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Abstract Mendelian randomization (MR) is an innovative
epidemiological approach that uses genetic variants as proxies
for environmental exposures to provide unbiased estimates of
the causal effect of a risk factor on disease. The explosion in
availability of high-throughput biological data has resulted in
increasing numbers of MR studies, novel extensions to the
traditional single-SNP MR approach, and the potential to
incorporate new-generation biological “omics” data (such as
genome-wide genotype data, epigenetics, and metabolomic
data). In this review, we discuss these new developments,
ranging from the application of multiple genetic markers and
the use of summary statistic data to MR approaches in the
“omics” age. Progress in “omics” technologies has been
touted as a means to revolutionize epidemiology, and the
incorporation of “omics” data into MR to infer causality of
potentially large numbers of novel biological markers repre-
sents one avenue in how this may be realized.
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Introduction

Mendelian randomization (MR) is an epidemiological method
that uses genetic variants to estimate the causal effect of risk
factors on disease-related outcomes from observational data
[1-7]. It is aimed at overcoming problems with confounding
that typically limit observational association studies. The ten-
dency for these studies to incorrectly identify causal risk
factors has been highlighted in a number of cases. For exam-
ple, apparently robust observational associations of vitamin E
with cardiovascular disease, beta-carotene with cancer,
and estrogen with Alzheimer’s disease reported by such
studies were not supported by subsequent randomized
controlled trials (RCTs) [1, 8]. Incomplete control for
confounders in observational studies is likely to be a
key reason for this discrepancy in findings [9], and this
has led to strong epidemiological interest in pursuing
approaches such as MR that can strengthen causal in-
ference [10].

In MR, a genetic variant acts as an instrumental variable
(IV) or proxy for an exposure of interest that is postulated to
influence a disease-related outcome. The causal effect of an
exposure on a disease outcome is estimated from the associ-
ation of the genetic instrument with the outcome, taking into
account the genetic variant’s association with the exposure
(see Fig. 1). Based on Mendel’s laws of inheritance, (i) alleles
segregate at conception independent of environment, (ii) ge-
netic variants affecting different traits can sort independently,
and associations between genetic instruments and outcomes
are not generally confounded by behavioral or environmental
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Fig. 1 Mendelian
Randomization. A genetic
instrumental variable (G) acts as a
proxy measure for an
environmental exposure (E) that

is postulated to influence disease
(D), where G is independent of
measured and unmeasured
confounders (U). G influences D
only if a causal association exists
between E and D. For example,
the extent to which body mass
index (BMI) causally affects
blood pressure (BP) can be
quantified using a genetic variant
associated with BMI, such as
FTO. This variant, which should
be unrelated to the typical
confounders, will be associated
with BP if there is a causal
relationship of BMI on BP.

exposures at the population level [1, 6]. These provide a
framework that mimics an RCT to infer causality between
an exposure and a disease outcome.

There are, however, a number of known limitations [,
11-14]. In particular, MR requires that a number of strong
assumptions are met. Beyond the genetic variant’s association
with the exposure trait, there must be no unmeasured common
causes of the genetic variant and the outcome. In addition, the
outcome must not be associated with the genetic variant
except through its association with the exposure variable.
Population stratification (i.e., when population subgroups dif-
fer both in disease rates and allele frequencies for variants of
interest) is the most likely unmeasured common cause of both
genetic variation and outcome. In addition, since a single
genetic variant generally explains only a small amount of
variation in a trait of interest, low statistical power is frequent-
ly an issue for an MR study, as its power is positively corre-
lated with the amount of phenotypic variance explained by the
genetic variant(s) [1, 15]. Finally, there is also the possi-
bility of confounding being reintroduced through link-
age disequilibrium (LD, correlation among SNPs) or

D
e.g. blood

Sure

u
e.g. socio-
economic

pleiotropy (where a genetic variant has multiple func-
tional consequences). This topic has been discussed in
more detail elsewhere [16].

Despite these limitations, MR studies have already yielded
many clinically relevant findings, providing evidence regard-
ing causality for a range of risk factors on disease outcomes
(see Table 1). Indeed, MR has been hailed as an approach that
stands to make major contributions to understanding etiolog-
ical pathways in complex disease [2]. With the recent meth-
odological advances and the explosion in biological data
being generated, particularly from high-throughput technolo-
gies and the successes of GWAS, the range of biomedical
questions that can be tested using MR promises to broaden
even further.

In this review, we firstly discuss the recent developments in
MR, covering new approaches that incorporate a range of
information and hypotheses that could potentially address a
number of its existing limitations. Secondly, we explore how
the original MR approach can be extended to incorporate the
increasingly available “omics” data, such as genome-wide
genotype data, epigenetics, and metabolomic data, to increase
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Table 1 Examples of Mendelian randomization studies

Exposure

Disease

Findings

Alcohol intake

Milk calcium intake

Tobacco smoking

Hypertension
Esophageal cancer
Head and neck cancer

Bone density and fractures

Cardiovascular risk factors

Alcohol consumption increases blood pressure [29]
Alcohol consumption increases risk of esophageal cancer [30]
Alcohol consumption increases risk of head and neck cancer [68]

Lower milk calcium intake reduces bone mineral density and
increases risk of bone fractures [69]

Smoking lowers BMI, waist and hip circumference, estimated glomerular
filtration rate, and resting heart rate. Smoking is associated with, but does

not causally affect, waist-hip ratio, diastolic blood pressure, CRP, serum lipid,
or glucose levels [70]

BMI Uric acid
Cardiometabolic
traits and events
Vitamin D
Gallstone disease

Elevated BMI increases risk of uric acid-related conditions [37]

Elevated BMI increases fasting glucose, fasting insulin, IL-6, and systolic blood
pressure, and reduces HDL and LDL cholesterol. Elevated BMI increases risk
of type 2 diabetes but is not causally related to risk of CHD or stroke [22]

Observational associations between obesity and vitamin D deficiency are driven by

causal effects of higher BMI reducing vitamin D levels [36]
Elevated BMI increases risk of gallstone disease [71]

CRP Cardiometabolic traits Elevated CRP is associated with, but does not causally affect, BMI, blood pressure,
CHD waist-to-hip ratio, HDL cholesterol, triglycerides, and insulin resistance [72]

Elevated CRP is associated with, but does not causally affect, risk of CHD [73]

IL-6 CHD Higher IL-6 activity increases risk of CHD [74, 75]

Uric acid THD and blood pressure Higher uric acid levels are associated with, but does not causally affect, risk of IHD

or high blood pressure [37]

Serum iron Parkinson’s disease Increased iron levels reduce risk of Parkinson’s disease [24]

Triglycerides CHD and CAD Elevated triglycerides increase risk of CHD and CAD [41, 42¢, 76]

LDL cholesterol CHD Lower LDL cholesterol reduces risk of CHD [25]

HDL cholesterol Myocardial infarction Higher HDL cholesterol is associated with, but does not causally affect, risk of

myocardial infarction [77]

CRP C-reactive protein, CAD coronary artery disease, CHD coronary heart disease, HDL high-density lipoprotein, /HD ischemic heart disease, LDL

low-density lipoprotein

our understanding of new biological pathways and their po-
tential roles in disease etiology.

Developments in MR
MR Using Multiple Instruments

Recent reductions in genotyping costs and the increased num-
ber of successful GWAS have enabled the discovery of a large
number of genetic variants associated with phenotypic traits
[17], which has resulted in the opportunity to extend the
single-variant approach typically used in MR and to consider
multiple genetic instruments. These instruments can be used
either individually, taking independent genetic variants that
each work through different biological pathways, or combined
into a single allele score [18-20]. An allele score is the
weighted or unweighted sum of the number of “risk™ alleles
associated with a given trait across several genotypes, where
the weights are generally based on each genotype’s
effect on the trait of interest (e.g., the SNP effects
observed from GWAS).

@ Springer

A key advantage of using multiple instruments is the ca-
pacity to increase the statistical power of MR analyses. When
each instrument independently explains variability in the ex-
posure trait of interest, the use of multiple instruments can
increase the precision of IV estimates [18]. This is important,
since MR analyses generally require very large sample sizes
due to the small amount of variation in a trait typically ex-
plained by a single genetic variant.

In addition, the multiple-instrument approach provides op-
portunities to test IV assumptions in a way that is not possible
in single-instrument analyses [18]. The validity of the IV
assumptions underlying MR analyses can be affected by LD
and pleiotropy, and a multiple-instrument approach can be
used to assess their likely presence. Specifically, the IV esti-
mates from multiple instruments can be compared. If each
independent instrument predicts the same causal effect of the
environmentally modifiable risk factor for which the genetic
variant acts as proxy, it then becomes much less plausible that
confounding by pleiotropy or LD explains the associations,
because the confounding would have to be acting in the same
way for each independent instrument [21]. However, if there
is missing data on genetic variants, a multiple-variant
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approach may result in a diminished sample size because only
individuals with complete data on all genotypes used in an
allelic score can be included, thereby reducing the power of
the study [18]. Furthermore, there is also potential for in-
creased bias in the IV estimator when weak instruments are
used. This problem can be alleviated by combining the instru-
ments into an allele score, albeit with some reduction in power
[20]. Multiple-variant approaches have been applied in nu-
merous MR studies, including recent applications using allele
scores for BMI [22, 23] as well as multiple independent
genetic instruments for iron [24] and LDL cholesterol [25].

MR Using Summary Statistics

The existence of published information from GWAS — which
typically report regression coefficients summarizing the asso-
ciations of many genetic variants with various traits — has been
suggested as a potentially powerful source of data for MR
studies [26]. Where a single genetic variant is used as an IV,
the estimate of the causal effect using summarized data can be
calculated in a straightforward manner with ratios based on
summary statistic regression coefficients [3, 27, 28]. This has
been successfully implemented, for example, using meta-
analysis data from iron SNPs to demonstrate evidence of a
potential protective effect of serum iron on risk of Parkinson’s
disease [24]. Summary statistic estimates based on the geno-
type association alone can also be used to infer causality, as
illustrated by MR studies demonstrating a relationship be-
tween alcohol intake and increased blood pressure [29] and
esophageal cancer [30]. Methods using summarized data in
the context of multiple variants have also recently been pro-
posed [26]. In addition, the integration of genetic association
studies using meta-analysis for genotype-exposure and
genotype-outcome associations has also been explored in
relation to MR [31], and this holds particular relevance for
increasing power in the context of summary statistic data.

The use of summary statistics is somewhat limited by the
fact that, as has been pointed out by others [26], the assump-
tions required for MR to be valid cannot be assessed as
comprehensively as when individual-level data is used. Fur-
thermore, for multiple-variant analyses using summary statis-
tics, inflated precision has been observed when variants are in
linkage disequilibrium [26]. Nonetheless, while individual-
level data ideally should be implemented in MR studies wher-
ever possible, when such data are unavailable, the existence of
accessible summarized data can facilitate valid IV analyses for
single- or multiple-instrument MR.

Two-sample MR
In traditional MR, estimates are produced from a single data

set consisting of participants with information on the genetic
variant, exposure, and outcome. However, situations may

arise where information on the exposure and the outcome
are available in two different data sets. In this case, it is
possible to implement two-sample IV approaches with respect
to MR, using ratio-based estimates [32, 33]. This approach
will be particularly relevant for exposure biomarkers that are
expensive to obtain or biospecimens that are either not widely
available or are difficult to measure.

A subsetting approach may also be feasible when expo-
sure data is only available in a subset of individuals in a
given sample. The use of “sub-sample IV estimators” ap-
plied to MR has been shown to be effective when the IV is
relatively strong [32]. In addition, a “split-sample” ap-
proach might be considered when no known genetic instru-
ments exist for the intermediate phenotype of interest or no
relevant GWAS has been undertaken with respect to appro-
priate genetic instruments. In this case, one could potentially
undertake both the GWAS to identify SNP instruments and the
MR analysis in a single sample that has been divided into two
or more subsamples [23]. This ensures that the GWAS and the
MR analyses are still carried out in different data subsets
within the sample in order to minimize potential bias (see
“Genome-wide MR” section in relation to overlapping-
samples bias).

Bidirectional Approach

A bidirectional MR approach was recently proposed and
implemented with the aim of facilitating a particularly clear
assessment of the causal direction of an observed association
[14, 34, 35]. This approach exploits the availability of two
independent instruments that yield unconfounded estimates of
causal effect. The direction of causality for an association
between two variables is assessed through the use of one
genetic proxy for one variable and a separate genetic proxy
for the second variable. Two MR analyses are undertaken, one
for each of the genetic proxy variables.

For example, to assess the direction of causality for an
observed association between BMI and CRP, two MR analy-
ses are performed. The first MR analysis associates BMI
genetic variants with CRP, while the second MR analysis
relates CRP genetic variants with BMIL. If an association is
observed in the first analysis but not the second, it suggests
that BMI causally affects CRP levels, but not the other way
around. This bidirectional approach has been successfully
implemented in several studies to interrogate the direction of
causation for the associations between BMI and CRP [34, 35],
vitamin D [36], and uric acid [37].

Additional Extensions to MR
Factorial MR The concept of carrying out “factorial MR [1,

14] refers to the suggestion that the MR framework could be
applied to investigate combinations of risk factors that are
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potentially acting together to affect disease risk. For example,
obesity and alcohol intake have been found to synergistically
increase the risk of liver disease, with multiplicative interac-
tions observed [38, 39]. MR analyses could therefore be
applied to generate effect estimates for co-occurring risk fac-
tors using combinations of genetic variants in which each acts
as a proxy for the relevant risk factor.

Multi-phenotype MR In addition to using MR for assessing
risk factors with synergistic or combined effects, a related
extension involves separating the independent effects of risk
factors when multiple phenotypes are correlated with a partic-
ular SNP of interest or a set of SNPs. This multi-phenotype
correlation poses problems for the MR framework, since
disentangling the SNP’s effects on one particular phenotype
will be challenging. Thus, attempts to address this issue were
recently implemented in what has been termed multi-
phenotype MR [14]. To illustrate, LDL cholesterol,
HDL cholesterol, and triglycerides are strongly correlat-
ed with one another, and genetic variants identified for
triglycerides tend also to be related to LDL or HDL
[40]. Estimating an independent causal effect of triglyc-
erides, therefore, is limited when such variants are used
in a traditional MR design. As such, recent MR studies
have attempted to isolate the effects of the correlated
lipids on risk of heart disease using approaches such as
(i) allele score restrictions (excluding SNPs correlated
with more than one lipid); (ii) sequential statistical
adjustments of the IV analysis for non-target lipids;
and (iii) SNP-based regressions that correlate the target
lipid SNP effect with the corresponding SNP effect for
coronary artery disease, controlled for the SNP’s effects
on the non-target lipids using residuals [41, 42ee].
Broadly speaking, regression-based approaches, in prin-
ciple, will still be subject to the typical epidemiological
concerns over attempting to attribute causality using
statistical control for correlated variables [43, 44]. How-
ever, the multi-phenotype framework remains a promis-
ing area, and development is ongoing [14].

Hypothesis-free Approach The increasing availability of
high-throughput biological information is resulting in
extremely large data sets of genotypic and phenotypic
data. Such data sets lend themselves to the appealing
possibility of a powerful hypothesis-free approach [21].
In this way, one could effectively test the causality of
extremely large numbers of phenotypic associations in a
single study. There is promising evidence from genome-
wide data that at least screening for causal associations
in this way could be successfully implemented [45].
Hypothesis-free approaches will be increasingly relevant
as “omics” databases, with extraordinarily large numbers
of new biomarkers, continue to proliferate.

@ Springer

Potential MR Applications Using “OMICS” Data

There is much anticipation surrounding the prospects of
“omics” technologies, with high expectations that they may
revolutionize the practice of epidemiology by advancing the
tools for exposure and outcome measurements [46]. Indeed,
the recent explosion in availability of such “omics” data,
generating hundreds of thousands of genetic markers and
hundreds or thousands of biological markers, presents excit-
ing new opportunities for increasing causal biomedical knowl-
edge through the implementation of MR. Here, we discuss
three of these “omics” data sources (genome-wide genotype
data, epigenetics, and metabolomics) with respect to their
potential future application in MR studies.

Genome-wide Genotypes

Within a short period of time, genome-wide association stud-
ies (GWAS) have successfully identified thousands of genetic
variants robustly associated with complex traits/diseases [17].
GWAS test individual single-nucleotide polymorphisms
(SNPs) covering the whole genome for their association with
traits/diseases. This individual SNP association approach can
identify specific loci affecting complex traits, but it doesn’t
exploit the true potential of the correlated structure of the data.
For example, with respect to human height, it has been shown
that analyzing genome-wide SNP data simultaneously qua-
drupled the amount of variation explained [47] compared with
that of the 180 height loci that reached genome-wide signifi-
cant levels [48].

The capacity of genome-wide SNPs to explain vastly more
variation in traits begs the question as to whether issues with
statistical power that frequently limit MR studies might be
addressed by utilizing more of the genome, for example,
through the use of allele scores from genome-wide SNPs.
Such allele scores are proxy measures for the trait of interest
and therefore, with adequate heritability, can have strong
relationships with the phenotypic trait. Indeed, genome-wide
allele scores have been proposed for capturing larger
amounts of phenotypic variation in traits in genetic
association studies [49].

It was recently demonstrated that the application of
genome-wide allele scores can be used to index biological
intermediates of disease outcomes, with promising applica-
tions for large-scale screening of causal associations between
potentially vast numbers of biological factors and disease
outcomes [45]. However, systematic assessment of the valid-
ity of implementing genome-wide allele scores in MR studies
has yet to be carried out. In particular, it should be noted that
such genome-wide scores comprise variants that are data-
derived, where overfitting can occur, as opposed to the use
of robustly associated variants that are generally applied in
traditional single-SNP MR. Furthermore, there is some
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evidence that bias may occur with allelic scores incorporating
genetic markers at less stringent p value thresholds for asso-
ciations [19].

The extent of any potential pleiotropy will also require
careful assessment. Empirical studies suggest that common
genetic variants are not typically related to the behavioral and
socioeconomic factors considered to be important con-
founders in conventional observational studies [50] (although
this does not necessarily hold true for detailed biological
profiling, such as for lipoprotein subclasses [51]). In addition,
there is some evidence that using certain allelic scores
based on all SNPs across the genome may result in
pleiotropic associations being observed [45]. Analogous
to the suggestion that one could assess pleiotropy by
using independent genetic instruments that are uncorre-
lated but proxy for the same phenotypic trait of interest
[16], independent uncorrelated allele scores (such as
scores constructed by chromosome number) could sim-
ilarly be explored to assess pleiotropic effects in
genome-wide analyses.

To maximize power, identifying allele scores that capture
the most variation in the intermediate phenotype will be
advantageous. The nature of this will likely differ among traits
and will be dependent on factors such as the discovery GWAS
sample size. For example, BMI allele scores with liberal
thresholds for inclusion (i.e., including all SNPs, even those
with very low p values for association) explain more variation
than allele scores comprising only SNPs meeting the stringent
p value threshold for GWAS-level significance [45]. In con-
trast, more stringent SNP p value thresholds are optimal for
capturing most variation in LDL and CRP. In addition,
weighted allele scores have been shown to be preferable
to unweighted scores, at least in terms of statistical
power [18, 20].

Finally, given the continually expanding GWAS con-
sortia, it is increasingly possible that a given sample in
which genome-wide allele scores are being constructed
for analyses may also have been part of the GWAS
study that generated the relevant SNP estimates used,
for example, to weight the score. This will be problem-
atic, as biased estimates in the variance explained in a
given trait arise when allele scores that are used are
constructed with SNP coefficients from a GWAS con-
taining any of the same individuals being analyzed [49].

In sum, important methodological issues will need to be
addressed before genome-wide scores can be implemented in
MR analyses, in particular the potential introduction of plei-
otropy and the consideration of biases such as overlapping
samples. However, the availability of accessible genome-wide
data in increasingly large samples and the substantial increase
in variation explained in phenotypic traits by genome-wide
allele scores represent exciting opportunities for developing
more powerful MR studies.

Epigenetics

Enthusiasm for epidemiological studies based on epigenetic
data is gaining considerable momentum in light ofits potential
to yield new insights into disease etiology and to provide a
mechanism for gene—environment interactions [52, 53]. The
epigenome comprises environmentally induced biological
modifications of DNA that have the ability to regulate gene
expression. Intriguing associations have been observed be-
tween these epigenetic modifications and environmental fac-
tors such as diet, alcohol, smoking, and inflammation [53], as
well as associations with disease outcomes such as those in
heart disease, stroke and mortality [54], schizophrenia, and
bipolar disorder [55].

However, while the primary hypothesis is that environmen-
tal factors influence the epigenome, which subsequently alters
the regulation of gene expression and thus modulates disease
risk, the supporting evidence at this time is preliminary. De-
termining the causality of any observed epigenetic associa-
tions will be particularly challenging because epigenetic bio-
markers are vulnerable to the typical confounders (age, sex,
socioeconomic positions, diet, smoking, etc.) that also afflict
many other molecular biomarkers. This is because, while
genotypes are fixed, the epigenome is modified by environ-
mental factors and is thus susceptible to the same problems of
confounding and reverse causation as the environmental fac-
tors themselves [56].

A “two-step MR” approach, designed to interrogate causal
mediation, has been proposed to investigate the role of epige-
netic modifications in mediating risk factor associations with
disease outcomes [57¢]. While this two-step approach was
initially described in the context of epigenetic data, in princi-
ple, it can be extended to any association involving a mediat-
ing variable. In a two-step MR, an initial IV analysis assesses
the causal effect of an exposure on a mediator (e.g., an
epigenetic marker), and a second IV analysis assesses the
causal effect of the mediator on the disease outcome. For
epigenetic markers, it has been shown that a genetic IV acting
as a proxy for an exposure variable could be used to generate
an unbiased estimate of the effect of the exposure on a mea-
sure of DNA methylation (an epigenetic marker), and in a
second analysis, a genetic [V (specifically, a cis-variant) could
be used as a proxy for the same DNA methylation measure
and provide an estimate of the effect of methylation on the
disease outcome [57¢].

Epigenetic MR, however, is still in its infancy and, as
discussed elsewhere [57¢], is currently limited by several
factors. Firstly, reported associations between environmental
factors and both global and gene-specific DNA methylation
are often modest in size. Secondly, while DNA sequence is
fixed, epigenetic patterns vary across different tissue types. As
such, assessing tissue-specific epigenetic patterns will be im-
portant, since the association of an epigenetic marker with a

@ Springer



234

Curr Epidemiol Rep (2014) 1:228-236

phenotype or with a genetic variant will likely vary across
tissue types. While some tissue types are easily accessible
(such as blood), others will be more challenging to obtain in
samples sufficiently large to implement this approach. None-
theless, the implementation of epigenetic MR appears prom-
ising, with MR already beginning to be applied to resolve
issues of confounding and reverse causation with epigenetic
measures. This can be seen, for example, with respect to
assessing the effect of DNA methylation on postnatal growth
[58] and body mass index [59e, 60].

Metabolomics

There is much interest in dissecting the role of the metabolome
in health and disease. The availability of high-throughput data,
advances in data handling and processing, as well as statistical
tools, may provide unprecedented insights into our under-
standing of complex diseases [61¢e, 62]. The metabolome
represents multiple metabolic pathways in systemic metabo-
lism and includes, for example, lipoproteins, vitamin and
cofactor levels, lipids, amino acids, and other small molecules
involved in glycolysis, the citric acid cycle, and the urea cycle.
Metabolites are produced endogenously as a result of chemi-
cal processes as well as from exogenous sources such diet and
drugs. Circulating metabolites have been implicated in disor-
ders of the metabolic and cardiovascular systems and have
also been proven useful in the prediction of cardiometabolic
disease [63]. However, the current understanding of the me-
tabolome in disease pathogenesis is incomplete.

Recent technological developments in the analytic plat-
forms — proton nuclear magnetic resonance (NMR) and mass
spectroscopy — have enabled the measurement of hundreds to
thousands of metabolites in a single procedure. Given the
relationship of metabolites with environmental exposures,
there is considerable potential for powerful epidemiological
studies [62]. Furthermore, since many metabolites have sub-
stantial heritability and robust genetic variant associations that
have already been identified [61°e, 64], MR represents an
ideal framework for investigating the potential causal path-
ways involving metabolites and disease outcomes. In particu-
lar, metabolites may act as mediators between an exposure and
a disease outcome.

Given the potentially serious biases that can occur in me-
diation analysis using traditional epidemiological approaches
as a result of unmeasured confounders and measurement error
[65—67], the two-step MR approach for mediation as outlined
above will be a particularly useful framework to consider
causal mediating pathways involving metabolites, since it
does not rely on statistical adjustments to estimate the medi-
ation effect as is inherent in previous approaches [14]. In
applying two-step MR to metabolomic mediators, two IV
analyses would be applied to assess the effect of an exposure
on a particular metabolite, followed by an assessment of
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the impact of the respective metabolite on a disease
outcome of interest.

Difficulties with data harmonization are an existing con-
cern with metabolomic data originating across different stud-
ies, with either different analytic platforms being utilized or
varying methods to identify and quantify metabolites [62].
Obtaining reliable approaches for synthesizing metabolic data
among studies is likely to be particularly relevant for applying
MR to metabolomic data, given that MR generally requires
very large samples to attain sufficient statistical power.

Conclusions

There is now a range of emerging developments in MR that
are extending the established single-SNP approach to incor-
porate larger amounts of biological information and to test
different hypotheses. These have the potential to both address
some of the existing limitations of conventional single-SNP
MR as well as to answer new and exciting questions involving
the increasingly available “omics” data (such as genome-wide
genotype data, epigenetics, and metabolomics). Several key
issues will need to be considered, ranging from biases in the
construction of genome-wide allele scores, to the availability
of tissue-specific epigenetic patterns and limitations, to data
harmonization with metabolomic measures. However, with
these novel and emerging applications of the MR framework,
there is the potential to explore powerful studies and to ad-
dress an unprecedented range of biomedical questions in the
“omics” era.
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