
Lenselink et al. J Cheminform (2017) 9:45

DOI 10.1186/s13321-017-0232-0

RESEARCH ARTICLE

Beyond the hype: deep neural networks
outperform established methods using a
ChEMBL bioactivity benchmark set
Eelke B. Lenselink1†, Niels ten Dijke2, Brandon Bongers1, George Papadatos3,4, Herman W. T. van Vlijmen1,

Wojtek Kowalczyk2, Adriaan P. IJzerman1 and Gerard J. P. van Westen1*†

Abstract

The increase of publicly available bioactivity data in recent years has fueled and catalyzed research in chemog-

enomics, data mining, and modeling approaches. As a direct result, over the past few years a multitude of different

methods have been reported and evaluated, such as target fishing, nearest neighbor similarity-based methods, and

Quantitative Structure Activity Relationship (QSAR)-based protocols. However, such studies are typically conducted

on different datasets, using different validation strategies, and different metrics. In this study, different methods were

compared using one single standardized dataset obtained from ChEMBL, which is made available to the public, using

standardized metrics (BEDROC and Matthews Correlation Coefficient). Specifically, the performance of Naïve Bayes,

Random Forests, Support Vector Machines, Logistic Regression, and Deep Neural Networks was assessed using QSAR

and proteochemometric (PCM) methods. All methods were validated using both a random split validation and a

temporal validation, with the latter being a more realistic benchmark of expected prospective execution. Deep Neural

Networks are the top performing classifiers, highlighting the added value of Deep Neural Networks over other more

conventional methods. Moreover, the best method (‘DNN_PCM’) performed significantly better at almost one stand-

ard deviation higher than the mean performance. Furthermore, Multi-task and PCM implementations were shown to

improve performance over single task Deep Neural Networks. Conversely, target prediction performed almost two

standard deviations under the mean performance. Random Forests, Support Vector Machines, and Logistic Regression

performed around mean performance. Finally, using an ensemble of DNNs, alongside additional tuning, enhanced

the relative performance by another 27% (compared with unoptimized ‘DNN_PCM’). Here, a standardized set to test

and evaluate different machine learning algorithms in the context of multi-task learning is offered by providing the

data and the protocols.

Keywords: Deep neural networks, ChEMBL, QSAR, Proteochemometrics, Chemogenomics, Cheminformatics

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background

�e amount of chemical and biological data in the public

domain has grown exponentially over the last decades [1–

3]. With the advent of ChEMBL, computational drug dis-

covery in an academic setting has undergone a revolution

[4, 5]. Indeed, the amount of data available in ChEMBL is

also growing rapidly (Additional file 1: Figure S1). Yet data

availability and data quality still pose limitations [6]. Pub-

lic data is sparse (on average a single compound is tested

on two proteins) and prone to experimental error (on

average 0.5 log units for IC50 data) [6, 7]. To make full use

of the potential of this sparse data and to study ligand–

protein interactions on a proteome wide scale, computa-

tional methods are indispensable as they can be used to

predict bioactivity values of compound-target combina-

tions that have not been tested experimentally [8–10].

Open Access

*Correspondence: gerard@gjpvanwesten.nl
†Eelke B. Lenselink and Gerard J. P. van Westen contributed equally to this

work.
1 Division of Medicinal Chemistry, Drug Discovery and Safety, Leiden

Academic Centre for Drug Research, Leiden University, P.O. Box 9502,

2300 RA Leiden, The Netherlands

Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0717-1817
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-017-0232-0&domain=pdf

Page 2 of 14Lenselink et al. J Cheminform (2017) 9:45

In order to compare our work to established target pre-

diction methods, we framed the original problem as a

classification task by labeling compound-protein interac-

tions as ‘active’ or ‘inactive’. Data explored here contains

pChEMBL values, which represent comparable measures

of concentrations to reach half-maximal response/effect/

potency/affinity transformed to a negative logarith-

mic scale. �e threshold at which molecules are labeled

‘active’ determines the fraction of data points belong-

ing to the ‘active’ compound class. If this is set at 10 μM

(pChEMBL = 5) as is done frequently in literature,

almost 90% of the extracted ChEMBL data is an ‘active’

compound making it the default state (Additional file 1:

Figure S2) [10, 11].

Hence, predictions out of the model will likely be

‘active’. Such a high fraction of active compounds is not

in accordance with what is observed experimentally.

Moreover, in an experimental context, model output

should ideally lead to identification of compounds with

affinity higher than 10 μM to make most efficient use of

costly experimental validation. Based on these considera-

tions, we chose to set the decision boundary at 6.5 log

units (approximately 300 nM), defining interactions with

a log affinity value larger than or equal to 6.5 as ‘active’

compounds. At this boundary, the distribution between

‘active’ and ‘inactive’ compounds is roughly 50% (Addi-

tional file 1: Figure S2). For reference, a model using

the 10 μM threshold and a Naïve Bayesian classifier was

included in this study which could be seen as a baseline.

Furthermore, as was touched upon above, public data

can have relatively large measurement errors, mostly

caused by the data being generated in separate labora-

tories by different scientists at different points in time

with different assay protocols. To make sure that bio-

activity models are as reliable as possible, we chose to

limit ourselves to the highest data quality available in

ChEMBL (Additional file 1: Figure S3) using only confi-

dence class 9 data points. A common misconception in

literature is that the confidence class as implemented in

ChEMBL is interpreted as quality quantification rather

than classification (i.e. the higher the confidence, the bet-

ter, using data points confidence class higher than 7). Yet,

this is not always true as the confidence represents dif-

ferent classes (i.e. ‘homologous protein assigned’ as tar-

get vs. ‘direct target assigned’). Hence some confidence

classes are not compatible with each other for the goal

pursued by a method. An example of a confidence class

8 assay is: CHEMBL884791 and an example of a class 9

assay is CHEMBL1037717. Both compound series have

been tested on the Adenosine A2A receptor but in the for-

mer case it was obtained from bovine striatal membrane

and the latter explicitly mentions human Adenosine A2A

receptors. In the current work, we chose consistently

class 9 (see the recent paper by the ChEMBL team on

data curation and methods for further details) [6].

It has been shown that compounds tend to bind to

more than one target, moreover compounds have some-

times been tested active on multiple proteins [12, 13].

�is activity spectrum can be modeled using (ensembles

of) binary class estimators, for instance by combining

multiple binary class RF models (Fig. 1). Another strat-

egy is to assemble one model with all targets, which can

be done in various ways. With multiclass QSAR (MC),

it can be predicted if a compound is active based on the

probability of belonging to the active target class versus

the inactive target class for a given target; each com-

pound-target combination is assigned ‘active’ or ‘inac-

tive’ (Fig. 1). Yet another approach is to apply machine

learning algorithms with added protein descriptors,

commonly known as proteochemometrics (PCM) [14,

15]. Targets are represented in the data in the form of

target descriptors and this is combined with compound

descriptors. Hence, instead of determining the activity

of a compound, the activity of a compound/protein pair

(Fig. 1) is determined. Explicitly quantifying this protein

similarity allows models to make predictions for tar-

gets with no or very little bioactivity data but for which

a sequence is known. Moreover, explicit protein features

allow interpretation of both the important protein and

ligand features from the validated model. �e relation-

ships between structure and biological activity in these

large pooled datasets are non-linear and best modeled

using non-linear methods such as Random Forests (RF)

or Support Vector Machines (SVM) with non-linear ker-

nels. Alternatively, when linear methods are used cross-

terms are required that account for the non-linearity [16].

Several of our models benchmarked here are multi-task,

however for simplicity we grouped the different methods

on underlying machine learning algorithm. Nevertheless,

multi-task learning has been shown to outperform other

methods in bioactivity modeling and the reader is referred

to Yuan et al. [17] for a more in depth analysis.

Another non-linear method is Deep Neural Networks

(DNNs), which have recently gained traction being suc-

cessfully applied to a variety of artificial intelligence tasks

such as image recognition, autonomously driving cars,

and the GO-playing program AlphaGO [18, 19]. Given

their relative novelty they will be introduced here in rela-

tion to our research but the reader is referred to LeCun

et al. [19] for a more extensive introduction of the subject.

Deep Neural Networks have many layers allowing them

to extract high level features from the raw data. DNNs

come in multiple shapes but here we focus only on fully

connected networks, i.e. networks where each node is

connected to all the nodes in the preceding layer. In feed

forward networks (such as implemented in the current

Page 3 of 14Lenselink et al. J Cheminform (2017) 9:45

work) information moves from the input layer to the out-

put layer through ‘hidden’ layers (which can be one layer

to many layers). Each hidden node applies a (usually) non-

linear response function to a weighted linear combination

of values computed by the nodes from the preceding layer.

By this, the representation of the data is slightly modified

at each layer, creating high level representations of the

data. �e behavior of the network is fully determined by

the weights of all connections. �ese weights are tuned

during the training process by an optimization algorithm

called backpropagation to allow the network to model

the input–output relation. �e major advantage of DNNs

is that they can discover some structure in the training

data and consequently incrementally modify the data rep-

resentation, resulting in a superior accuracy of trained

networks. In our research, we experimented with several

scenarios, such as training as many networks as the num-

ber of targets or just one network with as many output

nodes as the number of targets (Fig. 1).

DNNs have been applied to model bioactivity data

previously; in 2012 Merck launched a challenge to build

QSAR models for 15 different tasks [20]. �e winning

solution contained an ensemble of single-task DNNs, sev-

eral multi-task DNNs, and Gaussian process regression

models. �e multi-task neural networks modeled all 15

tasks simultaneously, which were subsequently discussed

in the corresponding paper [20]. Later (multi-task) DNNs

have also been applied on a larger scale to 200 different

targets [21], tested in virtual screening [22], and was one

of the winning algorithms of the Tox21 competition [23].

Recently different flavors of neural networks also have

shown to outperform random forests on various, diverse

cheminformatics tasks [24]. Hence, DNNs have demon-

strated great potential in bioactivity modeling, however

they have not been tested in a PCM approach to the best

of our knowledge. �erefore, they have been included in

our research as this technique may become the algorithm

of choice for both PCM and QSAR.

Summarizing, we perform a systematic study on a high

quality ChEMBL dataset, using two metrics for validation

Mathews Correlation Coefficient (MCC) and Boltzmann-

Enhanced Discrimination of ROC (BEDROC). �e MCC

was calculated to represent the global model quality, and

has been shown to be a good metric for unbalanced data-

sets [25]. In addition, BEDROC represents a score that is

more representative of compound prioritization, since it

is biased towards early enrichment [26]. �e BEDROC

score used here (α = 20) corresponds to 80% of the score

coming from the top 8%.

We compare QSAR and PCM methods, multiple algo-

rithms (including DNNs), the differences between binary

class and multi-label models, and usage of temporal vali-

dation (effectively validating true prospective use). We

used both open- and closed-source software, we pro-

vide the dataset and predictions, PP protocols to gener-

ate the dataset, and scripts for the DNNs hosted by 4TU.

ResearchData. (see Section Availability of data and

materials).

Hence, the current work contributes to the literature by

providing not only a standardized dataset available to the

Fig. 1 Differences between methods for modeling bioactivity data exemplified by the ligand adenosine which is more active (designated as

‘active’) on the adenosine A2A receptor, than on the A2B receptor (‘inactive’, using PChEMBL > 6.5 as a cutoff). With binary class QSAR, individual

models are constructed for every target. With multiclass QSAR one model is constructed based on the different target labels (A2A_active, A2B_inac-

tive). With PCM one model is constructed where the differences between proteins are considered in the descriptors (i.e. based on the amino acid

sequence). With multiclass DNN a single output node is explicitly assigned to each target

Page 4 of 14Lenselink et al. J Cheminform (2017) 9:45

public, but also a realistic estimate of the performance

that published methods can currently achieve in preclini-

cal drug discovery using public data.

Results and discussion

Random split partition

Firstly, the accuracy of all algorithms was estimated with

help of the random split method (Fig. 2). Models were

trained on 70% of the random split set and then validated

on the remaining 30%. Validation of the classifier predic-

tions on a multi-target dataset such as this one can be

done either based on all predictions in a single confusion

matrix or by calculating a confusion matrix per target

and subsequently using the mean value. Both methods

provide relevant information, thus we followed both and

show the mean and the standard error of the mean (SEM)

obtained from these two sets of experiments. Multiclass

Random Forests were trained but omitted due to their

poor performance (as can be seen in Additional file 1:

Tables S1, S2). For Logistic Regression (LR) or SVM no

PCM models were completed. An LR PCM model would

require cross terms due to linearity, which would make

a direct comparison impossible. Training of SVM PCM

models was stopped after running for over 300 h. Since

results for Python (with scikit-learn) and Pipeline Pilot

(PP, using R-statistics) were comparable in most cases,

the results reported here are for the Python work with

the PP results in the Additional file 1. �e exception is

the 10 μM NB model, trained in PP which is our baseline

model. Individual results for all methods are reported in

the Additional file 1: Table S2.

�e average MCC of all algorithms is 0.49 (±0.04),

underlining the predictive power of most methods. �e

mean BEDROC was 0.85 (±0.03), which corresponds

with a high early enrichment. �e performance of all

DNNs are well above the average performance, both in

terms of MCC and BEDROC. �e best method overall is

the DNN_MC with an MCC of 0.57 (±0.07), and a BED-

ROC score of 0.92 (±0.05). DNN_PCM is performing

slightly worse (MCC of 0.55 ± 0.07), but slightly better

in terms of BEDROC (0.93 ± 0.03) and the DNN follows

[MCC of 0.53 (±0.07) and BEDROC of 0.91 (±0.05)].

�e worst performing method is the NB 10 µM (MCC

of 0.19 ± 0.01 and BEDROC 0.66 ± 0.05), where NB

(using the 6.5 log units activity threshold) performs

around the mean of all performing methods (MCC of

0.41 ± 0.03 and BEDROC 0.79 ± 0.08). Indeed, using an

activity threshold of 6.5 log units appears to improve per-

formance. Surprisingly LR performed above the average

(MCC of 0.51 ± 0.06 and BEDROC 0.88 ± 0.06). How-

ever, large differences were observed between LR in Pipe-

line Pilot and Python, most likely due to the fact that the

latter uses regularization (Additional file 1: Table S1).

Overall it is found that high/low MCC scores, typically

also corresponded with high/low BEDROC scores with

some exceptions. Most notably was the RF_PCM model

which was the best performing model in terms of MCC

(MCC of 0.60 ± 0.07), but underperformed in terms of

BEDROC (BEDROC 0.83 ± 0.08). Moreover, judged on

MCC the QSAR implementation of RF outperforms SVM

(MCC of 0.56 ± 0.07 vs. 0.50 ± 0.07). Yet, based on the

BEDROC, SVM outperforms the RF model (BEDROC

Fig. 2 Performance of the different methods in the random split validation, grouped by underlying algorithm and colored by metric used. On the

left y-axis, and in blue the MCC is shown, while on the right y-axis and in red the BEDROC (α = 20) score is shown. Default, single class algorithms are

shown, and for several algorithms the performance of PCM and multi-class implementations is shown. Error bars indicate SEM. Mean MCC is 0.49

(±0.04) and mean BEDROC is 0.85 (±0.03)

Page 5 of 14Lenselink et al. J Cheminform (2017) 9:45

0.88 ± 0.05 vs. 0.82 ± 0.03). Based on this we pose that

SVMs are better in predicting top ranking predictions,

but RFs are better in predicting negative predictions.

While these results look encouraging, it should be

noted that in a random splitting scenario all data points

(measured activities of protein-compound combinations)

are considered separate entities. Hence, members of a

congeneric compound series from a given publication

can be part of the test set while the remaining are part

of the training set (see “Methods” section—validation

partitioning). �erefore, this method is expected to give

an optimistic estimate of model performance; for a more

representative performance estimate, a more challenging

validation is exemplified below.

Temporal split partition

In the temporal split, training data was grouped by pub-

lication year rather than random partitioning (Fig. 3). All

data points originating from publications that appeared

prior to 2013 were used in the training set, while newer

data points went into the validation set. Using temporal

split we aim to minimize the effect that members of a

congeneric chemical series are divided over training and

test set. Temporal split has previously been shown to be a

better reflection of prospective performance, than other

validation schemes [27].

All methods performed worse than on the random split

benchmark. �e average MCC dropped to 0.18 (±0.03)

from 0.49 (±0.04) in the random split with a similar pic-

ture for the BEDROC 0.66 (±0.03) from 0.85 (±0.03). A

paired t test p value <0.01 for both MCC and BEDROC

was obtained, confirmed that this is indeed a significantly

more challenging form of validation (Additional file 1:

Table S2).

Large differences between methods are observed, for

instance the RF model in terms of MCC is perform-

ing around the average, but both RF and RF_PCM

underperform in terms of early enrichment (BEDROC

0.54 ± 0.03 and 0.56 ± 0.04 vs. the mean 0.66 ± 0.03).

SVM (MCC of 0.22 ± 0.07 and BEDROC 0.69 ± 0.07)

performed in between the DNNs and RF models.

Both NB 10 µM and NB underperform based on MCC

and BEDROC. Finally, all DNNs outperformed the

other methods both in terms of MCC (0.22 ± 0.08–

0.27 ± 0.07) and even more so in terms of BEDROC

(0.73 ± 0.06–0.78 ± 0.07). For the DNN_PCM, we

found that for targets with few data points in the train-

ing set, the PCM models were able to extrapolate pre-

dictions (Additional file 1: Figure S4).

Summarizing, the lower performance observed here is

more in line with the performance that can be expected

from a true prospective application of these types of

models. It has been suggested in literature that also tem-

poral splitting is not ideal, but it still provides a more

challenging form of validation and better than leaving out

chemical clusters [27]. Hence, this make temporal split

validation a better way to validate computational models.

Yet, in addition to raw performance, training time is also

of importance.

Run time

Quick training models allow for easy retraining when

new data becomes available, models that require a long

time are not readily updated, making their maintenance a

Fig. 3 Performance of the different methods in the temporal split validation, grouped by underlying algorithm and colored by metric used. On the

left y-axis, and in blue the MCC is shown, while on the right y-axis and in red the BEDROC (α = 20) score is shown. Default, single class algorithms are

shown, and for several algorithms the performance of PCM and multi-class implementations is shown. Error bars indicate SEM. Mean MCC is 0.17

(±0.03) and mean BEDROC is 0.66 (±0.03)

Page 6 of 14Lenselink et al. J Cheminform (2017) 9:45

tradeoff. It was found that on our hardware most models

could be retrained in under 10 h. �is training time cor-

responds with an overnight job (Additional file 1: Table

S3).

One point should be visited, NB in Pipeline Pilot was

considerable slower than the NB trained in scikit-learn

(20 min in scikit-learn compared with 31 h, Additional

file 1: Table S3). �is is caused by the calculation of the

background scores (see “Methods” section for details) as

was done previously [28]. Calculation of z-scores requires

the prediction of all ligand—protein interactions in the

matrix and is a lengthy procedure regardless of the high

speed of NB. As can be seen, the NB 10 µM models do

not suffer this penalty (as they do not use z-score calcula-

tion) and are hence the fastest.

When we compare training time with MCC and BED-

ROC, we observe that training times do not directly

correlate with the quality of the model. In both cases a

weak trend is observed between performance and train-

ing time (R2 0.25 and 0.38 respectively, Additional file 1:

Figure S5). It should be noted that RF can be trained in

parallel (on CPUs) leading to a speedup in wall clock

time but that there is a saturation around 40 cores [29].

In addition, the parallel implementation requires instal-

lation of additional third party packages such as ‘foreach’

for the R implementation [30]. In scikit-learn this works

more efficiently, however, in both cases running in paral-

lel increases memory consumption. Note that a GPU ver-

sion of RF (CUDAtrees) was published in 2013 but this

package is no longer maintained (abandoned November

2014). Hence, while RF can be optimized, this is not as

straightforward as in DNN. Still, it should be noted that

the GPU-implementation of the DNN speeds up the

calculation about ~150 times when compared with the

CPU-implementation (benchmarked on a single core);

this makes GPUs a definite requirement for the training

of DNNs.

Ranking the various methods

To accurately compare the methods, 4 z-scores were

calculated for each method and metric within the

experiments (random split MCC, random split BED-

ROC, temporal split MCC, and temporal split BED-

ROC, Table 1 and Fig. 4). Herein DNNs are found to

be the best algorithm, and have the most consistent

performance. For instance, for DNN the best model

(DNN_PCM) has an average z-score of 0.96 (±0.19),

compared to −0.69 (±0.04) for the best NB model and

a slightly better −0.21 (±0.41) for the best RF model.

Moreover, the three best methods based on the average

z-score are all DNNs, which are subsequently followed

by SVM (0.32 ± 0.09). Furthermore, the DNNs perform

the best in all types of validations in terms of BEDROC

and MCC, with a single exception (the random split

MCC where RF_PCM is the best as can be observed in

italics in Table 1). To confirm whether the observed dif-

ferences were actually statistically significant, the fol-

lowing tests were performed: the paired Student’s T Test

(determine whether the means of two groups differ), the

F Test (determine whether the variances of groups dif-

fer), Wilcoxon Rank test (determine whether sets have

the same median), and the Kolmogorov–Smirnov test

(determine whether two samples come from the same

random distribution). Results can be found in the Addi-

tional file 1: Tables S4, S5, S6 and S7, here the results

will be summarized.

For the Student’s T Test DNN_PCM and DNN_MC

are shown to significantly differ from all other methods

with a p value <0.05 except for RF and RF_PCM, where

the p values are 0.05, 0.06 (2 times), and 0.07. DNN is

seen to differ significantly from NB 10 μM, NB, and LR.

Likewise, NB 10 μM differs significantly from all other

methods with the p value <0.05 with the exception of NB,

where the p value is 0.06. It can hence be concluded that

there are little differences in performance using RF, SVM,

Table 1 Overview of the performance of the benchmarked methods expressed as z-scores per experiment

Z-scores are shown for all methods for both types of splitting and for both MCC and BEDROC. In italics the best performance for a given machine learning algorithm

per column is highlighted. See main text for further details

Method MCC random BEDROC random MCC temporal BEDROC temporal Average SEM

NB 10 μM −2.41 −2.22 −2.07 −0.67 −1.84 0.40

NB −0.65 −0.66 −0.81 −0.64 −0.69 0.04

RF 0.56 −0.30 0.02 −1.41 −0.28 0.41

RF_PCM 0.88 −0.17 −0.46 −1.10 −0.21 0.41

SVM 0.11 0.36 0.53 0.30 0.32 0.09

LR 0.17 0.40 0.11 0.19 0.22 0.06

DNN 0.32 0.75 0.56 0.79 0.60 0.11

DNN_MC 0.60 0.85 1.03 1.20 0.92 0.13

DNN_PCM 0.44 0.98 1.09 1.33 0.96 0.19

Page 7 of 14Lenselink et al. J Cheminform (2017) 9:45

and LR, whereas the use of NB is significantly worse than

the rest and usage of DNN leads to significantly better

results.

In the variances (F Test) less significant differences are

found. NB 10 μM differs significantly from NB, SVM,

LR. Similarly, NB differs significantly from RF, RF_PCM,

and DNN_PCM. RF and RF_PCM differ significantly

from SVM, LR, DNN (with the exception of the pair

RF_PCM–DNN which has a p value of 0.06). Hence in

general variance in SVM and LR differs significantly from

NB and RF, whereas between the other methods no real

significant differences exist.

�e results of the Wilcoxon and Kolgomorov–

Smirnov test were very similar to each other. For both,

the differences between SVM, LR, DNN, DNN_MC,

DNN_PCM on one hand and both NB 10 μM and NB

on the other hand are significant. Secondly, in both

DNN_MC differs significantly with RF, SVM, and LR.

Finally, DNN_PCM differs significantly with LR in

both. In general it can be concluded that NB and RF

methods differ significantly from other methods and

DNN_MC differs from most (based on the methods

median value and whether samples come from the

same random distribution).

In conclusion, here it was shown that DNN methods

generally outperform other algorithms and that this is a

statistically significant result. However, we used DNN as

is and it should be noted that there is room for improve-

ment by (among other things) inclusion of more informa-

tion and tuning of hyper parameters which will be further

explored in the next section.

Exploring the potential of DNNs

An additional reason that DNNs were of interest in this

study is the fact that they can process more informa-

tion without a high penalty in training time. Because in

general DNNs are quite sensitive to the choice of hyper

parameters, we explored a number of different param-

eters through a grid search based exploration of model

parameter space. For this we varied the architecture of

the networks, ranging from one layer of 1000 hidden

nodes (very shallow), to two layers of 2000 and 1000

nodes (shallow), to the default settings (4000, 2000, 1000

nodes) and the deepest network used here (8000, 4000,

2000 nodes).

In addition to the number of nodes we varied the drop-

out which represents the percentage of nodes that are

dropped randomly during the training phase, a technique

to prevent overfitting [31]. By default (as used above),

there is no dropout in the input layer and 25% on the hid-

den layers. However, in the increased dropout scenario

25% dropout is introduced in the input layer and in the

higher layers increased to 50%.

�irdly, the usage of more extensive compound

descriptors was investigated (up to 4096 bits and addi-

tional physicochemical descriptors) which was not pos-

sible with the RF and NB models due to computational

restraints.

Finally, differences between PCM, MC, and QSAR

were investigated. To test all these different combina-

tions mentioned above the maximum number of epochs

was decreased from 2000 to 500 (see “Methods” sec-

tion—machine learning methods—neural networks).

Fig. 4 Comparison of the mean z-scores obtained by the different methods. Bars are colored by method and error bars indicate SEM, best perfor-

mance is by the DNN (0.96 ± 0.19, 0.92 ± 0.13, and 0.60 ± 0.11 respectively), followed by SVM (0.32 ± 0.09), LR (0.22 ± 0.06), RF (−0.21 ± 0.41 and

−0.28 ± 0.41), and finally NB (−0.69 ± 0.04 and −1.84 ± 0.40)

Page 8 of 14Lenselink et al. J Cheminform (2017) 9:45

�ese settings were validated on the temporal split

because it represents a more realistic and more chal-

lenging scenario as shown in “Temporal split partition”

section.

�e predictive performance of all the DNNs are sum-

marized in Fig. 5, while performance of individual mod-

els is shown in Additional file 1: Figure S6. Improvements

are expressed in the percentage of increase over the base-

line performance as demonstrated by the DNN_PCM

covered in “Temporal split partition” section (temporal

split). Based on these results the following can be con-

cluded. First of all, performance using a longer bit string

is better (9% improvement for 4096 bits with extra fea-

tures compared to the baseline), with on the low end of

the performance spectrum the 256 bits that were used

prior to this optimization (average decrease of 2% in the

grid search). �is intuitively makes sense as the shorter

fingerprints contain less information. Moreover, it could

be that distinct chemical features computed by the fin-

gerprint algorithm hash to the same bit. In that case a

specific bit could represent the presence of multiple fea-

tures, which is more likely to happen with a shorter fin-

gerprint. Furthermore, out of the models trained with

256 bits descriptors for ligands, the PCM DNN consist-

ently outperformed the others, likely due to the fact that

PCM profits from the added protein features also con-

taining information.

Of the three different DNNs, PCM slightly outperforms

the other methods (average improvement 8%), although

examples of both single and multi-task models are also

found in the top performing methods (average increase

2 and 2% respectively). With regard to the architecture,

deep and wide networks seem to perform best (e.g. archi-

tecture 3 with an average increase of 12%), although

some of the shallow, multiclass and binary class networks

(architecture 7) are also found in the top performing

methods.

Overall it seems that increasing dropout leads to a

poorer performance. Since dropout is a technique to pre-

vent overfitting, a DNN can be considered as under fitted

if dropout is too strict. �is is confirmed by these results,

as higher dropout rates and dropout on the visible layer

(the fingerprint/feature layer) results in a drop of accu-

racy (1 vs. 2 and 3 vs. 4). Moreover, if all increased drop-

out results and normal dropout results are aggregated,

increased dropout performs near identical to the baseline

(0%) and the normal dropout architectures (on average)

perform 7% better than baseline. �erefore, an option to

be considered is a less aggressive dropout. Alternatively

lowering the dropout percentage adaptively (during the

training), similar to the learning rate would be an option

too.

Finally, the best performance is observed by using

an ensemble of the predictions from all models, for

Fig. 5 Average performance of the individual DNN grouped per method, architecture and descriptors. Average value is shown for all models

trained sharing a setting indicated on the x-axis, error bars represent the SEM of that average. Black bars on the left represent the ensemble methods

(average value and majority vote). Grey bars on the right indicate the previous best performing DNN (DNN_PCM), NB with activity cut-off at 6.5 log

units and z-score calculation, and default NB with activity cut-off at 10 μM. We observed PCM to be the best way to model the data (green bars),

architecture 3 to be the best performing (blue bars), and usage of 4096 bit descriptors with additional physicochemical property descriptors to

perform the best (red bars). Using ensemble methods further improves performance (black bars)

Page 9 of 14Lenselink et al. J Cheminform (2017) 9:45

instance by using a majority prediction or an average

vote (improvement 25 and 26%, black bars Fig. 5). �is

improvement suggests that there is still room for further

improvement and only the surface was scratched in this

work. Indeed, ensembles of different machine learn-

ing methods, including neural networks have been used

to achieve competitive results on bioactivity prediction

tasks. More context will be discussed below.

Putting this work into context

As touched upon, ChEMBL has fueled a diverse array of

publications and this discussion is limited to the most

relevant and recent ones in the context of this paper. For

instance Mervin et al. constructed a (Bernoulli) Bayes-

ian model on both ChEMBL and PubChem data [32].

To balance the class sizes, a sphere exclusion algorithm

was used to extract putative inactive data. A different

threshold was used (10 μM, pChEMBL = 5) compared

to the current study, and PubChem data in addition to

the ChEMBL data was used. Also in the current work, it

was found that inclusion of inactive molecules enhanced

the performance for the Naïve Bayes models (Additional

file 1: Table S8).

A later study by Lusci et al. [33] that was performed on

ChEMBL data release 13 benchmarked the performance

of a number of different algorithms. Similar to the cur-

rent work the authors performed a temporal validation

(on ChEMBL release 13) as a more realistic estimate of

model performance. �ey also found that their method,

potency-sensitive influence relevance voter (PS-IRV)

outperformed other methods such as RF and SVM. How-

ever, here it is proposed that limiting the training set to

high quality data with only the highest confidence from

ChEMBL, leads to better performance. �is is also cor-

roborated by the AUC values obtained by Lusci et al. on

their full set and the higher values obtained in the current

work. IRV has been benchmarked before [34], and can be

seen as an extension of K-nearest neighbors in a shallow

neural network. In that study, random molecules were

added (presumably inactive), in addition to the experi-

mentally inactive molecules to boost results. Inclusion of

more data, and more specifically inactive molecules is a

line of future investigation we also aim to pursue.

Regarding the DNNs, the influence of network archi-

tecture has been studied before [20], where it was noted

that the number of neurons especially impacts the per-

formance of deeper structured networks. �is corre-

sponds to our observations where the deepest and widest

network performed best. Further fine-tuning of the archi-

tecture might be worthwhile; in multi-task networks

trained for the Tox21 challenge up to 4 layers with 16,384

units were used [23]. Additionally, it was found that mul-

ticlass networks outperformed binary class networks,

and similar gains in performance were observed on the

joint (multi-task) DNN published by Ma et al. [20]. �is

is also in line with our own results where DNN is seen

to slightly improve over state of the art methods such as

RF and SVM, but DNN_MC and DNN_PCM are demon-

strated to really improve performance.

Finally, work by Unterthiner et al. demonstrated similar

DNN performance [22]. �ough the authors did not cal-

culate the BEDROC, they obtained an AUC of 0.83 versus

the here obtained AUC of 0.89 (Additional file 1: Table

S1). Interestingly, they found a worse NB performance

(AUC 0.76 vs. 0.81) compared to the current work [22].

�is divergence is potentially caused by the fact that their

dataset included lower quality ChEMBL data, which was

the main reason for assembling the current benchmark

dataset. Moreover, Unterthiner et al. used much larger

feature input vectors, requiring ample compute power

to use the non-DNN based algorithms. We have shown

that we can achieve similar performance on a smaller

dataset with fewer fingerprint features, suggesting that

there is much room for improvement by hyperparameter

optimization. Furthermore, Unterthiner et al. used a cost

function weighted, based on the dataset size for every

target. In our hands, experimentation choosing different

weights inversely proportional to the target dataset size

did not improve the performance of the models, however

this can be further be explored. Finally, we have shown

that usage of (simple) ensemble methods outperformed

a single DNN alone, hence more sophisticated ensemble

methods and inclusion of different models is a worthy

follow up.

DNNs have also been applied with promising results

to the prediction of Drug-Induced Liver Injury [35],

although a different descriptor was used than the conven-

tional fingerprints, i.e. directed acyclic graph recursive

neural networks [36]. Similarly, convolutional networks

were recently applied to molecular graphs, outperform-

ing extended connectivity fingerprints (ECFP) [37].

Interestingly, contrary to ECFP, such graphs are directly

interpretable [38]. �is work was further extended to a

diverse palate of different cheminformatics datasets, in

MoleculeNet, where a lot of different architectures have

been tested and compared [24]. Moreover, these meth-

ods are also publicly available in the form of the package

DeepChem, a package for DNNs that is actively main-

tained. Future work will focus on using such models, and

thus more tailored architectures to create ChEMBL wide

bioactivity models.

Conclusions

We have created and benchmarked a standard-

ized set based on high quality ChEMBL data (ver-

sion 20). �is dataset, together with the scripts used is

Page 10 of 14Lenselink et al. J Cheminform (2017) 9:45

available online, and can serve as a standardized dataset

on which novel algorithms can be tested. Moreover, we

have tested and compared a diverse group of established

and more novel bioactivity modeling methods (descrip-

tors, algorithms, and data formatting methods). To the

best of our knowledge this is the first paper wherein

in Deep Learning is coupled to proteochemometrics.

Finally, we have explored the potential of DNNs by tun-

ing their parameters and suggested ways for further

improvement.

From our results we draw a number of conclusions.

Most of the methods and algorithms can create models

that are predictive (performs better than random). Train-

ing time versus accuracy is a less relevant issue as the

best performing methods required less than 10 h. Com-

monly used ‘random split’ partitioning might lead to an

overly optimistic performance estimate. It is proposed to

split training and tests sets based on time-based differ-

ences, providing a more challenging and more realistic

performance estimate. It should also be noted that active

and inactive compound-target combinations can impact

the performance.

Focusing on machine learning methods, usage of

DNN based models increases model prediction qual-

ity over existing methods such as RF, SVM, LR, and NB

models. �is is especially true when using multi-task or

PCM based DNNs and less so when using single task

DNNs. As an added benefit, this gain in performance is

not obtained at the expense of highly increased training

times due to deployment of GPUs.

It was shown that the widest and deepest DNN archi-

tectures produced the best results in combination with

the most descriptor features. �ere is certainly still room

for improvement as hardware (memory) limitations or

extreme training times were not reached. Moreover,

model ensembles of the 63 individual models further

enhanced the results yielding performance that was 27%

better than the best performing model prior to tuning,

indicating that indeed better results are possible.

Taken together, we anticipate that methods discussed

in this paper can be applied on a routine basis and can be

fine-tuned to the problem (e.g. target) of interest. Moreo-

ver, due to low training time and high performance we

anticipate that DNNs will become a useful addition in the

field of bioactivity modeling.

Methods

Dataset

Data was obtained from the ChEMBL database (version

20) [4], containing 13,488,513 data points. Activities were

selected that met the following criteria: at least 30 com-

pounds tested per protein and from at least 2 separate

publications, assay confidence score of 9, ‘single protein’

target type, assigned pCHEMBL value, no flags on poten-

tial duplicate or data validity comment, and originating

from scientific literature. Furthermore, data points with

activity comments ‘not active’, ‘inactive’, ‘inconclusive’,

and ‘undetermined’ were removed.

If multiple measurements for a ligand-receptor data

point were present, the median value was chosen and

duplicates were removed. �is reduced the total number

of data points to 314,767 (Additional file 1: Figure S2), or

approximately 2.5% of the total data in ChEMBL 20.

Typically, studies have used thresholds for activ-

ity between 5 and 6 [10, 11, 32, 33]. Data points here

were assigned to the ‘active’ class if the pCHEMBL

value was equal to or greater than 6.5 (corresponding to

approximately 300 nM) and to the ‘inactive’ class if the

pCHEMBL value was below 6.5. �is threshold gave

a good ratio between active and inactive compounds.

Around 90% of the data points are active when a thresh-

old of 10 μM is used, while a roughly equal partition

(55/45%) occurs at a threshold of 6.5 log units (Additional

file 1: Figure S3). Additionally, it represents an activity

threshold that is more relevant for biological activity.

�e final set consisted of 1227 targets, 204,085 com-

pounds, and 314,767 data points. Taken together

this means the set 0.13% complete (314,767 out of

250,412,295 data points measured). Moreover, on average

a target has 256.5 (±427.4) tested compounds (median

98, with values between 1 and 4703).

ChEMBL L1 and L2 target class levels were investi-

gated. For the L1 targets, most dominant are enzyme

(144,934 data points) followed by membrane recep-

tor (113,793 data points), and ion channel (16,023 data

points). For the L2 targets G Protein-Coupled Receptors

are most dominant (104,668 data points), followed by

proteases (34,036 data points), and kinases (31,525 data

points). See Additional file 1: Figure S7 for a graphical

view. Finally, each compound has on average been tested

on 1.5 (±1.3) targets (median 1, with values between 1

and 150). In total the set contained 70,167 Murcko scaf-

folds [39].

Compound descriptors

Fingerprints used were RDKit Morgan fingerprints,

with a radius of 3 bonds and a length of 256 bits. For

every compound the following physicochemical descrip-

tors were calculated: Partition Coefficient (AlogP) [40],

Molecular Weight (MW), Hydrogen Bond Acceptors

and Donors (HBA/HBD), Fractional Polar Surface Area

(Fractional PSA) [41, 42], Rotatable Bonds (RTB). For

descriptors used in the PP context please see Additional

file 1: Methods.

Page 11 of 14Lenselink et al. J Cheminform (2017) 9:45

Protein descriptors

For the PCM models, protein descriptors were calculated

based on physicochemical properties of amino acids sim-

ilar to previous work [43, 44]. However, lacking the abil-

ity to properly align all proteins, descriptors were made

alignment independent which is different from our pre-

vious work. �e sequence was split into 20 equal parts

(where part length differed based on protein length). Per

part, for every amino acid the following descriptors were

calculated: Amount of stereo atoms, LogD [40], charge,

hydrogen bond acceptors and hydrogen bond donors,

rigidity, aromatic bonds, and molecular weight. Subse-

quently per part the mean value for each descriptor was

calculated, and repeated for the whole protein, calculat-

ing the mean value for the full sequence length. Leading

to an ensemble of 21 * 8 mean physicochemical property

values (20 parts + global mean). Furthermore, sequence

length was included as separate descriptor. It should

be noted that this type of descriptor is a crude protein

descriptor at best with significant room for improvement.

However, the descriptor captures similarity and differ-

ences between the proteins and it is shown to improve

model performance over models lacking this descriptor.

Optimizing this descriptor is judged to be out of scope of

the current work but planned for follow up.

Machine learning: NB, RF, SVM, and LR models

Models were created using scikit-learn [45]. Naïve Bayes

models were trained using the same procedure as Mul-

tinomialNB [46]. A reference NB model with an activity

threshold of 10 μM was included using PP and default

setup.

RF were trained using the RandomForestClassifier. �e

following settings were used: 1000 trees, 30% of the fea-

tures were randomly selected to choose the best splitting

attribute from, with no limit on the maximum depth of

the tree.

SVMs were trained using the SVC class, using the fol-

lowing settings: radial basis function kernel wherein

gamma was set at 1/number of descriptors. Further

parameter cost was set at 1 and epsilon was set at 0.1.

For LR, the LR class of the linear_model package was

used. �e settings were mostly set to default, except for

the solver, which was set to Stochastic Average Gradient

descent with a maximum of 100 iterations.

Machine learning: neural networks

In our experiments, we used a network with the following

architecture: an input layer with, for example, 256 nodes

representing 256 bit fingerprints, connected to 3 hidden

layers of 4000, 2000, 1000 of rectified linear units (ReLU)

and an output layer with as many nodes as the number

of modeled targets (e.g. 1227 for the multi-task network).

ReLU units are commonly used in DNNs since they are

fast and unlike other functions do not suffer from a van-

ishing gradient. �e output nodes used a linear activation

function. �erefore, the original pChEMBL values were

predicted and were subsequently converted to classes

(pChEMBL ≥ 6.5 = active, pChEMBL < 6.5 = inactive).

�e target protein features and physicochemical fea-

tures in the input layer were scaled to zero mean and unit

variance. �e output for a particular compound is often

sparse, i.e. for most targets there will be no known activ-

ity. During training, only targets for which we have data

were taken into account when computing the error func-

tion to update the weights. We chose to equally weight

each target, for which we had data.

For training our networks we used stochastic gradient

descent with Nesterov momentum which leads to faster

convergence and reduced oscillations of weights [47].

Data was processed in batches of size of 128. After the

neural network has seen all the training data, one epoch

is completed and another epoch starts.

Moreover, after every epoch the momentum term was

modified: the starting Nesterov momentum term was

set to 0.8 and was set to 0.999 for the last epoch (scaled

linearly). Likewise, during the first epoch the learning

rate (the rate at which the parameters in the network are

changed) was set to 0.005 and scaled to 0.0001 for the

last epoch. �ese settings were decreased/increased on

a schedule to allow for better convergence, increasing

the momentum allows for escaping local minima while

decreasing the learning rate decreases the chance of

missing a (global) minimum.

To prevent overfitting of the networks, we used 25%

dropout on the hidden layers together with early stop-

ping [31]. �e early stopping validates the loss on an eval-

uation set (20% of the training data) and stops training if

the network does not improve on the evaluation set after

200 epochs (Additional file 1: Figure S7). �e maximum

number of iterations was set to 2000 epochs. Dropout is

a technique to prevent overfitting, by discarding, in each

iteration of the training step, some randomly chosen

nodes of the network.

To find the optimal network configuration we used grid

search, limiting the number of epochs to 500 to speed up

the training. In total, 63 individual models were trained

to validate the influence of different descriptors, archi-

tecture and type of neural network (Additional file 1:

Figure S6). Due to problems with the stochastic gradient

descent, for the PCM models with 4096 fingerprints plus

physicochemical chemical properties, architectures 2, 4,

6 (Additional file 1: Figure S6); a batch size of 256 instead

of 128 was used. In all cases where physicochemical

chemical properties were used, they were scaled to zero

mean and unit variance.

Page 12 of 14Lenselink et al. J Cheminform (2017) 9:45

In our experiments with neural networks we used

nolearn/Lasagne and �eano packages [48–50] and

GPU-accelerated hardware. �e main script for train-

ing the networks is available in the supporting dataset

deposit (‘FFNN.py’ and ‘instructions_DNN.pdf ’).

Validation metrics

We used the MCC and BEDROC as a primary valida-

tion metrics [26, 51, 52]. BEDROC (α = 20), which cor-

responds to 80% of the score coming from the top 8% was

used [26]. �is was done to evaluate the performance in

a prospective manner, where often the top % scoring hits

is purchased.

Four separate MCCs and BEDROCs were calculated.

One value for the pooled predictions (pooling true posi-

tives, false positives, true negatives, and false negatives)

was calculated, and secondly an average MCC was calcu-

lated based on the MCC values per protein. Of these two

values the mean is visualized in Figs. 2 and 3, with the

unprocessed values given in Additional file 1: Tables S1,

S2. �is was done for both the random split set and tem-

poral split set.

When no predictions were made for a given target-

compound combination a random number was gen-

erated for this pair between 0 and 1. �e reason for

this is that we aimed to simulate a true use case and

not cherry pick good or bad predictions. To be able to

compare prediction quality across the different meth-

ods random values were used, leading to MCC scores

close to 0 for these cases. For values >0.5 this score was

deemed ‘active’ and anything below 0.5 was deemed

‘inactive’.

Validation partitioning

Two different methods were applied to partition the data

in training/validation sets. �e first method that was

used was a ‘random split’, herein 10% of the data was par-

titioned using semi-stratified random partitioning with

a fixed random seed as implemented in PP and set apart

for future reference. �e remaining 90% was partitioned

in the same way in a 70% training and 30% test set.

For the second method, a separate set was constructed

wherein the year of the publication was the split crite-

rion. All data points originating from publications that

appeared prior to 2013 were used in the training set,

while newer data points went into the validation set.

Hardware

Experiments were performed on a Linux server running

CentOS 6.7. �e server was equipped with two Xeon

E5-2620v2 processors (hyperthreading disabled) and

128 GB RAM. GPUs installed are a single NVIDIA K40

and 2 NVIDIA K20 s.

Software used

Python (version 2.7) was used with the following librar-

ies: RDKit (version 2014.09.2) for the calculation of the

fingerprints and descriptors [53], scikit-learn version 0.16

for the NB and RF [45]. For the neural networks we used

�eano [54] and nolearn, together with Lasagne [49, 50].

For the supplementary information tables, Pipeline Pilot

(version 9.2.0) [55], including the chemistry collection

for calculation of descriptors, and R-statistics (R version

3.1.2) collection for machine learning [56] were used.

Algorithms only used in Pipeline Pilot are reported in the

Additional file 1: References.

Abbreviations

AUC: area under the curve; BEDROC: Boltzmann-enhanced discrimination of

receiver operator characteristic; DNN: deep neural networks; IRV: influence

relevance voter; LR: logistic regression; MCC: Matthews correlation coef-

ficient; NB: Naïve Bayes; PCM: proteochemometrics; PP: pipeline pilot; PS-IRV:

potency-sensitive influence relevance voter; PY: python; QSAR: quantitative

structure–activity relationship; RF: random forests; ROC: receiver operator char-

acteristic; SEM: standard error of the mean; SVM: support vector machines.

Authors’ contributions

EBL, GP, and GJPvW conceived the study. EBL, BB, NtD, and GJPvW performed

the experimental work and analysis. All authors read and approved the final

manuscript.

Author details
1 Division of Medicinal Chemistry, Drug Discovery and Safety, Leiden

Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300

RA Leiden, The Netherlands. 2 Leiden Institute of Advanced Computer Science,

Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands. 3 European

Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI),

Wellcome Genome Campus, Hinxton, Cambridge, UK. 4 Present Address:

GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage,

Herts SG1 2NY, UK.

Acknowledgements

The authors would like to acknowledge NVIDIA and Mark Berger for gener-

ously contributing the GPUs. GvW would like to thank Sander Dieleman and

Jan Schlüter for the fruitful discussion.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The dataset is available for download at 4TU.ResearchData. [57]

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Funding

Adriaan P. IJzerman and Eelke B. Lenselink thank the Dutch Research

Council (NWO) for financial support (NWO-TOP #714.011.001). Gerard J. P.

van Westen thanks the Dutch Research Council and Stichting Technologie

Additional �le

Additional �le 1: Contains information supporting the work published in

this paper in the form of 8 figures, 8 tables, and a methods section for the

work performed in Pipeline Pilot.

http://dx.doi.org/10.1186/s13321-017-0232-0

Page 13 of 14Lenselink et al. J Cheminform (2017) 9:45

Wetenschappen (STW) for financial support (STW-Veni #14410). George Papa-

datos thanks the EMBL member states for funding.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

Received: 18 April 2017 Accepted: 31 July 2017

References

 1. Protein Data Bank (2017) Yearly growth of total structures 2017 [July

7th 2017]. http://www.rcsb.org/pdb/statistics/contentGrowthChart.

do?content=total

 2. Hu Y, Bajorath J (2012) Growth of ligand–target interaction data in

ChEMBL is associated with increasing and activity measurement-depend-

ent compound promiscuity. J Chem Inf Model 52(10):2550–2558

 3. Jasial S, Hu Y, Bajorath J (2016) Assessing the growth of bioactive

compounds and scaffolds over time: implications for lead discovery and

scaffold hopping. J Chem Inf Model 56(2):300–307

 4. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2012)

ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic

Acids Res 40:D1100–D1107

 5. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M et al

(2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res

42:D1083–D1090

 6. Papadatos G, Gaulton A, Hersey A, Overington JP (2015) Activity, assay

and target data curation and quality in the ChEMBL database. J Comput

Aided Mol Des 29(9):885–896

 7. Kramer C, Kalliokoski T, Gedeck P, Vulpetti A (2012) The experimen-

tal uncertainty of heterogeneous public K(i) data. J Med Chem

55(11):5165–5173

 8. Jacob L, Hoffmann B, Stoven V, Vert JP (2008) Virtual screening of GPCRs:

an in silico chemogenomics approach. BMC Bioinform 9(1):363

 9. Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr (2014) Computational meth-

ods in drug discovery. Pharmacol Rev 66(1):334–395

 10. Nidhi T, Meir G, Davies JW, Jenkins JL (2006) Prediction of biological

targets for compounds using multiple-category bayesian models trained

on chemogenomics databases. J Chem Inf Model 46(3):1124–1133

 11. Bender A, Young DW, Jenkins JL, Serrano M, Mikhailov D, Clemons PA

et al (2007) Chemogenomic data analysis: prediction of small-molecule

targets and the advent of biological fingerprints. Comb Chem High

Throughput Screen 10(8):719–731

 12. Afzal AM, Mussa HY, Turner RE, Bender A, Glen RC (2015) A multi-label

approach to target prediction taking ligand promiscuity into account. J

Cheminform 7:24

 13. Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design

promiscuous drugs? Curr Opin Struct Biol 16(1):127–136

 14. van Westen GJP, Wegner JK, IJzerman AP, van Vlijmen HWT, Bender A (2011)

Proteochemometric modeling as a tool to design selective compounds

and for extrapolating to novel targets. Med Chem Commun 2(1):16–30

 15. Cortes-Ciriano I, Ain QU, Subramanian V, Lenselink EB, Mendez-Lucio O,

IJzerman AP et al (2015) Polypharmacology modelling using proteoch-

emometrics (PCM): recent methodological developments, applications to

target families, and future prospects. Med Chem Commun 6(1):24–50

 16. Wikberg JES, Lapinsh M, Prusis P (2004) Proteochemometrics: a tool for

modelling the molecular interaction space. In: Kubinyi H, Müller G (eds)

Chemogenomics in drug, discovery: a medicinal chemistry perspective.

Wiley, Weinheim, pp 289–309 . doi:10.1002/3527603948.ch10

 17. Yuan H, Paskov I, Paskov H, González AJ, Leslie CS (2016) Multitask

learning improves prediction of cancer drug sensitivity. Sci Rep 6:31619.

doi:10.1038/srep31619

 18. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G et al

(2016) Mastering the game of Go with deep neural networks and tree

search. Nature 529(7587):484–489

 19. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature

521(7553):436–444

 20. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a

method for quantitative structure-activity relationships. J Chem Inf Model

55(2):263–274

 21. Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D, Pande V (2015)

Massively multitask networks for drug discovery. arXiv:150202072

 22. Unterthiner T, Mayr A, Klambauer G, Steijaert M, Wegner JK, Ceulemans

H et al (2014) Deep learning as an opportunity in virtual screening. In:

Proceedings of the deep learning workshop at NIPS

 23. Mayr A, Klambauer G, Unterthiner T, Hochreiter S (2015) DeepTox: toxicity

prediction using deep learning. Front Environ Sci Eng China 3:80

 24. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS et al

(2017) MoleculeNet: a benchmark for molecular machine learning. arXiv

preprint arXiv:170300564

 25. Boughorbel S, Jarray F, El-Anbari M (2017) Optimal classifier for imbal-

anced data using Matthews Correlation Coefficient metric. PLoS ONE

12(6):e0177678

 26. Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good

and bad metrics for the “early recognition” problem. J Chem Inf Model

47(2):488–508

 27. Sheridan RP (2013) Time-split cross-validation as a method for estimating

the goodness of prospective prediction. J Chem Inf Model 53(4):783–790

 28. Mugumbate G, Abrahams KA, Cox JA, Papadatos G, van Westen G,

Lelièvre J et al (2015) Mycobacterial dihydrofolate reductase inhibitors

identified using chemogenomic methods and in vitro validation. PLoS

ONE 10(3):e0121492

 29. Christmann-Franck S, van Westen GJP, Papadatos G, Beltran Escudie F,

Roberts A, Overington JP et al (2016) Unprecedently large-scale kinase

inhibitor set enabling the accurate prediction of compound-kinase activi-

ties: a way toward selective promiscuity by design? J Chem Inf Model

56(9):1654–1675

 30. Analytics R, Weston S (2013) foreach: Foreach looping construct for R. R

Package Version 1(1):2013

 31. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014)

Dropout: a simple way to prevent neural networks from overfitting. J

Mach Learn Res 15(1):1929–1958

 32. Mervin LH, Afzal AM, Drakakis G, Lewis R, Engkvist O, Bender A (2015) Tar-

get prediction utilising negative bioactivity data covering large chemical

space. J Cheminform 7:51

 33. Lusci A, Browning M, Fooshee D, Swamidass J, Baldi P (2015) Accurate

and efficient target prediction using a potency-sensitive influence-

relevance voter. J Cheminform 7:63

 34. Swamidass SJ, Azencott C-A, Lin T-W, Gramajo H, Tsai S-C, Baldi P (2009)

Influence relevance voting: an accurate and interpretable virtual high

throughput screening method. J Chem Inf Model 49(4):756–766

 35. Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L (2015) Deep learning for drug-

induced liver injury. J Chem Inf Model 55(10):2085–2093

 36. Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning

in chemoinformatics: the prediction of aqueous solubility for drug-like

molecules. J Chem Inf Model 53(7):1563–1575

 37. Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-

Guzik A et al (eds) (2015) Convolutional networks on graphs for learning

molecular fingerprints. In: Advances in neural information processing

systems

 38. Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional

networks: visualising image classification models and saliency maps.

arXiv preprint arXiv:13126034

 39. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecu-

lar frameworks. J Med Chem 39(15):2887–2893

 40. Ghose AK, Viswanadhan VN, Wendoloski JJ (1998) Prediction of hydro-

phobic (lipophilic) properties of small organic molecules using fragmen-

tal methods: an analysis of ALOGP and CLOGP methods. J Phys Chem A

102(21):3762–3772

 41. Shrake A, Rupley JA (1973) Environment and exposure to solvent of

protein atoms. Lysozyme and insulin. J Mol Biol 79(2):351–371

 42. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface

area as a sum of fragment-based contributions and its application to the

prediction of drug transport properties. J Med Chem 43(20):3714–3717

 43. Van Westen GJP, Swier RF, Wegner JK, IJzerman AP, Van Vlijmen HWT, Bender

A (2013) Benchmarking of protein descriptors in proteochemometric mode-

ling (part 1): comparative study of 13 amino acid descriptors. J Cheminf 5:41

http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total
http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total
http://dx.doi.org/10.1002/3527603948.ch10
http://dx.doi.org/10.1038/srep31619
http://arxiv.org/abs/150202072
http://arxiv.org/abs/170300564
http://arxiv.org/abs/13126034

Page 14 of 14Lenselink et al. J Cheminform (2017) 9:45

 44. Van Westen GJP, Swier RF, Cortes-Ciriano I, Wegner JK, IJzerman AP, Van

Vlijmen HWT et al (2013) Benchmarking of protein descriptors in proteo-

chemometric modeling (part 2): modeling performance of 13 amino acid

descriptors. J Cheminf 5:42

 45. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O

et al (2011) Scikit-learn: Machine learning in python. J Mach Learn Res

12:2825–2830

 46. Manning CD, Raghavan P, Schütze H (2008) Introduction to information

retrieval. Cambridge University Press, Cambridge

 47. Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of

initialization and momentum in deep learning. ICML, pp 1139–1147

 48. Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G et al

(2010) Theano: a CPU and GPU math expression compiler. In: Proceedings

of the Python for Science Computer Conference (SciPy): Austin, TX, p 3

 49. Dieleman S, Schlüter J, Raffel C, Olson E, Sonderby SK, Nouri D et al (2015)

Lasagne: first release. Zenodo, Geneva

 50. Nouri D Nolearn: scikit-learn compatible neural network library. https://

github.com/dnouri/nolearn2014

 51. van Westen GJP, Gaulton A, Overington JP (2014) Chemical, target,

and bioactive properties of allosteric modulation. PLoS Comput Biol

10:e1003559

 52. Matthews BW (1975) Comparison of the predicted and observed second-

ary structure of T4 phage lysozyme. Biochim Biophys Acta 405(2):442–451

 53. Landrum G (2013) RDKit: cheminformatics and machine learning soft-

ware. http://www.rdkit.org

 54. Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N et al

(2016) Theano: a python framework for fast computation of mathemati-

cal expressions. arXiv preprint

 55. Accelrys Software Inc. (2015) Pipeline Pilot (Version 9.2): BioVia

 56. R Development Core Team (2006) R: a language and environment for

statistical computing. R Foundation for Statistical Computing

 57. Lenselink EB, ten Dijke N, Bongers BJ, Papadatos G, van Vlijmen,

HWT, Kowalczyk W et al. (2017) Beyond the hype: deep neural

networks outperform established methods using a ChEMBL bio-

activity benchmark set (Dataset). 4TU.ResearchData. doi:10.4121/

uuid:547e8014-d662-4852-9840-c1ef065d03ef

https://github.com/dnouri/nolearn2014
https://github.com/dnouri/nolearn2014
http://www.rdkit.org
http://dx.doi.org/10.4121/uuid:547e8014-d662-4852-9840-c1ef065d03ef
http://dx.doi.org/10.4121/uuid:547e8014-d662-4852-9840-c1ef065d03ef

	Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set
	Abstract
	Background
	Results and discussion
	Random split partition
	Temporal split partition
	Run time
	Ranking the various methods
	Exploring the potential of DNNs
	Putting this work into context

	Conclusions
	Methods
	Dataset
	Compound descriptors
	Protein descriptors
	Machine learning: NB, RF, SVM, and LR models
	Machine learning: neural networks
	Validation metrics
	Validation partitioning
	Hardware
	Software used

	Authors’ contributions
	References

