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SUMMARY

Recent advancements in the periodontal research field are consistent with a new model of

pathogenesis according to which periodontitis is initiated by a synergistic and dysbiotic microbial

community rather than by select ‘periopathogens’, such as the ‘red complex’. In this polymicrobial

synergy, different members or specific gene combinations within the community fulfill distinct

roles that converge to shape and stabilize a disease-provoking microbiota. One of the core

requirements for a potentially pathogenic community to arise involves the capacity of certain

species, termed ‘keystone pathogens’, to modulate the host response in ways that impair immune

surveillance and tip the balance from homeostasis to dysbiosis. Keystone pathogens also elevate

the virulence of the entire microbial community through interactive communication with

accessory pathogens. Other important core functions for pathogenicity require the expression of

diverse molecules (e.g. appropriate adhesins, cognate receptors, proteolytic enzymes and

proinflammatory surface structures/ligands), which in combination act as community virulence

factors to nutritionally sustain a heterotypic, compatible and proinflammatory microbial

community that elicits a non-resolving and tissue-destructive host response. On the basis of the

fundamental concepts underlying this model of periodontal pathogenesis, that is, polymicrobial

synergy and dysbiosis, we term it the PSD model.
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THE ‘RED COMPLEX’ AND THE MICROBIAL ETIOLOGY OF

PERIODONTITIS

There is an old story of a woman out walking when she encounters a boy with his dog.

‘That’s a nice dog’, says the woman, ‘what’s his name?’ ‘We call him Rover’ the boy

replies, ‘but we don’t know his real name’. The notion that individual organisms or even
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species may have properties that elude our classification systems is also applicable to

bacteria, which may have inherent characteristics that are independent of our attempts to

label them as ‘pathogens’ or ‘commensals’. Indeed, the distinction between pathogens and

commensals is becoming increasingly blurred, especially in diseases that ensue from the

action of bacteria that are also present in health and that involve complex host–microbe

interactions. Such a case, par excellence, is human periodontal disease. Not surprisingly,

therefore, periodontitis has a long and rich history of proposed microbial etiologies ranging

from the ‘non-specific plaque hypothesis’ to implication of specific and varied

microorganisms, including the oral protozoan Entamoeba gingivalis proposed a century ago

(see Table 1) (Socransky & Haffajee, 1994; Wade, 2011).

Much of our current appreciation of the microbial etiology of periodontitis derives from

detailed cultural characterization of the periodontal microbiota in the late 1970s and early

1980s. These studies revealed dramatic compositional changes to the microbiota in disease

as compared with health (Slots, 1977a,b; Socransky, 1977; Tanner et al., 1979; Moore et al.,

1982, 1983). One plausible interpretation was that these key findings pointed to bacterial

specificity in the etiology of periodontitis, in that the disease-associated microbiota

contained novel pathogenic species that were either absent or hardly detectable in health.

The quest to identify specific periodontal pathogens led to significant progress, including the

identification of a number of candidates and the characterization of putative virulence

factors thereof (Socransky et al., 1998; Holt & Ebersole, 2005). Using whole genomic DNA

probes and checkerboard DNA–DNA hybridization, Socransky and colleagues characterized

periodontal microbial communities on the basis of a color-coded system that reflected

cluster analysis, community ordination and associated disease severity (Socransky et al.,

1998). Foremost among these groups was the so-called ‘red complex’, a group of three

species including Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia,

the detection of which was strongly associated with each other and with diseased sites

(Socransky et al., 1998).

Partly because P. gingivalis was the easiest of the red complex bacteria to grow and

genetically manipulate, it became the most widely studied periodontal bacterium. Virulence

of the organism was attributed to an array of molecules, including colonization factors

(fimbriae and hemagglutinins) and functionally versatile proteolytic enzymes (gingipains)

(Lamont & Jenkinson, 1998). In a landmark study, P. gingivalis was shown to cause

periodontitis in non-human primates upon its oral implantation, which was interpreted as

evidence for a specific microbial etiology in periodontitis (Holt et al., 1988). More recently,

longitudinal human studies demonstrated that the progression of chronic periodontitis can be

predicted by the levels of P. gingivalis and T. denticola in subgingival plaque (Byrne et al.,

2009). The implication of specific periodontal bacteria as putative etiologic agents provided

rationale and impetus for experimental vaccination against periodontal disease (Persson,

2005). Additional work focused primarily on understanding cellular and molecular

pathogenic mechanisms of the red complex and certain other suspected pathogens (Cutler et

al., 1995; Sela, 2001; Holt & Ebersole, 2005; Sharma, 2010). As a note of caution, however,

most of this research was performed in the context of a conventional host–pathogen

interaction, as exemplified by diseases with defined infective etiology, and the extent to

which these virulence factors are operational in vivo remains to be determined.

The convenience and appeal of the concept of red, and other color-coded, complex(es) led to

widespread adoption up to the present day. However, as molecular-based approaches to

microbe detection became increasingly facile, and as studies using culture-independent

methodology for analysis of the periodontal microbiota became abundant, two newer

concepts emerged. First, red complex organisms such as P. gingivalis can be found in the

absence of disease, further argument against the organisms as classical exogenous pathogens
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(Ximenez-Fyvie et al., 2000a, b; Mayanagi et al., 2004; Diaz et al., 2006). Second, the

periodontal microbiota is more heterogeneous and diverse than previously thought

(Dewhirst et al., 2010; Curtis et al., 2011b; Griffen et al., 2011), with over 700 organisms

recognized as possible components, of which around 200 can be present in any one

individual and about 50 are present at any one site (Aas et al., 2005). Many of these newly

recognized organisms show as good or better a correlation with disease as the classical red

complex (Kumar et al., 2005, 2006; Griffen et al., 2012). Novel disease-associated species

include the gram-positive Filifactor alocis and Peptostreptococcus stomatis and other species

from the genera Prevotella, Megasphaera, Selenomonas, Desulfobulbus, Dialister and

Synergistetes (Paster et al., 2001; Kumar et al., 2003, 2005; Dewhirst et al., 2010; Griffen et

al., 2011, 2012). Moreover, contrary to the ‘dogma’ of gram-negative bacterial dominance in

periodontitis, gram-positive anaerobic species exhibit a significant increase in deep diseased

sites relative to healthy sites, and can be detected in greater abundance than gram-negative

species in some studies (Kumar et al., 2005). Many of these species are as yet to be

cultivated, however, study of the more tractable organisms is underway and F. alocis, for

example, has the potential to withstand oxidative stress (Aruni et al., 2011) and to induce

strong proinflammatory responses (Moffatt et al., 2011).

Although the pathogenic credentials of most of these newly recognized organisms remain to

be established, it is evident that the concept of a three-species red complex as representing

the primary etiologic unit in periodontitis requires refinement. Not only are there more

potential pathogens to consider, but these organisms can exhibit polymicrobial synergy

(discussed in more detail below). Furthermore, a disease-associated shift in the composition

of the periodontal microbiota could have alternative explanations. The findings could be

interpreted to imply that periodontitis is caused by a dysbiotic change in the periodontal

microbiota, that is, a change in the relative abundance of individual members of the

microbiota relative to their abundance in health. The altered microbiota could in turn lead to

changes in the host–microbe crosstalk sufficient to initiate chronic, non-resolving

inflammatory disease. Disease can then be seen in terms of an ecological catastrophe as

defined by Marsh (2003). In the following text we shall attempt to integrate these concepts

into a new model of periodontitis that accommodates the data derived from sequencing

projects, the interactions that occur among organisms and their differential pathogenicity

(Fig. 1).

THE PORPHYROMONAS GINGIVALIS PARADOX

To understand basic principles of periodontal microbial pathogenicity, it is instructive to

first consider the case of P. gingivalis. This organism can cause alveolar bone loss in animal

models of periodontal disease, although, as we shall see, pathogenicity is context dependent.

The low abundance of P. gingivalis in periodontitis-associated dental plaque was noted in

early bacteriological studies (Moore et al., 1982). This, together with findings that P.

gingivalis is not a potent inducer of inflammation by itself, presented an apparent paradox

that could not be readily reconciled with a proactive role in an inflammatory disease. For

instance, P. gingivalis expresses an atypical lipopolysaccharide with a 4-acyl

monophosphorylated lipid A moiety that can potently antagonize Toll-like receptor 4, unlike

the highly proinflammatory lipopolysaccharides of most other gram-negative bacteria (Coats

et al., 2009; Darveau, 2010). Porphyromonas gingivalis can invade and survive within

gingival epithelial cells; however, rather than causing host cell damage, internalized bacteria

induce an anti-apoptotic, prosurvival phenotype in host cells (Mao et al., 2007; Kuboniwa et

al., 2008) and downregulate expression of bacterial proinflammatory components such as

fimbrial proteins and proteases (Xia et al., 2007; Hendrickson et al., 2009). Moreover, in

contrast to other periodontal bacteria that stimulate interleukin-8 release from gingival

epithelial cells, P. gingivalis actually inhibits the production of this proinflammatory
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chemokine by means of a secreted serine phosphatase (SerB) (Darveau et al., 1998;

Hasegawa et al., 2008). The release of interleukin-8 by the junctional gingival epithelium is

regarded as an important feature of the healthy periodontium because it generates a gradient

for neutrophil recruitment into the gingival crevice (Tonetti et al., 1998; Darveau, 2010).

A recent study in mice has offered an explanation for this apparent paradox and proposed a

disease model that is consistent with the alternative interpretation of the periodontitis-

associated microbial shift. This study showed that P. gingivalis can impair innate immunity

in ways that enhance the growth and alter the composition of the periodontal microbiota

(Hajishengallis et al., 2011). Specifically, P. gingivalis, at low colonization levels (<0.01%

of the total microbiota), remodeled a symbiotic community into a dysbiotic state that

triggered inflammatory bone loss. Porphyromonas gingivalis failed to cause periodontitis in

the absence of commensal bacteria, i.e. in germfree mice, despite its ability to colonize this

host (Hajishengallis et al., 2011). The capacity of P. gingivalis to exert a community-wide

impact that tipped the balance towards dysbiosis, while being a quantitatively minor

constituent of this microbial community, has prompted its characterization as a keystone

pathogen, in analogy to the crucial role of a single keystone in an arch (Hajishengallis et al.,

2011).

The keystone effects of P. gingivalis are likely exerted via both host modulation and

bacterial synergy (discussed below). In terms of host modulation, P. gingivalis can

transiently inhibit the induction of gingival interleukin-8-like chemokines, which could

delay the recruitment of neutrophils and, thereby, facilitate its initial colonization and

promote the fitness of other organisms (Hajishengallis et al., 2011). However, the ability of

P. gingivalis to persist in the periodontium appears to depend on the complement C5

convertase-like activity of its gingipains and the instigation of a subversive crosstalk

between C5a receptor (C5aR) and Toll-like receptor 2 (Hajishengallis et al., 2011), earlier

shown to impede the killing capacity of leukocytes (Wang et al., 2010; Liang et al., 2011).

Consistent with this, P. gingivalis fails to cause dysbiosis and periodontitis in mice lacking

C5aR.

Although established in the mouse model, the keystone pathogen concept is consistent with

observations in other animal models and in humans (reviewed by Darveau et al., 2012).

Briefly, in rabbits, P. gingivalis causes a shift to a more anaerobic microbiota and an overall

increase in the bacterial load of the dental biofilm (Hasturk et al., 2007). In non-human

primates (Macaca fascicularis), where P. gingivalis is a natural inhabitant of the periodontal

biofilm, a gingipain-based vaccine causes a reduction in P. gingivalis numbers and in the

total subgingival bacterial load (Page et al., 2007), suggesting that the presence of P.

gingivalis benefits the entire community. A significant increase in the total microbial load is

also observed in human periodontitis compared with health (Socransky & Haffajee, 1994;

Darveau et al., 1997); however, it has not been yet addressed whether this is causally linked

to the presence of P. gingivalis or other bacteria acting as keystone pathogens. Nevertheless,

consistent with a keystone pathogen role, P. gingivalis is a quantitatively minor constituent

of periodontitis-associated biofilms (Moore et al., 1982; Doungudomdacha et al., 2000;

Kumar et al., 2006), despite its high prevalence and association with progressive bone loss

in periodontitis patients (Moore et al., 1991; Chaves et al., 2000).

The subversion of recruited leukocytes by P. gingivalis likely facilitates uncontrolled growth

of other species in the same biofilm. This disruption of tissue homeostasis, in turn may allow

other community members to trigger destructive inflammation. Such a host response, apart

from its adverse impact on the integrity of the periodontium, leads to tissue breakdown

products that serve the nutritional needs of the community at large (Gaffen & Hajishengallis,

2008). Consequently, the transition to a disease-provoking microbiota may be stabilized and,
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conversely, those species that cannot thrive under inflammatory environmental conditions,

or for which host inflammation is detrimental, may be outcompeted or eliminated. It should

be clarified, however, that disruption of tissue homeostasis followed by dysbiosis can also

be caused by host regulatory defects in the absence of a keystone pathogen. For instance,

genetic deficiency of Del-1, an endothelial cell-derived protein that regulates neutrophil

recruitment, causes inflammatory bone loss and both quantitative and compositional

alterations to the murine commensal microbiota in the absence of P. gingivalis (Eskan et al.,

2012). This implies that, at least in principle, periodontitis could be initiated in the absence

of bacteria belonging to the ‘red complex’ or acting as keystone pathogens.

As mentioned, P. gingivalis can also be detected, albeit less frequently, in periodontally

healthy individuals (Haffajee et al., 1998; Ximenez-Fyvie et al., 2000a,b; Mayanagi et al.,

2004; Diaz et al., 2006), which begs the question why its presence does not always lead to

periodontitis. In other words, why is the organism a pathogen in some instances and a

commensal in others. Several not mutually exclusive explanations may involve variability in

the status of the host or the bacterium. There may be individuals who can either resist or

tolerate the conversion of the periodontal microbiota from a symbiotic to a dysbiotic state,

by virtue of their intrinsic immuno-inflammatory status (e.g. hyporesponsive or lack-of-

function polymorphisms that attenuate inflammation or microbial immune subversion).

Moreover, strain and virulence diversity within the population structure of P. gingivalis may

affect its capacity to act as a keystone pathogen. Additionally, local environmental changes

may influence the capacity of P. gingivalis to disrupt host–bacteria homeostasis. In this

regard, the production of P. gingivalis gingipains and fimbriae is regulated by local

environmental conditions (Xie et al., 1997, 2000; Curtis et al., 2001), which can therefore

influence the capacity of this organism to modulate complement activity and subvert

leukocytes (Hajishengallis et al., 2011). In the same vein, the structure of P. gingivalis

lipopolysaccharide is regulated by temperature fluctuations and hemin concentrations (Al-

Qutub et al., 2006; Curtis et al., 2011a). Therefore, at least theoretically, there are conditions

under which P. gingivalis (or any other single bacterium whether from the ‘red complex’ or

not) may not act as a pathogen but rather behave as a commensal.

THE REAL CULPRIT: A SYNERGISTIC MICROBIAL COMMUNITY

It is becoming evident, therefore, that the virulence of periodontal pathogens such as P.

gingivalis acquires importance only in the context of a synergistic microbial community,

which is required for the expression of pathogenicity. This model is consistent with the

participation of both gram-negative and gram-positive bacteria in periodontal pathogenesis,

as long as they can provoke or tolerate inflammation, or provide other useful service to the

community. Mixed microbial communities provide opportunities for competitive and co-

operative interspecies interactions, and such interactions shape the nature and function of the

entire assemblage (Jenkinson & Lamont, 2005; Hansen et al., 2007). Furthermore,

interspecies signaling within communities provides the opportunity to collectively regulate

activities including gene expression, nutrient acquisition and DNA exchange. In this manner

communities of bacteria can exhibit polymicrobial synergy, defined as an increase in the

ability of a bacterium to colonize/persist or elevate disease symptoms when in the presence

of other bacteria (Fig. 1). Indeed, there are numerous examples of mixed infections with oral

organisms exhibiting increased pathogenicity compared with either organism alone in

animal models (Kesavalu et al., 2007; Orth et al., 2011; Settem et al., 2012). To some degree

this will reflect nutritional cross-feeding that enhances the growth rate of compatible

organisms in combination (Grenier, 1992; Nilius et al., 1993), and, moreover, closely

associated organisms can compile a communal suite of enzymes to sequentially degrade

complex substrates into constituents that can be metabolized by individual members of the

community. However, as mentioned above, P. gingivalis can have a community-wide
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pathogenic influence on the microbiota in animals, at least in part via host modulation

(Hajishengallis et al., 2011). Moreover, the introduction of P. gingivalis into a healthy

multispecies biofilm alters the pattern of microbial community gene expression (Frias-Lopez

& Duran-Pinedo, 2012), suggesting that this keystone pathogen could additionally modulate

the commensal oral microbiota through direct, host-independent effects. Conversely, when

in a community with Streptococcus gordonii and Fusobacterium nucleatum, P. gingivalis

differentially expresses around 500 proteins, indicating that the organism undergoes

profound phenotypic changes in response to common oral species (Kuboniwa et al., 2009).

Polymicrobial synergy among periodontal pathogens therefore extends beyond growth rate

effects and involves interspecies signaling and response interactions.

The molecular mechanisms that underlie the polymicrobial synergy of oral bacteria reveal

hierarchical, temporally distinct communication systems whereby organisms can integrate

multiple signals of various forms and function during the process of heterotypic community

development. Oral bacteria can communicate through contact-dependent systems, and short

range diffusible signals, including metabolic products and autoinducer-2 (Kolenbrander et

al., 2002, 2010), all of which can influence pathogenic potential (Ramsey & Whiteley, 2009;

Ramsey et al., 2011). For example, P. gingivalis displays numerous specific interactions

with oral streptococci, suggesting that interspecies co-operation has evolved to enhance the

fitness of these organisms. Specific adherence of P. gingivalis to S. gordonii is mediated by

the minor fimbrial subunit protein (Mfa1) which interacts with discrete domains on the

streptococcal surface proteins SspA/B (Demuth et al., 2001; Park et al., 2005; Daep et al.,

2008). Coadhesion between the organisms initiates a signal transduction pathway within P.

gingivalis based on protein tyrosine (de)phosphorylation that converges on regulation of

genes encoding community effectors such as Mfa1 and LuxS (Maeda et al., 2008; Chawla et

al., 2010). The level of community accumulation is tightly controlled possibly to maintain

an optimal surface area : volume ratio of the dual species microcolony. The P. gingivalis–S.

gordonii communities exhibit mutualistic growth (Periasamy & Kolenbrander, 2009) and

induce greater alveolar bone loss in mice compared with either species alone (Daep et al.,

2011). Moreover, interference with P. gingivalis–S. gordonii binding by blocking the Mfa1–

SspA/B interaction abrogates bone loss, demonstrating the importance of coadhesion and

subsequent signaling in the development of a pathogenic community (Daep et al., 2011).

Communication relevant to virulence also occurs between the oral streptococci and

Aggregatibacter actinomycetemcomitans which is closely associated with localized

aggressive periodontitis. Aggregatibacter actinomycetemcomitans displays resource

partitioning to favor carbon sources such as lactate generated by streptococcal metabolism

(Brown & Whiteley, 2007). Additionally, A. actinomycetemcomitans can sense hydrogen

peroxide, a metabolic byproduct of streptococci, and respond by upregulation of genes that

enhance resistance to killing by neutrophils (Ramsey & Whiteley, 2009). The relevance of

these interactions is demonstrated by co-culture of A. actinomycetemcomitans with S.

gordonii, which enhances the pathogenicity of A. actinomycetemcomitans in a mouse

abscess model (Ramsey et al., 2011).

It is interesting to note that both of the above examples involve the mitis group oral

streptococci, traditionally seen as commensals in the oral cavity. However, although the

relative amounts decrease, oral streptococci still comprise a significant portion of the

microbial population of subgingival plaque (Moore & Moore, 1994; Kroes et al., 1999;

Paster et al., 2001; Kumar et al., 2005; Quirynen et al., 2005; Colombo et al., 2009), and

indeed some studies have shown a higher proportion of S. gordonii in the subgingival

biofilm of periodontitis subjects compared with healthy individuals (Abiko et al., 2010). It

has been proposed, therefore, that organisms such as the mitis group streptococci be

considered ‘accessory pathogens’, organisms whose pathogenic potential only becomes
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evident in the context of a heterotypic microbial community (Whitmore & Lamont, 2011).

Periodontal pathogenicity would therefore appear to require significant interspecies co-

operation.

THE PSD MODEL

The recent advancements discussed above are consistent with a new model of pathogenesis

according to which periodontitis is initiated by a broadly-based dysbiotic, synergistic,

microbiota (Fig. 1), as opposed to the traditional view of a conventional infectious disease

caused by a single or even several select periopathogens, such as the ‘red complex’. The

situation can be likened, perhaps, to that of a crew team. All the oars need to be manned but

the identities of individual crew members, provided they are capable of rowing, are not

important for forward progression. Some functions, however, such as cox, are more

important for coordinating characteristics such as direction and speed. In the periodontal

ecosystem diverse bacteria (or specific combinations of genes within the community) may

be able to fulfill distinct roles that converge to form and stabilize a disease-provoking

microbiota. Hence, there will be a number of core requirements for a potentially pathogenic

community to arise. (i) Bacterial constituents will express the relevant adhesins and

receptors to allow assembly of a heterotypic community. (ii) Individual members of the

community will be physiologically compatible or at least non-antagonistic. (iii) The

combined activities of the community will resist the host innate and acquired immune

responses and contribute to tissue inflammation through, for example, proteolytic activity

and cytokine induction. On the basis of the diversity of organisms associated with

periodontal lesions, it is likely that potentially pathogenic communities occur frequently and

that there are a variety of organisms that can contribute the genes necessary for these

conditions to be satisfied. In that regard, it is relevant that dental plaque obtained from

healthy sites shares the capacity of disease-associated plaque to induce strong inflammatory

responses through Toll-like receptor activation (Yoshioka et al., 2008). However, for

pathogenic potential to be realized, the activities of a keystone species such as P. gingivalis

are required. These organisms engage in two-way communication with the community

inhabitants, in particular the accessory pathogens, to both disrupt host immune surveillance

and elevate the pathogenicity of the entire group. This more specialized dysbiotic role will

be restricted to fewer organisms. The identification of keystone and accessory pathogens

from the catalog of organisms generated by microbiome projects will present the next major

challenge in periodontal disease research and, perhaps, in other inflammatory diseases with

a complex polymicrobial etiology (Hajishengallis et al., 2012). Moreover, an in-depth

understanding of periodontal pathogenesis on the basis of the PSD model may offer new

targets for therapeutic intervention.
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Figure 1.
The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. The

gingival crevice is colonized by a diverse microbiota, and compatible organisms assemble

into heterotypic communities. These communities are in equilibrium with the host. Although

they are proinflammatory and can produce toxic products such as proteases, overgrowth and

overt pathogenicity are controlled by the host. The microbial constituents of the

communities can vary over time, and from person to person and site to site. Colonization by

keystone pathogens such as Porphyromonas gingivalis elevates the virulence of the entire

community following interactive communication with accessory pathogens such as mitis

group streptococci. Host immune surveillance is impaired and the dysbiotic community

increases in number eventually disrupting tissue homeostasis and causing destruction of

periodontal tissues.
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Table 1

Milestones and hypotheses in the microbial etiology of periodontitis1

Chronology Etiology or key concepts Remarks References

Late 19th to early
20th century

Specific microorganisms (amebae,
spirochetes, fusiforms or streptococci)

Based on apparent association with
periodontal lesions; heavily biased by
technique used (wet-mount microscopy,
stained smear microscopy, and limited
cultural methods)

Meyer (1917)

Mid-1920s to 1930s Decline in the interest in bacteria as
primary agents in the etiology of
periodontitis

Disease primarily due to defects in the
patient (e.g. trauma from occlusion); bacteria
are simply secondary invaders or at best
contributors to the disease process

Bruske (1928) and
Belding & Belding
(1933)

Late 1950s ‘Non-specific plaque hypothesis’ and its
variant, ‘Mixed anaerobic infections’

Sufficient accumulation of any
microorganisms at or below the gingival
margin can cause destructive inflammation
through the local production of ‘irritants’
Bacteriologically non-specific but
biochemically specific mixed anaerobic
infections are capable of producing
destructive metabolites

Schultz-Haudt et al.
(1954) and Macdonald et
al. (1956)

Late 1970s to early
1980s

Microbial shift in periodontitis Dramatic compositional changes to the
microbiota in disease as compared with
health

Slots (1977a,b),
Socransky (1977),
Tanner et al. (1979) and
Moore et al. (1982,
1983)

‘Specific plaque hypothesis’ Periodontitis results, at least in significant
part, from the overgrowth of specific
pathogenic species

Loesche (1979, 1992)

Late 1980s to 1990s ‘Red complex’ Periodontal microbial communities
characterized on the basis of a color-coded
system reflecting cluster analysis,
community ordination, and associated
disease severity. A group of ‘red complex’
bacteria (Porphyromonas gingivalis,
Treponema denticola and Tannerella
forsythia) are strongly associated with each
other and with diseased sites.
Porphyromonas gingivalis causes
periodontitis in nonhuman primates upon its
oral implantation

Holt et al. (1988) and
Socransky et al. (1998)

2003 ‘Ecological catastrophe hypothesis’ Environmental factors drive the selection and
enrichment of specific pathogenic bacteria

Marsh (2003)

2010 Disruption of periodontal tissue
homeostasis

Periodontitis fundamentally represents
disruption of tissue homeostasis;
inflammation is critical but a secondary
event. Red complex bacteria are key species
for disease, although the polymicrobial
nature of periodontitis is acknowledged;
commensal bacteria probably induce a
protective response

Darveau (2010)

2011 ‘Keystone pathogen’ concept Low-abundance keystone species can disrupt
tissue homeostasis through quantitative and
qualitative changes to the commensal
microbiota (resulting, at least in great part,
from host modulation by the keystone
pathogen). Inflammatory bone loss is
mediated by the altered microbiota

Hajishengallis et al.
(2011)

2012 ‘Polymicrobial synergy and dysbiosis’
(PSD)

Periodontitis is initiated by a synergistic and
dysbiotic microbiota, within which different
members, or specific gene combinations
thereof, fulfill distinct roles that converge to
shape and stabilize a disease- provoking
microbiota. Combines the concepts of
‘disrupted homeostasis’ and ‘keystone

This paper
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Chronology Etiology or key concepts Remarks References

pathogen’ but questions the primary
importance of the red complex

1
For a detailed historic description of the various hypotheses, the reader is referred to Socransky & Haffajee (1994).
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