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Abstract

Whole-genome sequencing (WGS) is increasingly used to aid the understanding of pathogen transmission. A first step in
analyzing WGS data is usually to define “transmission clusters,” sets of cases that are potentially linked by direct

transmission. This is often done by including two cases in the same cluster if they are separated by fewer

single-nucleotide polymorphisms (SNPs) than a specified threshold. However, there is little agreement as to what an
appropriate threshold should be. We propose a probabilistic alternative, suggesting that the key inferential target for

transmission clusters is the number of transmissions separating cases. We characterize this by combining the number of

SNP differences and the length of time over which those differences have accumulated, using information about case
timing, molecular clock, and transmission processes. Our framework has the advantage of allowing for variable mutation

rates across the genome and can incorporate other epidemiological data. We use two tuberculosis studies to illustrate the

impact of our approach: with British Columbia data by using spatial divisions; with Republic of Moldova data by
incorporating antibiotic resistance. Simulation results indicate that our transmission-based method is better in identi-

fying direct transmissions than a SNP threshold, with dissimilarity between clusterings of on average 0.27 bits compared

with 0.37 bits for the SNP-thresholdmethod and 0.84bits for randomly permuted data. These results show that it is likely
to outperform the SNP-threshold method where clock rates are variable and sample collection times are spread out. We

implement the method in the R package transcluster.
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Introduction

Whole- genome sequencing (WGS) of pathogens has become

an essential tool for improving understanding of how infec-

tious diseases spread between hosts, particularly in the case of

tuberculosis (TB) (Hatherell et al. 2016). The phylogeny de-

rived from pathogen genomic data helps us to infer likely

transmission events. Typically, samples are taken from

patients in the field, the date and other epidemiological

data are recorded, and the pathogen’s genome is sequenced.

A first step is typically to assign cases to clusters; for infectious

diseases, a cluster is a group of closely related infections that is

usually interpreted as resulting from recent transmission

(Poon 2016). These clusters are chosen primarily with the

aim of making meaningful subdivisions of the data, with

the added benefit of making the amount of data fed into

attempts to reconstruct outbreaks and to transmission infer-

ence models more tractable. However the assignation

method is often somewhat ad hoc.

The simplest way to determine sequence relatedness is to
count the number of single-nucleotide polymorphisms
(SNPs) that differ between two sequences. The SNP-
threshold approach places two individuals in the same puta-
tive transmission cluster if there are fewer than a threshold
number of SNPs between their sequenced pathogen
genomes. Many existing methods to identify outbreak clus-
ters rely on SNP thresholds, as surveyed recently (Hatherell
et al. 2016) in the case of TB. Similar methods are also used for
other pathogens (Dallman et al. 2015; Octavia et al. 2015).
However, there is little agreement in the literature as to what
such a threshold should be— see table 1 for TB SNP thresh-
olds used in some recent studies. The contexts in which these
thresholds are applied differ from study to study, so these
numbers are not always strictly comparable, but they do in-
dicate the wide range of values that can reasonably be
adopted when determining whether or not cases are closely
related. By itself, the number of SNP differences between
genomes does not directly imply a probability of recent
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transmission. This is implicitly recognized in some sources.
For example, we have from Walker et al. (2013): “We pre-
dicted that the maximum number of genetic changes at
3 years would be five SNPs and at 10 years would be ten
SNPs.” Indeed, other studies directly question the use of
SNP thresholds, such as Guerra-Assunç~ao et al. (2015),
Bergholz et al. (2014) in the context of food-borne pathogens,
and Azarian et al. (2016) in an analysis of the spread of
methicillin-resistant Staphylococcus aureus (MRSA).
Nevertheless, the use of a single SNP threshold is often
employed in practice; for example the 12 SNP threshold,
used for inferring likely transmission between a pair of TB
cases by Public Health England (Walker et al. 2014) amongst
others, is perhaps the most common in TB.

The appropriate SNP cut-off for inferring transmission is
likely to depend critically on the context. There are many
sources of uncertainty. Nucleotide mutation rates vary be-
tween pathogens, can vary at different stages of infection, and
are subject to the effects of selection pressure. Culture pro-
cesses (e.g. liquid vs. solid culture, single colony picks vs.
sweeps) may affect the diversity in samples that are sent for
sequencing. Furthermore, the process of producing finalized
SNP data from patient-derived biological samples is a multi-
stage procedure where there are choices to be made—
including how stringently quality filtering is applied to raw
genomic data—which will in general result in different SNP
differences being reported. As such, it is important that dur-
ing every step of the pipeline from sampling from patients
and processing the data, to building the models and drawing
conclusions from them, that we are aware of sources of un-
certainty and attempt to propagate this uncertainty to any
conclusions. It is also important that as WGS is rolled out
widely as a tool in infectious disease, we recalibrate SNP-based
methods to accommodate changes in both sequencing tech-
nologies and in the bioinformatics pipelines used to call var-
iant SNPs. Clustering methods that use variant SNP calls
exclusively will be most sensitive to such changes.

The fundamental logic behind SNP cut-offs is that it takes
time to accrue genetic variation; even in organisms where the
molecular clock is variable, it seems uncontroversial to as-
sume that two isolates that differ by only a few SNPs are
more likely to be a result of recent transmission than isolates
that are 50 SNPs apart. However, the rate at which polymor-
phisms occur varies not only between organisms (Kuo and

Ochman 2009), but also across a genome; it is affected by
selection pressure and by horizontal gene transfer (HGT)
(Novichkov et al. 2004), though this is not an issue for TB
and there are methods to remove recombination and HGT
prior to using SNP cut-offs. As per Barrick and Lenski (2013), it
is also important to distinguish between the mutation rate,
the rate at which spontaneous mutations occur, and the
substitution rate, the rate of accumulation of changes in a
lineage; this depends on both the mutation rate and the
effects of selection and drift. Here, when we refer to the clock
rate, we mean the substitution rate, as we use the rate to
interpret variants measured with sequencing technologies.

This distinction is particularly important for diseases like
TB, where selection pressure due to antibiotics can be sub-
stantial. Whilst the background SNP accumulation rate for
Mycobacterium tuberculosis (Mtb) has been estimated at 0.5
SNPs/genome/year (Walker et al. 2013), selection pressure
and antibiotic resistance can influence this rate considerably.
For example, in Eldholm et al. (2014) we see the observation
that “After exclusion of transient mutations in the patient
isolates, 4.3 mutations were acquired per year. . . or 2.3 muta-
tions per year when excluding resistancemutations .” The size
of the population of bacteria within a host could also affect
the number of SNPs observed between that host and those
they infect. Unexplained larger variation is also encountered
as documented in Korhonen et al. (2016), though high SNP
numbers could be a result of re-infection or mixed infection
rather than in-host evolution. Where we know that selection
or high substitution rates are likely to be present and
detected, a higher rate is therefore likely to be appropriate
for clustering, and this will affect the relationship between
SNPs and transmission events.

It should be noted that there are other approaches to
clustering, based on molecular (but not WGS) data and in-
cluding time and geographical data. For example, Kammerer
et al. (2013) apply three different statistical tools to spoligo-
type data and mycobacterial interspersed repetitive units
(MIRU) data, together with date and location of cases, to
show that these tools can successfully identify TB outbreaks.
Donker et al. (2016) use variable number tandem repeat
(VNTR) data for MRSA cases, with time and location data,
to identify clusters based on a hierarchical clustering method
(Ypma et al. 2013). There are also software packages such as
vimes (Jombart and Cori 2017), which provides tools allowing
users to integrate different types of data and detect out-
breaks. These approaches treat each of the underlying varia-
bles as independent inputs, without explicitly modeling the
connection between time and the accumulation of genetic
differences.

We take a slightly different tack here, and jointly use the
sample time and genetic distance, together with a model of
SNP acquisition over time and transmission events over time,
to base putative transmission clusters on the probability that
cases are separated by a threshold number of transmission
events. This is motivated by a belief that the number of trans-
mission events between two cases is a natural and intuitive
measure of how “clustered ” they are in the sense of trans-
mission (and how likely they are to be part of the same

Table 1. SNP Thresholds Used in Recent TB Studies.

Authors Lower SNP

Threshold

Upper SNP

Threshold

Bryant, Harris, et al. (2013b) £ 6 (relapse) >1,000 (re-infection)

Clark et al. (2013) < 50 >50

Guerra-Assunç~ao et al. (2015) £ 10 (relapse) >100 (re-infection)

Lee et al. (2015) < 2 (not specified)

Roetzer et al. (2013) £ 3 (not specified)

Walker et al. (2013) £ 5 >12

Yang et al. (2017) £ 12 (not specified)

The lower threshold indicates the number of SNPs below which cases are positively

identified as belonging to the same cluster. Where different, the upper threshold

indicates the number of SNPs above which cases are identified as clearly not be-

longing together. Unless otherwise stated, intermediate values are indeterminate.
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outbreak). This cannot usually be measured directly and
must be inferred from other data. However, it is reason-
able to assume that appropriate incorporation of the time
over which the accumulation of SNPs occurs, as well as
the likely time between transmission events, give a more
accurate and nuanced measure of the likelihood that
cases are linked by a small number of transmission events.
We develop a probabilistic approach which permits var-
iation in the SNP accumulation process, allows for faster
SNP accumulation for sites under selection and allows for
variation in the speed with which individuals infect their
contacts. We aim to provide a principled alternative to
SNP cut-offs for clustering pathogen genomes into puta-
tive transmission clusters.

New Approaches

Two samples are usually considered to be in the same trans-
mission cluster if the number of SNPs between them is less
than or equal to a fixed cut-off, or threshold. This is a quick
way to explore relatedness among a group of isolates and gain
an approximate understanding of the extent of recent (low-
distance) transmission, but it is coarse and embeds a number
of strong assumptions.

Our proposed probabilistic transmission approach, in con-
trast, is based on sample pairs being clustered together if we
estimate that there were fewer than a threshold number of
transmission events between them, with a given probability.
It uses the same genetic (SNP) distance information as the
SNP-threshold method, but in addition makes use of the
sample times, knowledge of the SNP accumulation, and trans-
mission processes. The essential inputs to ourmethod are: the
number of SNP differences between sample pairs, the sample
dates, the assumed clock rate, and the assumed transmission
rate.

In addition, our method can readily be extended to incor-
porate other factors: we show in Materials and Methods how
this can be done for spatial data, and for antibiotic resistance.
Building these inputs into our model allows us to create a
more nuanced and principled way of identifying transmission
clusters, and allows us to apply the method consistently in
varied settings for example, in those where drug resistance is
suspected to be a factor.

We start by establishing probability distributions for the
total length of time (h years) along both lines of descent from
the most recent common ancestor (MRCA) of a pair of
samples; this depends on the clock process, and helps define
the distance between the two samples (there is h=2 years of
elapsed time from the MRCA to the earlier sampling date).
We then compute the probability that at least a threshold
number of transmissions took place between the two sam-
pled cases over this time, where the probability distribution
for the number of transmissions k is PðkjhÞ (see table 6 for a
summary of the symbols used and their units). This approach
gives the flexibility to incorporate sample time information
and other data. The method uses sample dates and aligned
sequence data (variant calls) together with models of the
clock and transmission processes. For a pair of samples, we

use the SNP distance N, the time difference between their
sampling dates (d years) and the clock process to write down
the probability distribution LðhjN; dÞ for when the MRCA
of the two sequences existed; this must be before the first
sampled case. Integrating over this unknown time, we can
find the probability that a certain number of transmissions
separate the two cases:

PðkjN; dÞ ¼

ð

1

h¼0

LðhjN; dÞ PðkjhÞ dh

This is equation (9), developed in more detail in Materials
and Methods. To incorporate spatial data, a weighting w is
applied to the probabilities to reflect that spatial distance can
affect estimates of the number of intermediate transmissions
between two sampled individuals; we express this in equation
(19):

PðkjN; d;wÞ ¼ w

ð

1

h¼0

LðhjN; dÞ PðkjhÞ dh

Results

We illustrate how the transmission method compares to the
SNP-threshold method for a simple toy example. We define
the “T cut-off ” as the cut-off level for the transmission
method, using equation (10); the samples are clustered to-
gether where the implied number of transmissions k is less
than or equal to T with a probability of 80%, given some clock
rate k and transmission rate b. We see that the transmission
method clusters the cases together in a different order to the
SNP-threshold method as the cut-off level is incremented.
Cases A and B are the closest in SNP distance, but the time
elapsed between their sampling dates increases their distance
by the transmission distance function relative to cases C and
D, which are sampled at the same time as each other. So
when we take timing into account, the clustering is altered
(also illustrated in fig. 1).

We model the number of intermediate transmissions be-
tween two sampled hosts given the total time over which
SNPs have likely accumulated. Altering the transmission rate
b (by which we mean the rate at which intermediate cases
occur in the total time elapsed between the MRCA of two

sampled hosts and the sampling events; see Materials and
Methods) alters the absolute transmission cut-off level at
which the clusters change— in this example, increasing b
to 3.0 transmissions/year gives the same clusters as in figure 1
but at levels 9, 10, and 12 transmissions rather than 7, 8, and 9
transmissions, respectively. This has no impact on the order of
the clustering as the level of the cut-off changes (table 2).

In contrast, altering the clock rate does have a material
impact on the way clustering occurs as we increase the trans-
mission threshold. For k ¼ 0:5 SNPs/genome/year, cases A
and B are closest under the transmission method, just as they
are with the SNP-threshold method, and so the clustering is
the same for both methods. At k ¼ 1:5 SNPs/genome/year,
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cases C andD are closest under the transmissionmethod, and
the clustering evolves as shown in figure 1.

British Columbia Data
We analyze a data set from British Columbia, comparing the
SNP-threshold method to the transmission method in equa-
tion (10). The data set comprises 52 samples collected from
51 patients over a 14-year period, and has been prefiltered
with the result that all samples are relatively close—within 25
SNPs. Consequently, using the SNP-threshold method with
the threshold set to 13 SNPs or higher, all samples are placed
in one cluster.When the threshold is 9 SNPs, we obtain a large
42-case cluster, a secondary 8-case cluster and some outliers.
As we reduce the threshold further down to 3, the large
cluster breaks up but the 8-case cluster persists. We illustrate
this in figure 2.

We used the transmissionmethod, using equation (10) with
b ¼ 2:0 transmissions/year and two different average clock
rates: k ¼ 0:5 and 1.5 SNPs/genome/year (1.5 is larger than

the typical rate for TB but within other outbreak estimates
[Bryant, Schürch, et al. 2013]). When k is low, we can obtain
the same clustering as with the SNP cut-off. When k is high,
we have one cluster which contains all the samples for T> 11.
AswiththeSNP-thresholdmethod,atT¼ 11wehavealarge42-
case cluster, a secondary8-case cluster, and someoutliers. But as
wemovetoT¼ 10, thesecondarycluster losesamember,whilst
the main cluster stays at size 42. This is because one of the
membersofthesecondarygroupisveryclosebytheSNPdistance
to anothermember of that group, but was sampledmore than
10 yearsbefore.Aswithoursimpletoyexample, timingaltersthe
effective distance between samples because the distance takes
intoaccount theclock rateandthe transmission rate, andsothe
timing information can affect the clustering.

Furthermore, the probabilistic nature of the approach
means that we can see how strongly we predict cases to be
linked; in figure 3 we use thicker edges to denote a higher
probability of being linked by relatively few transmissions. In
addition, we show the effect of incorporating spatial proxim-
ity, using equation (19); we assign each of the cases into one
of six numbered regions. Including a spatial weighting, reflect-
ing the barrier to the infection moving between different
regions, and leaving all other parameters unaltered, changes
the clustering that is obtained.

Sensitivity to Clock Rate

An implicit assumption of the SNP-threshold method is that
each SNP contributes equally toward the SNP distance. This

FIG. 1. Clustering on the toy example data set provided in table 2. The left-hand panel shows the clusters obtained by applying the SNP-threshold

method with three different thresholds, with the cut-off level denoted by S; samples are clustered together where the SNP distance is less than or

equal to S. The right-hand panel shows the clustering obtained by applying the transmission method, using equation (10), with the cut-off level

denoted by T; samples are clustered together where the implied number of transmissions k is less than or equal to Twith a probability of 80%, with

clock rate k ¼ 1:5 SNPs/genome/year and b ¼ 2:3 transmissions/year.

Table 2. Model Inputs for Toy Example Data Set.

Label Sample

Date

SNP Dist.

to A

SNP Dist.

to B

SNP Dist.

to C

SNP Dist.

to D

A 1/1/2018 0 5 7 7

B 1/1/2014 5 0 8 8

C 1/1/2016 7 8 0 6

D 1/1/2016 7 8 6 0
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implies that the clock rate or substitution process is constant
across the set of isolates and across the genome. When the
same threshold is used in different settings and across differ-
ent pathogen subtypes, the implicit assumption is that the
same substitution process holds in these settings. In our new
transmission method, the effective distance between any two
samples is inversely proportional to the assumed mean clock
rate. A lower clock rate means that more time is needed in
order for a fixed number of SNPs to be generated; this gives
room for more potential intermediate transmission events. A
higher clock rate means that the fixed time between samples
has a greater effect on the clustering, as the time between
samples places a greater constraint on the range of possible
heights h; the fixed time “uses up ” more of the time available
than it would under a low clock rate (because there is less
total estimated time available, a higher portion of it is in the
time period d). We show this in table 3: the transmission
clustering method approaches the same results as the SNP
clustering method as the assumed clock rate is reduced. We
use the variation of information dissimilarity measure given

by clue (Meil�a 2007) to compare the clusters produced by the
two methods.

Moldova Data
This data set comprises 422 samples collected over a period of
less than 2 years. For this data—with any reasonable choices
of parameters and a fixed substitution rate for all sites—as
shown in table 4, our new transmission method does not
differ from the SNP-threshold method. This can be explained
by two factors that work together: the small distance in time
between any two samples and the large SNP differences be-
tween cases. There is not enough variation in the timing
information relative to the SNP distances for an appreciable
difference to emerge between the two clustering methods.

Use of Drug Resistance-Conferring SNPs

We can, however, explore the role of drug resistance-
conferring SNPs on the clustering. Information on the loca-
tion of resistance-conferring sites for TB was obtained using

FIG. 2. Clustering on the British Columbia data set. The left-hand panel shows the clusters obtained by applying the SNP-threshold method with

three different thresholds, with the cut-off level denoted by S. The largest cluster breaks up as the level is lowered whilst the size 8 cluster remains

intact. The right-hand panel shows the clustering obtained by applying the transmission method, using equation (10); samples are clustered

togetherwhere the implied number of transmissions k is less than or equal toTwith a probability of 80%. As shown in the top two thirds, with clock

rate k ¼ 1:5 SNPs/genome/year and b ¼ 2:0 transmissions/year, the size 8 cluster loses a member whilst the largest cluster stays the same as the

level is lowered. When k is low, h is larger, so theMRCA of a cluster gets pushed back further in time. In this case, the value of d between two cases

has a limited impact on the estimated number of transmissions; the SNP difference is dominant, and we recover the same clustering that is

obtained with the SNP-threshold method. This is shown in the lower third, where the clock rate k ¼ 0:5 SNPs/genome/year and b ¼ 1:2
transmissions/year.
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PhyResSE (Feuerriegel et al. 2015) and a resistance-conferring
SNP distance matrix was computed for the Moldova data by
filtering against this information. Selection is likely to lead to
resistance-conferring SNPs arising more quickly than other
SNPs: for example, one TB study (Eldholm et al. 2014) gives
a mutation rate of 4.3 SNPs per genome per year when they
are included, in contrast to the 0.5 SNPs per genome per year
that is typically estimated for TB (Walker et al. 2013).
Resistance acquisition may further increase the rate of acqui-
sition of additional SNPs through multiple resistance, com-
pensatory mutations, or other mechanisms. For this analysis
we used a clock rate for the drug-resistant sites, as in equation
(18), which is five times higher than for the sites which are not
resistance conferring.

Overall, resistance-conferring SNPs in the Moldova data
set form only 0.6% of the total number of SNPs. However,
restricting to those sample pairs where the SNP distance is
less than or equal to 20, they form 8% of the total. If a high
proportion of the SNPs between two cases are resistance-
conferring SNPs, then this effectively shortens the distance
between the cases, making them more likely to be joined
together in a transmission cluster. For several sample pairs
in this data set, the proportion of resistance-conferring SNPs
that differ between the two samples is approaching 35%,
whilst for some other pairs there are none at all. For this
reason we see a difference when we take resistance into con-
sideration, as seen in table 4 and figure 4. The largest cluster is
not shown in detail in the figure and is more robust with
respect to the effect of resistance-conferring SNPs than the
smaller clusters.

Simulated Data
To explore the performance of the clustering methods in a
setting where the “ground truth ” is known, we simulate data
and compare the SNP-threshold and transmission (as given
by eq. 10) methods. The “true” clusters are generated from
simulated transmission networks produced by TransPhylo
(Didelot et al. 2017).

We consider clustering cases based on direct transmission,
so that two cases are joined in a cluster if one infected the
other, and we compare clusters generated by the SNP-
threshold method with those generated by the transmission
method. In order to compare the appropriate set of clusters,
we find the best match that the method achieves against the
true cluster over an appropriately wide range of threshold
levels. Then we use the variation of information dissimilarity
measure given by clue (Meil�a 2007) to compare the results of
the two methods to the true clusters. We also compare ran-
domly permuted simulated data to the simulated clusters to
provide a yardstick of accuracy. This is achieved by fixing the
number of clusters to be the number of the true clusters, and
then randomly allocating each sample case to one of those
clusters. The results in table 5 show that the transmission
method is consistently better than the SNP-threshold
method in identifying direct transmissions within an out-
break. Both methods perform significantly better than the
randomly generated data.

FIG. 3. Three views of the same British Columbia TB data illustrating

the contrasting effect of implementing the SNP-threshold and

transmission methods and showing estimates of how close individ-

ual cases are to each other. In the top figure, edges between nodes

indicate that cases are within 4 SNPs of each other. In the lower

figures, edges indicate that cases are 80% likely to be within 3 trans-

mission events of each other, given a clock rate k ¼ 1:5 SNPs/ge-

nome/year and b ¼ 2:0 transmissions/year. The middle figure is

based on equation (10), and the bottom figure uses equation

(19), with weighting w ¼ 20% where two cases are assigned to dif-

fering regions. The thicker the edges, the closer the cases are: for the

SNP-based clusters the thickest edges correspond to no SNP differ-

ence, the thinnest to a distance 4 SNPs; for the transmission-based

clusters the thickest edges correspond to one likely transmission

event, the thinnest to 3.
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Identifying direct transmissions is not the aim of either the
SNP cut-off or transmission clustering method; rather, both
aim to simply group cases into sets of isolates for onward,
more intensive (model specific, Bayesian for example) out-
break reconstructions. Testing the ability of SNP versus
transmission-based methods to accomplish this using simu-
lated data would require an appropriate simulation setup,
which in turn would have a lot of flexibility (and could no
doubt be tweaked to ensure that the transmission method
performs well, or that the SNP cut-off does). For example, one
approach would be to simulate the introduction of new cases
whose SNP distance is 25 from existing cases in an existing
outbreak. The SNP-threshold method with a threshold of 12
SNPs will always correctly place such new introductions in a
new cluster, and will group their descending infections cor-
rectly until one or more of them is more than 12 SNPs away
from other sampled cases in the cluster. Conversely, if new
introductions were only 12 SNPs from existing cases the

SNP-threshold method would misclassify them as linked to
existing clusters. In the transmission method, we can com-
pute the probability that a newly introduced case that is 25
SNPs from existing cases will fall within a certain number of
transmission events. This gives us the probability that we
would infer an incorrect link to an existing cluster. With k
¼ 1:2 SNPs/genome/year and b ¼ 1:5 transmissions/year,
the probability that there are more than 10 transmissions
for cases with 25 SNPs apart is 99.9%. This falls to 98.3% for
more than 15 transmissions. Accordingly, the simulation ap-
proach for introducing new clusters will greatly affect the
performance of both the SNP-threshold and transmission
methods, and so we have not chosen to perform extensive
simulations to compare the methods.

Discussion

We have demonstrated how our approach can be consis-
tently applied in different contexts, with timing information,
with spatial data in the case of British Columbia, and with
resistance data in the case of Moldova. This is an advance on
what is possible with the fixed SNP-threshold approach,
where there is no general way to adjust thresholds to take
this context-specific information into account.

A fixed number of SNPs can arise from different number of
transmissions depending on other factors, including the tim-
ing of transmission, selection for resistance, the substitution
process, location, and factors we have not explicitly modeled
(social contacts, host risk factors, pathogen factors). We have
seen that sampled cases which are relatively close in genetic
distance can nevertheless be separated by large distances in
time. In this scenario, a simple SNP cut-off may place samples
too close together for outbreak clustering purposes. In con-
trast, our newmethod is robust with respect to outlying cases

Table 3. Effect of Varying the Clock Rate Using the British Columbia
Data.

SNP

Threshold

Largest

Cluster

k b Trans.

Threshold

Largest

Cluster

Dissimilarity

between

SNP and Trans.

Methods

S 5 12 50 0.5 1.2 T5 22 50 0.000

S 5 9, 10, 11 42 0.5 1.2 T5 16 42 0.000

S 5 6, 7, 8 41 0.5 1.2 T5 10 41 0.000

S 5 5 37 0.5 1.2 T5 8 37 0.000

S 5 4 31 0.5 1.2 T5 7 31 0.139

S 5 3 29 0.5 1.2 T5 6 29 0.052

S 5 2 28 0.5 1.2 T5 3 28 0.113

S 5 12 50 1.0 1.2 T5 11 50 0.000

S 5 9, 10, 11 42 1.0 1.2 T5 8 42 0.000

S 5 6, 7, 8 41 1.0 1.2 T5 5 41 0.058

S 5 5 37 1.0 1.2 T5 4 37 0.113

S 5 4 31 1.0 1.2 T5 3 29 0.374

S 5 3 29 1.0 1.2 T5 3 29 0.174

S 5 2 28 1.0 1.2 T5 1 28 0.113

S 5 12 50 1.5 1.2 T5 7 52 0.163

S 5 9, 10, 11 42 1.5 1.2 T5 6 42 0.000

S 5 6, 7, 8 41 1.5 1.2 T5 4 41 0.058

S 5 5 37 1.5 1.2 T5 2 35 0.289

S 5 4 31 1.5 1.2 T5 2 35 0.400

S 5 3 29 1.5 1.2 T5 1 29 0.240

S 5 2 28 1.5 1.2 T5 1 29 0.290

S 5 12 50 2.0 1.2 T5 6 52 0.163

S 5 9, 10, 11 42 2.0 1.2 T5 4 42 0.058

S 5 6, 7, 8 41 2.0 1.2 T5 4 42 0.149

S 5 5 37 2.0 1.2 T5 2 37 0.412

S 5 4 31 2.0 1.2 T5 1 29 0.447

S 5 3 29 2.0 1.2 T5 1 29 0.230

S 5 2 28 2.0 1.2 T5 1 29 0.240

NOTE.—This table shows how the clock rate affects the transmission method, using

equation (10), keeping the transmission rate b constant. For the SNP-threshold

method, samples are clustered together where the SNP distance is less than or equal

to S. For the transmission method, samples are clustered together where the im-

plied number of transmissions k is less than or equal to Twith a probability of 80%.

For a clock rate of 0.5 SNPs/genome/year, the transmission method matches all

SNP-based clusters for thresholds of 5 SNPs and above. As the clock rate increases,

the transmission clustering diverges further from the SNP clustering. As we vary the

other parameters, the choice of b is effectively a scale factor and does not affect the

pattern of clustering. We use the variation of information dissimilarity measure

given by clue (Meil�a 2007) to compare the results of the two methods.

Table 4. Comparison of the Methods with the Moldova data, Taking
Drug Resistance into Account.

SNP

Threshold

k b Trans.

Threshold

Dissimilarity

SNP and

Trans.

Dissimilarity

SNP and

Trans. with

Resistance

S 5 12 1.0 1.2 T5 11 0.000 0.132

S 5 10 1.0 1.2 T5 9 0.000 0.164

S 5 8 1.0 1.2 T5 7 0.000 0.128

S 5 7 1.0 1.2 T5 6 0.000 0.245

S 5 6 1.0 1.2 T5 5 0.000 0.090

S 5 5 1.0 1.2 T5 4 0.000 0.047

S 5 4 1.0 1.2 T5 3 0.000 0.023

S 5 11 2.0 1.2 T5 4 0.000 0.233

S 5 9 2.0 1.2 T5 3 0.000 0.128

S 5 7 2.0 1.2 T5 2 0.000 0.308

S 5 4 2.0 1.2 T5 1 0.000 0.023

NOTE.—This table shows how the clock rate affects the transmission method, using

equation (10), keeping the transmission rate b constant, and the effect of including

resistance using equation (18). For k ¼ 1.0 and 2.0 SNPs/genome/year, the pattern

of clusters is identical using the SNP-threshold and transmission methods across a

range of thresholds, but differs when resistance-conferring SNPs are taken into

account. For the SNP-threshold method, samples are clustered together where

the SNP distance is less than or equal to S. For the transmission method, samples

are clustered together where the implied number of transmissions k is less than or

equal to T with a probability of 80%. We use the variation of information dissim-

ilarity measure given by clue (Meil�a 2007) to compare the results of the methods.
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which have been sampled at very different times compared
with the majority of cases. These cases can make inference of
timed phylogenetic trees challenging because the low genetic
variation is hard to reconcile with the large time distance.
Furthermore, true transmission clusters need not be clades in
phylogenetic trees, because one cluster could descend from
another but be separated by a long time or a large genetic
distance (due to sampling effects). Accordingly, the clusters
obtained by our method do not necessarily correspond to
phylogenetic clades. We briefly discuss the application of our
method to timed phylogenetic trees in the supplementary
data, Supplementary Material online, with an example cluster
which is not a clade.

Our probabilistic transmission method has certain advan-
tages. It is relatively simple, requiring only the implementation
of fast-running algorithms to estimate the time distributions;
the heavy machinery to run large simulation methodologies
(like MCMC) is not required. The amount of information
required for the model is limited and consists of as little as
the SNP distances, the timing data and a knowledge about
the substitution and transmission processes. Nevertheless it
has the flexibility to be able to handle SNPs under selection,
SNPs with a different substitution process and variability in
the substitution and transmission processes, and it has the
scope for extensions to include more epidemiological data.
Even in data sets where there is not much timing information
to work with, we have seen that the integration of

information on resistance-conferring sites can be used within
our framework to fine tune the clustering. Using two distinct
processes—transmission, and the accumulation of measur-
able genetic variation—to define clusters carries the advan-
tage that these processes may be estimable from data. This
enables transmission clusters to be formed based on focused
discussion and estimation of measurable processes rather
than based on fixed cut-offs, and it allows ready adaptation
for new pipelines that detect variation.

There are some limitations. Prior knowledge of the substitu-
tion and transmission processes is required, and there is some
uncertainty in choosing appropriate values. However, the
model is typically robust with respect to changes in these var-
iables; inparticular, varying the transmission ratedoesnothave
a material impact on the clustering because a rescaling of the
cut-offwill compensate. Thechoiceof a time-varying transmis-
sion function bðtÞ is, however, likely to have an impact on
results. In particular we would expect a low probability of very
quick transmission—as the pathogennumbers are building up
inanewhost—tohaveasignificant impact,compared withthe
use of a constant transmission rate, as would a fast rate early
diminishing to a much lower rate later. Note also that the pa-
rameter t in ourmodel represents the total time since infection
to both the sample dates: sowe are notmodeling the variation
of transmission rates in calendar time.

In some diseases, such as TB, there is considerable variation
in the latency period, during which the mutation rate may be

FIG. 4. Clusters in the Moldova data set illustrating the effect of accounting for resistance-conferring SNPs in the transmission method, using

equation (18). Clusters B, C, and D are the second to fourth largest clusters in the Moldova data using the SNP-threshold method. The largest

cluster A, with 93 members for S¼ 10 is shown for completeness. Isolated cases are shown with no enclosing oval. Colors are chosen to enable

identification of the same cases in the four different scenarios. The left-hand panel shows the clusters obtained by applying the SNP-threshold

method with two different thresholds, with the cut-off level denoted by S; samples are clustered together where the SNP distance is less than or

equal to S. The right-hand panel shows the clustering obtained by applying the transmission method, using equation (10), with the cut-off level

denoted by T; samples are clustered together where the implied number of transmissions k is less than or equal to Twith a probability of 80%, with

clock rate k ¼ 1:5 SNPs/genome/year and b ¼ 2:0 transmissions/year.
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lower than it is during active disease. This variability can be
incorporated into the negative binomial model as
expressed in equation (14). We do not explicitly model
within-host diversity, though this is relevant to identifying
direct transmission events (Didelot et al. 2014, 2017;
Worby et al. 2014; Hall et al. 2015, 2016). Cases of direct
transmission will be clustered together with high proba-
bility in our method despite slight inaccuracy in the tim-
ing due to both branches of the pair’s two-case tree
spending time in the same host. Pairs of cases for which
the clustering decision is ambiguous are likely to have
several intermediate cases between them, with a larger
tree height, and so the contribution of in-host diversity in
either sampled case will be small. In-host diversity in
unsampled cases would not affect our estimates unless
it contributed to changes in the molecular clock rate.

WGS data has been noted to be helpful in ruling out
transmission but insufficient, on its own, to resolve transmis-
sion events (Casali et al. 2016; Campbell et al. 2018). If the
primary use of WGS data is only to refute transmission, one
might ask why clustering matters. We would argue that the
transmissions that are not refuted by WGS are then presum-
ably considered to be possible recent, or direct, or clustered
transmissions. Even if the primary use ofWGS data is to refute
direct transmission, there is a trade-off between the strength
of that refutation and the possibility of mistakenly refuting
genuine recent transmission events. This is more likely, using
SNP cut-offs, where selection (say for antibiotic resistance)
has led to higher SNP differences than expected. In addition,
in practice WGS data are not only used to refute direct trans-
mission, but to produce clusters that inform onward analyzes,
reports on the extent of recent transmission, outbreak anal-
ysis and reconstruction and even public health policy; see
(Guthrie et al. 2018) for one example.

We have accommodated the possibility of low substitution
rates in latency with a non-Poisson model for the clock pro-
cess, k, in equation (5) (though we have not implemented
this) and to some extent with the option of a nonconstant
transmission rate. However, we have not modeled the possi-
bility of a direct relationship between low SNP accumulation
and low probability transmission. If this relationship exists—
for example if latent cases both do not transmit and do not
accumulate SNPs (Colangeli et al. 2014)—then low SNP differ-
ences could correspond to fewer intermediate hosts despite
long elapsed times. This is an implicit assumption of a SNP-
only method; although it may be correct it is a strong as-
sumption, and there is evidence that mutation rates in la-
tency are not reduced compared with active disease (Ford
et al. 2011; Lillebaek et al. 2016).

We have not used the probability of sampling in forming
our clusters, in contrast to other tools including the vimes
package (Jombart and Cori 2017). For example, if it is known
that surveillance is strong, then it would be less likely for 10
intermediate cases to be unsampled than for 5 intermediate
cases, and this could be built in to a clustering method. Our
rationale for not taking this into account is to provide a
clustering approach that is as parallel as possible to the
SNP cut-offs currently in widespread use while taking addi-
tional information on timing, molecular evolution, and trans-
mission into account. It is often the case that the true
sampling rate is not known and may change over time,
and—particularly for TB in high-resource settings—cases
can be missed because they are hard to identify (perhaps
being at higher risk of TB due to homelessness or other
factors, as in Casali et al. [2016]). In many settings the sam-
pling probability may be uncertain. We have taken the ap-
proach of defining the clusters themselves without explicit
reference to the sampling probability, with the view that the
clusters are central inputs to other analyzes which will take
sampling into account (as is done for example in TransPhylo
[Didelot et al. 2017]). However, in our approach, changes in
the sampling probability would likely be apparent in changes
in the temporal and genetic distance between cases over
time.

We have also not modeled changes in the transmission
process over time in a community (e.g. due to depletion of
susceptible individuals, improved infection control, etc.). As
with including sampling, this may best be done in a more
nuanced analysis after the initial clustering rather than as part
of the clustering itself, but in principle, changes to the trans-
mission function over calendar time could be incorporated
into the mathematics behind equation (8). However, this
would raise interpretation challenges because of the fact
that our transmission process reflects the rate of the patho-
gen moving between hosts where it is known that there is an
infected host at the “end” of the chain (since each pair con-
sists of two sampled hosts, whose pathogen was sequenced
and who were therefore certainly infected). We do not model
the number of contacts over which transmission could have
occurred.

The choice of a particular SNP cut-off also takes no ac-
count of the inevitable uncertainties involved in the gathering

Table 5. Dissimilarity Measure Comparing Both the SNP-Threshold
and Transmission Methods against Simulated Data, Averaged over
the Full Set of Simulations.

Clock Rate Transmission

Method

SNP-Threshold

Method

Random

0.5 0.250 0.366 0.871

1.0 0.261 0.366 0.845

1.5 0.265 0.366 0.795

2.0 0.282 0.366 0.842

2.5 0.293 0.366 0.845

3.0 0.303 0.366 0.848

NOTE.—We use the variation of information dissimilarity measure given by clue

(Meil�a 2007) to compare the results of themethods. Lower numbers indicate sets of

clusters that are more similar to the true clusters. An outbreak was simulated 100

times with 10 sampled cases from a total of between 20 and 30 cases, depending on

the simulation. The measure is obtained by comparing clusters from a range of

thresholds to the known clusters, and picking the one with the lowest score. The

averages are 0.27 bits for the transmission method, 0.366 for the SNP-threshold

method, and 0.84 for the randomly permuted data. The clock rate is the rate used by

the transmission method only to relate the number of SNPs to the time distribu-

tion, and thus does not affect the SNP-threshold method results—this is why the

SNP-threshold method has the same dissimilarity compared with the simulated

data whatever the clock rate. The table shows how the dissimilarity varies as the

clock rate varies, for a fixed b ¼ 3:0 transmissions/year, as compared with simu-

lated samples connected by direct transmission. The random column shows the

dissimilarity obtained for randomly allocated simulated clusters.
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and processing of raw read data, and does not allow for the
modeling of this uncertainty. Different bioinformatics
pipelines—and different parameters used within those
pipelines—can have a substantial effect on the number of
SNP differences reported between cases. It is usual for SNP
differences to be taken as given and, although sometimes
details are provided—see for example Katz et al. (2013)—it
is important to recognize that there can be considerable var-
iation between SNPs reported using different pipelines and
parameters. For example, the level of quality scores and read
depth cut-offs used will generally have a high impact, as will
the precise way in which hypervariable sites and repeat
regions are handled (or excluded). As technology improves
we may begin to capture variation in repeat regions, or types
of variation (e.g. insertions/deletions) that are currently
masked, and in that new pipeline 12 SNPs may not carry
the interpretation it does today. The model could easily in-
corporate more genomic information, resulting in a more
sophisticated version of the distance function. In particular,
large-scale genomic features can readily help to establish that
cases belong to separate and therefore distantly related line-
ages. As variation-calling pipelines evolve, our method could
be used to relate each pipeline to number of transmissions or
to estimated divergence time; this would form an approach
to compare bioinformatics pipelines and data sources, and to
curate their use in defining distances between isolates.

TB has distinct phylogeographic lineages which have been
reported to have different mutation rates, with lineage 2 (the
East Asian and Beijing lineage) having higher mutation rates
than lineage 4 (Euro-American) (Ford et al. 2013). Our ap-
proach could unify clustering despite such differences, as the
same transmission and probability settings could be used
under different SNP accumulation rates. This would provide
a consistent approach to clustering in areas where multiple
lineages cocirculate, and allow comparison of TB clustering
patterns in different settings. The same would be true for
adapting to differing natural histories across different patho-
gen lineages or subpopulations: the choice of b could reflect
transmission differences while the other settings remained
the same.

The long-term aim of changing how cases are assigned to
clusters is to improve the way that WGS and epidemiological
data are used and to best capture clusters that correspond to
transmissions of an infectious disease. We have found that
basing clusters on the number of transmission events, with a
probabilistic cut-off, is feasible, can integrate timing and other
data, and compares favorably to clustering based on SNP
cut-offs.

Materials and Methods

Data
In this article we focus on TB, but our approach is applicable
to other pathogens for which WGS can be carried out and
where it is appropriate to use SNPs to compare closely related
isolates (naturally, parameters will vary). TB provides a con-
venientmodel as it avoids the complications associated with
HGT, it is an important pathogen worldwide, it has very

diverse epidemiological settings and WGS tools are increas-
ingly used for public health purposes.

British Columbia

The British Columbia Centre for Disease Control (BCCDC)’s
Public Health Laboratory (BCPHL) receives all Mtb cultures
for the province and performs routine MIRU-VNTR genotyp-
ing on all Mtb isolates. Mtb isolates belonging toMIRU-VNTR
cluster MClust-012 were revived from archived stocks, DNA
extracted, and sequenced using 125 bp paired-end reads on
the Illumina HiSeqX platform at the Michael Smith Genome
Sciences Centre (Vancouver, British Columbia). The resulting
fastq files were analyzed using a pipeline developed by Oxford
University and Public Health England. Reads were aligned to
the Mtb H37Rv reference genome (GenBank ID:
NC000962.2), with an average of 92% of the reference genome
covered. Single-nucleotide variants (SNVs) were identified
across all mapped nonrepetitive sites. Fastq files for all
genomes are available at NCBI under BioProject
PRJNA413593.

Republic of Moldova

Sample Collection and Epidemiological Data. The study pop-
ulation included patients diagnosed with culture-positive TB
at the municipal hospital from October 2013 to December
2014 in the Republic of Moldova. All epidemiological and
laboratory data from TB patients are routinely entered into
a country-wide web-based TB electronic medical record
(EMR) database. Epidemiological data including age, sex, pre-
vious TB history, results of chest radiograph, history of incar-
ceration, and place of residence were collected. Laboratory
data, including mycobacterial smear grade, culture, and drug-
susceptibility testing to first and second line anti-TB agents,
were extracted from the EMR. As part of this study, all
M. tuberculosis patient isolates were subcultured and frozen
for genomic analysis.

Variant Calling and Phylogenetic Analysis. DNA was
extracted from M. tuberculosis grown on Lowenstein–
Jensen slants as described previously. Paired-end (250 bp )
sequences were generated on the Illumina MiSeq platform.
Raw fastq reads were filtered for length and trimmed for low-
quality trailing base pairs using Trim Galore, aligned to the
H37Rv NC000962.3 reference genome using BWA, with du-
plicate reads removed using PicardTools. The mpileup func-
tion in samtools was used for single-isolate variant calling.
Isolates with a high proportion of apparent mixed or hetero-
zygous SNP calls (i.e. those with>25% reads supporting the
reference allele) were excluded from analysis. SNPs within 15
bp of insertions or deletions (indels) or with variant quality
scores < 100 were excluded. SNPs in or within 50 bp of
hypervariable PPE/PE gene families, repeat regions, and mo-
bile elements were excluded (Eldholm et al. 2015). A phylo-
genetic tree was constructed in RAxML (GTR-gamma for
nucleotide substitution and correcting for SNP ascertainment
bias) and annotated with DST results and drug- resistance-
associated variants from Mykrobe Predictor (Bradley et al.
2015). Representative strains from other studies in the region,
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including L4 (LAM, Haarlem, Ural) and L2 (Casali et al. 2014;
Merker et al. 2015), were also included. Percy256 (Lineage 7)
was included as an outgroup. Fastq files for all genomes are
available at NCBI under Accession number SRP156366.

Clustering Approach
The overall approach is to use the SNPs and case timing to
derive a distribution for the time to theMRCA of each pair of
samples, condition on that time to write the probability that
the samples were separated by some number of transmission
events, and then integrate out the unknown time to the pairs’
MRCA. The first step makes use of the molecular clock pro-
cess and depends on the clock rate and on the number of
SNPs under a form of selection (like antibiotic resistance). The
second step using information about the transmission pro-
cess and the natural history of the pathogen.

For each sample, we start with the date on which the
sample was taken and the aligned nucleotide sequence for
the set of variable sites in our set of samples. For any two
samples S1 and S2, we have the SNP distance N ¼ NðS1; S2Þ
which is equal to the Hamming distance between their re-
spective nucleotide sequences. We also have the sampling
time difference d ¼ dðS1; S2Þ. Without loss of generality,
we can assume that S1 is sampled either at the same time
as, or before, S2. What we do not know a priori, and therefore
we have to estimate, is the total amount of time h over which
the SNPs have accumulated (on both branches in total) since
the date of the MCRA of S1 and S2. We also refer to h as the
“height.”

Given the time h, we can use a transmission process to
estimate the probability that there are more than some
threshold number of transmission events T in a total time
h; we integrate over the unknown h. This transmission pro-
cess need not be homogeneous (table 6).

We make various assumptions in setting up the model.
Both substitutions and transmissions occur according to
(possibly nonhomogeneous) Poisson processes over time.
Unless it is otherwise stated, the population from which
the samples are drawn is homogeneous, so transmission is
random and equally likely between hosts irrespective of fac-
tors such as location of abode, individual lifestyle, etc. We do
not assume that all infected cases are reported and se-
quenced. However, where we do have sequence data, we
assume that it is correct and complete. Reported cases may
be sampled more than once. We do not explicitly model
reporting and sampling rates. If these change over time,
then this would be reflected in the time and genetic distance
between nearby cases and consequently in the estimated
number of intermediate transmissions between reported
cases. Once infected, we assume that a patient becomes in-
fectious immediately, either with a constant probability of
infection per unit of time, or in a process yielding a
gamma-distributed time to the next infection. This “natural
history ” model is assumed not to change with calendar time,
such that the course of infectiousness proceeds in the same
manner from infection to infecting others independent of the
calendar time of infection. Our approach is intended to group

sequences into clusters, and does not model reported cases
for whom there is no sequence data.

Noting that d is fixed by the sampling times in the data, we
estimate the distribution of the time h=2 over which the
SNPs have had to accumulate before the sample date of S1.
This is equivalent to estimating the date of the MRCA of S1
and S2. Because both branches are free to evolve over this
time, h=2þ h=2 ¼ h is the effective overall time between
the MRCA and S1, and dþ h is therefore the total evolution-
ary time separating the two cases.

Estimate of the Height Where Sample Dates Are the Same

The simplest model for the number of SNPs per unit time is a
Poisson process with a constant rate k; we can also accom-
modate overdispersion, reflecting a more variable SNP accu-
mulation process suitable for pathogens whose substitutions
are not as clock-like (see below). The standard Poisson distri-
bution with parameter kh gives the probability density of the
number of SNPs on a given time interval h:

PðNjhÞ ¼
e�khðkhÞN

N!
(1)

However, we are interested in the likelihood of the time h as a
function of the specified number of SNPs.

We know by standard theory that the arrival time den-
sity— that is, the time density until the next SNP— can be
modeled by the exponential density function ke�kh.
Furthermore, the waiting time until the Nth SNP is also a
Poisson process, as the arrivals are assumed to be indepen-
dent and identically Poisson distributed. It can be shown (for
example in Chapter 2 of [Gallagher 2013]) by repeated con-
volution of densities that the distribution of the Nth arrival
time AN is given by

PDFAN
¼

kNhN�1e�kh

ðN� 1Þ!
(2)

forN> 0. This is the Erlang distribution, withmean¼ N=k, as
expected.

Table 6. Symbols Used in the Model and Their Meaning.

Symbol Meaning Units

k Clock rate SNPs/genome/year

b Transmission rate Transmissions/year

h Total time over which SNPs occur over

both

lines of descent before the first

sampling date

Years

d Time between two sample dates Years

N No. of SNP differences between two

cases

Nd No. of SNP differences occurring after

first sample

k Number of transmissions

S Cut-off threshold for SNP-threshold

method

T Cut-off threshold for transmission

method
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We know that exactly N SNPs have already occurred on a
time interval of uncertain length h, andwe are interested in the
likelihood of h given the data N. Since we already have N SNPs
and are waiting for the ðNþ 1Þth, this is given by the arrival
time density for the ðNþ 1Þth SNP; by replacingNwithNþ 1
in the above and interpreting it as a function of h, we have:

LðhjNÞ ¼
kNþ1hNe�kh

N!
(3)

Note that when N¼ 0, this reduces to ke�kh.
Alternatively, we can generalize the arrival time density to

a gamma distribution, where the extra parameter allows us to
fix the mean but change the variance. This allows us to be
more flexible with respect to dispersion than with using the
exponential distribution. The gamma density, with two
parameters a and b, is

fðh; a; bÞ ¼
baha�1e�bh

CðaÞ
(4)

The mean is a/b and the variance a=b2. Note that we can
recover the Poisson model result by setting a¼ 1 and b ¼ k
(Cameron and Trivedi 2013). In this case, the arrival time
density for the ðNþ 1Þth SNP is given by

fðh; aðNþ 1Þ; bÞ ¼
baðNþ1ÞhaðNþ1Þ�1e�bh

CðaðNþ 1ÞÞ
(5)

by standard properties of the gamma distribution.

Estimate of the Height Where Sampling Times Differ

In this case, we account for the fact that some of the SNPs
may have occurred in the fixed time interval of length d
between the two sample dates. Again, we begin with the

simple model in which the number of SNPs occurring in
this time is given by a Poisson distribution, in this case with
parameter kd. We write N ¼ Nh þ Nd, where Nd is Poisson
distributed with parameter kd.

The number of SNPs Nd accumulated on the fixed interval
of length d is somewhere between 0 and N inclusive;
0 � Nd � N. Unconstrained, Nd is Poisson distributed
with parameter kd. Conditioning on the probability that Nd

does not exceed N gives us the probability density

PðNdjdÞ ¼
e�kdðkdÞNd

Nd!

� �

=
X

N

i¼0

e�kdðkdÞi=i!

and writing FðNdÞ for
PN

i¼0 e
�kdðkdÞi=i!

PðNdjdÞ ¼
e�kdðkdÞNd

Nd!

� �

=FðNdÞ (6)

To obtain the expression for LðhjN; dÞ, we sum over all
the possible values of Nd, giving

LðhjN; dÞ ¼
X

N

i¼0

Lðhji; dÞPððN� iÞjdÞ

Substituting into our earlier expression,

LðhjN; dÞ ¼
X

N

i¼0

kiþ1hie�kh

i!

� �

e�kdðkdÞðN�iÞ

ðN� iÞ!

 !

=FðNÞ

LðhjN; dÞ ¼
e�kðhþdÞkNþ1

FðNÞ

X

N

i¼0

hidN�i

i!ðN� iÞ!

(7)

An example plot for the equation above is shown in
figure 5.

FIG. 5. On the left is a schematic illustration of the notation. h is the total time in years over which SNPs accumulate between two cases before the

first sample is taken, whereas the total time over which SNPs can occur is hþ d years. d is known and fixed; h is unknown. On the right is a plot of

hþ d, where h is given by equation (4), for values of d ranging from 0 through 6 years, with N¼ 3, k ¼ 0:9 SNPs/genome/year, and b ¼ 1:2
transmissions/year. Since hþ d > d, the lines corresponding to higher values of d begin above 0.
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Modeling Transmissions

We connect SNP distances to transmissions using a model
for the number of transmissions likely to have occurred
over a given total time period, conditional on the two cases
being infected at or before the sampling times. This means
that unlike a transmission rate in a population-level epi-
demic model, which typically describes the rate of trans-
mission per unit time given contact between a susceptible
and an infectious individual, our transmission process is
better described in terms of the rate at which a pathogen
lineage will jump to a new host. This is, of course, distinct
from the rate at which new transmissions occur in a com-
munity and the per-contact rate of transmission of infec-
tion between two individuals. We first assume for
simplicity that b is a constant function, and that it is a
Poisson process; we allow a more general model later. The
amount of time over which transmissions can occur be-
tween our two cases is hþ d, and the expected number of
transmissions is bðhþ dÞ. The number of transmission
events k is therefore given by

Pðkjh; dÞ ¼
bkðhþ dÞke�bðhþdÞ

k!
(8)

Integrating over h, we have

PðkjN; dÞ ¼

ð

1

h¼0

LðhjN; dÞ PðkjhÞ dh (9)

¼
e�dðkþbÞkNþ1bk

k!FðNÞ

ð

1

h¼0

e�hðkþbÞðhþ dÞk
X

N

i¼0

hi
dN�i

i!ðN� iÞ!

� �

dh

(10)

This equation expresses the key relationship that allows us
to translate raw SNP differences and sample time differences
into transmission probability distributions—examples are
shown in figure 6. As the sample time between cases
increases, it can be seen that this factor makes an increasingly
important contribution, relative to the SNP distance, to the
distance between cases.

Unless stated otherwise, equation (10) is used to generate
the data presented in the Results Section.

Time Varying Transmissions

In our context, a transmission event should be under-
stood as an event in which a pathogen is transferred to
a new host, ultimately causing a secondary case in that
host. Although there may be undetected transmission
events in which the secondary cases never develop dis-
ease, our data are on sampled cases with active disease,
and the time between successive transmissions should
approximately reflect the serial interval between cases
with active disease. We allow the number of transmissions
b ¼ bðtÞ to be a function of time since infection, allowing
for a variable risk of infecting others during the course of
infection. Once a host is infected, the details of the

natural history of the pathogen affect the generation
time—the exact form of the function bðtÞ allows us to
incorporate the varying rates of progression from infec-
tion to active disease, and then on to transmission. This
illustrates that our framework has the flexibility to include
more detailed and accurate modeling of the underlying
disease dynamics. As stated in Didelot et al. (2017), the
generation time distribution can take any form (Fine
2003; Wallinga and Lipsitch 2007), but gamma distribu-
tions are often used, as for example in Conlan et al. (2010).
We apply the gamma distribution with parameters shape
a and scale h, so that:

bðtÞ ¼ bðt; a; hÞ ¼
1

CðaÞha
ta�1e�t=h (11)

and the mean value is ah � dt in a given time interval dt.
Putting this together with our Poissonmodel for the num-

ber of SNPs on a time interval (eq. 1, we obtain:

PðNjk; bðt; a; hÞÞ ¼

ð

1

t¼0

e�ktðktÞN

N!

1

CðaÞha
ta�1e�t=h

� �

dt

(12)

¼
Nþ a� 1

N

 !

1�
hk

hkþ 1

� �a
hk

hkþ 1

� �N

(13)

This is a negative binomial (denoted NB) distribution for the
number of SNPs for one transmission generation,

PðNjk; bðt; a; hÞÞ � NB a;
hk

hkþ 1

� �

Assuming transmission events are independent of each other,
it then follows (by standard properties of the negative bino-
mial) that the probability of N given k transmissions is also
distributed as a negative binomial, with

PðNjk; k; bðt; a; hÞÞ � NB ka;
hk

hkþ 1

� �

PðNjk; k; bðt; a; hÞÞ ¼
Nþ ka� 1

N

0

@

1

A 1�
hk

hkþ 1

� �ka

hk

hkþ 1

� �N

(14)

Modeling Resistance-Conferring SNPs

Suppose that we know that there are resistance-conferring
SNPs in our sample population, or perhaps other SNPs at sites
known to be under selection or simply to have a different rate
of substitution. Let us assume they account for a certain fixed
proportion of the observed SNP differences. Given N SNPs,
assume that m are not resistance conferring and n are, so
N ¼ mþ n. Their respective mutation rates are given by km
and kn, where kn > km. Assuming independence, on a given
time interval of length h we have
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PðNjhÞ ¼ Pðmjh; kmÞPðnjh; knÞ

¼
kmmh

me�kmh

m!

� �

knnh
ne�knh

n!

� �

¼
kmmk

n
n

m!n!

� �

hme�kmhhne�knh

¼ Kmnh
mþne�ðkmþknÞh

(15)

where

Kmn ¼
kmmk

n
n

m!n!
(16)

Compare this to equation (1), which we can recover by set-
ting m¼N, n¼ 0, k ¼ km, and kn ¼ 0.

We have a Poisson process which is the sum of two inde-
pendent Poisson processes with k ¼ km þ kn. As before, we
can derive expressions for LðhjN ¼ nþmÞ and
PðkjN ¼ nþmÞ, so

Lðhjm; nÞ ¼ K
0
mnh

mþne�ðkmþknÞh (17)

where

FIG. 6. Probability density for the number of transmissions, given by equation (10), with clock rate k ¼ 0:9 SNPs/genome/year and b ¼ 1:5
transmissions/year. The upper two panels show the densities for delta values of 0 and 4 years for a range of SNP distance between 0 and 20. The

lower four panels show the densities for 0, 4, 8 and 12 SNP distance respectively, for d ¼ 0; 4; 8; 12; 16 years.
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K
0
mn ¼

kmþ1
m knþ1

n

m!n!

A way to illustrate the effect of including resistance-
conferring SNPs is to consider the expected value of h.
Recall that under equation (1), the mean is given by N=k.
Thinking of our resistance and nonresistance-conferring SNP
processes, they have means respectively of n=kn and m=km.
Thus the combined process hasmean n=kn þm=km, andwe
can write the rate parameter k� of the combined process as

k� ¼
nþm

n=kn þm=km
(18)

Note that for large km, k
� tends to kn � ðnþmÞ=n. The

larger the value of km as compared with kn, the smaller the
contribution that the resistance-conferring SNPs make to the
value of h—accordingly, four SNPs likely to have arisen due to
inappropriate treatment or another selection process should
not contribute as strongly toward separating two cases into
different transmission clusters as four “neutral ” SNPs. Ideally,
the value of km should be estimated from data. Once resis-
tance SNPs have occurred in an individual, they are likely to
be transmitted onwards when the individual infects others.
These secondary cases share the resistance SNPs with each
other (n¼ 0 in these pairs) and they are likely to be placed in
the same cluster. Between each secondary case and the infect-
ing case, n> 0; our method allows the resistance SNPs to
“count for ” less time than other SNPs, and the index case
is likely clustered with the onward cases.

Spatial Proximity and Other Individual Data

Other factors that affect the likelihood of transmission, such
as spatial proximity or other covariate data including contact
tracing, demographics or other host factors, can be built into
the model.

To incorporate spatial proximity, we assign each of the
cases into one of a number of regions Ri where i is the region
index. For the British Columbia data set, there are six regions
defined, as shown in figure 3. For any pair of cases, a proba-
bility weighting is assigned which is equal to 1 in the case that
both cases belong to the same region, and a value below 1 for
cases which belong to different regions. This weighting w is
then applied to the probability of obtaining k transmissions
given N SNPs, giving us a modified version of equation (10)

PðkjN; d;wÞ ¼ w

ð

1

h¼0

LðhjN; dÞPðkjhÞdh (19)

Simulations

We generate simulated outbreaks and compare the SNP-
threshold and transmission methods on them with a tech-
nique that measures the similarity of clusters using an
information-theoretic approach (Meil�a 2007). Outbreaks are
simulated using TransPhylo (Didelot et al. 2017), which gen-
erates a dated transmission network for each simulation,
containing both sampled and unsampled cases. From these,

and for all the cases, phylogenetic trees are extracted using
phyloTop (Kendall et al. 2016). Sequences are then generated
with phangorn (Schliep 2011) and output as fasta format files.
For the sampled, and therefore “known,” cases we generate
sets of clusters using the SNP-threshold and transmission
methods for a range of cut-off levels. We also generate the
“true ” clustering of the sampled cases implied by the simu-
lated TransPhylo transmission networks.

Software Availability
The methods presented here are available as R functions in
the transcluster package, available at https://github.com/
JamesStimson/transcluster.

Supplementary Material

Supplementary data are available at Molecular Biology and

Evolution online.
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