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Beyond the RPA and GW methods with adiabatic xc-kernels

for accurate ground state and quasiparticle energies
Thomas Olsen 1*, Christopher E. Patrick 2, Jefferson E. Bates 3, Adrienn Ruzsinszky4 and Kristian S. Thygesen1,5

We review the theory and application of adiabatic exchange–correlation (xc)-kernels for ab initio calculations of ground state
energies and quasiparticle excitations within the frameworks of the adiabatic connection fluctuation dissipation theorem and
Hedin’s equations, respectively. Various different xc-kernels, which are all rooted in the homogeneous electron gas, are introduced
but hereafter we focus on the specific class of renormalized adiabatic kernels, in particular the rALDA and rAPBE. The kernels
drastically improve the description of short-range correlations as compared to the random phase approximation (RPA), resulting in
significantly better correlation energies. This effect greatly reduces the reliance on error cancellations, which is essential in RPA, and
systematically improves covalent bond energies while preserving the good performance of the RPA for dispersive interactions. For
quasiparticle energies, the xc-kernels account for vertex corrections that are missing in the GW self-energy. In this context, we show
that the short-range correlations mainly correct the absolute band positions while the band gap is less affected in agreement with
the known good performance of GW for the latter. The renormalized xc-kernels offer a rigorous extension of the RPA and GW
methods with clear improvements in terms of accuracy at little extra computational cost.
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INTRODUCTION

For decades, density functional theory (DFT) has been the
workhorse of first-principles materials science. Immense efforts
have gone into the development of improved
exchange–correlation (xc)-functionals and today hundreds of
different types exist, including the generalized gradient approx-
imations (GGA), meta GGAs, (screened) hybrid functionals,
Hubbard corrected functionals (local density approximation
(LDA)/GGA+U), and the non-local van der Waals (vdW) density
functionals. Typically, these contain several parameters that have
been optimized for a particular type of problem or class of
materials. Moreover, they rely on error cancellation between the
approximations used for exchange and correlation, which is highly
unsatisfactory from a fundamental point of view, since the exact
expression for the exchange part is well known. This limits the
universality and predictive power of commonly applied xc-
functionals and the accuracy is often highly system dependent.
At the highest rung of the current hierarchy of xc-functionals lie

those based directly on the adiabatic-connection fluctuation-
dissipation theorem (ACFDT). The ACFDT provides an exact
expression for the electronic correlation energy in terms of the
interacting density response function.1,2 An attractive feature of
the ACFDT is that it provides the pure correlation energy, which
should then be combined with the exact exchange energy. This
clear division removes the reliance on error cancellation between
the exchange and correlation terms, which is significant (and
uncontrolled) in the lower rung xc-functionals. A further
advantage of the ACFDT is that, even in its simplest form, it
captures dispersive interactions very accurately through the non-
locality of the response function.
The simplest approximation to the response function beyond

the non-interacting one is the random phase approximation (RPA).

The RPA generally provides an excellent account of long-range
screening and it cures the pathological divergence of second-
order perturbation theory for the homogeneous electron gas
(HEG). However, an important shortcoming of the RPA response
function is that the local (r close to r0) correlation hole derived
from it, via the ACFDT, is much too deep leading to a drastic
overestimation of the absolute correlation energy by several
tenths of an eV per electron. This key observation is responsible
for most of the failures of the RPA and GW schemes to be
discussed in this review. It occurs because the RPA response
function only accounts for the Hartree component of the induced
potentials. The neglected xc-component of the induced potential
is short ranged in nature and therefore mainly influences the local
shape of the correlation hole.
Early work3–5 applied the ACFDT-RPA to compute the dissocia-

tion energies of small molecules, finding a systematic tendency of
the RPA to underbind and generally have a lower accuracy than
the GGA. It was also demonstrated that RPA accounts well for
strong static correlation and correctly describes the dissociation
curve of the N2 molecule. Around 10 years later, the RPA was
applied to calculate cohesive energies of solids,6 again finding that
RPA performs significantly worse than GGA with a systematic
tendency to underbind. In contrast, RPA was found to produce
excellent results for structural parameters of solids7,8 as well as
bond energies in vdW systems like graphite9 and noble gas
solids,10 which are poorly described by semilocal approximations.
In addition, for the case of graphene adsorbed on metal surfaces,
where dispersive and covalent interactions are equally important,
the RPA seems to be the only non-empirical method capable of
providing correct potential energy curves.11,12 While the RPA
method has many attractive features, it is clear that its poor
description of short-range correlations, which results in
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overestimation of absolute correlation energies and underestima-
tion of covalent bond strengths, disqualifies it as the highly
desired fully ab initio and universally accurate total energy
method.
One approach to improving the RPA total energy is based on

the idea of correcting the RPA self-correlation energy by including
higher-order exchange terms in many-body perturbation theory
(MBPT). Second-order exchange is the leading (of order e4)
exchange correction to the RPA correlation energy, and within the
coupled-cluster doubles formalism, Grüneis et al.13 constructed
second-order screened exchange (SOSEX). SOSEX can be inter-
preted within the renormalized RPA, as an expansion of the
correlation energy in powers of the xc-kernel. It can also be
expressed in terms of different approximations to the exchange
kernel, such as the AXK kernel of Bates and Furche,14 the NEO
kernel of Bates et al.,15 or the version of Hellgren et al.16 In
addition, SOSEX can be treated within the range-separation
scheme using a fixed admixture of local correlation.17 Ángyán
et al.18 constructed adiabatic-connection SOSEX or ACSOSEX,
which brings in higher-order exchange terms and Hümmel et al.
have proposed an adjacent pairs exchange correction, which goes
beyond ACSOSEX19 by introducing more than one antisymme-
trized line in terms of Goldstone diagrams. In general, the SOSEX
correlation energy vanishes for one-electron systems and
improves the accuracy of covalent bonds slightly compared to
RPA. However, it causes a deterioration in the good description of
static correlation and barrier heights in the RPA.13,20 In addition,
SOSEX scales as N5 with system size and therefore comprises a
significant computational challenge compared to RPA, which
scales as N4 .
A different strategy is based on the use of time-dependent

density functional theory (TDDFT) to construct better response
functions. The crucial ingredient in this theory is the xc-kernel,
f xcðr; r0;ωÞ, which is the functional derivative of the time-
dependent xc-potential with respect to the density. In particular,
the inclusion of a time-dependent exact exchange (EXX) kernel
eliminates the self-correlation energy in RPA and is exact for any
one-electron problem. In ref., 21 it was shown that this approach
significantly improves the RPA for small molecules. Moreover, the
RPA with EXX is so far the only single-reference method that can
correctly describe the dissociation limit of both H2 and Hþ

2
22. More

recently, perturbation theory along the adiabatic connection was
shown to comprise a systematic approach to improving the
accuracy of correlation energies in the context of the ACFDT.23,24

However, the kernels derived in this framework are inherently
frequency dependent, they are not given by a closed expression
involving orbitals, and the method is rather computationally
demanding.
In ref. 25 it was argued, based on ACFDT calculations for the

HEG, that the frequency dependence of the xc-kernel is of minor
importance for the correlation energy, while the spatial non-
locality is crucial. Moreover, it has been shown that any local
approximation to the xc-kernel produces a correlation hole, which
diverges at the origin.26 As a consequence, the use of local xc-
kernels typically results in correlation energies that are worse than
those obtained with the RPA. Several non-local approximations to
the xc-kernel of the HEG have been proposed. On a scale given by
the error of RPA, they seem to perform very similarly for the
ground state correlation energy, and therefore the present review
will focus on one specific form, namely, the renormalized adiabatic
kernels of refs., 27–29 rAX, where X refers to a ground state xc-
functional.
In the present review, we show that the use of non-local (but

frequency-independent) kernels largely fixes the erroneous RPA
correlation hole and provides a much better description of short-
range correlations—at least for weakly correlated materials. This
implies that absolute correlation energies are much better and
thus the reliance on error cancellation when forming energy

differences is lifted. Specifically, covalent bond energies are
greatly improved while the good performance of RPA for
dispersive interactions is preserved. The performance of the rAX
kernels is further discussed for structural parameters, atomization
energies of molecules, cohesive energies of solids, formation
energies of metal oxides, surface and adsorption energies,
molecular dissociation curves, static correlation, and structural
phase transitions.
In addition to total energy calculations, the renormalized

kernels have also been used to incorporate vertex corrections
into self-energy-based quasiparticle (QP) band structure calcula-
tions.30 The formal basis of such calculations is constituted by
Hedin’s equations, a coupled set of equations for the key
quantities of a perturbative treatment of the single-particle
Green’s function, G, in terms of the screened Coulomb interaction,
W . Within the widely used GW approximation, the vertex
corrections are completely ignored. Despite this omission, the
GW approximation typically yields good results for the QP band
gap.31–36 Vertex corrections evaluated from the SOSEX diagram
have been found to yield some improvement of band gaps and, in
particular, ionization potentials of solids.37 This is clearly very
satisfactory from a theoretical point of view. The drawback of this
approach, however, is the high complexity of the formalism, the
concomitant loss of physical transparency, and the significant
computational overhead as compared to the conventional GW
method. Just like the two-point xc-kernels from TDDFT provide a
computationally tractable strategy to improve total energies, they
can also be used to approximate vertex corrections in the electron
self-energy.38 As for the ground state energy, the local xc-kernels
perform rather badly.30 Instead, the renormalized kernels yield a
major improvement over the GW method when it comes to
ionization potentials and electron affinities, i.e., absolute band
energies, as a result of the superior description of short-range
correlations. This can be understood as a direct consequence of
the systematic underestimation of the absolute correlation energy
by the RPA. In contrast, the QP gap is only slightly affected by the
vertex because it is mainly governed by long-range correlations.
This in fact explains the success of the GW approximation in
describing QP band gaps.
An important common feature of the ACFDT and Hedin’s

equations is that they are typically implemented non-self-
consistently starting from some mean field Hamiltonian. This
means that the results of such calculations acquire a starting point
dependence. While the LDA and GGAs are the most widely used
starting points, other xc-functionals, such as exact exchange
hybrids39,40 and GGA+U,41–43 have also been employed. In
general, it has been found, for both GW and RPA, that the results
are quite insensitive to the starting point; in particular, they are
much less sensitive to the initial mean field than the mean field
itself, e.g., the band gap obtained with GW@GGA+U and the
lattice constants, and energy differences determined from
RPA@GGA+U vary much less with U as compared to the GGA
+U result itself.41,42,44 This is clearly a desirable effect but does not
remove the fundamentally disturbing starting point dependence.
The problem arises because the natural starting point for GW and
RPA would be the Hartree mean field solution, which is
notoriously bad. The situation is somewhat improved by the rAX
kernels because their consistent starting point would resemble a
DFT Hamiltonian with the X-functional (or more precisely a
weighted density approximation to the X-functional, see supple-
mentary of ref. 29). We note in passing that ideally the calculations
should be performed self-consistently. However, this is rarely done
in practice and involves other problems such as overestimated
band gaps and smeared out spectral features in GW and technical
difficulties associated with the self-consistent determination of the
RPA optimized effective potential.
Here we focus on the theory, implementation, and implications

of physics beyond the RPA and GW methods as described by static
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non-local xc-kernels from TDDFT. Consequently, we will not dwell
on the RPA and GW methods themselves but refer the interested
reader to one of the existing reviews on these topics.20,45–48 The
paper is organized as follows. In section “Theory,” we present the
basic theory of ground state and QP energy calculations based on
the adiabatic connection fluctuation dissipation theorem and
Hedin’s equations, respectively. We introduce several non-local xc-
kernels for the HEG and describe a renormalization procedure for
constructing non-local xc-kernels from (semi)local xc-functionals.
In section “Implementation,” we describe the numerical imple-
mentation of non-local xc-kernels including different strategies for
generalizing HEG kernels to inhomogeneous densities and some
aspects of k-point and basis set convergence. In section “Results,”
we present a series of results serving to illustrate the effect and
importance of the xc-kernels for both total energies and QP band
structures. Specifically, we assess the performance of the
renormalized adiabatic local density approximation (rALDA) and
renormalized adiabatic Perdew–Burke–Ernzerhof (rAPBE) xc-
kernels for structural parameters of solids, atomization energies
of covalently bonded solids and molecules, oxide formation
energies, vdW bonding, dissociation of statically correlated atomic
dimers, surface and chemisorption energies, structural phase
transitions, and QP energies of bulk and two-dimensional
semiconductors. Finally, our conclusions and outlook are provided
in the last section.

THEORY

The adiabatic connection fluctuation dissipation theorem

In the Kohn–Sham (KS) scheme, a non-interacting Hamiltonian is
constructed such that it has a ground state Slater determinant
φ0j i, which yields the same ground state density as the true
ground state wavefunction ψ0j i. The adiabatic connection denotes
a generalization of this scheme where the Coulomb interaction vc
is rescaled by λ, such that the ground state wavefunction ψλ

0

�� �

reproduces the electronic density of ψ0j i. The procedure can be
accomplished by modifying the external potential vλKSðrÞ and we
have ψλ¼1

0

�� �
¼ ψ0j i and ψλ¼0

0

�� �
¼ φ0j i.

The adiabatic connection allows one to obtain a highly useful
expression for the correlation energy. To begin with, the Hartree
xc (Hxc) energy can be written as49

E Hxc ¼ Etot � TKS � vext

¼ hψ0jT̂ þ v̂cjψ0i � hφ0jT̂ jφ0i
¼ hψλ

0jT̂ þ λv̂cjψλ
0ij

1
0

¼
Z 1

0
dλ

d

dλ
hψλ

0jT̂ þ λv̂cjψλ
0i

¼
Z 1

0
dλhψλ

0jv̂cjψλ
0i;

(1)

where Etot is the total electronic ground state energy, TKS is KS
kinetic energy, and vext is the expectation value of the external
potential. In the last quality, we used the Hellmann–Feynman
theorem and the fact that ψλ

0 is defined as the state that minimizes
the expectation value of T þ λvc. Inserting the second quantized
form of the Coulomb interaction, the expression becomes

E Hxc ¼
1

2

Z 1

0
dλ

Z
drdr0

jr� r0j hΨ̂
yðrÞΨ̂yðr0ÞΨ̂ðr0ÞΨ̂ðrÞiλ

¼ 1

2

Z 1

0
dλ

Z
drdr0

jr� r0j hΨ̂yðrÞΨ̂ðrÞΨ̂yðr0ÞΨ̂ðr0Þiλ � δðr� r0Þhn̂ðrÞiλ
h i

:

(2)

where n̂ðrÞ ¼ Ψ
yðrÞΨðrÞ and we have introduced the notation

h¼ iλ ¼ hψλ
0j¼ jψλ

0i. Since the last term is independent of λ, we
can get rid of it by subtracting the Hartree exchange energy EHx,
which is given by a similar expression with ψλ

0

�� �
replaced by φ0j i.

We then have

Ec ¼
1

2

Z 1

0
dλ

Z
drdr0

jr� r0j hn̂ðrÞn̂ðr0Þiλ � hn̂ðrÞn̂ðr0Þi0
� �

(3)

The density–density correlation function is closely related to the
density–density response function. The retarded response at
vanishing temperature is defined by

χλðr; r0; t; t0Þ ¼ �iθðt � t0Þh½n̂ðr; tÞ; n̂ðr0; t0Þ�iλ; (4)

where the expectation value is with respect to the ground state. In
the frequency domain, it becomes

χλðr; r0;ωÞ ¼
X

m≠0

nλ0mðrÞnλm0ðr0Þ
ω� Em0 þ iη

� nλ0mðr0Þnλm0ðrÞ
ωþ Em0 þ iη

� �
; (5)

where n0mðrÞ ¼ hψλ
0jn̂ðrÞjψλ

mi, Eλm0 ¼ Eλm � Eλ0 are the eigenvalue
differences, and η is a positive infinitesimal. It is then clear that

�1
π

Z 1

0
dωImχλðr; r0;ωÞ ¼

X

m≠0

nλ0mðrÞnλm0ðr0Þ

¼ hn̂ðrÞn̂ðr0Þiλ � nðrÞnðr0Þ
¼ hδn̂ðrÞδn̂ðr0Þiλ;

(6)

with δn̂ðrÞ � n̂ðrÞ � nðrÞ. The equality is an example of a
fluctuation dissipation theorem, since it relates the imaginary
(dissipative) part of the density response to the correlation
between density fluctuations.
The retarded response function only has poles in the negative

imaginary half-plane and its frequency integral on a closed loop in
the upper right quarter of the complex plane vanishes since χ �
1=jωj2 for jωj ! 1. We can thus switch the integration path to
the positive imaginary axis where the frequency dependence is
smooth. Noting that χ�ðr; r0; iωÞ ¼ χðr0; r; iωÞ, we obtain

Ec ¼ �
Z 1

0
dλ

Z 1

0

dω

2π
hhvcχλðiωÞ � vcχ0ðiωÞii: (7)

where hh¼ ii indicates the trace of the two-point functions
involved in the adiabatic-connection integrand.
The problem of calculating the correlation energy has thus been

rephrased into finding a good approximation for the
density–density response function. The simplest non-trivial
approximation is the RPA, which can be obtained from MBPT by
assuming a non-interacting irreducible response function. Alter-
natively, the full (reducible) response function can be obtained
from TDDFT, where it can be shown to satisfy the Dyson equation

χλðωÞ ¼ χKSðωÞ þ χKSðωÞ λvc þ f λxcðωÞ
h i

χλðωÞ; (8)

where all quantities are functions of two position variables and the
products are shorthand notation for fg �

R
dr0f ðr; r0Þgðr0; r00Þ.

f xcðωÞ is the temporal Fourier transform of the xc-kernel

f xcðr; r0; t � t0Þ ¼ δvxcðr; tÞ
δnðr0; t0Þ (9)

and any approximation to f xc thus implies an approximation for
the ground state correlation energy in the framework of the
adiabatic connection combined with the fluctuation dissipation
theorem. In the context of TDDFT, the RPA is simply obtained by
neglecting the xc-kernel when solving Eq. (8).
In order to calculate correlation energies from Eqs. (7) and (8), it

is necessary to generalize the kernel to an arbitrary coupling
strength λ. In ref., 25 it was shown that f λxc can be obtained from f xc
by the rescaling

f λxcðn; q;ωÞ ¼ λ�1f xcðn=λ3; q=λ;ω=λ2Þ: (10)

In particular, it is straightforward to show that any bare exchange
kernel satisfies f λx ¼ λf x.

T. Olsen et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2019)   106 



RPA renormalization

While the Dyson Eq. (8) provides an exact representation of χ for a
given kernel, the solution of the equation may exhibit pathological
behavior related to electronic instabilities.26,50,51 The simplest
examples are for the low-density HEG and stretched diatomics,
where Colonna et al.51 demonstrated that the exact-exchange
kernel leads to a divergence in the density–density response
function computed via Eq. (8). To avoid this problem, an exact
refactorization of Eq. (8) was introduced by Bates and Furche in
2013,14

χλðωÞ ¼ χRPAλ ðωÞ þ χRPAλ ðωÞf λxcðωÞχλðωÞ ; (11)

¼ χ�1
λ;RPAðωÞ � f λxcðωÞ

h i�1
: (12)

The series expansion of χðωÞ in powers of χKSðωÞ generates an
unscreened perturbation theory that is equivalent to Görling–Levy
Perturbation theory.52 Since the bare KS orbital energy differences
appear in the denominator of the non-interacting response
function, the unscreened perturbation series diverges for small
gap or metallic systems.53 This divergence can be eliminated by
expanding in powers of the RPA response function,

χRPAðωÞ ¼ χ�1
KS ðωÞ � vc

� ��1
; (13)

which leads to the following series

χλðωÞ � χRPAλ ðωÞ þ χRPAλ ðωÞf λxcðωÞχRPAλ ðωÞ þ ¼ (14)

In addition to eliminating the divergences related to the non-
interacting response function, this expansion also eliminates the
electronic instabilities resulting from the kernel since inversions
are never needed directly involving the xc-kernel.14,51,54

The decomposition in Eq. (11) also naturally leads to a simple
partition of the correlation energy into two pieces

Ec½f xc� ¼ ERPAc þ ΔEbRPAc ½f xc�: (15)

The beyond-RPA (bRPA) piece incorporates all of the terms in Eq.
(14) beyond the “bare” RPA response function, which can be
collected and exactly expressed as54

ΔEbRPAc ¼ �
Z 1

0
dλ

Z 1

0

dω

2π
vcχ

RPA
λ ðωÞf λxcðωÞχλðωÞ

D ED E
: (16)

By truncating χλ to a low order in χRPAλ , one hopes to faithfully
reproduce the infinite-order correlation energy while avoiding the
need to invert a function that directly contains f xc. We stress that
this approximation scheme can never exceed the accuracy of the
infinite-order approach for energy differences and material
properties, but it does guarantee the stability of the scheme to
compute the correlation energy.15 Furthermore, this division
naturally separates the long-range and short-ranged contributions
to the correlation energy, enabling approximations for ΔEbRPAc to
be added directly on top of the already robust RPA.
The first-order approximation derived from RPA renormaliza-

tion, RPAr1, recovers a significant part (�90%) of the total bRPA
correlation energy for a given kernel15,54

ΔERPAr1c ¼ �
Z 1

0
dλ

Z 1

0

dω

2π
vcχ

RPA
λ ðωÞf λxcðωÞχRPAλ ðωÞ

D ED E
: (17)

This approximation has several key features: it recovers the exact,
second-order correlation energy given the exact-exchange kernel,
the coupling strength integral can be performed analytically for
exchange-like kernels leading to efficient implementations,14,15,55 and
it reduces properly to RPA for stretched bonds unlike other second-
order schemes, such as SOSEX.56 In fact, within the adiabatic-
connection framework, SOSEX can be obtained directly from

RPAr114,15,54 through the replacement of one χRPA with χKS in Eq. (17)

ΔEACSOSEXc ¼ �
Z 1

0
dλ

Z 1

0

dω

2π
vcχ

RPA
λ ðωÞf λxcðωÞχKSðωÞ

D ED E
: (18)

This approximation was shown to be less consistent than RPAr1 due
to the reintroduction of the KS response function for molecular
energy differences14 and structural properties of simple solids.15

To recover the remaining �10% of the bRPA correlation energy,
corrections beyond RPAr1 to the response function can be
systematically added order-by-order until convergence to Eq. (8).
Rather than compute these terms exactly, a simple approximation
can be introduced to eliminate the coupling-strength integration
and utilize information from second order to estimate third- and
higher-order terms in the RPA renormalized expansion. This
approximation method was termed the Higher-Order Terms (HOT)
approximation57 and is obtained through a rescaling of the
second-order RPAr correction at λ ¼ 1. The HOT approximation
usually reproduces the total correlation energy to within 1–2%,
and, consequently, accurately reproduces the performance of a
given kernel for chemical or physical properties of molecules and
materials.

xc-kernels from the HEG

Although Eq. (9) provides a definition of the kernel f xc, the
absence of an exact expression for the xc potential vxc requires
that an approximate form of f xc must be used in practical
calculations. The HEG provides a valuable testing ground for
approximations of f xc and allows the kernel’s limiting behavior to
be studied. The analog of Eq. (8) for the HEG is

χHEGðq;ωÞ ¼ χ0ðq;ωÞ þ χ0ðq;ωÞ vcðqÞ þ fHEGxc ðq;ωÞ
� �

χHEGðq;ωÞ;
where the dependence on the wavevector q has now been made
explicit. χ0 is the textbook Lindhard function,58 which coincides
with χKS when Eq. (8) is applied to the HEG.59 A quantity
commonly found in the HEG literature is the local field
factor Gðq;ωÞ, which is closely related to fHEGxc as
fHEGxc ðq;ωÞ ¼ �vcðqÞGðq;ωÞ.
Theoretical work on G (and thus fHEGxc ) can be traced at least as

far back as Hubbard (see Sec. IIIC of ref. 60 for a review), and exact
limits have been derived for a number of cases. First, the long
wavelength and static limit (q ! 0, ω ¼ 0) actually corresponds to
the ALDA commonly employed in TDDFT,

fHEGxc ðq ! 0;ω ¼ 0Þ ¼ fALDAxc � � 4πA

k2F
(19)

where

A ¼ 1

4
� k2F
4π

d2ðnECÞ
dn2

; (20)

kF ¼ ð3π2nÞ1=3 is the Fermi wavevector for the HEG of density n,
and EC is the correlation energy per electron. The two terms in Eq.
(20) correspond to exchange and correlation contributions. Eq.
(19) is intuitive in stating that the ALDA should be exact in
describing the HEG response to a uniform, static perturbation61

and is more formally derived from the compressibility sum rule.60

Next, the short wavelength and static limit has the form62,63

fHEGxc ðq ! 1;ω ¼ 0Þ ¼ � 4πB

q2
� 4πC

k2F
; (21)

while the long wavelength, high frequency limit has the form64

fHEGxc ðq ¼ 0;ω ! 1Þ ¼ � 4πD

k2F
: (22)

The parameters A, B, C, and D depend on the HEG density, which
in turn can be written in terms of the Fermi wavevector or Wigner
radius rs ¼ ð3=4πnÞ1=3. Practically, A, C, and D can be obtained
from a parameterization of the correlation energy EC for a HEG of
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density n, whereas B requires additional knowledge of the
momentum distribution of the HEG.65

For intermediate q values, it is necessary to turn to diffusion
Monte Carlo calculations. The study of ref. 66 investigated the
q-dependence of the static kernel fHEGxc ðq;ω ¼ 0Þ for a range of
densities. A key conclusion of that work was that for wavevectors
q � 2kF, f

HEG
xc ðq;ω ¼ 0Þ remains close to its q ¼ 0 value, (=fALDAxc ,

Eq. (19)), while for q > 2kF, the kernel can be reasonably well
described by the short wavelength limit (Eq. (21)).
In the context of approximations to fHEGxc , it is worth stressing a

point discussed in ref.: 59 there is no particular reason why
approximate, frequency-independent kernels should display the
same limiting behavior as the exact, frequency-dependent kernel
evaluated at ω ¼ 0. Indeed, having a frequency-independent
kernel, which is finite at large q (obeying Eq. (21)), will in fact lead
to a pair-distribution function, which is singular at the origin.26,67,68

In Fig. 1, we show some approximate forms for fHEGxc , which have
been proposed in the literature.27,69–71 The “rALDA” kernel will be
discussed in some detail in the following sections. Briefly
describing the other kernels, “CDOP” refers to the frequency-
independent kernel proposed by Corradini, Del Sole, Onida, and
Palummo,69 which has the same limiting behavior as the exact
static kernel (Eqs. (19) and (21)). “CDOPs” refers to the kernel
introduced in ref., 70 which modifies CDOP so that it vanishes at
large q. “CPd” refers to the dynamical kernel proposed by
Constantin and Pitarke,71 which satisfies the long wavelength
static and high frequency limits (Eqs. (19) and (22)). The frequency-
independent “CP” kernel corresponds to the CPd kernel at ω ¼ 0.
Although the HEG carries the advantage of being a very well-

studied system, it is worth remembering that fundamentally it is
metallic. The xc-kernel of a periodic insulator is known to display
different limiting behavior to that of a metal, diverging as 1=q2 in
the q ! 0 limit.72,73 This aspect is especially important in TDDFT
calculations of optical spectra, including excitonic effects.74–76 This
consideration led to the development of the frequency-
independent jellium-with-gap model (JGM) kernel, which has
the 1=q2 divergence.74 The slightly simpler “JGMs” kernel shown in
Fig. 1 is described in ref. 77 Here the band gap Eg enters
parametrically. In the limit Eg ! 1, the correlation energy
disappears, while Eg ! 0 the metallic CP kernel is recovered.
Reference 77 provides a more thorough discussion of all of the

kernels shown in Fig. 1, including the expressions used to evaluate
them and their forms in real space. In the current work, we focus
our attention on the renormalized adiabatic kernels rALDA and

rAPBE, although a comparison of all the different xc-kernels for the
structural parameters of solids will be presented in the section
“Structural parameters.” It should also be emphasized that we will
focus on the performance for total energy calculations in the
following. The quality of commonly applied xc-kernels for
excitations of the HEG have been studied by Tatarczyk et al.78

The rALDA kernel

Ideally, one should aim at obtaining a general approximation to
f xc that can reproduce various physical quantities such as optical
absorption spectra and ground state electronic correlation
energies. However, finding good approximations for f xc is highly
challenging and it is often necessary to limit the approximation to
a given application. As mentioned previously, it is crucial to use a
form of f xc that has the correct 1=q2 behavior in the long
wavelength limit in order to capture excitonic effects in
absorption spectra. On the other hand, ground state correlation
energies involve q-space integrals making it extremely important
to obtain a good approximation at large values of q, whereas the
long wavelength limit is less important. In the following, we will
focus on obtaining an approximation that provides accurate
ground state correlation energies.
The correlation energy per electron is directly related to the

integral of the coupling constant averaged correlation hole ncðrÞ25

Ec ¼ 2π

Z 1

0
drrncðrÞ ¼

1

π

Z 1

0
dqncðqÞ: (23)

where ncðqÞ is the Fourier transform of ncðrÞ. A parametrization of
the exact ncðqÞ has been provided by Perdew and Wang79 based
on quantum Monte Carlo simulations of the HEG at various
densities. Approximations for ncðqÞ can be obtained from Eqs. (7)
and (8) using the Lindhard function for χ0ðq;ωÞ.
The correlation hole in q-space is shown in Fig. 2 calculated with

RPA and ALDA for two different densities. Compared to the exact
parametrization, it is clear that RPA severely overestimates the
magnitude of the correlation hole and the RPA will predict a
correlation energy that is ∼0.5 eV too low per electron for a wide
range of densities. The ALDA on the other hand straddles the
exact parametrization for a wide range of q-values but decays too
slowly at large q compared to the exact results. This is a
consequence of the locality of the approximation, which translates
into an independence of q. At large q, the xc-kernel will thus
dominate the Coulomb kernel and fail to reproduce the exact limit
(Eq. (21)). Since the total energy involves a q-space integral over all
space, the slow decay of the correlation hole introduces significant
errors and overestimates the correlation energy by �0:3 eV per
electron.
The ALDAx kernel provides a good approximation to the exact

one for both low rs ¼ 1 and high rs ¼ 10 densities for q < 2kF,
where the correlation hole has a zero point in q-space. However,
for q > 2kF the exact correlation hole largely vanishes and we
expect to obtain a better approximation for the correlation energy
if we simply truncate the q-integration at 2kF when evaluating Eq.
(23) using the ALDAx approximation. We will refer to this scheme
as renormalized ALDAx (rALDA), since the truncation preserves the
integral of the correlation hole in real space. The correlation
energy per electron evaluated in this scheme is shown in Fig. 3
obtained with RPA, ALDAx, and rALDA. Evidently, the errors in the
correlation energy obtained with rALDA are much smaller than
both RPA and ALDAx. A similar analysis was carried out in ref. 77 for
all the kernels shown in Fig. 1. All the kernels performed
significantly better than RPA, but none was found to be as
accurate as the rALDA.
For the HEG, the truncation is equivalent to using the Hxc-

kernel

f rALDAHxc ½n�ðqÞ ¼ θ 2kF � qð ÞfALDAHx ½n�: (24)

Fig. 1 Various approximations for the exchange-correlation kernels
applied to the homogeneous electron gas as a function of
wavevector, evaluated at a density corresponding to rs ¼ 2:0 Bohr
radii. The dynamical CPd kernel was evaluated at ω= 2 Hartrees and
the JGMs kernel was evaluated at a band gap of 3.4 eV. The trivial

RPA case (fHEGxc ¼ 0) is also shown. Reprinted from ref., 77 with the
permission of AIP Publishing
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Fourier transforming this expression yields

f
rALDA
Hxc ½n�ðrÞ ¼ ef

rALDA

xc ½n�ðrÞ þ vr ½n�ðrÞ;

ef
rALDA

xc ½n�ðrÞ ¼ fALDAx ½n�
2π2r3

sinð2kFrÞ � 2kFr cosð2kFrÞ½ �;

vr ½n�ðrÞ ¼ 1

r

2

π

Z 2kFr

0

sin x

x
dx:

(25)

Since kF is related to the density, one can attempt to generalize
this scheme to inhomogeneous systems. We then take r ! jr� r0j
and kF ! ð3π2nðr; r0ÞÞ1=3, but there is no unique way to define the
two-point density nðr; r0Þ. A natural choice is to take25

nðr; r0Þ ¼ ðnðrÞ þ nðr0ÞÞ=2, but other choices are possible, which
will be discussed in section “Implementation.”
The simple truncation procedure has thus led to a non-local

rALDA kernel that does not contain any free parameters and
significantly improves correlation energies for homogeneous
systems. We have split the Hxc-kernel into a renormalized xc part
f rALDAxc ½n� and a renormalized Coulomb part vr ½n�. However, both
terms depend on the density and contain xc effects. The ef

rALDA

xc
part can be regarded as an ALDAx kernel where the delta function

has acquired a density-dependent broadening, whereas vr is the
Coulomb interaction reduced by a density and distance-
dependent factor that approaches unity for large densities or
distances. In fact, at large separation f rALDAHxc reduces to the pure
Coulomb kernel and it is expected to retain the accurate
description of long-range vdW interactions within RPA. For
example, in a jellium with rs ¼ 2:0 two points separated by 5Å
gives a renormalized Coulomb interaction vr ½rs ¼ 2�ðrÞ ¼ 0:97vðrÞ
and the magnitude is a factor of 30 times larger than ef

rALDA

xc .

Interestingly, both vr and ef
rALDA

xc becomes finite at the origin giving

vr ½n�ðr ! 0Þ ¼ 4kF
π

� 8k3Fr
2

9π
; (26)

ef
rALDA

xc ½n�ðr ! 0Þ ¼ 4k3F
3π2

� 32k5Fr
2

15π2

� �
fALDAx ½n�; (27)

which implies f rALDAHxc ½n�ðr ¼ 0Þ ¼ 0. This property is related to the
fact that the position-weighted correlation hole entering the first
integral in Eq. (23) vanishes at the origin28 and is highly
convenient for numerical real-space evaluation of the kernel.
It is often more convenient to separate the Hxc-kernel into the

exact Coulomb kernel and an xc-kernel and one is then led to
define

f rALDAx ½n�ðrÞ ¼ ef
rALDA

x ½n�ðrÞ þ vr ½n�ðrÞ � vðrÞ: (28)

This expression is typically more useful for applications to periodic
systems since vr ½n�ðrÞ � vðrÞ is short ranged (½vr ½n�ðrÞ � vðrÞ� !
sinð2kFrÞ=r for r ! 1), whereas both vr ½n�ðrÞ and vðrÞ are long
ranged.

Generalized truncation scheme. The truncation scheme defined
above is easily generalized to any adiabatic semilocal local kernel.
The correlation hole of the HEG calculated with ALDAx has a zero
point exactly at 2kF. This is not true in general, but for any
adiabatic kernel the correlation hole becomes zero at the point
where the Hxc-kernel vanishes. This leads to the zero-point
wavevector

q0½n� ¼
ffiffiffiffiffiffiffiffiffiffiffi
�4π

fAxc½n�

s
; (29)

where fAxc½n� is the spatial Fourier transform of the adiabatic kernel

fAxc½n�ðr� r0Þ ¼ δvxcðrÞ
δnðr0Þ δðr� r0Þ; (30)

Fig. 3 Correlation energy per electron of the homogeneous
electron gas evaluated with RPA, ALDAx, and rALDAx. Reproduced
with permission from ref., 27 copyright American Physical
Society, 2012

Fig. 2 Correlation hole of the homogeneous electron gas in q-space at rs ¼ 1 (left) and rs ¼ 10 (right). Black lines are the exact results, blue
lines are RPA, and green lines are ALDA. Reproduced with permission from ref., 27 copyright American Physical Society, 2012
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corresponding to a particular semilocal approximation. Renorma-
lized kernels for any semilocal approximation for the xc functional
can then be defined by replacing to 2kF by q0 in Eq. (25) and the
kernel is again generalized to inhomogeneous systems by taking
r ! jr� r0j and n ! nðr; r0Þ in addition to a scheme that defines
nðr; r0Þ in terms of nðrÞ. For the generalized gradient-corrected
functionals, q0 will depend on the gradient of the density as well,
which may lead to positive values of f Axc at certain points. At those
points, we set q0½n�ðr; r0Þ ¼ 0 in order to maintain a well-defined
kernel. Below we will only consider rALDA and rAPBE.

Spin

The inclusion of spin degrees of freedom in RPA is almost trivial
since the correlation energy involves the sum over all spin
components χσσ0 , which is obtained by the simple substitution
χ0 ! χ0"" þ χ0## in Eq. (8). This is due to the fact that FHxc is
independent of spin in RPA. In general, however, it is not
straightforward to generalize a kernel for spin-paired systems to
the spin-polarized case.
In the case of exchange, one can resort to the spin dependence

of the exchange energy. In particular, one has

Ex½n"; n#� ¼
Ex½2n"� þ Ex½2n#�

2
; (31)

which yields

f x;σσ0 ½n"; n#� ¼ 2f x½2nσ�δσσ0 : (32)

It is possible to enforce this condition on the rALDA kernel as well,
but we have found that it makes the correlation energy difficult to
converge. The reason is that the off-diagonal (in spin) components
of the Hxc-kernel involves a bare Coulomb interaction, whereas
the diagonal components lack a long-range cancellation between
vðrÞ and vr½n�.
This failure is clearly a limitation of the rALDA scheme and an

additional approximation is required to maintain the accuracy of
rALDA for spin-polarized systems. To this end, we start with the
Dyson equation with explicit spin dependence

χσσ0 ¼ χKSσ δσσ0 þ
X

σ00
χKSσ fHxcσσ00 ½n"; n#�χσ00σ0 ; (33)

where it was used that χKS is diagonal in spin. For the spin-paired
case, one has that

1

4

X

σσ0
f xcσσ0 ½n=2; n=2� ¼ f x½n�; (34)

which will always hold if Eq. (32) is satisfied. To reintroduce a
balanced expression for the renormalized kernel in each spin
component, we relax Eq. (32) and use

f rALDAxc;σσ0 ½n"; n#� ¼ 2f rALDAxc ½n�δσσ0 þ vr ½n� � v; (35)

where n ¼ nσ þ nσ0 . Eq. (34) is now satisfied, but Eq. (32) is not.
This choice is not unique though and another choice is comprised
by f rALDAx;σσ0 ¼ 2f rALDAx ½nσ þ nσ0 �δσσ0 þ vr ½nσ þ nσ0 � � v, which was
used in ref. 27 However, Eq. (35) appears to yield better results
for atomization energies where spin-polarized isolated atoms are
used as a reference.

Hedin’s equations and vertex corrections

So far, we have discussed the use of xc-kernels in the context of
the ACFDT formula for the ground state correlation energy.
However, it is possible, and in fact quite effective, to apply the
same xc-kernels to describe the effect of vertex corrections in the
electron self-energy. In 1965, Lars Hedin introduced a set of
coupled equations relating the single-particle Green’s function G,
the electron self-energy,

P
, to the polarization, P, the screened

electron–electron interaction, W , and the three-point vertex

function Γ,80

Gð1; 2Þ ¼ GHð12Þ þ
Z

dð34ÞGHð1; 3Þ
X

ð3; 4ÞGð4; 2Þ (36)

X
ð1; 2Þ ¼ i

Z
dð34ÞGð1; 3ÞΓð3; 2; 4ÞWð4; 1þÞ (37)

Wð1; 2Þ ¼ vð1; 2Þ þ
Z

dð34ÞWð1; 3ÞPð3; 4Þvð4; 2Þ (38)

Pð1; 2Þ ¼ �i

Z
dð3; 4ÞGð1; 3ÞGð4; 1þÞΓð3; 4; 2Þ (39)

Γð1; 2; 3Þ ¼ δð1; 2Þδð1; 3Þ
þ
R
dð4567Þ δΣð1;2Þ

δGð4;5ÞGð4; 6ÞGð7; 5ÞΓð6; 7; 3Þ;
(40)

where we employed the notation ð1Þ ¼ ðr1; t1; σ1Þ and GH is the
Hartree Green’s function. The well-known and widely used GW
approximation is obtained by iterating Hedin’s equations once
starting from

P ¼ 0, i.e., the Hartree approximation. This
produces the trivial vertex function Γ ¼ δð1; 2Þδð1; 3Þ, which
corresponds to the time-dependent Hartree approximation for
the polarization P, which is the approximation referred to as RPA
in the present review. There are basically two issues with this
approach. First of all, it starts from GH , which is known to be a poor
approximation. Second, it neglects vertex corrections completely.
In practice, the latter issue is rarely dealt with because of the
complex nature of Γ, while the first is overcome by following a
“best G, best W” philosophy.31 Within the popular G0W0 method,
one evaluates the self-energy from a non-interacting G0 obtained
from a DFT calculation while W is obtained within RPA using the
polarization P0 ¼ �iG0G0 . Today, the G0W0 method remains the
state-of-the-art for calculation of QP band structures of inorganic
solids33–35 and nano-structures, including two-dimensional mate-
rials.81–83

Another question related to Hedin’s equation is the role of self-
consistency. In principle, the five equations should be solved self-
consistently. However, while self-consistency improves the
description of energy levels in molecules84,85 and is essential for
systems out of equilibrium,86–89 it does not in general improve the
band structure and spectral functions of solids when vertex
corrections are neglected.90,91 The role of self-consistency will not
be further discussed in this review where we instead concentrate
on the problems of vertex corrections.
Rather than starting the iterative solution of Hedin’s equations

with
P

¼ 0 (which leads to the GW approximation at first
iteration), it is of course possible to start with a local approxima-
tion, Σ0ð1; 2Þ ¼ δð1; 2Þvxcð1Þ. As shown by Del Sole et al.,38 this
leads to a self-energy of the form
X

ð1; 2Þ ¼ iGð1; 2Þ eWð1; 2Þ; (41)

where

eW ¼ v½1� P0ðv þ f xcÞ��1 (42)

and

f xcð1; 2Þ ¼ δvxcð1Þ=δnð2Þ (43)

is the adiabatic xc-kernel. By inspection, it becomes clear that
eWð1; 2Þ is the screened effective potential generated at point 2 by
a charge at point 1. This potential consists of the bare Coulomb
potential plus the induced Hartree and xc-potential. Consequently,
it represents the potential felt by an electron. In contrast, the
potential felt by a classical test charge is the bare potential
screened only by the induced Hartree potential:

W ¼ v þ v½1� P0ðv þ f xcÞ��1
P0v (44)

In Eq. (41), the replacement of eW by W thus corresponds to
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including the vertex in the polarizability, P, but neglecting it in the
self-energy. In the following, we refer to these two alternative
schemes as G0W0Γ0 and G0W0P0, respectively. As usual, the
subscripts indicate that the quantities are evaluated non-self-
consistently starting from DFT. In addition to the fact that the
vertex correction accounts for the change in the xc-potential and
therefore should be more accurate, an attractive feature of the G
0W0Γ0 scheme is that DFT becomes the consistent starting point
for non-self-consistent calculations when the relation (43) is
satisfied. This is in stark contrast to G0W0 for which the Hartree
approximation is the consistent starting point.
In section “Vertex corrected quasiparticle energies,” we show

that when the rALDA xc-kernel is used to include vertex
corrections through Eq. (42) the improved description of short-
range correlations lead to a significant upshift of QP energies by
0.3–0.5 eV in agreement with experiments.30 Since both occupied
and unoccupied states are shifted up, the band gap is not affected
as much but a small increase is generally observed again in
agreement with experiments.

IMPLEMENTATION

Evaluating non-local kernels for inhomogeneous densities

Kernels like the rALDA, which were derived from the HEG (a
uniform system), have the form fmxc½n�ðq;ωÞ in reciprocal space or
fmxc½n�ðjr� r0j;ωÞ in real space. As mentioned in section “General-
ized truncation scheme”, this nonlocality jr� r0j leads to a
question regarding the treatment of the density argument when
calculating the correlation energy of inhomogeneous systems
[n ¼ nðrÞ]. To illustrate this point more clearly, we consider the
plane wave representation of the kernel,

fGG
0

xc ðq;ωÞ ¼ 1

V

Z

V

dr

Z

V

dr0e�iðqþGÞ	rf xcðr; r0;ωÞeiðqþG0Þ	r0 :

Here V is the volume of the crystal, G and G0 are reciprocal lattice
vectors, and q lies within the first Brillouin zone. In the case that
the system under investigation is homogeneous [nðrÞ ¼ n0], then
the kernel is diagonal,

fGG
0

xc ðq;ωÞ ¼ δGG0 fmxc½n0�ðjqþ Gj;ωÞ (45)

On the other hand, if the kernel is fully local (independent of q,
e.g., the ALDA) it is natural to use the local density to evaluate the
kernel, obtaining

fGG
0

xc ðωÞ ¼ 1

Ω

Z

Ω

dre�iðG�G0Þ	rfmxc½nðrÞ�ðωÞ (46)

where Ω is the unit cell volume. However, for the general case of a
inhomogeneous system and non-local kernel there is no unique way
of constructing f xc½n�ðr; r0Þ from the knowledge of f xc½n�ðrÞ in a
homogeneous system. The problem is that the density is a one-
point function and it is not clear how to treat the dependence of r
and r0. One important constraint is that the resulting kernel must be
symmetric in r and r0,92 and in the following we assume the form

f xcðr; r0Þ ! fmxcðS½n�; jr� r0jÞ; (47)

where S is a functional of the density symmetric in r and r0 and we
have restricted ourselves to frequency-independent kernels.
Before continuing, we note that if a particular problem is

characterized by certain symmetries it may be advantageous to
use a basis that conforms with the symmetry instead of using
plane waves. For example, in ref. 93 the correlation energy of
spherical clusters was studied using an expansion of the response
function in terms of radial functions and spherical harmonics. Such
decomposition may significantly reduce the computational cost.

Density symmetrization. The density symmetrization scheme
used in the rALDA/rAPBE calculations in refs 27,29,94 employed a

two-point average,

S½n� ¼ ½nðrÞ þ nðr0Þ�=2; (48)

but more elaborate functionals are possible.95,96 A kernel
satisfying Eq. (47) with a general two-point density is only
invariant under simultaneous lattice translation in r and r0. Its
plane wave representation can then be written in the form

fGG
0

xc ðqÞ ¼ 1

Ω

Z

Ω

dr

Z

Ω

dr0e�iG	rf ðq; r; r0ÞeiG0	r0 (49)

where

f ðq; r; r0Þ ¼ 1

N

X

i;j

eiq	Rije�iq	ðr�r0Þf xcx ðr; r0 þ RijÞ: (50)

and Rij ¼ Ri � Rj . f ðq; r; r0Þ is periodic in r and r0 and Eq. (49) must
be converged by unit cell sampling, which should typically match
the k-point sampling in periodic systems.

Kernel symmetrization. A second approach symmetrizes the
kernel itself.70 Starting from a non-symmetric kernel,

fNSxc ðr; r0;ωÞ ¼ fmxc½nðrÞ�ðjr� r0j;ωÞ (51)

and inserting into Eq. (45) gives

fNS;GG
0

xc ðq;ωÞ ¼ 1

Ω

Z

Ω

dre�iðG�G0Þ	rfmxc½nðrÞ�
	
ðjqþ Gj;ωÞ: (52)

It is now possible to obtain a symmetric kernel by taking the
average fNS;GG

0

xc ðq;ωÞ and its Hermitian conjugate,

f S;GG
0

xc ðq;ωÞ ¼ 1

2
fNS;GG

0

xc ðq;ωÞ þ ½fNS;G0G
xc ðq;ωÞ��


 �
(53)

which can be seen equivalently as inserting the two-point average
1=2½fNSxc ðr; r0;ωÞ þ fNSxc ðr0; r;ωÞ� into Eq. (45).70 Compared to density
symmetrization, Eq. (52) has the advantage that the integral is
performed over one unit cell only and that only the density has to
be represented on a real space grid, while the kernel is defined by
its plane wave representation.

Wavevector symmetrization. The third approach we consider is
that employed in ref., 74 which retains the computational
advantages of the kernel symmetrization scheme. Here the
wavevector jqþ Gj entering Eq. (52) is replaced by the

symmetrized quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqþ Gjjqþ G0j

p
, such that

fGG
0

xc ðq;ωÞ ¼ 1

Ω

Z

Ω

dre�iðG�G0Þ	rfmxc½nðrÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqþ Gjjqþ G0j

q
;ω

� 	
:

(54)

A kernel constructed using Eq. (54) will automatically satisfy the
symmetry requirement of Eq. (47). Furthermore, for the specific
case of kernels based on the jellium-with-gap model, the head
and wings of the matrix in G and G0 have the correct 1=q2 and 1=q
divergences, respectively.74

The main drawback of Eq. (54) is that, compared to a two-point
average of the density or the kernel, the procedure of symmetriz-
ing the wavevector is not physically transparent. Of course, two-
point schemes also suffer from limitations (e.g., the kernel has no
knowledge of the medium between r and r0). The fact that we
have to invoke any averaging system at all is an undesirable
consequence of using kernels derived from the HEG to describe
inhomogeneous systems. In what follows, we present calculations
using both the density and wavevector symmetrization schemes.

Computational details and convergence

The kernels described in previous sections have been implemen-
ted in the DFT code GPAW,97,98 which uses the projector

T. Olsen et al.

8

npj Computational Materials (2019)   106 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



augmented wave (PAW) method.99 The calculation of correlation
energies in the framework of the ACFDT are performed in four
steps. (1) A standard LDA or PBE calculation is carried out in a
plane wave basis. (2) The full plane wave KS Hamiltonian is
diagonalized to obtain all unoccupied electronic states and
eigenvalues. (3) A plane wave cutoff energy is chosen and the
KS response function100 is calculated by setting the number of
unoccupied bands included in the sum equal to the number of
plane waves defined by the cutoff. (4) The correlation energy is
evaluated according to Eqs. (7) and (8). The calculated correlation
energies are finally added to non-self-consistent Hartree–Fock
energies evaluated on the same orbitals as the correlation energy.
The coupling constant integration is evaluated using 8
Gauss–Legendre points and the frequency integration is per-
formed with 16 Gauss–Legendre points. For the frequency
integration, the Gauss–Legendre points chosen in the interval
x 2 ½�1; 1� are transformed to 0;1½ ½ by the function
ω / �logð1=2þ x=2Þ in such a way that the integral of f ðωÞ ¼
ω1=B�1 expð�αω1=BÞ is reproduced exactly.94 α is then determined
by the position of the highest frequency point, which we situate at
800 eV and B determines the density of frequency points at low

energies. For the calculations below, we have typically used B ¼ 2
for insulators and B ¼ 2:5 for metals.
The main convergence parameter for these calculations is thus the

plane wave cutoff energy (Ecut) used for the response function and
kernel. In the case of RPA calculations, it has been shown that for
sufficiently high cutoff energies the correlation energy scales as10,94

EcðEcutÞ ¼ Ec þ A

E
3=2
cut

(55)

and it is thus possible to perform an accurate extrapolation to the
converged results from a few calculations at low cutoff energies.
When the ACFDT method is used with a kernel, the extrapolation
(55) is less accurate, but the calculations often converge much faster
than RPA such that extrapolation is either not needed at all or only
introduces small errors due to the proximity of the result at the
highest cutoff to the converged result. As an example, we show the
correlation energy of bulk Na in Fig. 4 calculated with RPA, ALDA,
and rALDA. It is expected that the correlation energy should
resemble that of a HEG with the average valence density of Na due
to the delocalized valence electrons in Na.7 The rALDA calculations
are rapidly converged with respect to unit cell sampling (two nearest
unit cells are sufficient) and the results are shown in Fig. 4 as a
function of plane wave cutoff energy along with the RPA and ALDA
results. Similarly to the HEG, we find that RPA significantly
underestimates the correlation energy while ALDAx overestimates
it. We also note the very slow convergence of the ALDA calculation
with respect to plane wave cutoff due to the q-independent kernel.
In a plane wave representation, the non-local kernels consid-

ered in the present work takes the form of Eq. (49). While the
response function is calculated within the full PAW framework, it is
not trivial to obtain the PAW corrections for a non-local functional.
However, since the ALDA kernel vanishes for large densities, the
non-local kernels considered in the present work tend to be small
in the vicinity of the nuclei where it is usually difficult to represent
the density accurately. As a consequence, the kernels are rather
smooth—even at the points where the density is non-analytical—
and the kernel can be evaluated from the all-electron density
(obtained from the PAW method) represented on a uniform real-
space grid using Eqs. (49) and (50). This is illustrated in Fig. 5
where the correlation energy of an N2 molecule is shown as a
function of grid spacing. The energy difference (contribution to
the atomization energy) converges rapidly and is accurate to
within 10 meV at 0.17Å. For the calculations in the present work,
the grid spacing was determined by the plane wave cutoff as
h ¼ π=

ffiffiffiffiffiffiffiffiffiffi
4Ecut

p
and a plane wave cutoff of 600 eV for the initial DFT

calculations typically produces a grid spacing, which is h � 0:16Å.

RESULTS

Absolute correlation energies

We have already shown that the RPA underestimates the
correlation energy of the HEG by 0.6–0.3 eV/electron, whereas
the ALDA overestimates the correlation energy by 0.3 eV/electron
compared to the RPA. This is significantly improved by the rALDA
functional, which gives an error of <0.05 eV (See Fig. 3). In Table 1,

Fig. 4 Correlation energy of the valence electron in Na evaluated
with RPA, ALDA, and rALDA. The dashed lines show the values
obtained with the functionals for the homogeneous electron gas
using the average valence density of Na. Reproduced with
permission from ref., 27 copyright American Physical Society, 2012

Fig. 5 Convergence of the valence electron contribution to the
rALDA correlation energy with respect to grid spacing for the
atomization energy of N2. All numbers are relative to their
converged values. Reproduced with permission from ref., 28 copy-
right American Physical Society, 2013

Table 1. Correlation energies of H, H2 , and He evaluated with different

functionals

LDA PBE RPA ALDAx rALDA Exact

H −14 −4 −13 6 −2 0

H2 −59 −27 −51 −16 −28 −26

He −70 −26 −41 −19 −27 −26

Exact values are taken from ref. 101 All numbers are in kcal/mol
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we show that this trend remains true for simple atoms and
molecules. For the H atom, the RPA gives a correlation energy of
−13 kcal/mol (−0.56 eV), whereas ALDA gives 6 kcal/mol (0.26 eV).
rALDA on the other hand gives −2 kcal/mol, which is a factor of
three better than ALDA and a factor 6 better than RPA. A similar
picture emerges from the correlation energy of H2 and the He
atom.
Although the RPA is free from self-interaction (cancellation of

Hartree and exchange for single electron systems), it still contains
a large amount of self-correlation, which originates from the fact
that the Hartree kernel is not balanced by an exchange kernel in
the ACFDT formalism. The self-correlation can be canceled exactly
by including SOSEX13,17 or an exact exchange kernel.21,22

However, these approaches are far more computationally
demanding than the ACFDT formalism. In contrast the rALDA
kernel has a similar computational cost as RPA and reduces the
self-correlation error to <0.1 eV for an H atom. The remaining error
in rALDA is largely due to the choice of the LDA functional as the
starting point and choosing the rAPBE kernel instead reduces the
error to <1meV.
In Fig. 6, we show the correlation energy per valence electron

calculated for a number of solids using various xc-kernels and the
RPA.77 As for the molecules and HEG, the RPA correlation energy is
consistently larger (by a few tenths of an eV/electron) than that
calculated using the xc-kernels. However, the differences in
correlation energy between the kernels themselves are much
smaller. For instance, including the correlation contribution of the
ALDA in the rALDA kernel (rALDAc) increases the correlation
energy by around just 1% (�0.01 eV/electron) compared to the
standard rALDA.
Figure 6 also shows the result of diffusion Monte Carlo (DMC)

calculations of the correlation energy of Si,102 which we can
tentatively compare to our own results. The DMC correlation
energy lies among the values calculated from the kernels.
Reference 70 also found a correlation energy close to the DMC
value using the CDOP kernel and a different averaging scheme.
This result is of course reassuring, but we note that care must
always be exercised when making such comparisons. First, one
must expect the calculated value to have some dependence on
the treatment of the core–valence interaction (e.g., PAW,
pseudopotentials, all-electron). More generally, the concept of
the correlation energy “per valence electron” becomes less well
defined if the calculated correlation energy includes the
contribution of semicore states. For instance, comparing Figs. 6
and 4 reveals an apparent contradiction, that the valence energy
per electron of Na in Fig. 6 is apparently approximately half its
value in Fig. 4. This discrepancy is resolved, however, by noting
that, in the calculations of Fig. 6,77 the entire 2s22p6 shell of Na
was included as valence in addition to the 3s electron, unlike in

Fig. 4. Therefore, the correlation energy of Na reported in Fig. 6
represents an average over the free-electron-like 3s electron and
the more localized 2s22p6 shell, which cannot be straightforwardly
compared to the free electron gas as in Fig. 4.
It is remarkable that the amount of self-correlation introduced

by RPA is similar for widely different systems and it indicates that
there will be a large energy cancellation when considering energy
differences. As we will see below, this is true to some extent, but
the cancellation is far from perfect and RPA gives rise to
systematic errors in cohesive energies of solids and atomization
energies of molecules.

Effect of kernel averaging scheme. As discussed in section
“Evaluating non-local kernels for inhomogeneous densities,” there
is a choice in how one constructs the xc-kernel for an
inhomogeneous system. For instance, the correlation energies
displayed in Table 1 were calculated using a two-point average of
the density. If we repeat the rALDA calculations using the
symmetrized wavevector scheme (Eq. (54)), we obtain correlation
energies of 6, �24, and �23 kcal/mol for H, H2 and He,
respectively, i.e., a difference of +8, +4, and +4 kcal/mol
compared to the values of Table 1. The small differences in H
and H2 cancel when calculating the atomization energy.77 We find
it encouraging that the symmetrized wavevector approach agrees
very well with the more intuitive two-point density average when
calculating the atomization energy.

Structural parameters

Having established that the renormalized kernels yield greatly
improved absolute correlation energies, we now consider physical
observables, starting with lattice constants and bulk moduli of a
test set of 10 crystalline solids. In these calculations, the KS states
and energies obtained self-consistently within the LDA were used
to calculate the noninteracting response function and exact
exchange contribution to the total energy. A number of different
xc-kernels (including the rALDA) were used to calculate the
response function and correlation energy through Eqs. (7) and (8).
The wavevector symmetrization scheme (Eq. (54)) was used to
construct the kernel. The lattice constants and bulk moduli were
extracted by calculating the total energy as a function of lattice
spacing and fitting the results to a Birch–Murnaghan equation of
state. More computational details are given in ref. 77

Figure 7 shows the percentage deviation between the
calculated structural parameters and the experimental data listed
in ref. 6 Calculations performed within ground state DFT within the
LDA or GGA are also shown for comparison, which show the well-
known tendency for the LDA/GGA to over/underbind, respectively.
Using exact exchange and the ACFDT correlation energy (with any

Fig. 6 Absolute correlation energy per valence electron calculated with different xc-kernels.77 Also shown is the correlation energy for Si
obtained from diffusion Monte Carlo (DMC) calculations in ref. 102 Reprinted from ref., 77 with the permission of AIP Publishing
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kernel, or the RPA) systematically improves the agreement with
experiment, going from a mean absolute error (MAE) of 1.3%/7%
for PBE to �0.7%/4% for lattice constants/bulk moduli,
respectively.
The difference between the various kernels, and even the RPA,

is rather small. In particular, the rALDA, rALDAc, CDOPs, and CP
kernels yield very similar results. The very close agreement
between rALDA and rALDAc supports the use of the simpler
rALDA kernel, which uses only the exchange part of the ALDA
(Eq. (25)). One attractive property of the rALDA is that the
calculated values display the fastest convergence with respect to
the number of plane waves used to construct the response
function, allowing a saving in computational time.
In terms of the other kernels, the strongest outlier is the JGMs

kernel, particularly for the ionic solid LiCl. The agreement with
experiment for the JGMs lattice constants can be improved even
further by replacing the experimental optical gap Eg that appears
in the kernel definition with an effective gap inspired by excitonic
calculations involving a long-range-corrected attractive kernel.75,77

One can also see that the CDOP kernel produces respectable
structural parameters, despite it actually having a divergent pair-
distribution function, while the variation between the CP and CPd
kernels illustrate the potential importance of dynamical effects.
However, the overall differences between all of the kernels are

rather small, and based on these calculations, it is hard to argue
that there are particular benefits in going beyond a simple, static
kernel that tends to a density-dependent constant at small q and
decays as 1=q2 at large q. The rALDA satisfies these properties and
also carries the particular advantage of scaling simply with the
coupling constant λ. Finally, a significant strength of the rALDA is
that, unlike the other kernels derived from the HEG, it has a spin-
dependent generalization (section “Spin”), which is essential when
calculating molecular atomization energies.

Atomization energies of molecules

In Fig. 8, we compare the performance of LDA, PBE, RPA@LDA,
RPA@PBE, rALDA, and rAPBE for the atomization energies of
14 small molecules using the experimental atomic positions. All

numbers are shown relative to experimental values corrected for
non-adiabatic effects.103 RPA is seen to systematically under-
estimate the binding energies with RPA@LDA being slightly worse
than RPA@PBE. In contrast, LDA and PBE overestimate binding
energies and the performance of PBE is similar to RPA, whereas
LDA is much worse. Both rALDA and rAPBE provides a significant
improvement over RPA. rAPBE performs slightly better than
rALDA, which is most likely due to the poor description of the
ground state within LDA compared to PBE.
In Fig. 9, we show the mean absolute percentage error (MAPE)

of RPA, rALDA, and rAPBE compared with that obtained with PBE0
as well as SOSEX and rP2T, which constitute two other beyond
RPA methods.104,105 rALDA and rAPBE are a factor of three more
accurate than RPA@LDA and RPA@PBE, respectively. Moreover,

Fig. 7 Lattice constants (left) and bulk moduli (right) calculated using different approximations for the xc-kernel for a test set of 10 crystalline
solids, compared to the experimental values listed in ref. 6 The experimental lattice constants were corrected for zero-point motion.6 Note the
CP and JGMs kernels coincide for metallic systems.77 Reprinted from ref., 77 with the permission of AIP Publishing

Fig. 8 Molecular atomization energies evaluated with different
methods shown relative to the experimental values. Results are
shown with respect to reference values from ref. 103 The numbers
are tabulated in Supplementary Material of ref. 29 Reproduced with
permission from ref., 29 copyright American Physical Society, 2014
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the rAPBE MAPE is <1.5% and outperforms both PBE0 and r2PT on
this small test set.

Cohesive energies of solids

While hybrid functionals may provide a computationally cheap
way of obtaining accurate ground state energies for atoms and
molecules, they typically fail dramatically for solids. Moreover,
quantum chemistry methods are prohibitively demanding for
solid-state systems and DFT and DFT-based methods currently
seem to be the only possible choice when dealing with solids. In
ref., 6 it was shown that RPA performs somewhat worse than PBE
for the cohesive energies of solids, although it does provide
significantly better results than LDA. This is in contrast to the case
of molecules where RPA yields slightly better results than PBE. The
reason is that the accuracy of RPA for atomization energies
crucially depends on error cancellation of the ubiquitous self-
correlation in RPA. The cancellation of errors is likely to work
better when comparing similar systems, but for the cohesive
energy of solids one has to consider ground state energies of
atoms with ground state energies of solids, so the error
cancellation can become more inaccurate. Since the rALDA and
rAPBE functionals to a large extent eliminate the self-correlation
error of RPA, it is expected that these approaches should perform
significantly better than RPA.
In Fig. 10, we show the cohesive energies of solids calculated

with LDA, PBE, RPA, rALDA, and rAPBE. Again the rAPBE functional
performs significantly better than either PBE or RPA. MAPE is
shown in Fig. 11 and the rAPBE deviation from experiment is <2,
whereas PBE, RPA@LDA, and RPA@PBE give errors of 4%, 9%, and
7%, respectively. PBE0 gives a mean error of 7.5%, which is four
times worse than rAPBE.

Formation energies of metal oxides

In the previous two sections, we considered the problems of
calculating the atomization energies of molecules and solids. This
problem gauges the ability of a method to describe the absolute
energy cost of breaking a chemical bond. In most practical
situations, however, it is often more relevant to consider the
material’s formation energy, i.e., its energy relative to the standard
states of its constituent elements rather than the isolated atoms.
The calculation of formation energies thus gauges the ability of a
method to describe the energy of one type of chemical bond
relative to another. Predicting the heat of formation of metal
oxides has proven to be particularly challenging for a wide range
of commonly applied xc-functionals. The RPA has previously been

shown to significantly improve the accuracy of calculated
formation energies of group I and II metal oxides as compared
to semilocal functionals.106 In the following we briefly assess the
performance of the rAPBE method and compare it to that of the
PBE, RPA, and the Bayesian error estimation functional with vdW
(BEEF-vdW) functional. The latter two contain non-local correlation
to account for vdW interactions.107

The formation energy per oxygen atoms was obtained from the
computed total energies as

ΔEO ¼ 1

y
E½MxOy � �

x

y
E½M� � 1

2
E½O2�; (56)

where E½MxOy �, E½M�, and E½O2� are the total energies of the oxide,
the bulk metal, and the O2 molecule in the gas phase, respectively.
Zero-point energy contributions were not included in the present
study as previous work has shown that they affect the formation
energies of oxides by <0.01 eV.106

The formation energies computed with PBE, BEEF-vdW, EXX,
RPA, and rAPBE are summarized in Fig. 12. For the latter three
methods, single-particle wave functions and energies were
obtained from a self-consistent PBE calculation. All structures
were optimized with PBE. The BEEF-vdW was included here to
compare the performance of RPA and rAPBE methods to a
semiempirical method that explicitly includes dispersive

Fig. 10 Deviation from experimental values of the cohesive energy
of solids evaluated with different methods. The numbers are
tabulated in Supplemental Material of ref. 29 Reproduced with
permission from ref., 29 copyright American Physical Society, 2014

Fig. 11 Mean absolute percentage deviation of cohesive energies of
solids evaluated with six different methods. Reproduced with
permission from ref., 29 copyright American Physical Society, 2014

Fig. 9 Mean absolute percentage deviation of molecular atomiza-
tion energies. The PBE0, SOSEX, and rP2T values are taken from
ref. 20 Reproduced with permission from ref., 29 copyright American
Physical Society, 2014
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interactions. The mean signed error (MSE), MAE, and MAPE with
respect to experiment are shown Table 2. Comparing the MSE and
MAE shows that formation energies from PBE, BEEF-vdW, EXX, and
RPA have a clear systematic tendency to overestimate formation
energies; that is, oxides are predicted to be less stable than found
in experiments (see ref. 106 for references for the experimental
data). In contrast, while rAPBE shows the same tendency of
destabilizing the metal oxide, it is less pronounced, and CaO2 , KO2,
CsO2, and RuO2 are in fact predicted to be more stable than
experiment. The rAPBE method is in better agreement with
experiments than all the other methods with a MAE of only
0.21 eV compared to 0.38 eV for RPA and 0.40 for BEEF-vdW. We
can partly attribute the failure of the RPA to the lack of error
cancellation between the correlation energy of the oxide and the
bulk metal and oxygen molecule, which are all separately
underestimated by the RPA (see ref. 108). The errors of the DFT
xc-functionals and the RPA are to some extent systematic and can
be ascribed to a bad description of the O2 molecule. In fact,
treating the energy of the O2 reference as a fitting parameter, the
MAE for all the methods become comparable and lie in the range
0.15–0.2 eV/O.108

Surface and adsorption energies

For applications of DFT to problems in surface science, in particular
heterogeneous catalysis and electrocatalysis, the ability to predict
stability and reactivity of metal surfaces is of crucial importance. It
has been established that the RPA yields very good results for
surface energies and chemisorption energies of atoms and small

molecules on transition metal surfaces and greatly improves the
accuracy of the xc-functionals.109–113 As shown below, the good
performance of RPA for surface and adsorption energies is
preserved and probably even improved by the renormalized
kernels. The difference between RPA and rALDA for surface
reaction energies is of the order 5–10%, which is comparable to
the difference found for atomization energies of solids and
molecules. This suggests that the better description of short range
correlations by the kernel, which was found to improve atomiza-
tion energies in sections “Atomization energies of molecules” and
“Cohesive energies of solids,” carries over to metal–molecule
bonding. However, owing to the significantly smaller magnitude of
such bond energies compared to covalent bonds in solids/
molecules and the lack of experimental data with sub-100meV
accuracy, it is not possible to confirm this hypothesis directly.
Figure 13 shows the adsorption energy of CO on Pt(111) for a

coverage of 1/4 plotted against the surface energy. Results
obtained with RPA, rAPBE, and a range of xc-functionals are shown
together with the experimental results provided in ref. 109 It is
evident that the RPA and rAPBE methods are able to break the
incorrect correlation between adsorption energy and surface
energy exhibited by the xc-functionals109 and thereby yield an
accurate description of both quantities simultaneously. Similar
conclusions have recently been demonstrated for other adsor-
bates and surfaces.114

Table 3 reports reaction energies in the full coverage limit for the
set of benchmark surface reactions introduced in ref. 115 over the
early 3d transition metal surfaces. The absolute and relative
deviation from the rALDA result is shown in the last two rows. It is
interesting to note that the xc-functional yielding the best
agreement with the rALDA (and RPA) is the RPBE, which is a
revised version of the PBE fitted to experimental data on surface
reactions like the ones considered here.116 The rALDA and RPA
results are in good agreement, with the largest deviation occurring
for OH adsorption (difference of 0.11 eV). This agrees well with
results of Fig. 13 for CO adsorption on Pt(111) and for graphene
adsorbed on Ni(111) (see Fig. 16). Although the absolute deviation
between rALDA and RPA for the surface reactions is small (MAE of
40meV), the relative deviation is in fact similar to that obtained for
the atomization energies of molecules and solids. However, it is

Table 2. Mean signed error (MSE), mean absolute error (MAE), and

mean absolute percentage error (MAPE) of calculated formation

energies relative to experiments for 19 group I and II oxides and the

transition metal oxides TiO2 and RuO2

PBE BEEF-vdW EXX RPA rAPBE

MSE −0.55 −0.40 −0.96 −0.38 −0.18

MAE 0.55 0.40 0.99 0.38 0.21

MAPE 14.7% 10.9% 39.6% 12.1% 6.6%

Energies are in eV per oxygen atom. Data taken from ref. 108

Fig. 13 Surface energy versus adsorption energy of CO/Pt(111)
calculated with various GGA functionals (green markers) and van der
Waals functionals (red markers). Circles and triangles indicate atop
and hollow sites, respectively. All calculations were performed with
the experimental lattice constant of Pt and the CO molecule relaxed
with PBE. The hollow circle was obtained with a PBE optimized
lattice constant. The coverage of CO is 1/4 and the Pt surface was
modeled by a slab containing four atomic layers. Reproduced with
permission from ref., 29 copyright American Physical Society, 2014
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Fig. 12 Calculated oxide formation energy per oxygen atom using
PBE, BEEF-vdW, RPA, and rAPBE plotted against the experimental
data. The data set contains 19 group I and II metal oxides as well as
the transition metal oxides TiO2 and RuO2. Reproduced with
permission from ref., 108 copyright American Physical Society, 2015
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interesting to note that RPA shows a small but systematic tendency
to overbind the adsorbates relative to rALDA. This is opposite to
the trend observed for the atomization energies of molecules and
solids where RPA underestimates the bond strength by around
0.3–0.5 eV/atom relative to rALDA (see Figs 8 and 10). For metals,
the cohesive energy is also underestimated by RPA but by
somewhat smaller degree (MSE of �0:15 eV relative to rALDA). The
average deviation between RPA and rALDA for the bond energy
per atom is shown in Table 4 for the set of materials in Figs 8 and 10
grouped according to material type.
The fact that molecule–metal bonding shows an opposite trend

compared to atomization energies can be explained as follows: for
reactions involving the breaking of covalent bonds in the initial
adsorbate molecule, e.g., for reactions of the type 1/2A2–A/metal
(reactions 1, 2, and 6–8 in Table 3), RPA will overestimate the
reaction energy because the A–A bond strength is underestimated
more than the A–metal bond (the latter being weaker than the
former). For pure adsorption reactions of the form A2–A2/metal
(reactions R3–R5), RPA will overestimate the adsorption energy
because the reduction of the internal A–A bond upon adsorption is
underestimated more than the A2/metal bond. In both cases, the
reason for the (slight) overestimation of the reaction energy can thus
be traced to a larger underestimation by the RPA in describing pure
covalent bonds compared to bonds with partial metallic character.

Static correlation

A highly attractive feature of the RPA is the correct description of
bond dissociation in molecular dimers, which cannot be captured
by restricted semilocal functionals.3,117 The bond dissociation

curves in RPA are, however, only accurate if the reference energy
of the isolated atoms are subtracted. In the case of H2, for
example, the dissociation curve is 1.1 eV below the exact result
due to the self-correlation energy of the H atom. As we have seen,
the rALDA largely eliminates the self-correlation and one can
obtain accurate dissociation curves of molecular dimers without
subtracting reference energies for the isolated atoms. This is
shown in Fig. 14, where we also compare with LDA, PBE, and
Hartree–Fock, which all fail to yield the correct dissociation energy.
We note, however, that RPA as well as rALDA exhibit a spurious
maximum at intermediate bond lengths, which is not present in
the exact result. The exact monotonic increase in energy signals a
failure of both approximations. We note that it has previously
been shown that the correct dissociation curve can be obtained
from the ACFDT formalism if the interacting response function χ is
evaluated from either the Bethe–Salpeter equation118 or a
systematic correction to EXX-RPA.23

Finally it is worth mentioning that both RPA and rALDA fail
dramatically for the dissociation of the Hþ

2 dimer. In contrast, the
SOSEX method yields the exact result for this problem but cannot

Table 3. Adsorption energies (in eV) for a few reactions at full coverage calculated with rALDA, RPA, and seven different DFT xc-functionals

Ads. Surf. rALDA RPA LDA PBE RPBE vdW-DF2 BEEF-vdW mBEEF mBEEF-vdW

H Mn 0.64 0.64 0.09 0.41 0.55 0.58 0.56 0.44 0.30

O Mn −0.76 −0.81 −1.84 −1.05 −0.70 −1.04 −0.87 −1.00 −1.16

N Mn 2.30 2.30 1.06 1.82 2.15 2.08 2.03 1.93 1.74

N2 Mn 0.75 0.74 −0.63 0.50 1.04 0.83 0.70 0.55 0.10

CO Mn −0.14 −0.21 −1.61 −0.50 0.03 0.06 −0.22 −0.50 −0.95

NO Mn −0.96 −0.99 −2.87 −1.50 −0.96 −1.06 −1.19 −1.33 −1.68

CH Mn 3.62 3.59 3.22 3.56 3.72 3.56 3.49 3.71 3.51

OH Mn 1.36 1.24 0.46 1.12 1.44 0.98 1.15 1.14 0.95

CO Sc −0.60 −0.61 −1.48 −0.97 −0.71 −0.94 −0.89 −0.94 −1.10

CO Ti −0.77 −0.81 −1.68 −1.00 −0.66 −0.80 −0.90 −1.04 −1.32

CO V −0.79 −0.85 −1.87 −1.01 −0.58 −0.68 −0.84 −1.03 −1.39

CO Cr −0.34 −0.38 −1.75 −0.74 −0.25 −0.27 −0.50 −0.77 −1.17

MAE (eV) versus rALDA 0.04 1.10 0.31 0.12 0.16 0.15 0.28 0.54

MAE (%) versus rALDA 8 218 58 24 29 22 56 115

Data taken from ref. 114

Table 4. Difference in atomization and cohesive energies between

RPA, rALDA, and experiments for three different types of materials

ERPA− ErALDA ERPA− EExp.

MAE MSE MAE MSE

Molecules 0.48 −0.44 0.52 −0.52

Gapped solids 0.30 −0.30 0.43 −0.43

Metals 0.18 −0.15 0.24 −0.24

Data taken from ref. 114

Fig. 14 Dissociation curves of the H2 molecule calculated with
different functionals. The dashed line shows the energy of two
isolated Hydrogen atoms (−1 Hartree). Each curve have been
obtained by spline interpolation of 12 data points. Reproduced with
permission from ref., 28 copyright American Physical Society, 2013
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dissociate H2 correctly. To our knowledge, the only method that is
capable of correctly dissociating both dimers is the ACFDT with
EXX-RPA.21

Dispersive interactions

One of the main qualities of the RPA is its ability to account for
vdW interactions in weakly interacting systems. Specifically, the
RPA has been shown to provide an excellent description of the
equilibrium geometry in hBN8 and graphite9 as well as graphite
adsorbed on metal surfaces.11,12,94 Conserving the accurate
description of dispersive interactions is thus a major success
criterion for any bRPA method for ground state energies.

Bilayer graphene. In Fig. 15, we show the binding energy as a
function of interlayer distance for a bilayer of graphene calculated
with LDA, PBE, and the vdW functional of Dion et al.119 along with
the results of RPA and rALDA. The RPA and rALDA is seen to yield
nearly identical equilibrium distances of 3.4Å, but rALDA gives a
slightly smaller binding energy (22 meV/atom) compared to RPA
(25meV/atom). The semilocal functionals are not expected to
capture dispersive interactions and PBE predicts a very shallow
minimum at 4.4Å. However, LDA yields an equilibrium distance of
3.3Å, which is close to the RPA/rALDA value but only half the
binding energy. It is remarkable that LDA provides a seemingly
qualitative correct description of the binding energy in this
system. Similar results for LDA have previously been obtained for
graphite9 and graphene on metal surfaces,94 but the results are
likely to be fortuitous, and the fact that LDA and various GGAs
produce qualitatively different results renders the result dubious.
The vdW functional predicts an equilibrium distance of 3.7Å

and a binding energy of 22 meV/atom. In contrast to LDA, this
functional binds the two layers for the right reasons, but the
binding distance is quantitatively wrong. It is also noteworthy that
the tails of the potential energy surfaces of RPA and rALDA
coincide as expected but deviate from the prediction of the vdW
functional. It should be noted that there is no experimental values
for the binding energy and binding distance of bilayer graphene,
but it is expected that the binding distance should be close to the
value of 3.34Å of graphite.

Graphene on metals. The description of graphene adsorbed on
metal surfaces has proven a highly challenging task for first-
principles methods due to equal contributions of weak covalent
and vdW bonding in these systems.11,12 In Fig. 16, we compare the
binding energy of graphene on a Ni(111) surface calculated with

LDA, PBE, RPBE, vdW, RPA, and rAPBE.29 The RPA shows two
distinct minima at 2.2Å (chemisorbed) and 3.3Å (physisorbed),
which originates from weak covalent interactions and dispersive
forces, respectively. The chemisorption minimum is a few meV
lower than the physisorption minimum and agrees well with the
experimentally determined value of 2.1Å for this system. The
rAPBE functional closely mimics the RPA result but gives a slightly
larger energy difference between the two local minima. The vdW
functional completely misses the weak covalent interactions
responsible for the chemisorption minimum and only yields a
physisorbed state at 3.8Å.

C6 coefficients. Long-range interactions are typically dominated
by Coulomb interactions and accuracy of dispersive interactions
are thus determined by the response functions of the individual
systems. For well-separated atoms, the binding energy asympto-
tically becomes EBðrÞ ¼ C6=r

6, where the C6 coefficients only
depend on the polarizabilities of the isolated atoms. In particular,
the Cij

6 coefficient relating atoms i and j can be calculated from the
Casimir–Polder formula

C
ij
6 ¼

3

π

Z

0

1
αiðiωÞαjðiωÞdω; (57)

where

αiðiωÞ ¼ �
Z

drdr0zχ iðr; r0; iωÞz0 (58)

is the polarizability of atom i and χ i is the interacting response
function, which can be calculated from the Dyson equation with a
given approximation for the xc-kernel. Alternatively, the dynamic
polarizability may be calculated from the time-dependent density
obtained from a real-time implementation of TDDFT.120

The C6 coefficients for eight different atoms (i ¼ j) are displayed
in Table 5 calculated with LDA (χ ¼ χKS), RPA, and rALDA.28 We
observe that RPA performs significantly better than LDA, but
rALDA is a factor of three better than RPA on average. The
performance is, however, very dependent on the type of atom and
rALDA performs better for the noble gas atoms, except for He,
which is more accurately described in RPA. For Li and Na, RPA fails
completely, whereas LDA provides rather accurate predictions
(better than rALDA for Li and slightly worse than rALDA for Na).

Structural phase transitions

Bulk solids usually exist in various polymorphic forms. Under
changes in pressure or temperature, one structure may transition

Fig. 15 Binding energy of bilayer graphene calculated with RPA and
rALDA as well as LDA, PBE, and a van der Waals functional (vdW).
Reproduced with permission from ref., 28 copyright American
Physical Society, 2013

Fig. 16 Binding energy of graphene on a Ni(111) surface calculated
with RPA and rAPBE as well as LDA, PBE, RPBE, and a van der Waals
functional (vdW-DF). Reproduced with permission from ref., 29

copyright American Physical Society, 2014
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into another. The structural phase transition of solids has large
theoretical and practical importance. With the external influence,
the space-group symmetry and associated internal structural
parameters change from one crystal structure to another.
Temperature- or pressure-induced structural phase transitions
can also change the electronic structures of the corresponding
materials, such as from insulator to metal and vice versa, resulting
in changes of the band gap or conductance.121 Structural phase
transitions also sometimes lead to different magnetic states.122 As
a consequence, structural phase transitions offer an opportunity to
tune a material toward particular applications in electronics,
optics, and other relevant fields.123–125

Structural phase transitions have largely remained a challenge
for electronic structure methods. When computing phase transi-
tions, a robust theory must overcome the dilemma of simulta-
neously predicting equilibrium structural properties and the phase
transition parameters. Since experiments often fail to precisely
measure the coexistence temperatures or pressures of two
different structural phases of a solid, there is a high demand for
a robust theoretical method. The failure of semilocal density
functional approximations for structural phase transitions was
earlier attributed to the underestimation of the band gap with
these methods.121,126–128 This assumption was later questioned by
the results from the HSE (Heyd–Scuseria–Ernzerhof) approxima-
tion.129,130 HSE is nonlocal in the exchange and predicts more
realistic fundamental gaps. HSE is better than semilocal func-
tionals for the transition pressures of Si and SiO2 but seriously
overestimates the transition pressure in Zr.
In combination with the rAPBE and rALDA kernels, the RPAr

approximation was investigated for the structural phase transi-
tions of a small but representative group of materials.131 The
examples were chosen to incorporate several changes in band
structure, including from semiconductor to semiconductor,
semiconductor to metal, and metal to metal transitions. The
assessment includes the phase transitions of the diamond phase
of Si to the metallic beta-tin form, the zinc-blende (ZB) to rocksalt
transition of SiC, the ZB to Cmcm phase transition of GaAs, the
quartz to stishovite transition of SiO2, the transition from fcc to
hcp structure of Pb, and finally the phase transition of the
hexagonal to cubic structures of BN.
The transition pressure can be found as the negative slope of

the common tangent line between the two phases. At the
transition pressure, the difference in Gibbs free energies for the
two phases should be equal to zero. At a finite, but constant,
temperature, the pressure can be calculated as the negative

derivative of the free energy with respect to the volume

PðV ; TÞ ¼ � ∂F

∂V

� 	

T

(59)

At zero temperature, the equivalent condition is that the enthalpy
difference of the two phases is zero, and the pressure can be
found directly as the derivative of the electronic energy.
To include the thermal effects, the equilibrium parameters were

obtained from fitting the third-order Birch–Murnaghan equation
of state (EOS) including the thermal corrections from the
vibrational degrees of freedom. The results of the fitting are F0T ,
the minimum of the Helmholtz energy at temperature T and (V0T ,
B0T , B

0
0T ), the equilibrium parameters such as the equilibrium

volume, bulk modulus, and the derivative of the bulk modulus at
that same temperature. The transition pressures were then
obtained using the isothermal EOS fitting parameters obtained
from Eq. (9) in ref. 131 Compared to zero Kelvin, the addition of
thermal corrections introduces a rigid shift in the performance of
all the methods for most of the materials in the assessment, and
the agreement typically improves with experiment when the
thermal corrections are included.
The results of different functionals for predicting the phase

transitions generally follows the same trend as the structural
parameters, Fig. (1) in ref. 131 In general, all bRPA methods deliver
an overestimation of the equilibrium and transition volumes by
about the same amount as the LDA underestimates them. bRPA
approximations yielded an overall improvement compared to the
bare RPA and semilocal functionals for the transition pressures, as
shown in Table 6, although the behavior is less systematic than
for RPA.
For Si and Ge, the RPAr1 approximation delivers a reasonable

result; however, RPA shows closer agreement with the experi-
mental transition pressure. For SiC, neither RPA nor bRPA show
agreement with the experimental transition pressure, indicating
that there is a significant difference between equilibrium and non-
equilibrium transition pressures.133 For SiO2 and GaAs, the
transition pressure predicted with an xc-kernel is more accurate
compared to experiment than the bare RPA. Adding bRPA
correlation from rAPBE at any level of RPAr reduces the transition
pressure of RPA and comes quite close to the experiment.
Reference 134 attributes this deviation of RPA to its poor
performance for some molecular-like solids where there is less
cancellation of error between dissimilar phases. It is remarkable
that RPA fails to predict the correct phase ordering for BN, while
the rAPBE kernel in conjunction with RPAr brings the transition

Table 6. Finite temperature transition pressures, in GPa, predicted at

300 K using different levels of density functional approximations131

Materials LDA PBE SCAN RPA RPAr1 HOT Expt121,131

Si 6.3 8.5 13.8 12.8 10.4 9.7 12.0

Ge 5.6 7.1 10.4 10.2 9.5 9.2 10.6

SiC 56.4 61.4 69.1 69.6 66.8 65.6 100.0

GaAs 9.4 11.6 16.1 18.0 16.3 16.0 15.0

SiO2 −0.1 6.4 5.2 4.3 7.1 7.4 7.5132

Pb 17.8 21.7 22.2 23.9 22.7 22.5 14.0

C 3.1 9.8 8.3 4.2 10.4 10.4 3.7

BN 0.1 6.5 6.1 1.8 4.3 4.4 5.0

The rAPBE kernel was used to obtain the RPAr1 and HOT results. RPAr1 is

sufficient at capturing the needed beyond RPA correlation for predicting

the phase transitions, and the HOT correction introduces a small shift.

Reproduced with permission from ref., 131 copyright American Physical

Society, 2018

Table 5. C6 coefficients between identical atoms (i ¼ j in Eq. (57))

calculated with LDA, RPA, and rALDA28

LDA RPA@LDA rALDA Exact

He 2.2 1.5 1.8 1.44

Ne 9 6 7 6.48

Ar 140 57 67 63.6

Kr 280 110 130 130

Li 1290 493 1180 1380

Na 1520 560 1280 1470

Be 590 163 243 219

Mg 1400 370 570 630

MARE 0.79 0.29 0.11

All values are in atomic units. We also show the mean absolute relative

error (MARE)
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pressure close to the experimental value. The thermal corrections
play a more prominent role in the phase transitions of carbon and
BN and indicate that further investigations are necessary. RPA
yields too low transition pressure for the phase transition of
carbon without thermal corrections and reverses the phase
stability of BN without a finite-temperature correction. All bRPA
approximations largely overestimate the transition pressure in C
with the inclusion of thermal corrections, while the prediction for
BN is significantly improved compared to RPA. The inclusion of the
HOT with the rAPBE kernel leads to a better accuracy against the
experimental transition pressure in BN. The unexpected inaccura-
cies in materials such as Pb, C and BN can be explained by near
degeneracies.
To illustrate the benefits of including the xc-kernel, Fig. 17

shows the EOS data and common tangent results for SiO2

predicted with RPA and the HOT approximation in combination
with rAPBE. In this case, RPA underestimates the energy difference
between the phases resulting in an underestimation of the
transition pressure. The root cause of this can be understood if the
transition pressure is thought of as ΔE=ΔV evaluated at the
transition volumes for each phase. The energy underestimation is
more severe than the transition volume errors, and so RPA
underestimates the pressure (as with most semilocal functionals).
With the addition of the xc-kernel, the energy difference between
phases is increased by an appropriate amount to bring the rAPBE
transition pressure within the experimental range.

Cesium halide stability

The difficulty in predicting the energy difference between similar
phases of a material is a more general problem than phase
transitions alone. The stability of different phases in alkali halides
is also a strong probe of various electronic structure methods and
the correlation effects they incorporate. Among the alkali halides,
those formed from cesium show an interesting behavior. CsF is
experimentally stable in the B1 (rocksalt or NaCl) structure, while
the Cl, Br, and I materials exist experimentally in the B2 (CsCl)
structure. For all of the other alkali halides, the stable structure is

B1. The stability of the B2 phase for certain cesium halides is a
direct consequence of weak vdW bonding.135–140 All ACFDT-
based methods naturally account for long-range vdW forces,141

but an accurate treatment of their structure requires both short-
and long-range interactions to be accounted for. Semilocal
density functional approximations miss the long-range vdW
forces. Reference 139 indicated the relevance of long-range
interactions through the PBE+D2 method compared to the bare
PBE-GGA for the phase ordering of these cesium halides. Since D2
is a semiempirical method,142 the energy differences reported in
ref. 139 are not necessarily usable as benchmarks.
To go beyond the semilocal level, the energy differences

between the B1 and B2 phases were explored using ACFDT-based
methods. The performance of the previously discussed ACFDT-
based approximations was assessed in detail in ref. 143 for the
structural parameters and cohesive energies of cesium halides.
The rALDA kernel was used primarily for this study. Compared to
semilocal density functionals, RPA yields superior structural
parameters for all of the stable cesium halides. bRPA approxima-
tions in combination with the rALDA kernel are in general even
more accurate for predicting the lattice constants and bulk
moduli. The predicted cohesive energies for all of these ACFDT
methods are also more accurate compared to the PBE-GGA due to
the incorporation of vdW interactions. RPA predicts the proper
phase stability of all Cs halides, whereas PBE only predicts the
correct order for the fluoride, Fig. 18.
By definition, the cohesive energy includes the energy of the

bulk and the constituent atoms. Describing accurately the energy
of the bulk and free atoms simultaneously is a challenge for most
electronic structure methods, and a method biased toward one
paradigm will lead to inconsistent predictions of the cohesive
energy. Depending on the kernel and level of RPAr approximation,
the resulting methods yield different descriptions for the bulk and
free atoms. Overall, the cohesive energies of the stable Cs halides
are more accurate with RPA for the F and Cl compounds than for
the heavier halides. For Br and I, the rALDA kernel within RPAr
improves the predicted cohesive energies compared to RPA. A
possible explanation is that RPA is applied in a non-self-consistent
manner with PBE input orbitals, which is not necessarily the best
starting point for the more ionic X–F and Cl bonds. The addition of
a kernel tends to improve the short-range correlation of the
ACFDT and therefore compensates the error of the PBE orbitals
that is more prominent in the cohesive energies for RPA for the
larger Cs halides.

Fig. 17 Energy–volume curves for the quartz and stishovite phases
of SiO2 with RPA and rAPBE (within the HOT approximation) per
functional unit.131 The negative slope of the common tangent line
corresponds to the transition pressure. The kernel corrections for
SiO2 increase the equilibrium energy difference between phases
and correct the large underestimation of the transition pressure by
RPA as a result. The kernel-corrected curves have been rigidly shifted
up in energy by 0.05 eV compared to RPA for visual clarity.
Reproduced with permission from ref., 131 copyright American
Physical Society, 2018

Fig. 18 Bar graph summarizing the difference in cohesive energies,
ΔEcoh ¼ EB1coh � EB2coh, obtained with various DFT methods. PBE+D2
results are taken from ref. 139 Positive ΔEcoh corresponds to the B1
phase being preferred as the ground state, whereas negative values
indicate the preferred stability of the B2 phase. PBE predicts all
ground state cesium halides to be in the B1 phase, whereas all other
methods favor the B2 structure except in CsF. S+D3144 and S+
rVV10145 correspond to the SCAN146 semilocal results plus the
dispersion method specified. Reproduced with permission from
ref., 143 copyright American Physical Society, 2018
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In order to correctly predict the splitting between the B1 and B2
phases, a delicate balance of short- and long-range correlation is
required, Fig. 19. The large overestimation of the stability
difference between these two phases with the PBE+D2 method
indicates the incompleteness of this approximation. RPA in
contrast correctly incorporates long-range correlation but is
incomplete for the short-range part and so underestimates the
energy difference. The energy difference is increased by any RPAr
approximation using the rALDA kernel. rAPBE could be naturally
expected to be the ideal kernel for evaluating the bRPA
corrections on top of PBE orbitals, but interestingly this kernel
struggles to predict the correct phase ordering in these materials.
The other kernels tested, including rALDA, CP07,71 and CDOP,69 all
predict a consistent phase stability ordering, regardless of the
RPAr approximation, further indicating that the error lies in the
rAPBE kernel itself.143 This seems to be an isolated case, however,
as the rest of the results in this review clearly demonstrate the
utility and success of the rADFT kernels.

Vertex-corrected QP energies

This section presents some results for QP energies obtained using
the G0W0, GW0, G0W0P0 , and G0W0Γ0 self-energy methods
outlined in section “Hedin’s equations and vertex corrections.”
For the latter two, the rALDAx xc-kernel was used and all
calculations used an LDA starting point. The GW0 refers to
eigenvalue self-consistency in the Green function. All structures
were relaxed using the PBE xc-functional and QP calculations were
based on norm-conserving PAW potentials and spin–orbit
coupling was included for the band structures. Further details
on the calculations can be found in ref. 30

Table 7 reports the band gaps obtained with the different self-
energy methods together with their MAE and MSE relative to the
experimental reference values for eight bulk crystals and three
transition metal dichalcogenides in monolayer form. As
expected, G0W0@LDA underestimates the experimental band
gaps. In agreement with previous findings, iterating to self-
consistency in the Green’s function (the GW0 method) improves
the situation somewhat but leads to a small systematic
overestimation of the gaps. This overestimation becomes even
larger in fully self-consistent GW (not shown) where the MAE and
MSE increase to 0.7 eV (see ref. 30). Including the rALDA vertex
correction in a non-self-consistent G0W0Γ0 calculation reduces
the systematic underestimation of the gap somewhat (the MSE is
reduced from �0:19 to �0:12 eV). Summarizing, we find that
G0W0Γ0 and GW0 perform the best for the band gaps closely
followed by G0W0. Including the vertex only in the polarizability
(G0W0P0) closes the gap because of the increased screening (as
previously reported in refs 147,148) and results in a significant
underestimation of the gaps.
Figure 20 show the absolute band positions for the valence

band maximum (VBM) and conduction band minimum (CBM)
relative to vacuum. For the bulk materials, the band positions
were determined by aligning the Hartree potential of a bulk
calculation with the potential in the center of a slab. The slab
thickness was 10–24 atomic layers depending on the material and
the surface orientation and reconstruction were taken from
available experimental studies. The inclusion of the vertex has a
striking effect of blue shifting the band edges by around 0.5 eV.
Remarkably, this upshift yields a better overall agreement with
experimental values (dashed black lines). Interestingly, this shift
of band energies is not observed when the vertex is only included

Fig. 19 Bar graph representing the difference in cohesive energies,
as in Fig. 18, obtained with beyond RPA methods using the rALDA
kernel. The dispersion-corrected SCAN and RPA results are included
for comparison. A positive ΔEcoh indicates that the B1 phase is the
preferred ground state, whereas negative values indicate the
preferred stability of the B2 phase. SCAN plus dispersion gives a
much more reasonable prediction compared to PBE+D2, if the
ACFDT results are taken as the benchmark. Reproduced with
permission from ref. 143 copyright American Physical Society, 2018

Table 7. Band gaps obtained using different self-energy approximations (see section “Hedin’s equations and vertex corrections”) for eight bulk

crystals and three monolayers

LDA G0W0 GW0 G0W0P0 G0W0Γ0 Exp.

MgO 4.68 7.70 8.16 7.10 7.96 7.98

CdS 0.86 1.76 2.27 1.84 1.87 2.48

LiF 8.83 14.00 14.75 13.25 14.21 14.66

SiC 1.31 2.54 2.72 2.38 2.57 2.51

Si 0.52 1.23 1.34 1.16 1.29 1.22

C 4.10 5.74 5.97 5.62 5.69 5.88

BN 4.36 6.54 6.81 6.27 6.60 6.60

AlP 1.44 2.48 2.67 2.34 2.51 2.47

ML-MoS2 1.71 2.47 2.61 2.28 2.47 2.50

ML-MoSe2 1.43 2.08 2.23 1.99 2.07 2.31

ML-WS2 1.33 2.75 3.07 2.56 2.81 2.72

MAE 1.89 0.20 0.17 0.41 0.16 –

MSE −1.89 −0.19 0.12 −0.41 −0.12 –

Experimental values for the bulk materials were corrected for zero-point motion and calculated band energies include spin–orbit coupling. The last two rows

show the mean absolute error (MAE) and mean signed error (MSE) with respect to the experimental values. See ref. 30 for more details. Reprinted with

permission from ref. 30 Copyright 2019 by the American Physical Society
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in the polarizability. In addition, no systematic shift of the band
edges is observed for the self-consistent GW approximations
(without vertex corrections). We are thus led to conclude that the
blue shift of band energies originates from the inclusion of vertex
corrections in the self-energy.
The physical origin of these effects can be traced to the

improved description of short-range correlations provided by
the rALDA vertex. Indeed, the induced potential from Eq. (44) is
the Hartree potential generated by the induced density (the
screening cloud of the QP). This Hartree potential is too deep
and results in too deep-lying QP energies. This is the same
reason underlying the systematic underestimation of the
correlation energy by RPA. Adding the induced xc-potential by
Eq. (42) reduces the size of the screening potential and thus
shifts the QP energies up. As discussed in ref., 30 the band gap
size is governed by long-range correlations, which are well
described by the RPA, while the absolute band energies also
depend on the short-range correlations whose proper descrip-
tion require the vertex function.
The observed upshift in QP energies by around 0.5 eV due to

the vertex correction can also be understood by noting that the
ionization potential and electron affinity, i.e., the VBM and CBM
relative to vacuum, obtained from G0W0 (G0W0Γ0) can be related
to total energy differences between N and N ± 1 ground states
evaluated from the ACFDT formula employing the RPA (rALDA)
with a “frozen orbitals” assumption, i.e., a generalized Koopman’s
theorem.149 Indeed, as we have shown in section “Absolute
correlation energies,” the RPA underestimates the absolute
correlation energy by around 0.3–0.6 eV/electron and this error
is largely repaired by rALDA due to the improved description of
the short-range correlations (see Fig. 1). The incorrect description

of absolute correlation energies by RPA largely cancels for
energy differences when the states in question contain the same
number of electrons. However, for QP energies where the initial
and final states differ by ± 1 electron, such errors are directly
revealed.
Finally, it should be mentioned that the suppression of the

large q components in the self-energy resulting from the rALDA
kernel not only improves the description of local correlations but
also leads to faster convergence with respect to the number of
plane waves and unoccupied states, as compared to standard GW
calculations.30 The situation is very similar to that reported in Fig.
4 for the ground state correlation energy in rALDA versus RPA
and ALDA.

CONCLUSIONS AND OUTLOOK

We have reviewed the theory of xc-kernels derived from the HEG
and illustrated how they can be used to obtain ground state
correlation energies and QP band structures beyond the RPA and
GW methods, respectively. While several xc-kernels have been
introduced, we have mainly focused on the renormalized
adiabatic kernels rALDA and rAPBE, which are obtained from the
(semi)local LDA and PBE xc-functionals by a simple renormaliza-
tion procedure. The renormalization procedure consists of a
truncation of the large q-components of Fourier-transformed xc-
kernel, which renders it non-local in real space—an essential
property to avoid a divergent on-top correlation hole.
The main observation is that the xc-kernels greatly improve the

description of the short-range correlations relative to RPA (which
corresponds to setting f xc ¼ 0). In particular, the coupling
constant averaged correlation hole, obtained from the density

Fig. 20 Absolute QP band positions relative to vacuum for a range of semiconductors and insulators as calculated with various methods.
All calculations are performed non-self-consistently from the LDA wave functions and eigenvalues. Experimental values are shown
where available (black). The results are adapted from ref. 30 Reprinted with permission from ref. 30 Copyright 2019 by the American
Physical Society
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response function via the fluctuation dissipation theorem,
becomes almost exact for the HEG and reduces the error on the
correlation energy from about 0.5 eV/electron in the RPA to
<0.05 eV/electron. This improvement was shown to carry over
from the extreme limit of delocalized electrons in the HEG to limit
of localized states of simple atoms and molecules. For example,
the spurious self-correlation energy of the hydrogen atoms is
reduced from 0.56 eV (RPA) to 0.04 eV (rALDA). The much better
reproduction of absolute correlation energies reduces the reliance
on error cancellation effects when computing energy differences.
For RPA, error cancellation is very significant, of the order of
0.5 eV/electron. For this reason, RPA performs well for isoelectronic
problems, where the electronic structure of the initial and final
states are similar, e.g., for the calculation of structural parameters
or the breaking/formation of weak (dispersive) bonds. When the
xc-kernels are invoked, the need for error cancellation is reduced,
and as a consequence, covalent bond energies, for which short-
range correlations play an important role, are much more
accurately described. This was explicitly demonstrated for
atomization energies of molecules, cohesive energies of solids,
formation energies of metal oxides, surface energies, and
chemisorption energies of atoms and molecules on metal
surfaces. In all these cases, the xc-kernels cure the systematic
underbinding by the RPA and significantly improve the agreement
with experimental data. Importantly, because the xc-kernels are of
short-range nature they do not affect the shape of the correlation
hole at longer distances, and consequently the excellent
performance of the RPA for vdW interactions is preserved or even
improved. For example, the MAE on the C6 coefficients of noble
gas and alkali elements are reduced from 0.3 eV (RPA) to 0.1 eV
(rALDA). Similar conclusions apply to bonding with intermediate
correlation ranges such as the mixed covalent-dispersive forces
governing organic–metal interfaces as exemplified here by the
prototypical graphene/metal interfaces. Furthermore, the positive
effects that the xc-kernels bring can be adequately captured using
RPA renormalized perturbation theory to first order, demonstrat-
ing that the impact of higher-order correlation effects are less
important for correcting the shortcomings of RPA for structural
and energetic properties.
In the context of QP band structure calculations within the

formal framework of Hedin’s equations, we have shown that the
renormalized xc-kernels can be used to include vertex corrections
in the electron self-energy. When the four-point kernel of MBPT is
approximated by the two-point kernel of time-dependent DFT, the
effect of the vertex corrections attains a simple and physically
transparent form. Namely, the effect of the vertex is to include the
xc-potential into the dynamically screened Coulomb potential. We
have shown that this is crucial in order to obtain a correct
description of absolute band energies relative to the vacuum level.
The effect of the xc-potential is to reduce the magnitude of the
attractive QP screening cloud (in GW, only the Hartree potential of
the screening cloud is accounted for) and this leads to a significant
upshift of 0.3–0.5 eV for all energy levels leaving the band gap
unchanged to within 0.2 eV. These effects should be important to
include in order to correctly describe band alignment at surfaces
and interfaces.
While the adiabatic xc-kernels discussed in this review provide

an improved description of the short range correlations leading to
the many positive derived effects described above, they still
present shortcomings. Most importantly, they do not provide any
improvements for strongly correlated systems such as Mott
insulators. For such systems, it might be necessary to include
frequency dependence or develop kernels with a more sophisti-
cated density dependence than the HEG-based kernels considered
here. Another shortcoming is the failure to reproduce the correct
wavevector dependence in the limit of long wavelengths. This is
not an important issue for total energy calculations, but for optical
absorption spectra, it is crucial to have the right limiting behavior

in order to capture excitonic effects. The deficiency stems from the
fact that the renormalization scheme is based on the correlation
hole of the HEG and a proper treatment of the long wavelength
limit in insulators is likely to require a scheme that is not solely
based on the density. One possible route toward this is to note
that the truncation factor θð2kF � qÞ is the Fourier transform of
the density matrix of a HEG with Fermi wavevector 2kF. In contrast
to the bare density (defined by kF), the density matrix provides a
qualitative distinction between insulators and metals,150 but a
direct truncation scheme based on the density matrix is not
straightforward. Finally, the issue of self-consistency deserves a
comment. In principle, it is possible to define an optimized local
effective potential (OEP) from the ACFDT with renormalized
kernels, which may then form the basis of self-consistent solutions
in the framework of the KS equations. However, the non-self-
consistent calculations are already rather computationally
demanding and the OEP method does not seem to be a viable
route to follow. In addition, the adiabatic kernels considered in the
present work cannot be derived from any known ground state
energy functional, which implies that it is somewhat inconsistent
to evaluate the rALDA energy based on LDA orbitals, for example.
On the other hand, the situation is certainly improved compared
to RPA where the Hartree orbitals comprises the only natural
choice, but it would be highly desirable to have a class of xc-
energy functionals that yield the renormalized kernels as their
second functional derivative with respect to the density. A
possible step in this direction is to define an LDA functional
where the input density is replaced by a density convoluted with
the Fourier transform of the truncation factor θð2kF � qÞ. This
yields a ground state xc-energy functional, which leads directly to
rALDA kernel if the density dependence of kF is neglected.29

Although such a scheme is approximate, the construction itself
provides an intriguing new route to the development of novel xc-
energy functionals that incorporate non-local effects through
weighted density averaging.
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