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Abstract. We introduce a new approach to the maximum flow problem. This approach is based on
assigning arc lengths based on the residual flow value and the residual arc capacities. Our approach
leads to an O(min(n2/3, m1/ 2)m log(n2/m) log U) time bound for a network with n vertices, m arcs,
and integral arc capacities in the range [1, . . . , U]. This is a fundamental improvement over the
previous time bounds. We also improve bounds for the Gomory–Hu tree problem, the parametric
flow problem, and the approximate s-t cut problem.
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1. Introduction

The maximum flow problem and its dual, the minimum cut problem, are classical
combinatorial problems with a wide variety of scientific and engineering applica-
tions. The maximum flow problem and related flow and cut problems have been
studied intensively for over three decades.

The network simplex method of Dantzig [1951] for the transportation problem
solves the maximum flow problem as a natural special case. Soon thereafter,
Ford and Fulkerson [1956] developed the augmenting path method for the
maximum flow problem. A natural variant of this method, the shortest augment-
ing path algorithm, was shown to be polynomial by Dinitz [1970] and Edmonds
and Karp [1972]. Capacity scaling, developed by Edmonds and Karp [1972] and
Dinitz [1973], also gives polynomial algorithms for the problem. (See also Gabow
[1985].) Classical books [Adel’son-Vel’ski et al. 1975; Ford and Fulkerson 1962]
describe earlier work in detail.

Most efficient algorithms for the maximum flow problem are based on the
blocking flow and the push-relabel methods. The first blocking flow algorithm
was developed by Dinitz [1970] in the framework of the augmenting path
approach. Karzanov [1974] was the first to state the finding of a blocking flow as
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a separate problem and to suggest the use of preflows to solve it. The
push-relabel method, implicit in Goldberg’s algorithm [1985], was fully devel-
oped by Goldberg and Tarjan [1988].

The shortest augmenting path algorithm, the blocking flow method, and the
push-relabel method use a concept of distance. To talk about distances, one has
to define arc lengths. All these approaches use the unit length function: the
length of every residual arc is defined to be one. Edmonds and Karp [1972]
discussed the use of general length functions in the context of maximum flows.
Wallacher and Zimmermann [1991] and Wallacher [1991] study length functions
in the context of the minimum-cost flow problem. However, prior to our work,
the bounds obtained using general length functions were no better than the
bounds using the unit length function.

In this paper, we extend the blocking flow method to more general length
functions and obtain substationally better time bounds. We study a binary length
function that assigns zero length to large capacity arcs and unit length to small
capacity arcs. A novel feature of our length function is that it is adaptive: we
define the length threshold relative to an estimate on the residual flow value.
Adaptivity is crucial for the time bound improvements.

Table I gives the history of the maximum flow time bounds. We denote the
number of vertices in the input network by n and the number of arcs by m. For
polynomial algorithms, we assume that arc capacities are integers in the range
[1, . . . , U]. Strongly polynomial algorithms do not need this assumption. We
use the similarity assumption of Gabow [1985], log U 5 O(log n), to compare
polynomial and strongly polynomial algorithms. By a ballpark bound we mean an
O* bound under the similarity assumption.1 For a randomized algorithm running
in O(t) expected time, we denote its running time by E(t).

The V(nm) bound is a natural barrier for maximum flow algorithms. In a path
decomposition of a flow, the total path length is Q(nm) in the worst case. This
implies an V(nm) lower bound on algorithms which output explicit flow
decomposition and on algorithms which augment flow one path at a time and, for
each augmenting path, one arc at a time. This lower bound does not apply to
algorithms that work with preflows or use data structures like dynamic trees
[Sleator and Tarjan 1983] to manipulate flows. However, in spite of numerous
attempts, no previous algorithm achieves this lower bound in general. For dense
graphs, the O(n3/log n) algorithm of Cheriyan et al. [1990] beats this lower
bound, but only by using word operations on (log n)-bit integers. The ballpark
bound of nm was achieved by Dinitz [1973].

In the unit capacity case, the total decomposition path length is O(m) and
o(nm) bounds have been known for a long time: Karzanov [1973] and indepen-
dently Even and Tarjan [1975] have shown that Dinitz’s algorithm [Dinic 1970]
runs in O(min(n2/3, m1/ 2)m) time on unit capacity networks with no parallel
arcs. (We define L 5 min(n2/3, m1/ 2); this term will appear quite often.) This
bound is based on the O(L) bound on the number of blocking flow computations
of Dinitz’s algorithm on such networks. This result suggests a possibility of an
o(nm) bound for general networks. However, for over two decades, no algorithm
improved upon the nm ballpark bound.

1 O*( f(n)) 5 O((log n)O(1)f(n)).
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We achieve a Lm ballpark bound for general networks. Each iteration of our
algorithm is dominated by a blocking flow computation on an acyclic graph.
Using the blocking flow algorithm of Goldberg and Tarjan [1988], we get an
O(Lm log(n2/m)log U) bound. This result breaks the nm barrier by a polyno-

TABLE I. HISTORY OF MAXIMUM FLOW BOUNDS.

# Year Discoverer(s)
Bounds

Reference
Exact Ballpark

1 1951 Dantzig O(n2mU) n2mU [Dantzig 1951]

2 1955 Ford &
Fulkerson

O(nmU) nmU [Ford and Fulkerson
1956]

3 1970 Dinitz O(nm2) nm2 [Dinitz 1970]
Edmonds & Karp [Edmonds and Karp

1972]

4 1970 Dinitz O(n2m) n2m [Dinitz 1970]

5 1972 Edmonds & Karp O(m2 log U) m2 [Edmonds and Karp
1972]

Dinitz [Dinitz 1973]

6 1973 Dinitz O(nm log U) nm [Dinitz 1973]
Gabow [Gabow 1985]

7 1974 Karzanov O(n3) [Karzanov 1974]

8 1977 Cherkassky O(n2=m) [Cherkassky 1977]

9 1980 Galil & Naamad O(nm log2n) [Galil and Naamad
1980]

10 1983 Sleator & Tarjan O(nm log n) [Sleator and Tarjan
1983]

11 1986 Goldberg &
Tarjan

O(nm log(n2/m)) [Goldberg and Tarjan
1988]

12 1987 Ahuja & Orlin O(nm 1 n2 log U) [Ahuja and Orlin 1989]

13 1987 Ahuja et al. O(nm log(n=logU/(m 1 2)) [Ahuja et al. 1989]

14 1989 Cheriyan &
Hagerup

E(nm 1 n2 log2 n) [Cheriyan and Hagerup
1995]

15 1990 Cheriyan et al. O(n3/log n) [Cheriyan et al. 1996]

16 1990 Alon O(nm 1 n8/3 log n) [Alon 1990]

17 1992 King et al. O(nm 1 n21e) [King et al. 1992]

18 1993 Phillips &
Westbrook

O(nm(logm/n n 1 log21en)) [Phillips and
Westbrook 1993]

19 1994 King et al. O(nm logm/(n log n)n) [King et al. 1994]

20 1998 Goldberg & Rao O(m3/2 log(n2/m)log U) m3/2 this paper
O(n2/3m log(n2/m)log U) n2/3m this paper

NOTE: We list only the bounds which in some way improve the previous bounds. We state the
original publication date in a publicly available conference proceedings, technical report, or journal,
but cite the most complete publications. In the case of independent discoveries, we give the date of
the first one.
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mial factor. Consider sparse networks with m 5 O(n), which come up in
practical applications, (e.g., [Middleton 1995; Ogielski 1986; Roy and Cox 1998]).
On these networks, our bound is better than the best previous bounds by a factor
of V(=n/log U).

In addition to direct applications, maximum flow algorithms are used as
subroutines in other algorithms. Our results imply better bounds for those
algorithms dominated by maximum flow computations. For example, a Go-
mory–Hu tree [1961] can be constructed in n 2 1 maximum flow computations
[Gomory and Hu 1961; Gusfield 1990], so we improve the corresponding time
bound from the ballpark of n2m to Lnm. For parametric flows, the combination
of our results and those of Gallo et al. [1989] gives an O(Lm log(n2/m)log2 U)
time bound.

Our bounds can be improved if an approximate solution is sufficient. We can
find a flow and a cut, such that the cut capacity is within a factor of (1 1 e) of the
flow value, in O(Lm log(n2/m)log(m/e)) time. Note that this time bound does
not depend on U.

In the special case of undirected graphs, Benczúr and Karger [1996] show that
a cut with capacity of at most (1 1 e) of optimal can be constructed in E*(n2/e2)
time using nonuniform sampling. The combination of our results and their
nonuniform sampling technique gives E*(min(log U, log(1/e))n5/3/e2 1 m) and
E*(min(log U, log(1/e))n3/ 2/e3 1 m) bounds. For example, if e is a constant, we
get an E*(n3/ 2 1 m) time bound.

This paper is organized as follows: We start by giving basic definitions and
background results in Section 2. In Section 3, we introduce length functions for
maximum flow computations and prove fundamental theorems about them. We
study a binary length function and introduce the binary blocking flow algorithm
in Section 4. Section 5 gives technical details of the algorithm. We analyze the
algorithm in Section 6. In Section 7, we study approximation algorithms for
finding maximum flows and minimum cuts. Section 8 discusses more general
length functions. Section 9 contains concluding remarks.

2. Background

A flow network consists of a directed graph G 5 (V, E), a source vertex s, a sink
vertex t, and an integral capacity function u: E 3 {1, . . . , U}.2 We refer to
u(a) as the capacity of the arc a.

We assume the adjacency list representation of the input graph. We also
assume that each arc has a pointer to the reverse arc. We refer to elements of V
in the input graph as vertices. By nodes we mean sets of vertices that arise from
graph contraction operations. Note that a graph can have vertices and nodes. We
use the term, node, unless we know that the element corresponds to a single
vertex of the input graph.

We denote the set of real numbers by R and the set of nonnegative real
numbers by R1.

A flow in a flow network is a function f: E 3 {1, . . . , U} where for each arc,
the capacity constraint f(a) # u(a) holds and for each vertex j [ V 2 {s, t}, the

2 Unless mentioned otherwise, we work with integral capacities and flows.
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conservation constraint (( j,k)f( j, k) 2 ((i, j)f(i, j) 5 0 holds. The value of the
flow is uf u 5 (( j,t)f( j, t). We refer to f(a) as the flow on arc a.

Without loss of generality, we assume that the graph has no parallel arcs. This
allows us to uniquely specify an arc by its endpoints. If an arc (i, j) is in the
graph but the reverse arc ( j, i) is not, we add ( j, i) to the graph and define
u( j, i) 5 0. For an arc a, aR denotes the reverse arc. Without loss of generality,
we assume that either f(a) 5 0 or f(aR) 5 0.

The residual capacity of an arc (i, j), uf(i, j), with respect to flow f is defined
to be u(i, j) 2 f(i, j) 1 f( j, i). We say that (i, j) is a residual arc if it has strictly
positive residual capacity, and denote the set of residual arcs by Ef. The residual
graph is the graph (V, Ef). A residual flow is the difference between an optimal
flow f * and the current flow f: if f *(a) $ f(a), then the residual flow on a is
f *(a) 2 f(a), and otherwise the residual flow on aR is f(a) 2 f *(a).

A blocking flow in a directed flow network is a flow f where every directed s-t
path contains an arc with zero residual capacity. The problem of finding blocking
flows in layered networks has been introduced by Dinitz [1970] in the context of
maximum flow algorithms. For more general acyclic networks, the problem was
studied by Goldberg and Tarjan [1990] in the context of minimum cost flows.
Many, but not all, algorithms for layered networks work on acyclic networks and
achieve the same time bounds. Our maximum flow algorithms need a subroutine
for finding blocking flows in acyclic networks. The fastest known algorithm for
the problem runs in O(m log(n2/m)) time [Goldberg and Tarjan 1995].

3. Length Functions

By a length function, we mean a function ,: A 3 R1. We say that a function
d: V 3 R1 is a distance labeling with respect to , if d(t) 5 0 and for every arc
(i, j) [ A, the reduced cost of (i, j), defined by ,d(i, j) 5 ,(i, j) 1 d( j) 2
d(i), is nonnegative. Since d(t) 5 0 and a sum of reduced costs of arcs on a path
telescopes, for a path G from i to t we have ,(G) 5 d(i) 1 ,d(G) $ d(i). Given
a length function , on arcs and a vertex i, we define d,(i) to be the distance with
respect to , from i to t in G. Note that d, is a distance labeling. In fact, it is the
“biggest” distance labeling: for any distance labeling d, d # d,.

A length function gives an upper bound on the residual flow value. A residual
arc a has “width” uf(a), length ,(a), and volume volf,,(a) 5 uf(a),(a) if a [
Ef and 0, otherwise. The total volume of the network is defined by Volf,, 5
(auf(a),(a). Since each unit of residual flow takes at least d(s) units of volume,
we have the following result:

LEMMA 3.1. Given a flow f, a length function ,, and a distance labeling d such
that d(s) . 0, the residual flow value is at most Volf,,/d(s).

Note that d,(s) yields the best upper bound in this context.
Given a flow f, a length function ,, and a distance labeling d, a residual arc

(i, j) is admissible if d(i) . d( j) or d(i) 5 d( j) and ,(i, j) 5 0.3 We denote
the set of all admissible arcs by A( f, ,, d) and the induced admissible graph by
(V, A( f, ,, d)).

3 For the binary length function, these conditions are equivalent to d(i) 5 d( j) 1 ,(i, j).
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By allowing our length function to take on zero values on large capacity arcs,
we keep Volf,, small and get better bounds on the residual flow value than one
gets using the unit length function. Zero length arcs, however, cause several
technical problems which we need to overcome.

4. Binary Blocking Flow Algorithm

In this section, we introduce the binary blocking flow algorithm based on a binary
length function. This length function is zero on arcs with large residual capacity
and one on arcs with small residual capacity. The notions of small and large
depend on the current residual flow value. We maintain an upper bound F on the
residual flow value4 and update F every time our value estimate improves by a
factor of two (one can use a different constant factor here). We use
((s,w) u(s, w) # nU as the initial estimate of F. Since the capacities and flows
are integral, as soon as F becomes less than one the algorithm terminates. A
phase is the computation done by the algorithm between two consecutive updates
of F. This implies an O(log(nU)) bound on the number of phases. A phase
consists of update steps.

The current value of F determines the value of the parameter D. Intuitively, D
is the amount of flow we are trying to get to the sink in one update step of the
algorithm. We maintain the following property:

D-invariant. An update step changes flow through every vertex by at most D.

The binary length function for the phase is based on the following definition:

,~a! 5 H 0 if uf~a! $ 3D

1 otherwise.
(1)

Length of some arcs, however, is modified so that the s to t distance increases
after an augmentation of a blocking flow. We say that an arc (i, j) is special if
2D # uf(i, j) , 3D, d(i) 5 d( j), and uf( j, i) $ 3D. We define a new length
function #, that is equal to zero on special arcs and equal to , on all other arcs.
Note that this does not change the distances: d, 5 d #,.

At the beginning of each update step, we compute d, and #,. Note that the
admissible graph can have cycles of zero-length arcs. We deal with this problem
by contracting strongly connected components of the graph induced by zero-
length arcs. If we do not change flow through any contracted vertex by more than
D, a new flow in the contracted graph corresponds to a feasible flow in the
original graph.

We use an algorithm for acyclic graphs which has the following property: it
either computes a blocking flow or computes a flow of value D.5 Since the
contracted admissible graph is acyclic, this property implies the D-invariant. In
Section 5, we show how to extend flow found in the contracted graph to the
original graph.

Analysis of the blocking flow method is based on the fact that the source-to-
sink distance increases at every iteration. For the binary blocking flow algorithm,

4 If we know the residual flow value, we can use it instead of an upper bound. In this case, the
algorithm becomes simpler.
5 Later we show that any blocking flow algorithm for acyclic graphs can be used.
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we prove a generalization of this result. Let f and , be the flow and the length
function immediately before an augmentation of f by a flow in A( f, ,, d,) and
let f9 and ,9 be the flow and the length function immediately after. Note that , is
modified on the special arcs and ,9 is not. Then the following lemma holds.

LEMMA 4.1. d, is a distance labeling with respect to ,9.

PROOF. We need to show that for any arc (i, j), d,( j) 1 ,9(i, j) $ d,(i).
We know d,( j) 1 ,(i, j) $ d,(i), and ,9(i, j) , ,(i, j) only if (i, j) is not
admissible for ,. In this case, d,( j) $ d,(i), thus d,( j) 1 ,9(i, j) $ d,(i). e

COROLLARY 4.2. d, # d,9.

Our handling of the special arcs ensures the following key result.

THEOREM 4.3. Suppose f9 2 f is a blocking flow in A( f, ,, d,). Then d,(s) ,
d,9(s).

PROOF. By Lemma 4.1, d, is a distance labeling with respect to ,9. Thus, the
reduced costs c(i, j) 5 d,( j) 1 ,9(i, j) 2 d,(i) are nonnegative for all (i, j) [
Ef. Let G be a path from s to t in Gf9. (If there is no such path, the lemma is
trivial.) Since ,9(G) 5 d,(s) 1 c(G), it is enough to show that at least one arc
(i, j) on G has c(i, j) . 0.

By the definitions of f9 and blocking flow, G must contain an arc (i, j) such
that (i, j) [y A( f, ,, d,). We claim that c(i, j) . 0. Since (i, j) [y A( f, ,, d,)
and (i, j) [ Ef9, d,(i) # d,( j). Thus, if c(i, j) 5 0, then d,(i) 5 d,( j) and
,9(i, j) 5 0. By the fact that (i, j) [y A( f, ,, d,), ,(i, j) . 0 5 ,9(i, j). This
can only happen if ( j, i) [ A( f, ,, d,) and ,( j, i) 5 0. But then (i, j) must be
a special arc by the D-invariant, contradicting the choice of (i, j). e

Finally, we need to describe how the algorithm updates F. This can be done in
several ways. For example, one can use Lemma 3.1 and, when Volf,,/(d,(s) #
F/ 2, terminate the phase and set F to Volf,,/d,(s). We use a slightly different
approach. We maintain a current cut (S, T) such that uf(S, T) 5 F. When we
find a cut (S9, T9) such that uf(S9, T9) # F/ 2, we stop the phase, and set (S, T)
to (S9, T9) and F to uf(S9, T9).

Maintaining the current cut has its advantages; in particular, it allows us to
modify the algorithm to find approximately maximum flows. The resulting
algorithm maintains a primal solution (flow) and a dual solution (cut), and a
phase reduces the gap between the values of the two solutions.

Initially, ({s}, V 2 {s}) is the current cut. To update the cut we need the
following definitions. For k 5 1, . . . , d,(s), let Sk 5 {v [ V: d(v) $ k} and
let Tk 5 V 2 Sk. Note that for k 5 1, . . . , d,(s), (Sk, Tk) is an s-t cut. We
call these cuts canonical. We can compute the capacity of every canonical cut
in O(m) time (see Section 5). Let (S, T) be a canonical cut with the smallest
residual capacity. At the beginning of each update step, the algorithm examines
these cuts and terminates the phase if uf(S, T) # F/ 2.

Next we give a detailed description of the main loop of a phase. The goal of a
phase is to decrease F by at least a factor of two. At the beginning of every
iteration of a phase, we have , and d,. An iteration of a phase works as follows.

(1) Compute (S, T). If uf(S, T) # F/ 2, terminate the phase, update F and the
current cut.
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(2) Compute #,.
(3) Contract strongly connected components of A( f, #,, d,# ) induced by zero

length arcs.
(4) In the resulting graph, find a blocking flow or a flow of value D.
(5) Augment the current flow by the flow found in the previous step and extend

the resulting flow to the input graph.
(6) Compute , and d,.

Correctness of this implementation is immediate.

5. Bits and Pieces

In this section, we show how to use any blocking flow algorithm for acyclic graphs
in step (4) of our algorithm, and describe the details of graph contraction,
reconstructing flow in the original graph, computing d,, and computing (S, T).

We can use any blocking flow algorithm for acyclic graphs as follows. Run the
blocking flow algorithm to the end and let X be the value of the resulting flow. If
X . D , return extra flow to the source as follows. Place X 2 D units of excess at
the sink. Process vertices in a reverse topological order; for the current vertex,
reduce flow on the incoming arcs to eliminate its excess. This postprocessing
takes O(m) time.

We need to contract the strongly connected components at the beginning of a
phase, and undo the contractions at the end of the phase. Each vertex partici-
pates in at most one contract operation before these operations are undone. This
allows the use of simple data structures.

We represent a set Sr of contracted vertices by creating a representative node r
that points to a linked list of the vertices in Sr. Each vertex in Sr points to r.
Initially, all vertices are marked as uncontracted. To contract a set S of vertices,
we create a node r and form a linked list of vertices in the set. The node r points
to the linked list, and each vertex in the list points to r. The total contraction
work during a phase is O(n). It is easy to see that this representation of the
contracted graph allows us to work with the contracted graph with a constant
factor overhead compared to the adjacency list implementation. To undo the
contraction operations, we mark each vertex as uncontracted.

With our representation of the contracted graph, the blocking flow computa-
tion on this graph changes flow on some arcs in the original graph. The flow
conservation constraints hold at the nodes of the contracted graph but not at the
vertices of the original graph. In other words, we need to route flow inside the
strongly connected components. We compute for each vertex in the original
graph its flow balance (i.e., the sum of the flow entering a vertex minus the sum
of the flow leaving the vertex.) By the D-invariant, the absolute values of the total
positive and total negative balance for a component are at most D each.

Consider a component not containing the source or the sink. The sum of the
balances over the vertices in a single strongly connected component not contain-
ing the source and sink is zero since this component corresponds to a node in the
blocking flow computation. We choose an arbitrary vertex in each strongly
connected component as its root. Then we form an in-tree and an out-tree of this
component. We route all of the positive balances to the root using the in-tree,
and we route the resulting flow excess from the root to the negative balances
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using the out-tree. The resulting flow does not violate any arc capacity since each
arc in either tree has residual capacity of at least 2D and at most D flow is routed
to and from the root using such an arc.

Similar procedure applies to the source (sink) component, except the negative
(positive) balance is less than the positive (negative) balance and we choose the
source (sink) as the root of the trees.

Remark. The above procedure requires strongly connected component arc
capacities to be at least 2D to route the total of D flow through. Since we also
need a slack of D for the special arcs, we used 3D in (1). If we use the wheels
within wheels data structure of Knuth [1974] and the disjoint union data
structure [Tarjan 1975], we can route D units of flow through strongly connected
graphs with arc capacities of D or more. In a graph with n vertices and m arcs,
this takes O(ma(m, n)) time.6 This is more natural and allows the use of 2D
instead of 3D in (1), but the resulting algorithm for routing flow through the
components is more complicated.

Since the arc lengths are 0 and 1, we can compute d, in linear time, for
example, using Dial’s algorithm [Dial 1969].

We compute uf (Sk, Tk) for k 5 1, . . . , d,(s) as follows. For every k, we
initialize uf (Sk, Tk) to zero. Then, we examine all arcs (i, j). If d(i) . d( j), we
increase uf (Si, Ti) by uf (i, j). This procedure takes O(m) time.

6. Time Bounds

In this section, we derive bounds on the binary blocking flow algorithms.
Consider any 0 –1 length function. Let M be the maximum residual capacity of a
length one arc and let (S, T) be as defined in the previous section. We have the
following variant of Lemma 3.1.

LEMMA 6.1. For a 0–1 length function d, on the residual graph,

uf~S, T! #
m

d,~s!
M .

PROOF. Since , is a 0 –1 function, each arc crosses at most one of the
canonical cuts and for every arc a crossing such a cut, ,(a) 5 1. The observation
that the total capacity of length one arcs is at most mM completes the proof. e

For dense graphs, the following lemma gives better bounds.

LEMMA 6.2. For a 0 –1 length function d, on the residual graph,

uf ~S, T! # S 2n

d,~s!
D 2

M .

PROOF. Let Vk be the set of vertices at distance k from t. Since (k50
d,(s) uVku 5

n, there are at most d,(s)/ 2 values of k where uVku . 2n/d,(s) vertices. Thus, at
least d,(s)/ 2 1 1 of the d,(s) 1 1 values of k have uVku # 2n/d,(s). By the
pigeonhole principle there is a j such that uVju # 2n/d,(s) and uVj11u #

6 a is the inverse Ackerman’s function.
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2n/d,(s). Since all arcs from Vj11 to Vj have length one, uf(Sj, Tj) # (2n/d(s))2

M. e

To get the desired bounds, we set D 5 min(F/m1/ 2, F/n2/3).

LEMMA 6.3. For the binary blocking flow algorithm,

—for D 5 F/m1/ 2, a phase terminates in O(=m) update steps;

—for D 5 F/n2/3, a phase terminates in O(n2/3) update steps.

PROOF. In the first case, the number of update steps which increase uf u by D
or more is O(m1/ 2) since the residual flow is O(Dm1/ 2). Other iterations
increase d,(s) by at least one. Using Lemma 6.1 and the fact that M # 3D, we
conclude that after 6m1/ 2 such update steps, d,(s) $ 6m1/ 2 and

uf~S, T! #
3Dm

d,~s!
#

3Fm

6m1/ 2m1/ 2
5

F

2
.

Therefore, the phase terminates in O(m1/ 2) update steps.
In the second case, the number of update steps which increase uf u by D or more

is O(n2/3) since the residual flow is O(Dn2/3). Other iterations increase d,(s) by
at least one. Using Lemma 6.2 and the fact that M # 3D, we conclude that after
5n2/3 of such update steps, d,(s) $ 5n2/3 and

uf~S, T! # S 2n

d,~s!
D 2

3D #
12F

25
, F/ 2.

Therefore, the phase terminates in O(n2/3) update steps. e

Note that each update step is dominated by a blocking flow computation.
Using an O(m log(n2/m)) blocking flow algorithm, we get our main result:

THEOREM 6.4. The maximum flow problem can be solved in O(Lm log(n2/m)
log U) time.

PROOF. Consider the phases from the first time D # U to the first time D 5
1. The number of such phases is O(log U) by definition of the phase.

Next we account for the update steps during the time D . U. Throughout
these update steps, all arc lengths are one, and every update step increases d,(s).
Thus, after at most L such steps, F # LU by Lemmas 6.1 and 6.2 and the
definition of U.

Finally, when D 5 1, F # L, and the algorithm terminates in O(L) update
steps. e

Our results imply improved parallel bounds as well. Using the blocking flow
algorithm of Vishkin [1992], we get the following parallel bound.

THEOREM 6.5. The maximum flow problem can be solved in O(Ln log(n) log
U) time on a PRAM with O(n2) memory and O(n) processors.
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7. Approximation Results

The fact that our algorithms maintain a monotone bound on the residual flow
value allows us to speed up the algorithms for the approximate maximum flow
case. In particular, we can prove the following result.

THEOREM 7.1. A flow and a cut such that the cut capacity is within a factor of
(1 1 e) of the flow value can be found in O(Lm log(n2/m) log(m/e)) time.

PROOF. Since F is an upper bound on the residual flow value, u f u 1 F $
u f * u. Therefore

u f uS 1 1
F

u f uD $ u f * u.

We show how to quickly obtain initial f and F such that u f u $ F/m. Since u f u is
monotone and each phase reduces F by a factor of two, the theorem follows.

Consider a bottleneck shortest path in G with respect to the length function
1/u. We can find such a path in O*(m) time (see, e.g., Tarjan [1983]). Let d be
the smallest arc capacity on the path. We set the initial flow f to be d at the path
arcs and zero everywhere else. Consider the set S of vertices reachable from s via
paths of arcs with capacity greater than d. We can find this set in O(m) time.
This set defines an s-t cut of capacity at most md. Thus, we set F 5 md. e

For the rest of this section, we consider the special case of undirected graphs.
For this case, Benczúr and Karger [1996] introduce a nonuniform random
sampling technique that has the following properties.

LEMMA 7.2. [BENCZÚR AND KARGER 1996]. Given a graph G and an error
parameter e, in O(m log3n) time, we can construct a graph G9 such that with high
probability, G9 has the following properties:

—G9 has O((n log n)/e2) edges and

—the value of every cut in G9 is (1 6 e) times the value of the corresponding cut in
G.

They use this lemma in combination with the maximum flow algorithm of
Goldberg and Tarjan [1988] to get an E*(n2/e2) algorithm to find a cut with
capacity at most (1 1 e) times the minimum cut capacity. We get an improve-
ment using the algorithm in this paper instead of that of Goldberg and Tarjan
[1988]. We can get a slightly different bound using Theorem 7.1. We set e9 5 e/2
and do the sampling with the parameter e9. We also use e9 instead of e in our
approximate flow algorithm. We summarize these approximation results as
follows:

THEOREM 7.3. A cut with capacity at most (1 1 e) of the minimum cut capacity
can be found in E*(min(log U, log(1/e))n5/3/e2 1 m) or E*(min(log U, log(1/e))
n3/2/e3 1 m) time.
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8. Generalizations

In this section, we extend the conditions that the length function need to satisfy
so that an augmentation by a blocking flow in the admissible graph increases the
distance between the source and the sink. This generalization identifies impor-
tant length function properties and may be useful for development of more
general or more practical results.

Consider an augmentation of a flow by a flow in the admissible graph. Let f
and f9 be the flow before and after the augmentation, respectively, and let , and
,9 be the length function before and after the augmentation, respectively. Note
that we perform distance computations only on residual graphs. We can define
length of arcs with zero residual capacity to be infinity.

We say that the tuple ( f, ,, f9, ,9) is proper if for all a [ A

(1) ,(a) . ,9(a) [y A( f, ,, d,) & aR [ A( f, ,, d,),
(2) ,9(a) 5 0 f ,(a) 5 0 or ,(aR) . 0.

One can easily verify that the binary length function modified at the special arcs
falls into this framework. Note that the second condition implies that if uf (a) .
0, then ,9(a) . 0.

The following results are generalizations of Lemma 4.1, Corollary 4.2, and
Theorem 4.3. The proofs are similar.

LEMMA 8.1. If ( f, ,, f9, ,9) is proper, then d, is a distance labeling with respect
to ,9.

COROLLARY 8.2. If ( f, ,, f9, ,9) is proper, then d, # d,9.

THEOREM 8.3. Suppose s and t are not contracted together in A( f, ,, d,), f9 2 f
is a blocking flow in A( f, ,, d,), and ( f, ,, f9, ,9) is proper. Then d,(s) , d,9(s).

One can use results of this section to analyze algorithms based on a wide class
of length functions. For example, one can use

,~a! 5  3D

uf~a!
instead of the binary length function to obtain the same time bounds.

9. Concluding Remarks

The best previous maximum flow implementations are based on the push-relabel
method. These implementations are the result of intensive experimental re-
search; (see, for example, Anderson and Setubal [1993], Cherkassky and Gold-
berg [1995], Derigs and Meier [1989], Goldberg [1994], and Nguyen and Ven-
kateswaran [1993]). It would be interesting to see if the ideas introduced in this
paper lead to practical improvements.

An interesting open problem is if the flow decomposition bound can be
improved upon by a strongly polynomial algorithm. For example, is there an
algorithm running in O*(Lm) time?
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Another open problem is to extend our results and to obtain better bounds for
the minimum-cost flow problem. The results of Wallacher [1991] and Wallacher
and Zimmerman [1991] may be relevant here.

Our ballpark bounds for directed capacitated flows cannot be improved
without improving bounds for directed unit capacity flows. Recent improvements
for the undirected unit capacity case [Goldberg and Rao 1997; Karger 1997]
suggest a possibility of improving the directed case as well, although the
techniques of Goldberg and Rao [1997] and Karger [1997] do not seem to apply
directly.
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