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Abstract

Performing controlled experiments on noisy data

is essential in understanding deep learning across

noise levels. Due to the lack of suitable datasets,

previous research has only examined deep learn-

ing on controlled synthetic label noise, and real-

world label noise has never been studied in a con-

trolled setting. This paper makes three contribu-

tions. First, we establish the first benchmark of

controlled real-world label noise from the web.

This new benchmark enables us to study the web

label noise in a controlled setting for the first time.

The second contribution is a simple but effective

method to overcome both synthetic and real noisy

labels. We show that our method achieves the

best result on our dataset as well as on two pub-

lic benchmarks (CIFAR and WebVision). Third,

we conduct the largest study by far into under-

standing deep neural networks trained on noisy

labels across different noise levels, noise types,

network architectures, and training settings. The

data and code are released at the following link

http://www.lujiang.info/cnlw.html.

1. Introduction

Performing experiments on controlled noise is essential

in understanding Deep Neural Networks (DNNs) trained

on noisy labeled data. Previous work performs controlled

experiments by injecting a series of synthetic label noises

into a well-annotated dataset such that the dataset’s noise

level can vary, in a controlled manner, to reflect different

magnitudes of label corruption in real applications. Through

studying controlled synthetic label noise, researchers have

discovered theories and methodologies that have greatly

fostered the development of this field.
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However, due to the lack of suitable datasets, previous work

has only examined DNNs on controlled synthetic label noise,

and real-world label noise has never been studied in a con-

trolled setting. This leads to two major issues. First, as

synthetic noise is generated from an artificial distribution,

a tiny change in the distribution may lead to inconsistent

or even contradictory findings. For example, contrary to

the common understanding that DNNs trained on synthetic

noisy labels generalize poorly (Zhang et al., 2017), Rolnick

et al. (2017) showed that DNNs can be robust to massive

label noise when the noise distribution is made slightly

different. Due to the lack of datasets, these findings, unfor-

tunately, have not yet been verified beyond synthetic noise

in a controlled setting. Second, the vast majority of previous

studies prefer to verify robust learning methods on a spec-

trum of noise levels because the goal of these methods is to

overcome a wide range of noise levels. However, current

evaluations are limited because they are conducted only on

synthetic label noise. Although there do exist datasets of

real label noise e.g. WebVision (Li et al., 2017a), Clothing-

1M (Xiao et al., 2015), etc, they are not suitable for con-

trolled evaluation in which a method must be systematically

verified on multiple different noise levels, because the train-

ing images in these datasets are not manually labeled and

hence their data noise level is fixed and unknown.

In this paper, we study a realistic type of label noise in a con-

trolled setting called web labels. “Webly-labeled” images

are commonly used in the literature (Bootkrajang & Kabán,

2012; Li et al., 2017a; Krause et al., 2016; Chen & Gupta,

2015), in which both images and labels are crawled from

the web and the noisy labels are automatically determined

by matching the images’ surrounding text to a class name

during web crawling or equivalently by querying the search

index afterward. Unlike synthetic labels, web labels follow

a realistic label noise distribution but have not been studied

in a controlled setting.

We make three contributions in this paper. First, we establish

the first benchmark of controlled web label noise, where

each training example is carefully annotated to indicate

whether the label is correct or not. Specifically, we auto-

matically collect images by querying Google Image Search

using a set of class names, have each image annotated by

3-5 workers, and create training sets of ten controlled noise

levels. As the primary goal of our annotation is to identify

http://www.lujiang.info/cnlw.html
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images with incorrect labels, to obtain a sufficient number

of these images we have to collect a total of about 800,000

annotations over 212,588 images. The new benchmark en-

ables us to go beyond synthetic label noise and study web

label noise in a controlled setting. For convenience, we will

refer it as web label noise (or red noise) to distinguish it

from synthetic label noise (or blue noise)1.

Second, this paper introduces a simple yet highly effective

method to overcome both synthetic and real-world noisy

labels. It is based on a new idea of minimizing the empirical

vicinal risk using curriculum learning. We show that it con-

sistently outperforms baseline methods on our datasets and

achieves state-of-the-art performance on two public bench-

marks of synthetic and real-world noisy labels. Notably, on

the challenging benchmark WebVision 1.0 (Li et al., 2017a)

that consists of 2.2 million images of real-world noisy labels,

it yields a significant improvement of 3% in the top-1 accu-

racy, achieving the best-published result under the standard

training setting.

Finally, we conduct the largest study by far into understand-

ing DNNs trained on noisy labels across a variety of noise

types (blue and red), noise levels, training settings, and net-

work architectures. Our study confirms the existing findings

of Zhang et al. (2017) and Arpit et al. (2017) on synthetic

labels, and brings forward new findings that may challenge

our preconceptions about DNNs trained on noisy labels. See

the findings in Section 5.2. It is worth noting that these find-

ings along with benchmark results are a result of conducting

thousands of experiments using tremendous computation

power (hundreds of thousands of V100 GPU hours). We

hope our (i) benchmark, (ii) new method, and (iii) findings

will facilitate future deep learning research on noisy labeled

data. We will release our data and code.

2. Related Work

2.1. Datasets of noisy training labels

While many types of noises exist e.g. image corruption

noise (Hendrycks & Dietterich, 2019), image registration

noise (Mnih & Hinton, 2012), or noise from adversarial

attacks (Zhang et al., 2019), this paper focuses on label

noise, and in particular web label noise – a common type

of label noise used in the literature. To the best of our

knowledge, there have been no datasets of controlled web

label noise. The closest to ours is the datasets of two types

of noises: controlled synthetic label noise and uncontrolled

web label noise.

In the dataset of controlled synthetic label noise, a series

of synthetic label noises are injected into a well-annotated

1From the red and blue pill in the movie “The Matrix (1999),
where the red pill is used to refer to the truth about reality.

dataset in a controlled manner to reflect different magni-

tudes of label corruption in real applications. The most

common one is the symmetric label noise, in which the la-

bel of each example is independently and uniformly changed

to a random class with a controlled probability. Many works

studied the symmetric label in controlled settings and pre-

sented their findings, including famous ones, like (Zhang

et al., 2017) and (Arpit et al., 2017). The symmetric label

is also commonly used as a benchmark to evaluate robust

learning methods in a noise-control setting e.g. in (Vahdat,

2017; Shu et al., 2019; Jiang et al., 2018; Ma et al., 2018;

Han et al., 2018b; Van Rooyen et al., 2015; Li et al., 2019;

Arazo et al., 2019; Charoenphakdee et al., 2019). Other

types of synthetic label noise were also proposed, including

class-conditional noises (Patrini et al., 2017; Rolnick et al.,

2017; Reeve & Kabán, 2019; Han et al., 2018a), noises

from other datasets (Wang et al., 2018; Seo et al., 2019),

etc. However, these noises are still synthetically gener-

ated from artificial distributions. Moreover, different works

might use different parameters to generate such synthetic

noises, which may make their results incomparable. See the

example of (Rolnick et al., 2017) in the introduction.

In the dataset of uncontrolled web label noise, both images

and labels are crawled from the web and the noisy labels are

automatically determined by matching the images’ surround-

ing text to a class name. This can be achieved by querying a

search index (Krause et al., 2016; Li et al., 2017a; Mahajan

et al., 2018). For example, In WebVision, Li et al. (2017a)

collected web images with noisy labels by querying Google

and Flickr image search using the 1,000 class names from

ImageNet. Mahajan et al. (2018) gathered a large scale

set of images with noisy labels by searching hashtags on

Instagram. However, these datasets do not provide ground-

truth labels for training examples. Their noise level is hence

fixed and unknown. As a result, they are not suitable for

controlled studies in which different noise levels must be

systematically examined. Besides, to get controlled web

noise, it may not be a feasible option to annotate images in

these datasets due to their imbalanced class distribution.

2.2. Robust deep learning methods

Robust learning is experiencing a renaissance in the deep

learning era. Nowadays training datasets usually contain

noisy examples. The ability of DNNs to memorize all

noisy training labels often leads to poor generalization on

the clean test data. Recent contributions based on deep

learning handle noisy data in multiple directions includ-

ing dropout (Arpit et al., 2017) and other regularization

techniques (Azadi et al., 2016; Noh et al., 2017), label

cleaning/correction (Reed et al., 2014; Goldberger & Ben-

Reuven, 2017; Li et al., 2017b; Veit et al., 2017; Song et al.,

2019), example weighting (Jiang et al., 2018; Ren et al.,

2018; Shu et al., 2019; Jiang et al., 2015; Liang et al., 2016),



Beyond Synthetic Noise: Deep Learning on Controlled Noisy Labels

cross-validation (Northcutt et al., 2019), semi-supervised

learning (Hendrycks et al., 2018; Vahdat, 2017; Li et al.,

2020; Zhang et al., 2020), data augmentation (Zhang et al.,

2018; Cheng et al., 2019; 2020; Liang et al., 2020), among

others. Different from prior work, we introduce a simple yet

effective method to overcome both synthetic and real-world

noisy labels. Compared with semi-supervised learning meth-

ods, our method learns DNNs without using any clean label.

3. Dataset

Our goal is to create a benchmark of controlled noise that

resembles a realistic label noise distribution. Unlike existing

datasets such as WebVision or Clothing1M, our benchmark

provides controlled label noise where every single training

example is carefully annotated by several human annotators.

Our benchmark is built on top of two public datasets: Mini-

ImageNet (Vinyals et al., 2016) for coarse-grained image

classification and Stanford Cars (Krause et al., 2013) for fine-

grained image classification. Mini-ImageNet has images of

size 84x84 with 100 classes from ImageNet (Deng et al.,

2009). We use all 60K images for training and the 5K

images in the ILSVRC12 validation set for testing. Stanford

Cars contain 16,185 high-resolution images of 196 classes

of cars (Make, Model, Year) split 50-50 into training and

validation set. The standard train/validation split is used.

3.1. Dataset Construction

We build our datasets to replace synthetic noisy labels with

web noisy labels in a controlled manner. To recap, let us

revisit the construction of existing datasets of noisy labels.

Synthetic noisy datasets are generated beginning with a

well-labeled dataset. The most common type of synthetic

label noise is called symmetric label noise in which the la-

bel of each training example is independently changed to

a random incorrect class with a probability p called noise

level.2. The noise level indicates the percentage of training

examples with incorrect labels. As the true labels for all

images are known, one can enumerate p to obtain training

sets of different noise levels and use them in noise-control

studies. On class-balanced datasets, this process is equiv-

alent to sampling p% training images from each class and

then replacing their labels with the labels uniformly drawn

from other classes. The drawback is that the synthetic labels

are artificially created and do not follow the distribution of

real-world label noise.

On the other hand, there exist a few datasets of uncontrolled

web label noise (Xiao et al., 2015; Li et al., 2017a; Krause

2This is slightly different from (Zhang et al., 2017) and is the
same as (Jiang et al., 2018). We do not allow examples to be label
flipped to their true labels. It makes p denote the exact noise level
and independent of the total number of classes.

et al., 2016). In these datasets, the images are crawled

from the web and their labels are automatically assigned

by matching the images’ surrounding text to a class name.

This can be achieved by querying a search index. These

datasets contain noisy web labels. However, as their training

images are not manually labeled, their label noise level is

fixed and unknown, rendering existing datasets unsuitable

for controlled studies.

For our benchmark, we follow the construction of synthetic

datasets with one important difference – instead of changing

the labels of the sampled clean images, we replace the clean

images with incorrectly labeled web images while leaving

the label unchanged. The advantage of this approach is

that we closely match the construction of synthetic datasets

while still being able to introduce controlled web label noise.

3.2. Noisy Web Label Acquisition

We collect images with incorrect web labels in three steps:

(1) images collection, (2) deduplication, and (3) manual an-

notation. In the first step, we combine images independently

retrieved by Google image search from two sources: text-

to-image and image-to-image search. For the text-to-image

search, we formulate a text query for each class using its

class name and broader category to retrieve the top images.

For image-to-image search, we query the search engine us-

ing every training image in Mini-ImageNet and Stanford

Cars. Finally, we union the two search results, where the

text-to-image search results account for 82% of our final

benchmark. Note that the rationale for including a small

amount of image-to-image results is to enrich the types of

web label noises in our benchmark. We show that an alter-

native way to construct the dataset by removing all image-

to-image results leads to consistent results in the Appendix

C.

In the second step of deduplication, following (Kornblith

et al., 2019), we run a CNN-based duplicate detector over

all images to remove near-duplicates to any of the images in

the validation set. All images are retrieved under the usage

rights “free to use or share” 3. But we still recommend

checking their actual usage right for the image.

Finally, the images are annotated using the Google Cloud

labeling service. The annotators are asked to provide a

binary question: “is the label correct for this image?”. Every

image is independently annotated by 3-5 workers and the

final label is reached by majority voting. Statistics show

annotators disagree only on a small proportion (11%) of the

total images. The remainder have unanimous labels agreed

by at least 3 annotators.

3
https://support.google.com/websearch/answer/29508

https://support.google.com/websearch/answer/29508
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Table 1. Overview of our datasets of controlled red (web) label noise. Blue (synthetic) label noise is also included for comparison.

Dataset #Class Noise Source Train Size Val Size Controlled Noise Levels (%)

Red Mini-ImageNet
100

image search label 50,000
5,000

0, 5, 10, 15, 20, 30, 40, 50, 60, 80

Blue Mini-ImageNet symmetric label flipping 60,000 0, 5, 10, 15, 20, 30, 40, 50, 60, 80

Red Stanford Cars
196

image search label 8,144
8,041

0, 5, 10, 15, 20, 30, 40, 50, 60, 80

Blue Stanford Cars symmetric label flipping 8,144 0, 5, 10, 15, 20, 30, 40, 50, 60, 80

3.3. Dataset Overview

In total, we collect about 800,000 annotations over 212,588

images, out of which there are 54,400 images with incorrect

labels on Mini-ImageNet and 12,629 images on Stanford

Cars. The remainder of the images have correct labels. Us-

ing web images with incorrect labels, we replace p% of the

original training images in the two datasets, and enumerate p
in 10 different levels to create the controlled web label noise:

{0%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 80%}.

Similar to synthetic noise, p is made uniform across classes,

e.g. p = 20% means that every class has roughly 20%

incorrect labels. In Appendix C, we show constructing the

dataset only using web images leading to consistent results.

Table 1 summarizes our benchmark. For comparison, we

also include synthetic (symmetric) labels of the same 10

noise levels. We use blue noise to denote the synthetic label

noise and red noise for the web label noise. The sizes of the

red and blue training sets are made similar to better compare

their difference4. Only a subset of web images with incor-

rect labels is used in our dataset. But we release all 212,588

images along with their annotations, which can be down-

loaded at http://www.lujiang.info/cnlw.html un-

der the license of Creative Commons.

For lack of space, we use Fig. 1 in the Appendix to illustrate

noisy images in each dataset. In summary, there are three

clear distinctions between images with the synthetic and

web label noise. Images with label noise from the web

(or red noise) (1) a higher degree of similarity to the true

positive images, (2) exist at the instance-level, and (3) come

from an open vocabulary outside the class vocabulary of

Mini-ImageNet or Stanford Cars.

4. Method

In this section, we introduce a simple method called Men-

torMix to overcome both synthetic and web label noise. As

its name suggests, our idea is inspired by MentorNet (Jiang

et al., 2018) and Mixup (Zhang et al., 2018). The main idea

is to design a new robust loss to overcome noisy labels using

curriculum learning and vicinal risk minimization.

4As existing findings on synthetic noise hold on both the full
(60K) and subset (50K) of Blue Mini-ImageNet, we choose to
report the results on the 60K full set. This results in a slightly larger
Blue Mini-ImageNet but may not affect our main contributions

4.1. Background on MentorNet and Mixup

Consider a classification problem with training set D =
{x1, y1), · · · , (xn, yn)}, where xi denotes the ith training

image and yi ∈ [1,m] is an integer-valued noisy label over

m possible classes and yi is the corresponding one-hot

label. Note that no clean labels are allowed to be used in

training. Let gs(xi;w) denote the prediction of a DNN,

parameterized by w ∈ R
d. MentorNet (Jiang et al., 2018)

minimizes the following objective:

w
∗ = argmin

w∈Rd,v∈[0,1]n
F(v,w)

=
1

n

n∑

i=1

viℓ(gs(xi;w), yi) + θ‖w‖22 +G(v; γ)
(1)

where ℓ(gs(xi;w), yi), or ℓ(xi, yi) for short, is the cross-

entropy loss with the softmax function. θ is the weight

decay parameter on the l2 norm of the model parameters.

For convenience, we make the weight decay regularization,

data augmentation and dropout all subsumed inside gs.

Eq. (1) introduces the latent weight variable v ∈ [0, 1]n

for every training example. The regularization term G de-

termines a curriculum (Jiang et al., 2015; 2014; Fan et al.,

2017) or equivalently a weighting scheme to compute the

latent weight vi to each example. In (Jiang et al., 2018), the

weighting scheme is computed by a neural network called

MentorNet. In training, w and v are alternatively mini-

mized inside a mini-batch, one at a time while the other is

held fixed. Only w is used at test time.

Mixup (Zhang et al., 2018) minimizes the empirical vicinal

risk calculated from:

w
∗ = argmin

w

1

n

n∑

i=1

1

n

n∑

j=1

E
λ
[ℓ(gs(x̃ij ;w), ỹij)] (2)

x̃ and ỹ are computed by the mixup function:

x̃ij = λxi + (1− λ)xj (3)

ỹij = λyi + (1− λ)yj (4)

where λ is drawn from the Beta distribution Beta(α, α) con-

trolled by hyperparameter α. In practice, only the examples

from the same mini-batch are mixed up during training.

http://www.lujiang.info/cnlw.html
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4.2. MentorMix

In the proposed MentorMix, we minimize the empirical

vicinal risk using curriculum learning. For simplicity, the

self-paced regularizer G(v) = −γ‖v‖1 (Kumar et al., 2010;

Jiang et al., 2015) is used and we have:

F(ṽ,w) =
1

n2

n∑

i=1

n∑

j=1

E
λ
[ṽijℓ(x̃ij , ỹij)− γṽij ], (5)

where γ is a hyperparameter. It is easy to derive the optimal

weighting scheme when the network parameter w is fixed:

ṽ∗ij = argmin
ṽ∈[0,1]n×n

Fw(ṽ) = 1(ℓ(x̃ij , ỹij) ≤ γ), (6)

where 1 is the indicator function and Fw denotes the objec-

tive when w is fixed.

Although Eq. (6) gives a closed-form solution for comput-

ing the optimal weight, it is intractable to compute as this

requires enumerating all pairs of training examples. We

therefore resort to importance sampling to find the “impor-

tant” examples. To do so, we define a stratum for each xi

and draw an example from the following distribution:

Pv(vi = 1|xi,yi) =
exp(v∗i /t)∑n

j=1 exp(v
∗
j /t)

, (7)

where t is the temperature in the softmax function and is

fixed to 1 in our experiments. Pv specifies a density function

over individual training examples. In theory, the distribution

is defined over all training examples but, in practice to

enable mini-batch training, we compute the distribution

within each mini-batch (See Algorithm 1). v∗i is the optimal

weight for xi. v
∗
i is calculated from v∗i = argminvi

Fw(v)
in Eq. (1) and can be conveniently obtained by MentorNet.

As the optimal v∗ij can only have binary values according to

Eq. (6), under the importance sampling we rewrite part of

the objective in Eq. (5) as:

∑

(xi,yi)∼D

∑

(xj ,yj)∼D

E
λ
[vijℓ(x̃ij , ỹij)− γvij ]

=
∑

(xi,yi)∼D

∑

(xj ,yj)∼Pv

E
λ
[ℓ(x̃ij , ỹij)]− γ

(8)

where the constant γ will be dropped during training. Ac-

cording to Eq. (6), our goal is to find the mixed-up examples

of smaller loss. For a given example (xi, yi), the loss of

the mixed-up example ℓ(x̃ij , ỹij) tends to be smaller when

ℓ(xj ,yj) is small. Inspired by this idea, we sample xj from

Pv with respect to the weight v∗j that is monotonically de-

creasing with its loss ℓ(xj , yj) . In this way examples of

lower loss are more likely to be selected in the mixup.

Algorithm 1 shows the four key steps to compute the loss

for a mini-batch: weight (Step 2-4), sample (Step 5 and 8),

Algorithm 1 The proposed MentorMix method.

Input :mini-batch Dm; two hyperparameters γp and α
Output : the loss of the mini-batch

1 For every (xi, yi) in Dm compute ℓ(xi, yi)
2 Set ℓp(Dm) to be the γp-th percentile of the loss {ℓ(xi, yi)}.
3 γ ← EMA(ℓp(Dm)) // update the moving average

4 v∗i ← MentorNet(ℓ(xi, yi), γ) // MentorNet weight

5 Compute Pv = softmax(v∗), where v
∗ = [v∗1 , · · · , v

∗
|Dm|]

6 Stop gradient
7 foreach (xi,yi) do
8 Draw a sample (xj ,yj) with replacement from Pv

9 λ← Beta(α, α)
10 λ← v∗i max(λ, 1− λ) + (1− v∗i )min(λ, 1− λ)
11 x̃ij ← λxi + (1− λ)xj

12 ỹij ← λyi + (1− λ)yj

13 Compute ℓi = ℓ(x̃ij , ỹij)
14 Weight ℓi using a separate MentorNet // optional

15 end

16 return (1/|Dm|)
∑|Dm|

i=1
ℓi

mixup (Step 9-12), and weight again (Step 14), where the

weighting is achieved by the MentorNet. Following our pre-

vious work (Jiang et al., 2018), we avoid directly setting γ
and adopt a moving average (in Step 3) to track the exponen-

tial moving average of the γp-th percentile of the mini-batch

loss, in which γp becomes the new hyperparameter. Step 4

computes the weight for individual example using a fixed

MentorNet. The simplified MentorNet is used in our paper

which is equivalent to computing the weight by a threshold-

ing function v∗i = 1(ℓ(xi, yi) ≤ γ). In Step 10, we assign a

bigger (binary) weight between λ and 1− λ to xi unless its

v∗i is small. This trick is to stabilize importance sampling by

encouraging each stratum to receive a bigger weight in the

mixup. It leads to marginal performance gains but makes

the training more robust to the choice of hyperparameters.

In Step 14, the second weighting can be applied optionally

using the weights produced by a separate MentorNet. This

step is optional for low noise levels but is useful for high

noise levels. Our algorithm has the same time and space

complexity as that of the Mixup algorithm.

5. Experiments

This section verifies the proposed method on four datasets

and presents new findings on web label noise. Specifically,

in Section 5.1 we first verify the proposed method on our

dataset and then compare it with the state-of-the-art on two

public benchmarks of synthetic and real-world noisy labels.

In Section 5.2, we empirically examine DNNs trained on

controlled noisy labels under various settings and present

our findings that challenge our previous understandings.

5.1. Method Comparison

Evaluation metrics: Following prior works, the peak accu-

racy is used as the primary evaluation metric that denotes the
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Table 2. Peak accuracy (%) of the best trial of each method averaged across 10 noise levels. – denotes the method failed to train.

Method

Mini-ImageNet Stanford Cars

Fine-tuned Trained from scratch Fine-tuned Trained from scratch

Blue Red Blue Red Blue Red Blue Red

Vanilla 82.3±1.9 81.6±1.9 58.3±10.3 64.9±5.2 70.0±16.8 82.4±6.9 53.8±24.4 77.7±10.4

WeightDecay 81.9±1.8 81.5±1.8 — — 72.2±17.5 84.3±6.6 — —

Dropout 82.8±1.3 81.8±1.8 59.3±9.5 65.7±5.0 71.7±16.9 83.8±6.6 62.8±23.5 84.1±6.7

S-Model 82.3±1.8 82.0±1.9 58.7±10.2 64.6±5.1 69.7±16.8 82.4±7.1 53.9±23.5 77.6±10.2

Bootstrap 83.1±1.6 82.7±1.8 60.1±9.7 65.5±4.9 71.7±16.9 82.8±6.7 55.6±23.9 78.9±9.6

Mixup 81.7±1.8 82.4±1.7 60.7±9.8 66.0±4.9 73.1±16.6 85.0±6.2 64.2±21.6 82.5±8.0

MentorNet 82.9±1.7 82.4±1.7 61.8±10.3 65.1±5.0 75.9±16.8 82.6±6.6 56.8±23.1 78.9±8.9

Our MentorMix 84.2±0.7 83.3±1.9 70.9±3.4 67.0±5.0 78.2±16.2 86.9±5.5 67.7±23.0 83.6±7.5

maximum accuracy on the clean validation set throughout

the training. In addition, the final accuracy is also reported

in the Appendix D i.e. the validation accuracy after training

has converged at the final training step.

Training setting: On our benchmark, all methods are

trained on the noisy training sets of two noise types (blue

and red) under 10 noise levels (from 0% to 80%), and tested

on the same clean validation set. Two training settings are

considered: (i) training from scratch and (ii) fine-tuning

from an ImageNet checkpoint where the checkpoint is pre-

trained on the ImageNet training data. See details in the

Appendix. On our datasets, Inception-ResNet-v2 (Szegedy

et al., 2017) is used as the default backbone for all meth-

ods, where we upsample the images in the Mini-ImageNet

dataset from 84x84 to 299x299 so that we can keep using

the same pretrained ImageNet checkpoint. On the public

benchmarks in Section 5.1.2, we train networks from scratch

using ResNet-32 for CIFAR and Inception-ResNet-v2 for

WebVision.

Baselines and our method: On our dataset, MentorMix is

compared against the following baselines. We extensively

search the hyperparameter for each method on every noise

level. Vanilla is the standard training using l2 weight de-

cay, dropout, and data augmentation. Weight Decay and

Dropout (Srivastava et al., 2014) are classical regularization

methods. We search the hyperparameter for the weight

decay in {e−5, e−4, e−3, e−2} and the dropout ratio in

{0.9, 0.8, 0.7, 0.6, 0.5} as suggested in (Arpit et al., 2017).

Bootstrap (Reed et al., 2014) corrects the loss with the

learned label. The soft version is used and the hyperparam-

eter for the learned label is tuned in {0.05, 0.25, 0.5, 0.7}.

S-model (Goldberger & Ben-Reuven, 2017) is another way

to “correct” the predictions by appending a new layer to

a DNN to learn noise transformation. MentorNet (Jiang

et al., 2018) is an example-weighting method. We employ

the predefined MentorNet and search the hyperparameter p-

percentile in {85%, 75%, 55%, 35%}. Mixup (Zhang et al.,

2018) is a robust learning method that minimizes the em-

pirical vicinal risk. Following the advice in (Zhang et al.,

2018) its hyperparameter α is searched in {1, 2, 4, 8}.

We implement MentorMix in Algorithm 1 in TensorFlow.

We search two hyperparameters α in the γp in the range

α = {0.4, 1, 2} and γp = {90%, 80%, 70%}. The code

will be released to reproduce our results.

5.1.1. BASELINE COMPARISON

We first show the comparison to the baseline methods on our

dataset. For the lack of space, Table 2 shows a high-level

summary of the comparison result, in which each cell shows

a method’s average best peak accuracy (and 95% confidence

interval) across all 10 noise levels. Table 4 - Table 7 in the

Appendix D list detailed results on each noise level.

As shown, the proposed method consistently outperforms

the baseline methods across noise types (red and blue) and

training settings (finetuning and training from scratch). This

is desirable as baseline methods that work well on blue noise

may not show consistent improvement over red noise, or

vice versa. The red noise appears to be less harmful. Yet

it is more difficult to overcome, which suggests the need

for a new benchmark for a more comprehensive evaluation.

Nevertheless, our method yields consistent improvements

on both synthetic and web noisy labels.

(a) Blue Mini-ImageNet (b) Red Mini-ImageNet

Figure 1. Comparison of training and validation accuracy during

training. The dataset is Mimi-ImageNet at the 50% noise level.

The primary reason for our superior performance is that

MentorMix can leverage MentorNet and Mixup in a com-

plementary way. Technically, it uses MentorNet weight

to identify examples with “cleaner” labels and encourages

them to be used in the mixup operation. (Jiang et al., 2018)
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showed that MentorNet optimizes an underlying robust loss

in empirical risk minimization. From this perspective, our

MentorMix introduces a new robust loss to minimize the

vicinal risk which turns out to be more resilient to noisy

training labels. For example, Fig. 1 compares Vanilla and

MentorMix on the blue and red Mini-ImageNet at 50%

noise level. It shows that MentorMix’s loss is more robust

to noisy labels, and MentorMix improves the peak accuracy

of Vanilla by 16.3% on blue noise and 2.4% on red noise.

As the noise levels span across a wide range, we find the

hyperparameters of robust learning methods are important.

For the same method, a careful hyperparameter search could

well be the difference between good and bad performance.

As shown in the Appendix, we find that our method is

relatively less sensitive to the choice of hyperparameters.

5.1.2. COMPARISON TO THE STATE-OF-THE-ART

In this subsection, we compare MentorMix on two pub-

lic benchmarks of synthetic and real-world noisy labels.

Table 3 compares with the state-of-the-art on the CIFAR

dataset with symmetric label noise, where the top shows

the classification accuracy on the clean validation set of

CIFAR-100 and the bottom is for CIFAR-10. As all meth-

ods are trained using networks of similar capacity (ours is

ResNet-32), we cite the numbers reported in their papers

except for MentorNet and Mixup. Our method achieves the

best accuracy across all noise levels. The results validate

that our method is effective for synthetic noisy labels.

Table 3. Comparison with the state-of-the-art in terms of the vali-

dation accuracy on CIFAR-100 (top) and CIFAR-10 (bottom).

Data Method
Noise level (%)

20 40 60 80

C
IF

A
R

1
0

0 Arazo et al. (2019) 73.7 70.1 59.5 39.5
Zhang & Sabuncu (2018) 67.6 62.6 54.0 29.6

MentorNet (2018) 73.5 68.5 61.2 35.5
Mixup (2018) 73.9 66.8 58.8 40.1

Huang et al. (2019) 74.1 69.2 39.4 -
Ours (MentorMix) 78.6 71.3 64.6 41.2

C
IF

A
R

1
0

Arazo et al. (2019) 94.0 92.8 90.3 74.1
Zhang & Sabuncu (2018) 89.7 87.6 82.7 67.9

Lee et al. (2019) 87.1 81.8 75.4 -
Chen et al. (2019) 89.7 - - 52.3

Huang et al. (2019) 92.6 90.3 43.4 -
MentorNet (2018) 92.0 91.2 74.2 60.0

Mixup (2018) 94.0 91.5 86.8 76.9
Ours (MentorMix)† 95.6 94.2 91.3 81.0

We then compare with the state-of-the-art on the challenging

benchmark WebVision 1.0 (Li et al., 2017a) that contains

2.4 million training images of noisy labels from the web.

It uses the same 1,000 classes in the ImageNet ILSVRC12

challenge and thus is evaluated on the same validation set.

Following prior studies, we train our method on both the

full training set (2.4M images on 1K classes) and the mini

subset (61K images on 50 classes), and test it on two clean

validation sets from ImageNet ILSVRC12 and WebVision.

Table 4 shows the comparison results, where the method

marked by † uses extra clean labels during training. As

shown, the proposed MentorMix improves the prior state-of-

the-art by about 3% in the top-1 accuracy on the ILSVRC12

validation set without using any extra labels. It is worth not-

ing that 3% is a significant improvement on the ILSVRC12

validation (Deng et al., 2009). To the best of our knowl-

edge, it achieves the best-published result on the WebVision

1.0 benchmark under the same training setting. The results

show that our method is effective for real-world noisy la-

bels. We also apply our method on the Clothing-1M dataset

where we train only on the 1M noisy training examples. Our

model gets 74.3% accuracy which is competitive to recent

published works.

Table 4. Comparison with the state-of-the-art on the clean vali-

dation set of ILSVRC12 and WebVision. The number outside

(inside) the parentheses denotes the top-1 (top-5) classification

accuracy(%). † marks the method trained using extra clean labels.

Data Method ILSVRC12 WebVision

Full Lee et al. (2018)† 61.0(82.0) 69.1(86.7)
Full Vanilla 61.7(82.4) 70.9(88.0)
Full MentorNet (2018)† 64.2(84.8) 72.6(88.9)
Full Guo et al. (2018)† 64.8(84.9) 72.1(89.2)
Full Saxena et al. (2019) — 67.5(—–)
Full Ours (MentorMix) 67.5(87.2) 74.3(90.5)

Mini MentorNet (2018) 63.8(85.8) —
Mini Chen et al. (2019) 61.6(85.0) 65.2(85.3)
Mini Ours (MentorMix) 72.9(91.1) 76.0(90.2)

5.2. Understanding DNNs trained on noisy labels

In this subsection, we conduct a large study into understand-

ing DNNs trained on noisy labels across noise levels, noise

types, training settings, and network architectures. We focus

on three important findings (Zhang et al., 2017; Arpit et al.,

2017; Kornblith et al., 2019). These works examine vanilla

DNN training either on controlled synthetic labels (the for-

mer two) or on clean training labels (the last one). Our goal

is to revisit them on our benchmark in a controlled setting

where the noise in training sets varies from completely clean

(0%) to the level where 80% of training labels are incorrect.

As in these works, we learn DNNs using vanilla training

which allows us to compare their findings. Training DNNs

using robust learning methods would probably lead to dif-

ferent findings but that would make the findings undesirably

depend on the specific method being used. Regarding the

network architectures, by default we use Inception-ResNet-

v2 and also compare six other architectures: EfficientNet-

B5 (Tan & Le, 2019), MobileNet-V2 (Sandler et al., 2018),

ResNet-50 and ResNet-101 (He et al., 2016), Inception-

V2 (Ioffe & Szegedy, 2015), and Inception-V3 (Szegedy

et al., 2016). We select the above architectures to be repre-

sentative of diverse capacities, the accuracy of which on the
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Colored belt plots the 

95% confidence interval 

across 10 noise levels 

Solid line denotes 40% 

noise level

Peak 

accuracy
Final

accuracy

(b) Mini-ImageNet (finetuning)(a) Mini-ImageNet (trained from scratch)

(c) Stanford Cars (trained from scratch) (d) Stanford Cars (finetuning)

Dashed line denotes 

clean training data

Figure 2. DNNs trained on synthetic (blue) and web label noise (red) on Mini-ImageNet (top) and Stanford Cars (bottom).

ILSVRC 2012 validation covers a wide range from 71.6%

to 83.6%. See more details in the Appendix B.

DNNs generalize much better on red label noise. Zhang

et al. (2017) found that the generalization performance of

DNNs drops sharply as the level of noisy training labels

increases. This pivotal finding that DNNs generalize poorly

on noisy training labels has influenced many works. We

first confirm Zhang et al. (2017)’s finding on blue noise

in Fig 2, where the training and validation accuracies are

shown along with the training steps. The dashed and solid

curves represent the validation accuracies for 0% (or clean)

and 40% noise levels, respectively, and the color belt plots

the 95% confidence interval of the 10 noise levels.

After the training converges in Fig 2, the difference between

the dashed and solid curves (in blue) indicates a palpable

performance degradation between the clean (0%) and noisy

(40%) labels. This can also be seen from the greater width

of the blue belt which denotes the accuracy’s confidence

interval over all 10 noise levels. This confirms Zhang et al.

(2017)’s finding on synthetic noisy labels. However, the

difference is much smaller on the red curves, suggesting

DNNs generalize much better on the red noise. This pattern

is consistent across our two datasets using both fine-tuning

and training from scratch. We hypothesize that DNNs are

more robust to web labels because they are more relevant

(visually or semantically) to the clean training images. See

Fig. 1 in the Appendix.

Figure 3. Performance drop from the peak accuracy at different

noise levels. Colors are used to differentiate noise types.

DNNs may not learn patterns first on red label noise.

Arpit et al. (2017) found that DNNs learn patterns first,

revealing an interesting property that DNNs are able to

automatically learn generalizable “patterns” in the early

training stage before memorizing all noisy training labels.

This can be manifested by the gap between the peak and

final accuracy, as shown in Fig. 2(a). A larger drop suggests

a better pattern is found during the early training stage. For

better visualization, Fig. 3 computes the relative difference,

namely the drop, between the peak and final accuracy across

noise levels. As shown, the blue curves show a significant

drop as the noise level grows. This is consistent with Arpit

et al. (2017)’s finding on synthetic label noise.

Interestingly, the drop on the red noise is considerably

smaller and even approaches zero on the Stanford Cars

dataset. This suggests DNNs may not learn patterns first on

red label noise at least for the fine-grained classification task.

Our hypothesis is that images of real-world label noise are

more complicated than those of the synthetic noise because

they are sampled non-uniformly from an infinite number of

classes. Therefore, it is much more difficult for DNNs to

capture meaningful patterns automatically.

ImageNet architectures generalize on noisy labels when

the networks are fine-tuned. Kornblith et al. (2019) found

that fine-tuning better architectures trained on ImageNet

tend to perform better on downstream tasks of clean training

labels. It is important to verify whether this holds on noisy

training labels because if so, one can conveniently transfer

better architectures to better overcome the noisy labels.

Following (Kornblith et al., 2019), in Fig. 4, we compare

the fine-tuning performance using ImageNet architectures,

where the x-axis is the accuracy of the pretrained architec-

tures on ImageNet, and the y-axis denotes the peak accuracy

on our datasets. The bar plots the 95% confidence interval

across 10 noise levels, where the center dot marks the mean.

As it shows, there is a reasonable correlation between the Im-

ageNet accuracy and the validation accuracy on both red and

blue noisy labels. The Pearson correlation for the red noise
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MobieNet-V2

Inception-ResNet-v2

EfficientNet-b5

Inception-v2

ResNet-50

ResNet-101

Inception-v3

(a) Mini-ImageNet (r = 0.91)

MobieNet-V2

Inception-ResNet-v2

EfficientNet-b5

Inception-v2

ResNet-50

ResNet-101

Inception-v3

(b) Stanford Cars (r = 0.88)
Figure 4. Fine-tuning seven ImageNet architectures on the red and

blue datasets. The number in parentheses is the Pearson correlation

between the architecture’s ImageNet accuracy and the fine-tuning

accuracy on our dataset of red noise.

is 0.91 on Mini-ImageNet and 0.88 on Stanford Cars. This

indicates a better-pretrained architecture is likely to perform

better even when it is fine-tuned on noisy training labels.

We do not find such correlation when these architectures are

trained from scratch. These results extend Kornblith et al.

(2019)’s finding to noisy training data, and suggest when

possible one may use more advanced pretrained architec-

tures to overcome noisy training labels.

6. Conclusions

In this paper, we study web label noise in a controlled setting.

We make three contributions. First, we establish the first

benchmark of controlled web noise obtained from image

search. Second, a simple but effective method is proposed

to overcome both synthetic and real-world noisy labels. Our

method achieves state-of-the-art results on multiple datasets.

Finally, we conduct the largest study by far into understand-

ing deep learning on noisy data across a variety of settings.

Our studies reveal several new findings: (1) DNNs general-

ize much better on web label noise; (2) DNNs may not learn

patterns first on web label noise in which early stopping may

not be very effective; (3) when networks are fine-tuned, Im-

ageNet architectures generalize well on both symmetric and

web label noise; (4) methods that perform well on synthetic

noise may not work as well on the real-world noisy labels

from the web; (5) the proposed method yields consistent

improvements on both synthetic and real-world noisy labels

from the web.

Based on our observations, we arrive at the following rec-

ommendations for training deep neural networks on noisy

training data.

• A simple way to deal with noisy labels is to fine-tune

a model that is pre-trained on clean datasets, like Ima-

geNet. The better the pre-trained model is, the better it

may generalize on downstream noisy training tasks.

• Early stopping may not be effective on the label noise

from the web, especially on the fine-grained classifica-

tion task.

• Methods that perform well on synthetic noise may not

work as well on the real-world noisy labels from the

web. The proposed MentorMix can better overcome

both synthetic and real-world web noisy labels.

• The real-world label noise from the web appears to

be less harmful, yet it is more difficult for our current

robust learning methods to tackle. This encourages

more future research to be carried out on controlled

label noise from the web.
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