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Abstract 

The increase of publicly available bioactivity data in recent years has fueled and catalyzed research in chemog-

enomics, data mining, and modeling approaches. As a direct result, over the past few years a multitude of different 

methods have been reported and evaluated, such as target fishing, nearest neighbor similarity-based methods, and 

Quantitative Structure Activity Relationship (QSAR)-based protocols. However, such studies are typically conducted 

on different datasets, using different validation strategies, and different metrics. In this study, different methods were 

compared using one single standardized dataset obtained from ChEMBL, which is made available to the public, using 

standardized metrics (BEDROC and Matthews Correlation Coefficient). Specifically, the performance of Naïve Bayes, 

Random Forests, Support Vector Machines, Logistic Regression, and Deep Neural Networks was assessed using QSAR 

and proteochemometric (PCM) methods. All methods were validated using both a random split validation and a 

temporal validation, with the latter being a more realistic benchmark of expected prospective execution. Deep Neural 

Networks are the top performing classifiers, highlighting the added value of Deep Neural Networks over other more 

conventional methods. Moreover, the best method (‘DNN_PCM’) performed significantly better at almost one stand-

ard deviation higher than the mean performance. Furthermore, Multi-task and PCM implementations were shown to 

improve performance over single task Deep Neural Networks. Conversely, target prediction performed almost two 

standard deviations under the mean performance. Random Forests, Support Vector Machines, and Logistic Regression 

performed around mean performance. Finally, using an ensemble of DNNs, alongside additional tuning, enhanced 

the relative performance by another 27% (compared with unoptimized ‘DNN_PCM’). Here, a standardized set to test 

and evaluate different machine learning algorithms in the context of multi-task learning is offered by providing the 

data and the protocols.
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Background

�e amount of chemical and biological data in the public 

domain has grown exponentially over the last decades [1–

3]. With the advent of ChEMBL, computational drug dis-

covery in an academic setting has undergone a revolution 

[4, 5]. Indeed, the amount of data available in ChEMBL is 

also growing rapidly (Additional file 1: Figure S1). Yet data 

availability and data quality still pose limitations [6]. Pub-

lic data is sparse (on average a single compound is tested 

on two proteins) and prone to experimental error (on 

average 0.5 log units for  IC50 data) [6, 7]. To make full use 

of the potential of this sparse data and to study ligand–

protein interactions on a proteome wide scale, computa-

tional methods are indispensable as they can be used to 

predict bioactivity values of compound-target combina-

tions that have not been tested experimentally [8–10].
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In order to compare our work to established target pre-

diction methods, we framed the original problem as a 

classification task by labeling compound-protein interac-

tions as ‘active’ or ‘inactive’. Data explored here contains 

pChEMBL values, which represent comparable measures 

of concentrations to reach half-maximal response/effect/

potency/affinity transformed to a negative logarith-

mic scale. �e threshold at which molecules are labeled 

‘active’ determines the fraction of data points belong-

ing to the ‘active’ compound class. If this is set at 10 μM 

(pChEMBL  =  5) as is done frequently in literature, 

almost 90% of the extracted ChEMBL data is an ‘active’ 

compound making it the default state (Additional file 1: 

Figure S2) [10, 11].

Hence, predictions out of the model will likely be 

‘active’. Such a high fraction of active compounds is not 

in accordance with what is observed experimentally. 

Moreover, in an experimental context, model output 

should ideally lead to identification of compounds with 

affinity higher than 10 μM to make most efficient use of 

costly experimental validation. Based on these considera-

tions, we chose to set the decision boundary at 6.5 log 

units (approximately 300 nM), defining interactions with 

a log affinity value larger than or equal to 6.5 as ‘active’ 

compounds. At this boundary, the distribution between 

‘active’ and ‘inactive’ compounds is roughly 50% (Addi-

tional file  1: Figure S2). For reference, a model using 

the 10 μM threshold and a Naïve Bayesian classifier was 

included in this study which could be seen as a baseline.

Furthermore, as was touched upon above, public data 

can have relatively large measurement errors, mostly 

caused by the data being generated in separate labora-

tories by different scientists at different points in time 

with different assay protocols. To make sure that bio-

activity models are as reliable as possible, we chose to 

limit ourselves to the highest data quality available in 

ChEMBL (Additional file 1: Figure S3) using only confi-

dence class 9 data points. A common misconception in 

literature is that the confidence class as implemented in 

ChEMBL is interpreted as quality quantification rather 

than classification (i.e. the higher the confidence, the bet-

ter, using data points confidence class higher than 7). Yet, 

this is not always true as the confidence represents dif-

ferent classes (i.e. ‘homologous protein assigned’ as tar-

get vs. ‘direct target assigned’). Hence some confidence 

classes are not compatible with each other for the goal 

pursued by a method. An example of a confidence class 

8 assay is: CHEMBL884791 and an example of a class 9 

assay is CHEMBL1037717. Both compound series have 

been tested on the Adenosine  A2A receptor but in the for-

mer case it was obtained from bovine striatal membrane 

and the latter explicitly mentions human Adenosine  A2A 

receptors. In the current work, we chose consistently 

class 9 (see the recent paper by the ChEMBL team on 

data curation and methods for further details) [6].

It has been shown that compounds tend to bind to 

more than one target, moreover compounds have some-

times been tested active on multiple proteins [12, 13]. 

�is activity spectrum can be modeled using (ensembles 

of ) binary class estimators, for instance by combining 

multiple binary class RF models (Fig.  1). Another strat-

egy is to assemble one model with all targets, which can 

be done in various ways. With multiclass QSAR (MC), 

it can be predicted if a compound is active based on the 

probability of belonging to the active target class versus 

the inactive target class for a given target; each com-

pound-target combination is assigned ‘active’ or ‘inac-

tive’ (Fig.  1). Yet another approach is to apply machine 

learning algorithms with added protein descriptors, 

commonly known as proteochemometrics (PCM) [14, 

15]. Targets are represented in the data in the form of 

target descriptors and this is combined with compound 

descriptors. Hence, instead of determining the activity 

of a compound, the activity of a compound/protein pair 

(Fig. 1) is determined. Explicitly quantifying this protein 

similarity allows models to make predictions for tar-

gets with no or very little bioactivity data but for which 

a sequence is known. Moreover, explicit protein features 

allow interpretation of both the important protein and 

ligand features from the validated model. �e relation-

ships between structure and biological activity in these 

large pooled datasets are non-linear and best modeled 

using non-linear methods such as Random Forests (RF) 

or Support Vector Machines (SVM) with non-linear ker-

nels. Alternatively, when linear methods are used cross-

terms are required that account for the non-linearity [16].

Several of our models benchmarked here are multi-task, 

however for simplicity we grouped the different methods 

on underlying machine learning algorithm. Nevertheless, 

multi-task learning has been shown to outperform other 

methods in bioactivity modeling and the reader is referred 

to Yuan et al. [17] for a more in depth analysis.

Another non-linear method is Deep Neural Networks 

(DNNs), which have recently gained traction being suc-

cessfully applied to a variety of artificial intelligence tasks 

such as image recognition, autonomously driving cars, 

and the GO-playing program AlphaGO [18, 19]. Given 

their relative novelty they will be introduced here in rela-

tion to our research but the reader is referred to LeCun 

et al. [19] for a more extensive introduction of the subject. 

Deep Neural Networks have many layers allowing them 

to extract high level features from the raw data. DNNs 

come in multiple shapes but here we focus only on fully 

connected networks, i.e. networks where each node is 

connected to all the nodes in the preceding layer. In feed 

forward networks (such as implemented in the current 
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work) information moves from the input layer to the out-

put layer through ‘hidden’ layers (which can be one layer 

to many layers). Each hidden node applies a (usually) non-

linear response function to a weighted linear combination 

of values computed by the nodes from the preceding layer. 

By this, the representation of the data is slightly modified 

at each layer, creating high level representations of the 

data. �e behavior of the network is fully determined by 

the weights of all connections. �ese weights are tuned 

during the training process by an optimization algorithm 

called backpropagation to allow the network to model 

the input–output relation. �e major advantage of DNNs 

is that they can discover some structure in the training 

data and consequently incrementally modify the data rep-

resentation, resulting in a superior accuracy of trained 

networks. In our research, we experimented with several 

scenarios, such as training as many networks as the num-

ber of targets or just one network with as many output 

nodes as the number of targets (Fig. 1).

DNNs have been applied to model bioactivity data 

previously; in 2012 Merck launched a challenge to build 

QSAR models for 15 different tasks [20]. �e winning 

solution contained an ensemble of single-task DNNs, sev-

eral multi-task DNNs, and Gaussian process regression 

models. �e multi-task neural networks modeled all 15 

tasks simultaneously, which were subsequently discussed 

in the corresponding paper [20]. Later (multi-task) DNNs 

have also been applied on a larger scale to 200 different 

targets [21], tested in virtual screening [22], and was one 

of the winning algorithms of the Tox21 competition [23]. 

Recently different flavors of neural networks also have 

shown to outperform random forests on various, diverse 

cheminformatics tasks [24]. Hence, DNNs have demon-

strated great potential in bioactivity modeling, however 

they have not been tested in a PCM approach to the best 

of our knowledge. �erefore, they have been included in 

our research as this technique may become the algorithm 

of choice for both PCM and QSAR.

Summarizing, we perform a systematic study on a high 

quality ChEMBL dataset, using two metrics for validation 

Mathews Correlation Coefficient (MCC) and Boltzmann-

Enhanced Discrimination of ROC (BEDROC). �e MCC 

was calculated to represent the global model quality, and 

has been shown to be a good metric for unbalanced data-

sets [25]. In addition, BEDROC represents a score that is 

more representative of compound prioritization, since it 

is biased towards early enrichment [26]. �e BEDROC 

score used here (α = 20) corresponds to 80% of the score 

coming from the top 8%.

We compare QSAR and PCM methods, multiple algo-

rithms (including DNNs), the differences between binary 

class and multi-label models, and usage of temporal vali-

dation (effectively validating true prospective use). We 

used both open- and closed-source software, we pro-

vide the dataset and predictions, PP protocols to gener-

ate the dataset, and scripts for the DNNs hosted by 4TU.

ResearchData. (see Section  Availability of data and 

materials).

Hence, the current work contributes to the literature by 

providing not only a standardized dataset available to the 

Fig. 1 Differences between methods for modeling bioactivity data exemplified by the ligand adenosine which is more active (designated as 

‘active’) on the adenosine A2A receptor, than on the A2B receptor (‘inactive’, using PChEMBL > 6.5 as a cutoff ). With binary class QSAR, individual 

models are constructed for every target. With multiclass QSAR one model is constructed based on the different target labels (A2A_active, A2B_inac-

tive). With PCM one model is constructed where the differences between proteins are considered in the descriptors (i.e. based on the amino acid 

sequence). With multiclass DNN a single output node is explicitly assigned to each target
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public, but also a realistic estimate of the performance 

that published methods can currently achieve in preclini-

cal drug discovery using public data.

Results and discussion

Random split partition

Firstly, the accuracy of all algorithms was estimated with 

help of the random split method (Fig.  2). Models were 

trained on 70% of the random split set and then validated 

on the remaining 30%. Validation of the classifier predic-

tions on a multi-target dataset such as this one can be 

done either based on all predictions in a single confusion 

matrix or by calculating a confusion matrix per target 

and subsequently using the mean value. Both methods 

provide relevant information, thus we followed both and 

show the mean and the standard error of the mean (SEM) 

obtained from these two sets of experiments. Multiclass 

Random Forests were trained but omitted due to their 

poor performance (as can be seen in Additional file  1: 

Tables S1, S2). For Logistic Regression (LR) or SVM no 

PCM models were completed. An LR PCM model would 

require cross terms due to linearity, which would make 

a direct comparison impossible. Training of SVM PCM 

models was stopped after running for over 300 h. Since 

results for Python (with scikit-learn) and Pipeline Pilot 

(PP, using R-statistics) were comparable in most cases, 

the results reported here are for the Python work with 

the PP results in the Additional file  1. �e exception is 

the 10 μM NB model, trained in PP which is our baseline 

model. Individual results for all methods are reported in 

the Additional file 1: Table S2.

�e average MCC of all algorithms is 0.49 (±0.04), 

underlining the predictive power of most methods. �e 

mean BEDROC was 0.85 (±0.03), which corresponds 

with a high early enrichment. �e performance of all 

DNNs are well above the average performance, both in 

terms of MCC and BEDROC. �e best method overall is 

the DNN_MC with an MCC of 0.57 (±0.07), and a BED-

ROC score of 0.92 (±0.05). DNN_PCM is performing 

slightly worse (MCC of 0.55 ±  0.07), but slightly better 

in terms of BEDROC (0.93 ± 0.03) and the DNN follows 

[MCC of 0.53 (±0.07) and BEDROC of 0.91 (±0.05)].

�e worst performing method is the NB 10 µM (MCC 

of 0.19  ±  0.01 and BEDROC 0.66  ±  0.05), where NB 

(using the 6.5 log units activity threshold) performs 

around the mean of all performing methods (MCC of 

0.41 ± 0.03 and BEDROC 0.79 ± 0.08). Indeed, using an 

activity threshold of 6.5 log units appears to improve per-

formance. Surprisingly LR performed above the average 

(MCC of 0.51 ± 0.06 and BEDROC 0.88 ± 0.06). How-

ever, large differences were observed between LR in Pipe-

line Pilot and Python, most likely due to the fact that the 

latter uses regularization (Additional file 1: Table S1).

Overall it is found that high/low MCC scores, typically 

also corresponded with high/low BEDROC scores with 

some exceptions. Most notably was the RF_PCM model 

which was the best performing model in terms of MCC 

(MCC of 0.60 ±  0.07), but underperformed in terms of 

BEDROC (BEDROC 0.83 ±  0.08). Moreover, judged on 

MCC the QSAR implementation of RF outperforms SVM 

(MCC of 0.56 ± 0.07 vs. 0.50 ± 0.07). Yet, based on the 

BEDROC, SVM outperforms the RF model (BEDROC 

Fig. 2 Performance of the different methods in the random split validation, grouped by underlying algorithm and colored by metric used. On the 

left y-axis, and in blue the MCC is shown, while on the right y-axis and in red the BEDROC (α = 20) score is shown. Default, single class algorithms are 

shown, and for several algorithms the performance of PCM and multi-class implementations is shown. Error bars indicate SEM. Mean MCC is 0.49 

(±0.04) and mean BEDROC is 0.85 (±0.03)
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0.88 ± 0.05 vs. 0.82 ± 0.03). Based on this we pose that 

SVMs are better in predicting top ranking predictions, 

but RFs are better in predicting negative predictions.

While these results look encouraging, it should be 

noted that in a random splitting scenario all data points 

(measured activities of protein-compound combinations) 

are considered separate entities. Hence, members of a 

congeneric compound series from a given publication 

can be part of the test set while the remaining are part 

of the training set (see “Methods” section—validation 

partitioning). �erefore, this method is expected to give 

an optimistic estimate of model performance; for a more 

representative performance estimate, a more challenging 

validation is exemplified below.

Temporal split partition

In the temporal split, training data was grouped by pub-

lication year rather than random partitioning (Fig. 3). All 

data points originating from publications that appeared 

prior to 2013 were used in the training set, while newer 

data points went into the validation set. Using temporal 

split we aim to minimize the effect that members of a 

congeneric chemical series are divided over training and 

test set. Temporal split has previously been shown to be a 

better reflection of prospective performance, than other 

validation schemes [27].

All methods performed worse than on the random split 

benchmark. �e average MCC dropped to 0.18 (±0.03) 

from 0.49 (±0.04) in the random split with a similar pic-

ture for the BEDROC 0.66 (±0.03) from 0.85 (±0.03). A 

paired t test p value <0.01 for both MCC and BEDROC 

was obtained, confirmed that this is indeed a significantly 

more challenging form of validation (Additional file  1: 

Table S2).

Large differences between methods are observed, for 

instance the RF model in terms of MCC is perform-

ing around the average, but both RF and RF_PCM 

underperform in terms of early enrichment (BEDROC 

0.54 ± 0.03 and 0.56 ± 0.04 vs. the mean 0.66 ± 0.03). 

SVM (MCC of 0.22 ±  0.07 and BEDROC 0.69 ±  0.07) 

performed in between the DNNs and RF models. 

Both NB 10 µM and NB underperform based on MCC 

and BEDROC. Finally, all DNNs outperformed the 

other methods both in terms of MCC (0.22  ±  0.08–

0.27  ±  0.07) and even more so in terms of BEDROC 

(0.73  ±  0.06–0.78  ±  0.07). For the DNN_PCM, we 

found that for targets with few data points in the train-

ing set, the PCM models were able to extrapolate pre-

dictions (Additional file 1: Figure S4).

Summarizing, the lower performance observed here is 

more in line with the performance that can be expected 

from a true prospective application of these types of 

models. It has been suggested in literature that also tem-

poral splitting is not ideal, but it still provides a more 

challenging form of validation and better than leaving out 

chemical clusters [27]. Hence, this make temporal split 

validation a better way to validate computational models. 

Yet, in addition to raw performance, training time is also 

of importance.

Run time

Quick training models allow for easy retraining when 

new data becomes available, models that require a long 

time are not readily updated, making their maintenance a 

Fig. 3 Performance of the different methods in the temporal split validation, grouped by underlying algorithm and colored by metric used. On the 

left y-axis, and in blue the MCC is shown, while on the right y-axis and in red the BEDROC (α = 20) score is shown. Default, single class algorithms are 

shown, and for several algorithms the performance of PCM and multi-class implementations is shown. Error bars indicate SEM. Mean MCC is 0.17 

(±0.03) and mean BEDROC is 0.66 (±0.03)
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tradeoff. It was found that on our hardware most models 

could be retrained in under 10 h. �is training time cor-

responds with an overnight job (Additional file  1: Table 

S3).

One point should be visited, NB in Pipeline Pilot was 

considerable slower than the NB trained in scikit-learn 

(20  min in scikit-learn compared with 31  h, Additional 

file 1: Table S3). �is is caused by the calculation of the 

background scores (see “Methods” section for details) as 

was done previously [28]. Calculation of z-scores requires 

the prediction of all ligand—protein interactions in the 

matrix and is a lengthy procedure regardless of the high 

speed of NB. As can be seen, the NB 10 µM models do 

not suffer this penalty (as they do not use z-score calcula-

tion) and are hence the fastest.

When we compare training time with MCC and BED-

ROC, we observe that training times do not directly 

correlate with the quality of the model. In both cases a 

weak trend is observed between performance and train-

ing time  (R2 0.25 and 0.38 respectively, Additional file 1: 

Figure S5). It should be noted that RF can be trained in 

parallel (on CPUs) leading to a speedup in wall clock 

time but that there is a saturation around 40 cores [29]. 

In addition, the parallel implementation requires instal-

lation of additional third party packages such as ‘foreach’ 

for the R implementation [30]. In scikit-learn this works 

more efficiently, however, in both cases running in paral-

lel increases memory consumption. Note that a GPU ver-

sion of RF (CUDAtrees) was published in 2013 but this 

package is no longer maintained (abandoned November 

2014). Hence, while RF can be optimized, this is not as 

straightforward as in DNN. Still, it should be noted that 

the GPU-implementation of the DNN speeds up the 

calculation about  ~150 times when compared with the 

CPU-implementation (benchmarked on a single core); 

this makes GPUs a definite requirement for the training 

of DNNs.

Ranking the various methods

To accurately compare the methods, 4 z-scores were 

calculated for each method and metric within the 

experiments (random split MCC, random split BED-

ROC, temporal split MCC, and temporal split BED-

ROC, Table  1 and Fig.  4). Herein DNNs are found to 

be the best algorithm, and have the most consistent 

performance. For instance, for DNN the best model 

(DNN_PCM) has an average z-score of 0.96 (±0.19), 

compared to −0.69 (±0.04) for the best NB model and 

a slightly better −0.21 (±0.41) for the best RF model. 

Moreover, the three best methods based on the average 

z-score are all DNNs, which are subsequently followed 

by SVM (0.32 ± 0.09). Furthermore, the DNNs perform 

the best in all types of validations in terms of BEDROC 

and MCC, with a single exception (the random split 

MCC where RF_PCM is the best as can be observed in 

italics in Table 1). To confirm whether the observed dif-

ferences were actually statistically significant, the fol-

lowing tests were performed: the paired Student’s T Test 

(determine whether the means of two groups differ), the 

F Test (determine whether the variances of groups dif-

fer), Wilcoxon Rank test (determine whether sets have 

the same median), and the Kolmogorov–Smirnov test 

(determine whether two samples come from the same 

random distribution). Results can be found in the Addi-

tional file  1: Tables S4, S5, S6 and S7, here the results 

will be summarized. 

For the Student’s T Test DNN_PCM and DNN_MC 

are shown to significantly differ from all other methods 

with a p value <0.05 except for RF and RF_PCM, where 

the p values are 0.05, 0.06 (2 times), and 0.07. DNN is 

seen to differ significantly from NB 10 μM, NB, and LR. 

Likewise, NB 10  μM differs significantly from all other 

methods with the p value <0.05 with the exception of NB, 

where the p value is 0.06. It can hence be concluded that 

there are little differences in performance using RF, SVM, 

Table 1 Overview of the performance of the benchmarked methods expressed as z-scores per experiment

Z-scores are shown for all methods for both types of splitting and for both MCC and BEDROC. In italics the best performance for a given machine learning algorithm 

per column is highlighted. See main text for further details

Method MCC random BEDROC random MCC temporal BEDROC temporal Average SEM

NB 10 μM −2.41 −2.22 −2.07 −0.67 −1.84 0.40

NB −0.65 −0.66 −0.81 −0.64 −0.69 0.04

RF 0.56 −0.30 0.02 −1.41 −0.28 0.41

RF_PCM 0.88 −0.17 −0.46 −1.10 −0.21 0.41

SVM 0.11 0.36 0.53 0.30 0.32 0.09

LR 0.17 0.40 0.11 0.19 0.22 0.06

DNN 0.32 0.75 0.56 0.79 0.60 0.11

DNN_MC 0.60 0.85 1.03 1.20 0.92 0.13

DNN_PCM 0.44 0.98 1.09 1.33 0.96 0.19
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and LR, whereas the use of NB is significantly worse than 

the rest and usage of DNN leads to significantly better 

results.

In the variances (F Test) less significant differences are 

found. NB 10  μM differs significantly from NB, SVM, 

LR. Similarly, NB differs significantly from RF, RF_PCM, 

and DNN_PCM. RF and RF_PCM differ significantly 

from SVM, LR, DNN (with the exception of the pair 

RF_PCM–DNN which has a p value of 0.06). Hence in 

general variance in SVM and LR differs significantly from 

NB and RF, whereas between the other methods no real 

significant differences exist.

�e results of the Wilcoxon and Kolgomorov–

Smirnov test were very similar to each other. For both, 

the differences between SVM, LR, DNN, DNN_MC, 

DNN_PCM on one hand and both NB 10 μM and NB 

on the other hand are significant. Secondly, in both 

DNN_MC differs significantly with RF, SVM, and LR. 

Finally, DNN_PCM differs significantly with LR in 

both. In general it can be concluded that NB and RF 

methods differ significantly from other methods and 

DNN_MC differs from most (based on the methods 

median value and whether samples come from the 

same random distribution).

In conclusion, here it was shown that DNN methods 

generally outperform other algorithms and that this is a 

statistically significant result. However, we used DNN as 

is and it should be noted that there is room for improve-

ment by (among other things) inclusion of more informa-

tion and tuning of hyper parameters which will be further 

explored in the next section.

Exploring the potential of DNNs

An additional reason that DNNs were of interest in this 

study is the fact that they can process more informa-

tion without a high penalty in training time. Because in 

general DNNs are quite sensitive to the choice of hyper 

parameters, we explored a number of different param-

eters through a grid search based exploration of model 

parameter space. For this we varied the architecture of 

the networks, ranging from one layer of 1000 hidden 

nodes (very shallow), to two layers of 2000 and 1000 

nodes (shallow), to the default settings (4000, 2000, 1000 

nodes) and the deepest network used here (8000, 4000, 

2000 nodes).

In addition to the number of nodes we varied the drop-

out which represents the percentage of nodes that are 

dropped randomly during the training phase, a technique 

to prevent overfitting [31]. By default (as used above), 

there is no dropout in the input layer and 25% on the hid-

den layers. However, in the increased dropout scenario 

25% dropout is introduced in the input layer and in the 

higher layers increased to 50%.

�irdly, the usage of more extensive compound 

descriptors was investigated (up to 4096 bits and addi-

tional physicochemical descriptors) which was not pos-

sible with the RF and NB models due to computational 

restraints.

Finally, differences between PCM, MC, and QSAR 

were investigated. To test all these different combina-

tions mentioned above the maximum number of epochs 

was decreased from 2000 to 500 (see “Methods” sec-

tion—machine learning methods—neural networks). 

Fig. 4 Comparison of the mean z-scores obtained by the different methods. Bars are colored by method and error bars indicate SEM, best perfor-

mance is by the DNN (0.96 ± 0.19, 0.92 ± 0.13, and 0.60 ± 0.11 respectively), followed by SVM (0.32 ± 0.09), LR (0.22 ± 0.06), RF (−0.21 ± 0.41 and 

−0.28 ± 0.41), and finally NB (−0.69 ± 0.04 and −1.84 ± 0.40)
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�ese settings were validated on the temporal split 

because it represents a more realistic and more chal-

lenging scenario as shown in “Temporal split partition” 

section.

�e predictive performance of all the DNNs are sum-

marized in Fig. 5, while performance of individual mod-

els is shown in Additional file 1: Figure S6. Improvements 

are expressed in the percentage of increase over the base-

line performance as demonstrated by the DNN_PCM 

covered in “Temporal split partition” section (temporal 

split). Based on these results the following can be con-

cluded. First of all, performance using a longer bit string 

is better (9% improvement for 4096 bits with extra fea-

tures compared to the baseline), with on the low end of 

the performance spectrum the 256 bits that were used 

prior to this optimization (average decrease of 2% in the 

grid search). �is intuitively makes sense as the shorter 

fingerprints contain less information. Moreover, it could 

be that distinct chemical features computed by the fin-

gerprint algorithm hash to the same bit. In that case a 

specific bit could represent the presence of multiple fea-

tures, which is more likely to happen with a shorter fin-

gerprint. Furthermore, out of the models trained with 

256 bits descriptors for ligands, the PCM DNN consist-

ently outperformed the others, likely due to the fact that 

PCM profits from the added protein features also con-

taining information.

Of the three different DNNs, PCM slightly outperforms 

the other methods (average improvement 8%), although 

examples of both single and multi-task models are also 

found in the top performing methods (average increase 

2 and 2% respectively). With regard to the architecture, 

deep and wide networks seem to perform best (e.g. archi-

tecture 3 with an average increase of 12%), although 

some of the shallow, multiclass and binary class networks 

(architecture 7) are also found in the top performing 

methods.

Overall it seems that increasing dropout leads to a 

poorer performance. Since dropout is a technique to pre-

vent overfitting, a DNN can be considered as under fitted 

if dropout is too strict. �is is confirmed by these results, 

as higher dropout rates and dropout on the visible layer 

(the fingerprint/feature layer) results in a drop of accu-

racy (1 vs. 2 and 3 vs. 4). Moreover, if all increased drop-

out results and normal dropout results are aggregated, 

increased dropout performs near identical to the baseline 

(0%) and the normal dropout architectures (on average) 

perform 7% better than baseline. �erefore, an option to 

be considered is a less aggressive dropout. Alternatively 

lowering the dropout percentage adaptively (during the 

training), similar to the learning rate would be an option 

too.

Finally, the best performance is observed by using 

an ensemble of the predictions from all models, for 

Fig. 5 Average performance of the individual DNN grouped per method, architecture and descriptors. Average value is shown for all models 

trained sharing a setting indicated on the x-axis, error bars represent the SEM of that average. Black bars on the left represent the ensemble methods 

(average value and majority vote). Grey bars on the right indicate the previous best performing DNN (DNN_PCM), NB with activity cut-off at 6.5 log 

units and z-score calculation, and default NB with activity cut-off at 10 μM. We observed PCM to be the best way to model the data (green bars), 

architecture 3 to be the best performing (blue bars), and usage of 4096 bit descriptors with additional physicochemical property descriptors to 

perform the best (red bars). Using ensemble methods further improves performance (black bars)
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instance by using a majority prediction or an average 

vote (improvement 25 and 26%, black bars Fig.  5). �is 

improvement suggests that there is still room for further 

improvement and only the surface was scratched in this 

work. Indeed, ensembles of different machine learn-

ing methods, including neural networks have been used 

to achieve competitive results on bioactivity prediction 

tasks. More context will be discussed below.

Putting this work into context

As touched upon, ChEMBL has fueled a diverse array of 

publications and this discussion is limited to the most 

relevant and recent ones in the context of this paper. For 

instance Mervin et  al. constructed a (Bernoulli) Bayes-

ian model on both ChEMBL and PubChem data [32]. 

To balance the class sizes, a sphere exclusion algorithm 

was used to extract putative inactive data. A different 

threshold was used (10  μM, pChEMBL  =  5) compared 

to the current study, and PubChem data in addition to 

the ChEMBL data was used. Also in the current work, it 

was found that inclusion of inactive molecules enhanced 

the performance for the Naïve Bayes models (Additional 

file 1: Table S8).

A later study by Lusci et al. [33] that was performed on 

ChEMBL data release 13 benchmarked the performance 

of a number of different algorithms. Similar to the cur-

rent work the authors performed a temporal validation 

(on ChEMBL release 13) as a more realistic estimate of 

model performance. �ey also found that their method, 

potency-sensitive influence relevance voter (PS-IRV) 

outperformed other methods such as RF and SVM. How-

ever, here it is proposed that limiting the training set to 

high quality data with only the highest confidence from 

ChEMBL, leads to better performance. �is is also cor-

roborated by the AUC values obtained by Lusci et al. on 

their full set and the higher values obtained in the current 

work. IRV has been benchmarked before [34], and can be 

seen as an extension of K-nearest neighbors in a shallow 

neural network. In that study, random molecules were 

added (presumably inactive), in addition to the experi-

mentally inactive molecules to boost results. Inclusion of 

more data, and more specifically inactive molecules is a 

line of future investigation we also aim to pursue.

Regarding the DNNs, the influence of network archi-

tecture has been studied before [20], where it was noted 

that the number of neurons especially impacts the per-

formance of deeper structured networks. �is corre-

sponds to our observations where the deepest and widest 

network performed best. Further fine-tuning of the archi-

tecture might be worthwhile; in multi-task networks 

trained for the Tox21 challenge up to 4 layers with 16,384 

units were used [23]. Additionally, it was found that mul-

ticlass networks outperformed binary class networks, 

and similar gains in performance were observed on the 

joint (multi-task) DNN published by Ma et al. [20]. �is 

is also in line with our own results where DNN is seen 

to slightly improve over state of the art methods such as 

RF and SVM, but DNN_MC and DNN_PCM are demon-

strated to really improve performance.

Finally, work by Unterthiner et al. demonstrated similar 

DNN performance [22]. �ough the authors did not cal-

culate the BEDROC, they obtained an AUC of 0.83 versus 

the here obtained AUC of 0.89 (Additional file  1: Table 

S1). Interestingly, they found a worse NB performance 

(AUC 0.76 vs. 0.81) compared to the current work [22]. 

�is divergence is potentially caused by the fact that their 

dataset included lower quality ChEMBL data, which was 

the main reason for assembling the current benchmark 

dataset. Moreover, Unterthiner et  al. used much larger 

feature input vectors, requiring ample compute power 

to use the non-DNN based algorithms. We have shown 

that we can achieve similar performance on a smaller 

dataset with fewer fingerprint features, suggesting that 

there is much room for improvement by hyperparameter 

optimization. Furthermore, Unterthiner et al. used a cost 

function weighted, based on the dataset size for every 

target. In our hands, experimentation choosing different 

weights inversely proportional to the target dataset size 

did not improve the performance of the models, however 

this can be further be explored. Finally, we have shown 

that usage of (simple) ensemble methods outperformed 

a single DNN alone, hence more sophisticated ensemble 

methods and inclusion of different models is a worthy 

follow up.

DNNs have also been applied with promising results 

to the prediction of Drug-Induced Liver Injury [35], 

although a different descriptor was used than the conven-

tional fingerprints, i.e. directed acyclic graph recursive 

neural networks [36]. Similarly, convolutional networks 

were recently applied to molecular graphs, outperform-

ing extended connectivity fingerprints (ECFP) [37]. 

Interestingly, contrary to ECFP, such graphs are directly 

interpretable [38]. �is work was further extended to a 

diverse palate of different cheminformatics datasets, in 

MoleculeNet, where a lot of different architectures have 

been tested and compared [24]. Moreover, these meth-

ods are also publicly available in the form of the package 

DeepChem, a package for DNNs that is actively main-

tained. Future work will focus on using such models, and 

thus more tailored architectures to create ChEMBL wide 

bioactivity models.

Conclusions

We have created and benchmarked a standard-

ized set based on high quality ChEMBL data (ver-

sion 20). �is dataset, together with the scripts used is 
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available online, and can serve as a standardized dataset 

on which novel algorithms can be tested. Moreover, we 

have tested and compared a diverse group of established 

and more novel bioactivity modeling methods (descrip-

tors, algorithms, and data formatting methods). To the 

best of our knowledge this is the first paper wherein 

in Deep Learning is coupled to proteochemometrics. 

Finally, we have explored the potential of DNNs by tun-

ing their parameters and suggested ways for further 

improvement.

From our results we draw a number of conclusions. 

Most of the methods and algorithms can create models 

that are predictive (performs better than random). Train-

ing time versus accuracy is a less relevant issue as the 

best performing methods required less than 10 h. Com-

monly used ‘random split’ partitioning might lead to an 

overly optimistic performance estimate. It is proposed to 

split training and tests sets based on time-based differ-

ences, providing a more challenging and more realistic 

performance estimate. It should also be noted that active 

and inactive compound-target combinations can impact 

the performance.

Focusing on machine learning methods, usage of 

DNN based models increases model prediction qual-

ity over existing methods such as RF, SVM, LR, and NB 

models. �is is especially true when using multi-task or 

PCM based DNNs and less so when using single task 

DNNs. As an added benefit, this gain in performance is 

not obtained at the expense of highly increased training 

times due to deployment of GPUs.

It was shown that the widest and deepest DNN archi-

tectures produced the best results in combination with 

the most descriptor features. �ere is certainly still room 

for improvement as hardware (memory) limitations or 

extreme training times were not reached. Moreover, 

model ensembles of the 63 individual models further 

enhanced the results yielding performance that was 27% 

better than the best performing model prior to tuning, 

indicating that indeed better results are possible.

Taken together, we anticipate that methods discussed 

in this paper can be applied on a routine basis and can be 

fine-tuned to the problem (e.g. target) of interest. Moreo-

ver, due to low training time and high performance we 

anticipate that DNNs will become a useful addition in the 

field of bioactivity modeling.

Methods

Dataset

Data was obtained from the ChEMBL database (version 

20) [4], containing 13,488,513 data points. Activities were 

selected that met the following criteria: at least 30 com-

pounds tested per protein and from at least 2 separate 

publications, assay confidence score of 9, ‘single protein’ 

target type, assigned pCHEMBL value, no flags on poten-

tial duplicate or data validity comment, and originating 

from scientific literature. Furthermore, data points with 

activity comments ‘not active’, ‘inactive’, ‘inconclusive’, 

and ‘undetermined’ were removed.

If multiple measurements for a ligand-receptor data 

point were present, the median value was chosen and 

duplicates were removed. �is reduced the total number 

of data points to 314,767 (Additional file 1: Figure S2), or 

approximately 2.5% of the total data in ChEMBL 20.

Typically, studies have used thresholds for activ-

ity between 5 and 6 [10, 11, 32, 33]. Data points here 

were assigned to the ‘active’ class if the pCHEMBL 

value was equal to or greater than 6.5 (corresponding to 

approximately 300  nM) and to the ‘inactive’ class if the 

pCHEMBL value was below 6.5. �is threshold gave 

a good ratio between active and inactive compounds. 

Around 90% of the data points are active when a thresh-

old of 10  μM is used, while a roughly equal partition 

(55/45%) occurs at a threshold of 6.5 log units (Additional 

file  1: Figure S3). Additionally, it represents an activity 

threshold that is more relevant for biological activity.

�e final set consisted of 1227 targets, 204,085 com-

pounds, and 314,767 data points. Taken together 

this means the set 0.13% complete (314,767 out of 

250,412,295 data points measured). Moreover, on average 

a target has 256.5 (±427.4) tested compounds (median 

98, with values between 1 and 4703).

ChEMBL L1 and L2 target class levels were investi-

gated. For the L1 targets, most dominant are enzyme 

(144,934 data points) followed by membrane recep-

tor (113,793 data points), and ion channel (16,023 data 

points). For the L2 targets G Protein-Coupled Receptors 

are most dominant (104,668 data points), followed by 

proteases (34,036 data points), and kinases (31,525 data 

points). See Additional file  1: Figure S7 for a graphical 

view. Finally, each compound has on average been tested 

on 1.5 (±1.3) targets (median 1, with values between 1 

and 150). In total the set contained 70,167 Murcko scaf-

folds [39].

Compound descriptors

Fingerprints used were RDKit Morgan fingerprints, 

with a radius of 3 bonds and a length of 256 bits. For 

every compound the following physicochemical descrip-

tors were calculated: Partition Coefficient (AlogP) [40], 

Molecular Weight (MW), Hydrogen Bond Acceptors 

and Donors (HBA/HBD), Fractional Polar Surface Area 

(Fractional PSA) [41, 42], Rotatable Bonds (RTB). For 

descriptors used in the PP context please see Additional 

file 1: Methods.
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Protein descriptors

For the PCM models, protein descriptors were calculated 

based on physicochemical properties of amino acids sim-

ilar to previous work [43, 44]. However, lacking the abil-

ity to properly align all proteins, descriptors were made 

alignment independent which is different from our pre-

vious work. �e sequence was split into 20 equal parts 

(where part length differed based on protein length). Per 

part, for every amino acid the following descriptors were 

calculated: Amount of stereo atoms, LogD [40], charge, 

hydrogen bond acceptors and hydrogen bond donors, 

rigidity, aromatic bonds, and molecular weight. Subse-

quently per part the mean value for each descriptor was 

calculated, and repeated for the whole protein, calculat-

ing the mean value for the full sequence length. Leading 

to an ensemble of 21 * 8 mean physicochemical property 

values (20 parts + global mean). Furthermore, sequence 

length was included as separate descriptor. It should 

be noted that this type of descriptor is a crude protein 

descriptor at best with significant room for improvement. 

However, the descriptor captures similarity and differ-

ences between the proteins and it is shown to improve 

model performance over models lacking this descriptor. 

Optimizing this descriptor is judged to be out of scope of 

the current work but planned for follow up.

Machine learning: NB, RF, SVM, and LR models

Models were created using scikit-learn [45]. Naïve Bayes 

models were trained using the same procedure as Mul-

tinomialNB [46]. A reference NB model with an activity 

threshold of 10  μM was included using PP and default 

setup.

RF were trained using the RandomForestClassifier. �e 

following settings were used: 1000 trees, 30% of the fea-

tures were randomly selected to choose the best splitting 

attribute from, with no limit on the maximum depth of 

the tree.

SVMs were trained using the SVC class, using the fol-

lowing settings: radial basis function kernel wherein 

gamma was set at 1/number of descriptors. Further 

parameter cost was set at 1 and epsilon was set at 0.1.

For LR, the LR class of the linear_model package was 

used. �e settings were mostly set to default, except for 

the solver, which was set to Stochastic Average Gradient 

descent with a maximum of 100 iterations.

Machine learning: neural networks

In our experiments, we used a network with the following 

architecture: an input layer with, for example, 256 nodes 

representing 256 bit fingerprints, connected to 3 hidden 

layers of 4000, 2000, 1000 of rectified linear units (ReLU) 

and an output layer with as many nodes as the number 

of modeled targets (e.g. 1227 for the multi-task network). 

ReLU units are commonly used in DNNs since they are 

fast and unlike other functions do not suffer from a van-

ishing gradient. �e output nodes used a linear activation 

function. �erefore, the original pChEMBL values were 

predicted and were subsequently converted to classes 

(pChEMBL ≥ 6.5 = active, pChEMBL < 6.5 =  inactive). 

�e target protein features and physicochemical fea-

tures in the input layer were scaled to zero mean and unit 

variance. �e output for a particular compound is often 

sparse, i.e. for most targets there will be no known activ-

ity. During training, only targets for which we have data 

were taken into account when computing the error func-

tion to update the weights. We chose to equally weight 

each target, for which we had data.

For training our networks we used stochastic gradient 

descent with Nesterov momentum which leads to faster 

convergence and reduced oscillations of weights [47]. 

Data was processed in batches of size of 128. After the 

neural network has seen all the training data, one epoch 

is completed and another epoch starts.

Moreover, after every epoch the momentum term was 

modified: the starting Nesterov momentum term was 

set to 0.8 and was set to 0.999 for the last epoch (scaled 

linearly). Likewise, during the first epoch the learning 

rate (the rate at which the parameters in the network are 

changed) was set to 0.005 and scaled to 0.0001 for the 

last epoch. �ese settings were decreased/increased on 

a schedule to allow for better convergence, increasing 

the momentum allows for escaping local minima while 

decreasing the learning rate decreases the chance of 

missing a (global) minimum.

To prevent overfitting of the networks, we used 25% 

dropout on the hidden layers together with early stop-

ping [31]. �e early stopping validates the loss on an eval-

uation set (20% of the training data) and stops training if 

the network does not improve on the evaluation set after 

200 epochs (Additional file 1: Figure S7). �e maximum 

number of iterations was set to 2000 epochs. Dropout is 

a technique to prevent overfitting, by discarding, in each 

iteration of the training step, some randomly chosen 

nodes of the network.

To find the optimal network configuration we used grid 

search, limiting the number of epochs to 500 to speed up 

the training. In total, 63 individual models were trained 

to validate the influence of different descriptors, archi-

tecture and type of neural network (Additional file  1: 

Figure S6). Due to problems with the stochastic gradient 

descent, for the PCM models with 4096 fingerprints plus 

physicochemical chemical properties, architectures 2, 4, 

6 (Additional file 1: Figure S6); a batch size of 256 instead 

of 128 was used. In all cases where physicochemical 

chemical properties were used, they were scaled to zero 

mean and unit variance.
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In our experiments with neural networks we used 

nolearn/Lasagne and �eano packages [48–50] and 

GPU-accelerated hardware. �e main script for train-

ing the networks is available in the supporting dataset 

deposit (‘FFNN.py’ and ‘instructions_DNN.pdf ’).

Validation metrics

We used the MCC and BEDROC as a primary valida-

tion metrics [26, 51, 52]. BEDROC (α = 20), which cor-

responds to 80% of the score coming from the top 8% was 

used [26]. �is was done to evaluate the performance in 

a prospective manner, where often the top % scoring hits 

is purchased.

Four separate MCCs and BEDROCs were calculated. 

One value for the pooled predictions (pooling true posi-

tives, false positives, true negatives, and false negatives) 

was calculated, and secondly an average MCC was calcu-

lated based on the MCC values per protein. Of these two 

values the mean is visualized in Figs.  2 and 3, with the 

unprocessed values given in Additional file 1: Tables S1, 

S2. �is was done for both the random split set and tem-

poral split set.

When no predictions were made for a given target-

compound combination a random number was gen-

erated for this pair between 0 and 1. �e reason for 

this is that we aimed to simulate a true use case and 

not cherry pick good or bad predictions. To be able to 

compare prediction quality across the different meth-

ods random values were used, leading to MCC scores 

close to 0 for these cases. For values >0.5 this score was 

deemed ‘active’ and anything below 0.5 was deemed 

‘inactive’.

Validation partitioning

Two different methods were applied to partition the data 

in training/validation sets. �e first method that was 

used was a ‘random split’, herein 10% of the data was par-

titioned using semi-stratified random partitioning with 

a fixed random seed as implemented in PP and set apart 

for future reference. �e remaining 90% was partitioned 

in the same way in a 70% training and 30% test set.

For the second method, a separate set was constructed 

wherein the year of the publication was the split crite-

rion. All data points originating from publications that 

appeared prior to 2013 were used in the training set, 

while newer data points went into the validation set.

Hardware

Experiments were performed on a Linux server running 

CentOS 6.7. �e server was equipped with two Xeon 

E5-2620v2 processors (hyperthreading disabled) and 

128 GB RAM. GPUs installed are a single NVIDIA K40 

and 2 NVIDIA K20 s.

Software used

Python (version 2.7) was used with the following librar-

ies: RDKit (version 2014.09.2) for the calculation of the 

fingerprints and descriptors [53], scikit-learn version 0.16 

for the NB and RF [45]. For the neural networks we used 

�eano [54] and nolearn, together with Lasagne [49, 50]. 

For the supplementary information tables, Pipeline Pilot 

(version 9.2.0) [55], including the chemistry collection 

for calculation of descriptors, and R-statistics (R version 

3.1.2) collection for machine learning [56] were used. 

Algorithms only used in Pipeline Pilot are reported in the 

Additional file 1: References.
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