Hynr1.j!/

ˇ̌
6 1C u.n/.!

2 � ˛2/2

2˛!
: (69)

Proof
This lemma can be proved by following a line similar to the proof of Lemma 6 in [11]. �

In addition, Hynr1.s/ typically has low-pass characteristics. Hence, we make the following
assumption for the low frequency behavior of Hynr1.s/.

Assumption 11 (Low Frequency Behavior)
Let 0 < !L < ˛. For ! 2 .0; !L/, the following inequality holdsˇ̌

Hynr1.j!/ � 1
ˇ̌
< �; (70)

where 0 6 � < 1. �

The following theorem provides a lower bound on the peak magnitude response of Hynr1.s/.

Theorem 8
Consider a system subject to Assumptions 5–11. Then for any!M 2 .˛; !H /, we have the following
inequality:

max
!2Œ!M ;!H �

log
ˇ̌
Hynr1.j!/

ˇ̌
>
N�H � N�˛ � N�L �

�
2
n NhR !H

!M
W.!; ˛/d!

; (71)
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where N�L, N�˛ , N�H are bounds on different frequency ranges of the integral of log
ˇ̌
Hynr1.j!/

ˇ̌
and defined as

N�L ,
Z !L

0

log.1C �/W.!; ˛/d! D � log .1C �/
!L

!2L � ˛
2
;

N�˛ ,
Z !M

!L

log



1C u.n/

.!2 � ˛2/2

2˛!

�
W.!; ˛/d!

N�H , � log.� Np/
!H

!2H � ˛
2
C
.N � 1/r

2˛
log

!H C ˛

!H � ˛
:

In addition, assume that
ˇ̌
Hynr1.j!/

ˇ̌
6 1, 8! 2 .0; ˛/. Then if N�H � �

2
n Nh > 0, we have

max
!2.!M ;!H /

ˇ̌
Hynr1.j!/

ˇ̌
> exp

 
˛3
�
N�H �

�
2
n Nh
�2

!Hu.n/
�
!2H C ˛

2
�
!
: (72)

Furthermore, if u.n/ < n Nu and n is sufficiently large, then

max
!2.!M ;!H /

ˇ̌
Hynr1.j!/

ˇ̌
> exp

�
nˇ
�
˛; !H ; Nu; r; cf ; Nh

��
; (73)

where ˇ
�
˛; !H ; Nu; r; cf ; Nh

�
represents the lower bound of the growth per oscillator in the peak of

the frequency response and is defined as

ˇ
�
˛; !H ; Nu; r; cf ; Nh

�
D

˛3

!H Nu
�
!2H C ˛

2
� � r

2˛cf
log

!H C ˛

!H � ˛
�
�

2
Nh

�2
:

Proof
The inequality (71) can be proved following the same line of logic as the proof of Theorem 6.

From Lemma 4, we have

Z !M

˛

log
ˇ̌
Hynr1.j!/

ˇ̌
W.!; ˛/d! 6

Z !M

˛

log

�
1C u.n/

.!2 � ˛2/2

2˛!

�
�

!2 C ˛2

.!2 � ˛2/
2
d!

6 .!M � ˛/
�
!2H C ˛

2
�

max
!2.˛;!M /

log
�
1C u.n/ .!

2�˛2/2

2˛!

�
.!2 � ˛2/

2
:

Then it is not difficult to prove

max
!2.˛;!M /

log
�
1C u.n/ .!

2�˛2/2

2˛!

�
.!2 � ˛2/2

D
u.n/

2˛2
:

Hence, we obtain

Z !M

˛

log
ˇ̌
Hynr1.j!/

ˇ̌
W.!; ˛/d! 6

u.n/
�
!2H C ˛

2
�

2˛2
.!M � ˛/ : (74)

Applying (74) to inequality (71) yields the following inequality
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max
!2.!M ;!H /

log
ˇ̌
Hynr1.j!/

ˇ̌
>
N�H �

�
2
n Nh �

u.n/.!2HC˛
2/

2˛2
.!M � ˛/R1

!M
W.!; ˛/d!

> 2˛
!H

.!M � ˛/

 
N�H �

�

2
n Nh �

u.n/
�
!2H C ˛

2
�

2˛2
.!M � ˛/

!

D
2˛

!H

"
�
u.n/

�
!2H C ˛

2
�

2˛2
.!M � ˛/

2 C
�
N�H �

�

2
n Nh
�
.!M � ˛/

#
:

If we take !M D ˛ C
˛2. N�H�

�
2 n
Nh/

u.n/.!2HC˛2/
, the inequality (72) is obtained. �

Theorem 8 shows that under certain conditions, the lower bound of
max!2.!M ;!H / log

ˇ̌
Hynr1.j!/

ˇ̌
will increase at least linearly with the number of oscillators.

Hence, the peak will grow without bound, and the oscillator string will be string unstable.

6. NUMERICAL EXAMPLES

We present a few examples to illustrate the results.

6.1. Homogeneous oscillator string

We present a numerical example to illustrate the results in Theorem 6. Consider a string of n iden-
tical oscillators with frequency ˛ D 1 and plant transfer function P.s/ D .s C 0:5/=.s2 C 1/. A
controller that achieves zero steady state phase error, arg.�K˛/ D 0, is given by

C.s/ D
40.s C 10/.s C 2/

s2 C 0:05s C 1:5
: (75)

A plot of the lower bound (27) as a function of !h, the frequency at which the bandwidth limitation
becomes effective, is given in Figure 4 for various values of the parameter q that governs the size of
the tracking error via (19). As expected, smaller values of !h increase the size of the lower bound,
and for a given value of !h, the bound increases as the constraint on the tracking error decreases.

The corresponding complementary sensitivity function is

T .s/ D
40s3 C 500s2 C 1040s C 400

s4 C 40:05s3 C 502:5s2 C 1040s C 401:5
: (76)

4
-0.2

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10 20 30 40

Figure 4. The lower bound (27) versus !h, for parameters n D 10, r D 1, � D 0:1, u.10/ D 1, and
!l D 0:6.
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Figure 5. Magnitude response of T .s/.
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Figure 6. Tracking errors ei .t/ defined in (2).

Table I. Parameters to calculate the lower bound.

n � u.n/ q r !h !l !m

10 0.0367 0.072 0.001 1 40 0.536 1.95

As it happens, the DC gain of jT .j!/j is nearly unity, and it is straightforward to verify that
T .j1/ D 1 and K˛ D �0:001. The Bode magnitude plot for (76), depicted in Figure 5, shows
a peak value of 1.70 dB, or 1.22 in absolute terms. As a consequence, the string of oscillators is
string unstable. The tracking errors (2) in response to an input r1.t/ D t sin t are plotted in Figure 6,
and show transient peaks that, as expected, increase in magnitude along the string. In all cases, the
steady state value of the tracking error is given by ess

k
.t/ D 0:001 sin t , as predicted from Theorem 4

and Corollary 1.
To illustrate the bound (27), we find that the various parameters used to construct the bound have

the values depicted in Table I. With these parameter values, we predict that jT .j!/j must have a
peak greater than 1.0146 (0.126 dB), which is less than the observed peak value of 1.70 dB. The
difference is due in part to conservativeness in the lower bound (27), and in part due to controller
design. A different controller might yield a smaller peak, but no smaller than the guaranteed lower
bound provided that the rest of the design satisfies the parameter values from Table I.

6.2. Heterogeneous oscillator string

We will illustrate the result in Theorem 8 in this section. Instead of providing a design example,
we show the lower bound on the peak growth of the frequency response per oscillator for different
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Figure 7. Lower bound on peak growth of magnitude response per oscillator versus !H for different
values of Nu.

bandwidth limitations !H and IAE specifications Nu in (73). The plot is shown in Figure 7. The
parameter values are r D 1, cf D 2, ˛ D 1, and Nh D 0:1.

We can see from Figure 7 that the lower bound on peak growth per oscillator in (73) (20 �
ˇ
�
˛; !H ; Nu; r; cf ; Nh

�
in decibels) increases as the value of !H becomes smaller. For the same value

of !H , the lower bound increases as the tracking error Nu decreases. This conclusion is similar to the
results in the homogeneous case.

7. CONCLUSION AND FUTURE WORK

In this paper, we have studied the problem of string instability in synchronized harmonic oscillator
systems. By using a new integral relation that must be satisfied by the complementary sensitivity
function, we provided three sufficient conditions for string instability in homogeneous oscillator
systems. We also extended our string instability analysis to heterogeneous oscillator systems where
the controllers for different oscillators may be tuned differently and each oscillator can communicate
with a few neighbors. In future work, we will consider more complex communication topologies
other than strings and stochastic time delays. It will be interesting to extend the analysis in this
paper to damped oscillator systems and nonlinear oscillator systems. We will also explore different
approaches to improve string stability.

APPENDIX: PROOF OF THEOREM 2

Proof
We prove this theorem by making the integration through a contour that includes the ORHP and
imaginary axis. The contour is shown in Figure A.1. Several indentations are made to avoid the
singularities of logT .s/. The integral around the total contour C D C0CC1CC2CC3CC4CC5
is zero. The integral along the imaginary axis, C0, satisfies

lim
�!0 ı!0 R!1

Z
C0

log ŒT .s/	
�s2 C ˛2

.s2 C ˛2/
2
ds D j

Z 1
�1

log jT .j!/j
!2 C ˛2

.!2 � ˛2/
2
d!

�

Z 1
�1

arg ŒT .j!/	
!2 C ˛2

.!2 � ˛2/
2
d!

D 2j

Z 1
0

log jT .j!/j
!2 C ˛2

.!2 � ˛2/
2
d!:

(A.1)

The curve C1 is a semicircle, which has infinity radius in the ORHP. Hence, s D Rej� and
ds D jRej�d
 . Then the contribution of this integral C1 can be evaluated as
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Figure A.1. Contour for complex s-plane used to prove Theorem 2.

lim
R!1

Z
C1

log ŒT .s/	
�s2 C ˛2

.s2 C ˛2/
2
ds D �j��: (A.2)

The integration for C2 can be calculated as follows. The radius of the semicircle is �. Hence,
s D j˛ C �ej� ; ��

2
6 
 6 �

2
and ds D j�ej�d
 . Then

lim
�!0

Z
C2

log ŒT .s/	
�s2 C ˛2

.s2 C ˛2/
2
ds D j

Z �
2

��2

lim
�!0

log
h
T .j˛ C �ej� /

i 1

�2�ej�
d


D �j
�

2
lim
s!j˛

dT .s/

ds
:

Following a similar strategy to calculate the integration for C3, we have

lim
�!0

Z
C3

log ŒT .s/	
�s2 C ˛2

.s2 C ˛2/
2
ds D �j

�

2
lim

s!�j˛

dT .s/

ds
:

Furthermore, considering the reflection principal of the analytic function, we obtain

lim
�!0

Z
C2CC3

log jT .s/j
�s2 C ˛2

.s2 C ˛2/
2
ds D �j�Re



lim
s!j˛

dT .s/

ds

�
: (A.3)

The contribution of integrals for C4 and C5 can be calculated as follows. We first assume that the
nonminimum phase zeros are �˙ j � . First, we need to rewrite T .s/ as

T .s/ D .s � � � j �/ .s � �C j �/ NT .s/: (A.4)

Further, we have

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2745–2769
DOI: 10.1002/rnc



2768 B. YU ET AL.

Z
C4;C5

log ŒT .s/	
�s2 C ˛2

.s2 C ˛2/
2
ds D

Z
C4;C5

log.s � � � j �/
�s2 C ˛2

.s2 C ˛2/
2
ds

C

Z
C4;C5

log.s � �C j �/
�s2 C ˛2

.s2 C ˛2/
2
ds

C

Z
C4;C5

log NT .s/
�s2 C ˛2

.s2 C ˛2/
2
ds:

(A.5)

The third term in the right-hand side of (A.5) is zero because the integrand is analytic inside
and on the semicircle C4 and C5. Hence, we focus on the integration of the first and second terms.
Consider the line part I, where s D x C j.� C ı/; 0 6 x 6 �. Then ds D dx.

Z
I

log.s � � � j �/
�s2 C ˛2

.s2 C ˛2/
2
ds D

Z 0

�

log.x � �C jı/
�.x C j � C jı/2 C ˛2

Œ.x C j � C jı/2 C ˛2	
2
dx

D

Z 0

�

ln
p
.� � x/2 C ı2

�.x C j � C jı/2 C ˛2

Œ.x C j � C jı/2 C ˛2	
2
dx

C j

Z 0

�



� C arctan

�
ı

x � �

��
�.x C j � C jı/2 C ˛2

Œ.x C j � C jı/2 C ˛2	
2
dx:

(A.6)

Following a similar strategy, the integration for II can be calculated asZ
II

log.s � � � j �/
�s2 C ˛2

.s2 C ˛2/
2
ds D

Z �

0

ln
p
.� � x/2 C ı2

�.x C j � � jı/2 C ˛2

Œ.xCj � � jı/2 C ˛2	
2
dx

C j

Z �

0



�� C arctan

�
�ı

x��

��
�.xCj ��jı/2C˛2

Œ.x C j ��jı/2C˛2	
2
dx:

(A.7)

Now, consider the integration for III. Here, s D �Cj �Cıej� ; ��
2
6 
 6 �

2
, and ds D jıej�d
 .

lim
ı!0

Z
III

log.s � � � j �/
�s2 C ˛2

.s2 C ˛2/
2
ds D lim

ı!0

Z �
2

��2

log.ıej� /
�.�C j � C ıej� /2 C ˛2�
.�C j � C ıej� /2 C ˛2

	2 jıej�d

D lim
ı!0

Z �
2

��2

.log ı C j
/
�.�C j �/2 C ˛2

Œ.�C j �/2 C ˛2	
2
jıej�d


D 0:

Note that the first terms in (A.6) and (A.7) cancel out and the second terms are identical when taking
ı ! 0. Hence, we have

lim
ı!0

Z
C4

log.s � � � j �/
�s2 C ˛2

.s2 C ˛2/
2
ds D �2�j



�C j �

.�C j �/2 C ˛2
�

j �

��2 C ˛2

�
: (A.8)

Similarly, the integration about the curves for � � j � , for example, C5, has the following results

lim
ı!0

Z
C5

log.s � � � j �/
�s2 C ˛2

.s2 C ˛2/
2
ds D �2�j



� � j �

.� � j �/2 C ˛2
�

�j �

��2 C ˛2

�
: (A.9)

Adding (A.8) and (A.9) yields

lim
ı!0

Z
C4CC5

log.s � � � j �/
�s2 C ˛2

.s2 C ˛2/
2
ds D �2�j



� � j �

.� � j �/2 C ˛2
C

�C j �

.�C j �/2 C ˛2

�
:

(A.10)
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The final result then follows considering (A.1), (A.2), (A.3), and (A.10) and noting that the zeros
in Theorem 2 occur in conjugate pairs. �
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