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ABSTRACT

GPUs achieve high throughput and power efficiency by employ-

ing many small single instruction multiple thread (SIMT) cores. To

minimize scheduling logic and performance variance they utilize

a uniform memory system and leverage strong data parallelism ex-

posed via the programming model. With Moore’s law slowing, for

GPUs to continue scaling performance (which largely depends on

SIMT core count) they are likely to embrace multi-socket designs

where transistors are more readily available. However when moving

to such designs, maintaining the illusion of a uniform memory sys-

tem is increasingly difficult. In this work we investigate multi-socket

non-uniform memory access (NUMA) GPU designs and show that

significant changes are needed to both the GPU interconnect and

cache architectures to achieve performance scalability. We show that

application phase effects can be exploited allowing GPU sockets to

dynamically optimize their individual interconnect and cache poli-

cies, minimizing the impact of NUMA effects. Our NUMA-aware

GPU outperforms a single GPU by 1.5⇥, 2.3⇥, and 3.2⇥ while

achieving 89%, 84%, and 76% of theoretical application scalability

in 2, 4, and 8 sockets designs respectively. Implementable today,

NUMA-aware multi-socket GPUs may be a promising candidate for

scaling GPU performance beyond a single socket.

CCS CONCEPTS

• Computing methodologies → Graphics processors; • Com-

puter systems organization → Single instruction, multiple data;
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1 INTRODUCTION

In the last decade GPUs computing has transformed the high per-

formance computing, machine learning, and data analytics fields

that were previously dominated by CPU-based installations [27, 34,

53, 61]. Many systems now rely on a combination of GPUs and

CPUs to leverage high throughput data parallel GPUs with latency

critical execution occurring on the CPUs. In part, GPU-accelerated

computing has been successful in these domains because of native

support for data parallel programming languages [24, 40] that re-

duce programmer burden when trying to scale programs across ever

growing data sets.

Nevertheless, with GPUs nearing the reticle limits for maximum

die size and the transistor density growth rate slowing down [5],

developers looking to scale the performance of their single GPU

programs are in a precarious position. Multi-GPU programming

models support explicit programming of two or more GPUs, but

it is challenging to leverage mechanisms such as Peer-2-Peer ac-

cess [36] or a combination of MPI and CUDA [42] to manage

multiple GPUs. These programming extensions enable programmers

to employ more than one GPU for high throughput computation, but

require re-writing of traditional single GPU applications, slowing

their adoption.

High port-count PCIe switches are now readily available and

the PCI-SIG roadmap is projecting PCIe 5.0 bandwidth to reach

128 GB/s in 2019 [6]. At the same time, GPUs are starting to expand

beyond the traditional PCIe peripheral interface to enable more

efficient interconnection protocols between both GPUs and CPUs,

such as AMD’s Infinity Fabric or NVIDIA’s Scalable Link Interface

and NVLink [2, 29, 35, 39, 44]. Future high bandwidth GPU to GPU

interconnects, possibly using improved communication protocols,

may lead to system designs with closely coupled groups of GPUs

that can efficiently share memory at fine granularity.

The onset of such multi-socket GPUs would provide a pivot point

for GPU and system vendors. On one hand, vendors can continue to
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Figure 1: The evolution of GPUs from traditional discrete PCIe

devices to single logical, multi-socketed accelerators utilizing a

switched interconnect.

expose these GPUs as individual GPUs and force developers to use

multiple programming paradigms to leverage these multiple GPUs.

On the other, vendors could expose multi-socket designs as a single

non-uniform memory access (NUMA) GPU resource as shown in

Figure 1. By extending the single GPU programming model to multi-

socket GPUs, applications can scale beyond the bounds of Moore’s

law, while simultaneously retaining the programming interface to

which GPU developers have become accustomed.

Several groups have previously examined aggregating multiple

GPUs together under a single programming model [7, 30]; however

this work was done in an era where GPUs had limited memory ad-

dressability and relied on high latency, low bandwidth CPU-based

PCIe interconnects. As a result, prior work focused primarily on im-

proving the multi-GPU programming experience rather than achiev-

ing scalable performance. Building upon this work, we propose a

multi-socket NUMA-aware GPU architecture and runtime that ag-

gregates multiple GPUs into a single programmer transparent logical

GPU. We show that in the the era of unified virtual addressing [37],

cache line addressable high bandwidth interconnects [39], and dedi-

cated GPU and CPU socket PCB designs [29], scalable multi-GPU

performance may be achievable using existing single GPU program-

ming models. This work makes the following contributions:

• We show that traditional NUMA memory placement and

scheduling policies are not sufficient for multi-socket GPUs

to achieve performance scalability. We then demonstrate that

inter-socket bandwidth will be the primary performance lim-

iter in future NUMA GPUs.

• By exploiting program phase behavior we show that inter-

socket links (and thus bandwidth) should be dynamically and

adaptively reconfigured at runtime to maximize link utiliza-

tion. Moreover, we show that link policy must be determined

on a per-GPU basis, as global policies fail to capture per-GPU

phase behavior.

• We show that both the GPU L1 and L2 caches should be made

NUMA-aware and dynamically adapt their caching policy

to minimize NUMA effects. We demonstrate that in NUMA

GPUs, extending existing GPU cache coherence protocols

Figure 2: Percentage of workloads that are able to fill future

larger GPUs (average number of concurrent thread blocks ex-

ceeds number of SMs in the system).

across multiple sockets is a good design choice, despite the

overheads.

• We show that multi-socket NUMA-aware GPUs can allow

traditional GPU programs to scale efficiently to as many

as 8 GPU sockets, providing significant headroom before

developers must re-architect applications to obtain additional

performance.

2 MOTIVATION AND BACKGROUND

Over the last decade single GPU performance has scaled thanks

to a significant growth in per-GPU transistor count and DRAM

bandwidth. For example, in 2010 NVIDIA’s Fermi GPU integrated

1.95B transistors on a 529 mm2 die, with 180 GB/s of DRAM band-

width [13]. In 2016 NVIDIA’s Pascal GPU contained 12B transistors

within a 610 mm2 die, while relying on 720 GB/s of memory band-

width [41]. Unfortunately, transistor density is slowing significantly

and integrated circuit manufacturers are not providing roadmaps be-

yond 7 nm. Moreover, GPU die sizes, which have been also slowly

but steadily growing generationally, are expected to slow down due

to limitations in lithography and manufacturing cost.

Without either larger or denser dies, GPU architects must turn

to alternative solutions to significantly increase GPU performance.

Recently 3D die-stacking has seen significant interest due to its

successes with high bandwidth DRAM [23]. Unfortunately 3D die-

stacking still has a significant engineering challenges related to

power delivery, energy density, and cooling [60] when employed

in power hungry, maximal die-sized chips such as GPUs. Thus we

propose GPU manufacturers are likely to re-examine a tried and

trued solution from CPU world, multi-socket GPUs, to scaling GPU

performance while maintaining the current ratio of floating point

operations per second (FLOPS) and DRAM bandwidth.

Multi-socket GPUs are enabled by the evolution of GPUs from

external peripherals to central computing components, considered

at system design time. GPU optimized systems now employ cus-

tom PCB designs that accommodate high pin count socketed GPU

modules [35] with inter-GPU interconnects resembling QPI or Hy-

perTransport [17, 21, 39]. Despite the rapid improvement in hard-

ware capabilities, these systems have continued to expose the GPUs

provided as individually addressable units. These multi-GPU sys-

tems can provide high aggregate throughput when running multiple

concurrent GPU kernels, but to accelerate a single GPU workload
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they require layering additional software runtimes on top of native

GPU programming interfaces such as CUDA or OpenCL [24, 38].

Unfortunately, by requiring application re-design many workloads

are never ported to take advantage of multiple GPUs.

Extending single GPU workload performance significantly is a

laudable goal, but we must first understand if these applications

will be able to leverage larger GPUs. Assuming that the biggest

GPU in the market today amasses ⇡50 SMs (i.e. NVIDIA’s Pascal

GPU contains 56), Figure 2 shows that across a benchmark set of 41

applications that are later described in Section 3.2, most single GPU

optimized workloads already contain sufficient data parallelism to fill

GPUs that are 2–8⇥ larger than today’s biggest GPUs. For those that

do not, we find that the absolute number of thread blocks (CTAs) is

intentionally limited by the programmer, or that the problem dataset

can not be easily scaled up due to memory limitations. While most of

these applications that do scale are unlikely to scale to thousands of

GPUs across an entire data center without additional developer effort,

moderate programmer transparent performance scalability will be

attractive for applications that already contain sufficient algorithmic

and data parallelism.

In this work, we examine the performance of a future 4-module

NUMA GPU to understand the effects that NUMA will have when

executing applications designed for UMA GPUs. We will show (not

surprisingly), that when executing UMA-optimized GPU programs

on a multi-socket NUMA GPU, performance does not scale. We

draw on prior work and show that before optimizing GPU microarchi-

tecture for NUMA-awareness, several software optimizations must

be in place to preserve data locality. Alone these SW improvements

are not sufficient to achieve scalable performance however and in-

terconnect bandwidth is a significant hindrance on performance. To

overcome this bottleneck we propose two classes of improvements

to reduce the observed NUMA penalty.

First, in Section 4 we examine the ability of switch connected

GPUs to dynamically repartition their ingress and egress links to pro-

vide asymmetric bandwidth provisioning when required. By using

existing interconnects more efficiently, the effective NUMA band-

width ratio of remote memory to local memory decreases, improving

performance. Second, to minimize traffic on oversubscribed intercon-

nect links we propose GPU caches need to become NUMA-aware

in Section 5. Traditional on-chip caches are optimized to maximize

overall hit rate, thus minimizing off-chip bandwidth. However, in

NUMA systems, not all cache misses have the same relative cost

and thus should not be treated equally. Due to the NUMA penalty

of accessing remote memory, we show that performance can be

maximized by preferencing cache capacity (and thus improving hit

rate) towards data that resides in slower remote NUMA zones, at

the expense of data that resides in faster local NUMA zones. To this

end, we propose a new NUMA-aware cache architecture that dynam-

ically balances cache capacity based on memory system utilization.

Before diving into microarchitectural details and results, we first

describe the locality-optimized GPU software runtime that enables

our proposed NUMA-aware architecture.

3 A NUMA-AWARE GPU RUNTIME

Current GPU software and hardware is co-designed together to opti-

mize throughput of processors based on the assumption of uniform

memory properties within the GPU. Fine grained interleaving of

memory addresses across memory channels on the GPU provides

implicit load balancing across memory but destroys memory locality.

As a result, thread block scheduling policies need not be sophisti-

cated to capture locality, which has been destroyed by the memory

system layout. For future NUMA GPUs to work well, both system

software and hardware must be changed to achieve both function-

ality and performance. Before focusing on architectural changes to

build a NUMA-aware GPU we describe the GPU runtime system

we employ to enable multi-socket GPU execution.

Prior work has demonstrated feasibility of a runtime system that

transparently decomposes GPU kernels into sub-kernels and exe-

cutes them on multiple PCIe attached GPUs in parallel [7, 25, 30].

For example, on NVIDIA GPUs this can be implemented by inter-

cepting and remapping each kernel call, GPU memory allocation,

memory copy, and GPU-wide synchronization issued by the CUDA

driver. Per-GPU memory fences must be promoted to system level

and seen by all GPUs, and sub-kernels CTA identifiers must be

properly managed to reflect those of the original kernel. Cabezas et

al. solve these two problems by introducing code annotations and an

additional source-to-source compiler which was also responsible for

statically partitioning data placement and computation [7].

In our work, we follow a similar strategy but without using a

source-to-source translation. Unlike prior work, we are able to

rely on NVIDIA’s Unified Virtual Addressing [37] to allow dy-

namic placement of pages into memory at runtime. Similarly, tech-

nologies with cache line granularity interconnects like NVIDIA’s

NVLink [39] allow transparent access to remote memory without

the need to modify application source code to access local or remote

memory addresses. Due to these advancements, we assume that

through dynamic compilation of PTX to SASS at execution time, the

GPU runtime will be able to statically identify and promote system

wide memory fences as well as manage sub-kernel CTA identifiers.

Current GPUs perform fine-grained memory interleaving at a

sub-page granularity across memory channels. In a NUMA GPU

this policy would destroy locality and result in 75% of all accesses

to be to remote memory in a 4 GPU system, an undesirable effect

in NUMA systems. Similarly, a round-robin page level interleaving

could be utilized, similar to the Linux interleave page allocation

strategy, but despite the inherent memory load balancing, this still

results in 75% of memory accesses occurring over low bandwidth

NUMA links. Instead we leverage UVM page migration functional-

ity to migrate pages on-demand from system memory to local GPU

memory as soon as the first access (also called first-touch allocation)

is performed as described by Arunkumar et. al [3].

On a single GPU, fine-grained dynamic assignment of CTAs to

SMs is performed to achieve good load balancing. Extending this

policy to a multi-socket GPU system is not possible due to the

relatively high latency of passing sub-kernel launches from software

to hardware. To overcome this penalty, the GPU runtime must launch

a block of CTAs to each GPU-socket at a course granularity. To

encourage load balancing, each sub-kernel could be comprised of

an interleaving of CTAs using modulo arithmetic. Alternatively a

single kernel can be decomposed into N sub-kernels, where N is the

total number of GPU sockets in the system, assigning equal amount

of contiguous CTAs to each GPU. This design choice potentially

exposes workload unbalance across sub-kernels, but it also preserves
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Figure 3: Performance of a 4-socket NUMA GPU relative to a single GPU and a hypothetical 4⇥ larger (all resources scaled) single

GPU. Applications shown in grey achieve greater than 99% of performance scaling with SW-only locality optimization.

data locality present in applications where contiguous CTAs also

access contiguous memory regions [3, 7].

3.1 Performance Through Locality

Figure 3 shows the relative performance of a 4-socket NUMA GPU

compared to a single GPU using the two possible CTA scheduling

and memory placement strategies explained above. The green bars

show the relative performance of traditional single-GPU schedul-

ing and memory interleaving policies when adapted to a NUMA

GPU. The light blue bars show the relative performance of using

locality-optimized GPU scheduling and memory placement, con-

sisting of contiguous block CTA scheduling and first touch page

migration; after which pages are not dynamically moved between

GPUs. The Locality-Optimized solution almost always outperforms

the traditional GPU scheduling and memory interleaving. Without

these runtime locality optimizations, a 4-socket NUMA GPU is not

able to match the performance of a single GPU despite the large

increase in hardware resources. Thus, using variants of prior pro-

posals [3, 7], we now only consider this locality optimized GPU

runtime for the remainder of the paper.

Despite the performance improvements that can come via locality-

optimized software runtimes, many applications do not scale well on

our proposed NUMA GPU system. To illustrate this effect, Figure 3

shows the speedup achievable by a hypothetical (unbuildable) 4⇥

larger GPU with a red dash. This red dash represents an approxima-

tion of the maximum theoretical performance we expected from a

perfectly architected (both HW and SW) NUMA GPU system. Fig-

ure 3 sorts the applications by the gap between relative performance

of the Locality-Optimized NUMA GPU and hypothetical 4⇥ larger

GPU. We observe that on the right side of the graph some work-

loads (shown in the grey box) can achieve or surpass the maximum

theoretical performance. In particular for the two far-most bench-

marks on the right, the locality optimized solutions can outperform

the hypothetical 4⇥ larger GPU due higher cache hit rates because

contiguous block scheduling is more cache friendly than traditional

GPU scheduling.

However, the applications on the left side show a large gap be-

tween the Locality-Optimized NUMA design and theoretical perfor-

mance. These are workloads in which either locality does not exist

or the Locality-Optimized GPU runtime is not effective, resulting

in large number of remote data accesses. Because our goal is to pro-

vide scalable performance for single-GPU optimized applications,

the rest of the paper describes how to close this performance gap

through microarchitectural innovation. To simplify later discussion,

we choose to exclude benchmarks that achieve �99% of the theo-

retical performance with software-only locality optimizations. Still,

we include all benchmarks in our final results to show the overall

scalability achievable with NUMA-aware multi-socket GPUs.

3.2 Simulation Methodology

To evaluate the performance of future NUMA-aware multi-socket

GPUs we use a proprietary, cycle-level, trace-driven simulator for

single and multi-GPU systems. Our baseline GPU in both single

GPU and multi-socket GPU configurations, approximates the latest

NVIDIA Pascal architecture [43]. Each streaming multiprocessors

(SM) is modeled as an in-order processor with multiple levels of

cache hierarchy containing private, per-SM, L1 caches and a multi-

banked, shared, L2 cache. Each GPU is backed by local on-package

high bandwidth memory [23]. Our multi-socket GPU systems con-

tains two to eight of these GPUs interconnected through a high

bandwidth switch as shown in Figure 1. Table 1 provides a more

detailed overview of the simulation parameters.
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Parameter Value(s)

Num of GPU sockets 4

Total number of SMs 64 per GPU socket

GPU Frequency 1 GHz

Max number of Warps 64 per SM

Warp Scheduler Greedy then Round Robin

L1 Cache Private, 128 KB per SM, 128 B lines, 4-way,

Write-Through, GPU-side SW-based coherent

L2 Cache Shared, Banked, 4 MB per socket, 128 B lines,

16-way, Write-Back, Mem-side non-coherent

GPU–GPU Interconnect 128 GB/s per socket (64 GB/s each direction)

8 lanes 8 B wide each per direction

128-cycle latency

DRAM Bandwidth 768 GB/s per GPU socket

DRAM Latency 100 ns

Table 1: Simulation parameters for evaluation of single and

multi-socket GPU systems.

GPU coherence protocols are not one-size fits all [49, 54, 63].

This work examines clusters of large discrete GPUs but smaller

more tightly integrated GPU–CPU designs exist today as system on

chips (SoC) [12, 33]. In these designs GPUs and CPUs can share

a single memory space and last-level cache, necessitating a com-

patible GPU–CPU coherence protocol. However closely coupled

CPU-GPU solutions are not likely to be ideal candidates for GPU-

centric HPC workloads. Discrete GPUs each dedicate tens of billions

of transistors to throughput computing, while integrated solutions

dedicate only a fraction of the chip area. While discrete GPUs are

also starting to integrate more closely with some CPU coherence

protocols [1, 63], PCIe attached discrete GPUs (where integrated co-

herence is not possible) are likely to continue dominating the market,

thanks to broad compatibility between CPU and GPU vendors.

This work examines the scalability of one such cache coherence

protocol used by PCIe attached discrete GPUs. The protocol is op-

timized for simplicity and without need for hardware coherence

support at any level of the cache hierarchy. SM-side L1 private

caches achieve coherence through compiler inserted cache control

(flush) operations and memory-side L2 caches, which do not re-

quire coherence support. While software-based coherence may seem

heavy handed compared to fine grained MOESI-style hardware co-

herence, many GPU programming models (in addition to C++ 2011)

are moving towards scoped synchronization where explicit software

acquire and release operations must be used to enforce coherence.

Without the use of these operations, coherence is not globally guar-

anteed and thus maintaining fine grain CPU-style MOESI coherence

(via either directories or broadcast) may be an unnecessary burden.

We study the scalability of multi-socket NUMA GPUs using

41 workloads taken from a range of production codes based on

the HPC CORAL benchmarks [28], graph applications from Lon-

estar [45], HPC applications from Rodinia [9], and several other

in-house CUDA benchmarks. This set of workloads covers a wide

spectrum of GPU applications used in machine learning, fluid dy-

namic, image manipulation, graph traversal, and scientific comput-

ing. Each of our benchmarks is hand selected to identify the region

Benchmark Time-weighted Memory

Average CTAs Footprint (MB)

ML-GoogLeNet-cudnn-Lev2 6272 1205

ML-AlexNet-cudnn-Lev2 1250 832

ML-OverFeat-cudann-Lev3 1800 388

ML-AlexNet-cudnn-Lev4 1014 32

ML-AlexNet-ConvNet2 6075 97

Rodinia-Backprop 4096 160

Rodinia-Euler3D 1008 25

Rodinia-BFS 1954 38

Rodinia-Gaussian 2599 78

Rodinia-Hotspot 7396 64

Rodinia-Kmeans 3249 221

Rodnia-Pathfinder 4630 1570

Rodinia-Srad 16384 98

HPC-SNAP 200 744

HPC-Nekbone-Large 5583 294

HPC-MiniAMR 76033 2752

HPC-MiniContact-Mesh1 250 21

HPC-MiniContact-Mesh2 15423 257

HPC-Lulesh-Unstruct-Mesh1 435 19

HPC-Lulesh-Unstruct-Mesh2 4940 208

HPC-AMG 241549 3744

HPC-RSBench 7813 19

HPC-MCB 5001 162

HPC-NAMD2.9 3888 88

HPC-RabbitCT 131072 524

HPC-Lulesh 12202 578

HPC-CoMD 3588 319

HPC-CoMD-Wa 13691 393

HPC-CoMD-Ta 5724 394

HPC-HPGMG-UVM 10436 1975

HPC-HPGMG 10506 1571

Lonestar-SP 75 8

Lonestar-MST-Graph 770 86

Lonestar-MST-Mesh 895 75

Lonestar-SSSP-Wln 60 21

Lonestar-DMR 82 248

Lonestar-SSSP-Wlc 163 21

Lonestar-SSSP 1046 38

Other-Stream-Triad 699051 3146

Other-Optix-Raytracing 3072 87

Other-Bitcoin-Crypto 60 5898

Table 2: Time-weighted average number of thread blocks and

application footprint.

of interest deemed representative for each workload, which may be

as small as a single kernel containing a tight inner loop or several

thousand kernel invocations. We run each benchmark to completion

for the determined region of interest. Table 2 provides both the mem-

ory footprint per application as well as the average number of active

CTAs in the workload (weighted by the time spent on each kernel) to

provide a representation of how many parallel thread blocks (CTAs)

are generally available during workload execution.

4 ASYMMETRIC INTERCONNECTS

Figure 4(a) shows a switch connected GPU with symmetric and static

link bandwidth assignment. Each link consists of equal numbers of

uni-directional high-speed lanes in both directions, collectively com-

prising a symmetric bi-directional link. Traditional static-design time
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Figure 4: Example of dynamic link assignment to improve in-

terconnect efficiency.

link capacity assignment is very common and has several advan-

tages. For example, only one type of I/O circuitry (egress drivers

or ingress receivers) along with only one type of control logic are

implemented at each on-chip link interface. Moreover, the multi-

socket switches result in simpler designs that can easily support a

statically provisioned bandwidth requirements. On the other hand,

multi-socket link bandwidth utilization can have a large influence on

overall system performance. Static partitioning of bandwidth, when

application needs are dynamic, can leave performance on the table.

Because I/O bandwidth is a limited and expensive system resource,

NUMA-aware interconnect designs must look for innovations that

can keep wire and I/O utilization high.

In multi-socket NUMA GPU systems, we observe that many ap-

plications have different utilization of egress and ingress channels on

both a per GPU-socket basis and during different phases of execution.

For example, Figure 5 shows a link utilization snapshot over time

for HPC-HPGMG-UVM benchmark running on a SW locality-optimized

4-socket NUMA GPU. Vertical dotted black lines represent kernel

invocations that are split across the 4 GPU sockets. Several small

kernels have negligible interconnect utilization. However, for the

later larger kernels, GPU0 and GPU2 fully saturate their ingress

links, while GPU1 and GPU3 fully saturate their egress links. At the

same time GPU0 and GPU2, and GPU1 and GPU3 are underutilizing

their egress and ingress links respectively.

In many workloads a common scenario has CTAs writing to the

same memory range at the end of a kernel (i.e. parallel reductions,

data gathering). For CTAs running on one of the sockets, GPU0

for example, these memory references are local and do not produce

any traffic on the inter-socket interconnections. However CTAs dis-

patched to other GPUs must issue remote memory writes, saturating

their egress links while ingress links remain underutilized, but caus-

ing ingress traffic on GPU0. Such communication patterns typically

utilize only 50% of available interconnect bandwidth. In these cases,

dynamically increasing the number of ingress lanes for GPU0 (by

reversing the direction of egress lanes) and switching the direction of

ingress lanes for GPUs 1–3, can substantially improve the achievable

interconnect bandwidth. Motivated by these findings, we propose

to dynamically control multi-socket link bandwidth assignments

Figure 5: Normalized link bandwidth profile for HPC-HPGMG-UVM

showing asymmetric link utilization between GPUs and within

a GPU. Vertical black dotted lines indicate kernel launch events.

on a per-GPU basis, resulting in dynamic asymmetric link capacity

assignments as shown in Figure 4(b).

To evaluate this proposal, we model point-to-point links contain-

ing multiple lanes, similar to PCIe [47] or NVLink [43]. In these

links, 8 lanes with 8 GB/s capacity per lane yield an aggregate

bandwidth of 64 GB/s in each direction. We propose replacing uni-

directional lanes with bi-directional lanes to which we apply an

adaptive link bandwidth allocation mechanism that works as fol-

lowing. For each link in the system, at kernel launch the links are

always reconfigured to contain symmetric link bandwidth with 8

lanes per direction. During kernel execution the link load balancer

periodically samples the saturation status of each link. If the lanes

in one direction are not saturated, while the lanes in the opposite

direction are 99% saturated, the link load balancer reconfigures and

reverses the direction of one of the unsaturated lanes after quiescing

all packets on that lane.

This sample and reconfigure process stops only when directional

utilization is not oversubscribed or all but one lane is configured in a

single direction. If both ingress and egress links are saturated and

in an asymmetric configuration, links are then reconfigured back

toward a symmetric configuration to encourage global bandwidth

equalization. While this process may sound complex, the circuitry

for dynamically turning high speed single ended links around in just

tens of cycles or less is already in use by modern high bandwidth

memory interfaces, such as GDDR, where the same set of wires is

used for both memory reads and writes [16]. In high speed signaling

implementations, necessary phase–delay lock loop resynchroniza-

tion can occur while data is inflight; eliminating the need to idle the

link during this long latency (microseconds) operation if upcoming

link turn operations can be sufficiently projected ahead of time, such

as on a fixed interval.
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Figure 6: Relative speedup of the dynamic link adaptivity compared to the baseline architecture by varying sample time and assuming

switch time of 100 cycles. In red, we also provide speedup achievable by doubling link bandwidth.

4.1 Results and Discussion

Two important parameters affect the performance of our proposed

mechanism: (i) SampleTime – the frequency at which the scheme

samples for a possible reconfiguration and (ii) SwitchTime – the

cost of turning the direction of an individual lane. Figure 6 shows

the performance improvement, compared to our locality-optimized

GPU by exploring different values of the SampleTime indicated

by green bars and assuming a SwitchTime of 100 cycles. The red

bars in Figure 6 provide an upper-bound of performance speedups

when doubling the available interconnect bandwidth to 256 GB/s.

For workloads on the right of the figure, doubling the link band-

width has little effect, indicating that a dynamic link policy will also

show little improvement due to low GPU–GPU interconnect band-

width demand. On the left side of the figure, for some applications

when improved interconnect bandwidth has a large effect, dynamic

lane switching can improve application performance by as much

as 80%. For some benchmarks like Rodinia-Euler-3D, HPC-AMG,

and HPC-Lulesh, doubling the link bandwidth provides 2⇥ speedup,

while our proposed dynamic link assignment mechanism is not able

to significantly improve performance. These workloads saturate

both link directions, so there is no opportunity to provide additional

bandwidth by turning links around.

Using a moderate 5K cycle sample time, the dynamic link policy

can improve performance by 14% on average over static bandwidth

partitioning. If the link load balancer samples too infrequently, ap-

plication dynamics can be missed and performance improvement is

reduced. However if the link is reconfigured too frequently, band-

width is lost due to the overhead of turning the link. While we have

assumed a pessimistic link turn time of 100 cycles, we performed

sensitivity studies that show even if link turn time were increased to

500 cycles, our dynamic policy loses less than 2% in performance.

At the same time, using a faster lane switch (10 cycles) does not

significantly improve the performance over a 100 cycle link turn

time. The link turnaround times of modern high-speed on-board

links such as GDDR5 [16] are about 8 ns with both link and internal

DRAM turn-around latency, which is less than 10 cycles at 1 GHz.

Our results demonstrate that asymmetric link bandwidth alloca-

tion can be very attractive when inter-socket interconnect bandwidth

is constrained by the number of on-PCB wires (and thus total link

bandwidth). The primary drawback of this solution is that both types

of interface circuitry (TX and RX) and logic must be implemented

for each lane in both the GPU and switch interfaces. We conducted

an analysis of the potential cost of doubling the amount of I/O cir-

cuitry and logic based on a proprietary state of the art GPU I/O

implementation. Our results show that doubling this interface area

increases total GPU area by less than 1% while yielding a 12% im-

provement in average interconnect bandwidth and a 14% application

performance improvement. One additional caveat worth noting is

that the proposed asymmetric link mechanism optimizes link band-

width in a given direction for each individual link, while the total

switch bandwidth remains constant.

5 NUMA-AWARE CACHE MANAGEMENT

Section 4 showed that inter-socket bandwidth is an important factor

in achieving scalable NUMA GPU performance. Unfortunately, be-

cause either the outgoing or incoming links must be underutilized for

us to reallocate that bandwidth to the saturated link, if both incoming

and outgoing links are saturated, dynamic link rebalancing yields

minimal gains. To improve performance in situations where dynamic

link balancing is ineffective, system designers can either increase

link bandwidth, which is very expensive, or decrease the amount of

traffic that crosses the low bandwidth communication channels. To
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Figure 7: Potential L2 cache organizations to balance capacity between remote and local NUMA memory systems.

decrease off-chip memory traffic, architects typically turn to caches

to capture locality.

GPU cache hierarchies differ from traditional CPU hierarchies as

they typically do not implement strong hardware coherence proto-

cols [55]. They also differ from CPU protocols in that caches may

be both processor side (where some form of coherence is typically

necessary) or they may be memory side (where coherence is not

necessary). As described in Table 1 and Figure 7(a), a GPU today

is typically composed of relatively large SW managed coherent L1

caches located close to the SMs, while a relatively small, distributed,

non-coherent memory side L2 cache resides close to the memory

controllers. This organization works well for GPUs because their

SIMT processor designs often allow for significant coalescing of

requests to the same cache line, so having large L1 caches reduces

the need for global crossbar bandwidth. The memory-side L2 caches

do not need to participate in the coherence protocol, which reduces

a system complexity.

5.1 Design Considerations

In NUMA designs, remote memory references occurring across low

bandwidth NUMA interconnections results in poor performance, as

shown in Figure 3. Similarly, in NUMA GPUs utilizing traditional

memory-side L2 caches (that depend on fine grained memory inter-

leaving for load balancing) is a bad decision. Because memory-side

caches only cache accesses that originate in their local memory,

they cannot cache memory from other NUMA zones and thus can

not reduce NUMA interconnect traffic. Previous work has proposed

that GPU L2 cache capacity should be split between memory-side

caches and a new processor-side L1.5 cache that is an extension of

the GPU L1 caches [3] to enable caching of remote data, shown in

Figure 7(b). By balancing L2 capacity between memory side and

remote caches (R$), this design limits the need for extending expen-

sive coherence operations (invalidations) into the entire L2 cache

while still minimizing crossbar or interconnect bandwidth.

Flexibility: Designs that statically allocate cache capacity to local

memory and remote memory, in any balance, may achieve reason-

able performance in specific instances but they lack flexibility. Much

like application phasing was shown to affect NUMA bandwidth con-

sumption the ability to dynamically share cache capacity between

local and remote memory has the potential to improve performance

under several situations. First, when application phasing results in

some GPU-sockets primarily accessing data locally while others

are accessing data remotely, a fix partitioning of cache capacity is

guaranteed to be sub-optimal. Second, while we show that most

applications will be able to completely fill large NUMA GPUs,

this may not always be the case. GPUs within the data center are

being virtualized and there is continuous work to improve concur-

rent execution of multiple kernels and processes within a single

GPU [15, 32, 46, 50]. If a large NUMA GPU is sub-partitioned,

it is intuitive that system software attempt to partition it along the

NUMA boundaries (even within a single GPU-socket) to improve

the locality of small GPU kernels. To effectively capture locality

in these situation, NUMA-aware GPUs need to be able to dynami-

cally re-purpose cache capacity at runtime, rather than be statically

partitioned at design time.

Coherence: To-date, discrete GPUs have not moved their mem-

side caches to processor side because the overhead of cache invalida-

tion (due to coherence) is an unnecessary performance penalty. For

a single socket GPU with a uniform memory system, there is little

performance advantage to implementing L2 caches as processor

side caches. Still, in a multi-socket NUMA design, the performance

tax of extending coherence into L2 caches is offset by the fact that

remote memory accesses can now be cached locally and may be

justified. Figure 7(c) shows a configuration with a coherent L2 cache

where remote and local data contend for L2 capacity as extensions

of the L1 caches, implementing identical coherence policy.

Dynamic Partitioning: Building upon coherent GPU L2 caches,

we posit that while conceptually simple, allowing both remote and

local memory accesses to contend for cache capacity (in both the

L1 and L2 caches) in a NUMA system is flawed. In UMA systems

it is well know that performance is maximized by optimizing for

cache hit rate, thus minimizing off-chip memory system bandwidth.

However, in NUMA systems, not all cache misses have the same

relative cost performance impact. A cache miss to a local memory

address has a smaller cost (in both terms of latency and bandwidth)

than a cache miss to a remote memory address. Thus, it should

be beneficial to dynamically skew cache allocation to preference

caching remote memory over local data when it is determined the

system is bottle-necked on NUMA bandwidth.

To minimize inter-GPU bandwidth in multi-socket GPU systems

we propose a NUMA-aware cache partitioning algorithm, with cache

organization and brief summary shown in Figure 7(d). Similar to
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Figure 8: Performance of 4-socket NUMA-aware cache partitioning, compared to memory-side L2 and static partitioning.

Figure 9: Performance overhead of extending current GPU soft-

ware based coherence into the GPU L2 caches.

our interconnect balancing algorithm, at initial kernel launch (after

GPU caches have been flushed for coherence purposes) we allocate

one half of the cache ways for local memory and the remaining

ways for remote data (Step 0 ). After executing for a 5K cycles pe-

riod, we sample the average bandwidth utilization on local memory

and estimate the GPU-socket’s incoming read request rate by look-

ing at the outgoing request rate multiplied by the response packet

size. By using the outgoing request rate to estimate the incoming

bandwidth, we avoid situations where incoming writes may saturate

our link bandwidth falsely indicating we should preference remote

data caching. Projected link utilization above 99% is considered

to be bandwidth saturated (Step 1 ). In cases where the intercon-

nect bandwidth is saturated but local memory bandwidth is not, the

partitioning algorithm attempts to reduce remote memory traffic by

re-assigning one way from the group of local ways to the remote

ways grouping (Step 2 ). Similarly, if the local memory BW is

saturated and inter-GPU bandwidth is not, the policy re-allocates

one way from the remote group, and allocates it to the group of

local ways (Step 3 ). To minimize the impact on cache design, all

ways are consulted on look up, allowing lazy eviction of data when

the way partitioning changes. In case where both the interconnect

and local memory bandwidth are saturated, our policy gradually

equalizes the number of ways assigned for remote and local cache

lines (Step 4 ). Finally, if neither of the links are currently saturated,

the policy takes no action (Step 5 ). To prevent cache starvation

of either local or remote memory (which causes memory latency

dramatically increase and a subsequent drop in performance), we

always require at least one way in all caches to be allocated to either

remote of local memory.

5.2 Results

Figure 8 compares the performance of 4 different cache configura-

tions in our 4-socket NUMA GPU. Our baseline is a traditional GPU

with memory-side local-only write-back L2 caches. To compare

against prior work [3] we provide a 50–50 static partitioning where

the L2 cache budget is split between the GPU-side coherent remote

cache which contains only remote data, and the memory side L2

which contains only local data. In our 4-socket NUMA GPU static

partitioning improves performance by 54% on average, although for

some benchmarks, it hurts the performance by as much as 10% for

workloads that have negligible inter-socket memory traffic. We also

show the results for GPU-side coherent L1 and L2 caches where both

local and remote data contend capacity. On average, this solution
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Figure 10: Final NUMA-aware GPU performance compared to a single GPU and 4⇥ larger single GPU with scaled resources.

outperforms static cache partitioning significantly despite incurring

additional flushing overhead due to cache coherence.

Finally, our proposed NUMA-aware cache partitioning policy

is shown in dark grey. Due to its ability to dynamically adapt the

capacity of both L2 and L1 to optimize performance when backed

by NUMA memory, it is the highest performing cache configuration.

By examining simulation results we find that for workloads on the

left side of Figure 8 which fully saturate the inter-GPU bandwidth,

NUMA-aware dynamic policy configures the L1 and L2 caches to

be primarily used as remote caches. However, workloads on the right

side of the figure tend to have good GPU-socket memory locality,

and thus prefer L1 and L2 caches store primarily local data. NUMA-

aware cache partitioning is able to flexibly adapt to varying memory

access profiles and can improve average NUMA GPU performance

76% compared to traditional memory side L2 caches, and 22%

compared to previously proposed static cache partitioning despite

incurring additional coherence overhead.

When extending SW-controlled coherence into the GPU L2

caches, L1 coherence operations must be extended into the GPU L2

caches. Using bulk software invalidation to maintain coherence is

simple to implement but is a performance penalty when falsely evict-

ing not required data. The overhead of this invalidation is dependent

on both the frequency of the invalidations as well as aggregate cache

capacity invalidated. Extending the L1 invalidation protocol into the

shared L2, and then across multiple GPUs, increases the capacity

affected and frequency of the invalidation events.

To understand the impact of these invalidations, we evaluate hy-

pothetical L2 caches which can ignore the cache invalidation events;

thus representing the upper limit on performance (no coherence evic-

tions ever occur) that could be achieved by using a finer granularity

HW-coherence protocol. Figure 9 shows the impact these invalida-

tion operations have on application performance. While significant

for some applications, on average SW-based cache invalidations

overheads are only 10%, even when extended across all GPU-socket

L2 caches. So while fine grain HW coherence protocols may im-

prove performance, the magnitude of their improvement must be

weighted against their hardware implementation complexity. While

in the studies above we assumed a write-back policy in L2 caches,

as a sensitivity study we also evaluated the effect of using a write-

through cache policy to mirror the write-through L1 cache policy.

Our findings indicate that write-back L2 outperforms write-through

L2 by 9% on average in our NUMA-GPU design due to the decrease

in total inter-GPU write bandwidth.

6 DISCUSSION

Combined Improvement: Sections 4 and 5 provide two techniques

aimed at more efficiently utilizing scarce NUMA bandwidth within

future NUMA GPU systems. The proposed methods for dynamic

interconnect balancing and NUMA-aware caching are orthogonal

and can be applied in isolation or combination. Dynamic intercon-

nect balancing has an implementation simplicity advantage in that

the system level changes to enable this feature are isolated from

the larger GPU design. Conversely, enabling NUMA-aware GPU

caching based on interconnect utilization requires changes to both

the physical cache architecture and the GPU coherence protocol.

Because these two features target the same problem, when em-

ployed together their effects are not strictly additive. Figure 10 shows

the overall improvement NUMA-aware GPUs can achieve when ap-

plying both techniques in parallel. For benchmarks such as CoMD,

these features contribute nearly equally to the overall improvement,

but for others such as ML-AlexNet-cudnn-Lev2 or HPC-MST-Mesh1,

interconnect improvements or caching are the primary contributor

respectively. On average, we observe that when combined we see

2.1⇥ improvement over a single GPU and 80% over the baseline
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Figure 11: 1–8 socket NUMA-aware GPU scalability compared to hypothetical larger single GPU with scaled resources.

software locality optimized 4-socket NUMA GPU using memory

side L2 caches; best performance is clearly obtained when applying

both features in unison.

Scalability: Ultimately, for vendors to produce multi-socket

NUMA GPUs they must achieve high enough parallel efficiency to

justify their design. To understand the scalability of our approach

Figure 11 shows the performance of a NUMA-aware multi-socket

GPU compared to a single GPU, when scaled across 2, 4, and 8

sockets respectively. On average a 2 socket NUMA GPU achieves

1.5⇥ speedup, while 4 sockets and 8 sockets achieve 2.3⇥ and 3.2⇥

speedups respectively. Depending on perspective these speedups

may look attractive or lackluster; particularly when per-benchmark

variance is included. However, the scalability of NUMA GPUs is

not solely dependent on just NUMA GPU microarchitecture. We

observe that for some applications, even if the application was

run on larger hypothetical single GPUs, performance would scale

similarly. This may be due to a variety of reasons beyond NUMA

effects, including number of CTAs available, frequency of global

synchronization, and other factors. Comparing our NUMA-aware

GPU implementation to the scaling that applications could achieve

on a hypothetical large single GPU, we see that NUMA-GPUs can

achieve 89%, 84%, and 76% the efficiency of a hypothetical single

large GPU in 2, 4, and 8 socket configurations respectively. This

high efficiency factor indicates that our design is able to largely

eliminate the NUMA penalty in future multi-socket GPU designs.

Multi-Tenancy on Large GPUs: In this work we have shown

that many workloads today have the ability to saturate (with suffi-

cient parallel work) a GPU that is at least 8⇥ larger than today’s

GPUs. With deep-data becoming commonplace across many com-

puting paradigms, we believe that the trend of having enough parallel

thread blocks to saturate large single GPUs will continue into the

foreseeable future. However when GPUs become larger at the ex-

pense of having multiple addressable GPUs within the system, ques-

tions related to GPU provisioning arise. Applications that cannot

saturate large GPUs will leave resources underutilized and concur-

rently will have to multiplex across the GPU cooperatively in time,

both undesirable outcomes.

While not the focus of this work, there is significant effort in

both industry and academia to support finer grain sharing of GPUs

through either shared SM execution [57], spatial multiplexing of a

GPU [46], or through improved time division multiplexing with GPU

pre-emptability [32]. To support large GPU utilization any of these

solutions could be applied to a multi-socket GPU in the cases where

applications may not completely fill a larger GPU. Alternatively,

with additional GPU runtime work multi-socket GPU designs could

also be dynamically partitioned with a granularity of 1–N logical

GPUs being exposed to the programmer, providing yet another level

of flexibility to improve utilization.

Power Implications: As discussed earlier, arbitrarily large mono-

lithic single GPUs are unfeasible, so multi-GPU systems connected

by high-speed links and switches may become attractive solutions

for continuing GPU performance scaling. However, onboard high-

speed links and switches require additional power. We estimated the

link overhead by assuming 10 pJ/b of on board interconnect energy

for combined links and switch (extrapolated from publicly available

information for cabinet level Mellanox switches and links [58, 59]).

Using this estimate we calculate an average (Geo-Mean) 30 W of

communication power for the baseline architecture composed of

4 GPUs, and 14 W after our NUMA-aware optimizations are ap-

plied. Some applications such as Rodinia-Euler3D, HPC-Lulesh,

HPC-AMG, HPC-Lulesh-Unstruct-Mesh2 are communication in-

tensive, resulting in ⇡130 W of power consumption after our opti-

mizations are considered. Assuming a typical TDP of 250 W per

GPU module, in a 4–GPU system, the extra power due to the com-

munication represents a 5% overhead across the full range of 41

evaluated benchmarks. While this power tax is not trivial, without

alternative methods for building large GPUs, interconnect power

will likely become a large portion of the total GPU power budget.
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7 RELATED WORK

Multi-GPU programming is commonly used for scaling GPU perfor-

mance via integration of multiple GPUs at the system level [26, 35,

43, 61] for a rapidly growing pool of applications [27, 28, 34, 53].

Similarly, multi-socket and multi-node CPU installations have been

employed and studied in context of high performance computing

and datacenter applications [11, 18–20]. Multi-GPU programming

requires explicit design for multiple GPUs using SW APIs such as

Peer-2-Peer access [36] or a combination of MPI and CUDA [42].

These extensions require unique programming experience and sig-

nificant SW effort while adapting a traditional GPU application to a

multi-GPU system. In this paper we execute single GPU applications

on a NUMA multi-GPU system as if it was a single larger GPU via

hardware innovations and extensions to the driver software stack;

providing programmer and OS transparent execution, similarly to

approaches proposed in the past [4, 7, 30].

Modern multi-socket CPU and GPU systems leverage advanced

interconnect technologies such as NVLink, QPI and Infinity [2,

21, 35]. These modern fabrics utilize high speed serial signalling

technologies over unidirectional lanes collectively comprising full-

duplex links. Link capacity is statically allocated at design time

and usually is symmetric in nature. Asymmetric network on chips

and NUMA interconnects have been previously investigated and de-

ployed [48, 62]. In this paper we propose to dynamically re-allocate

available link bandwidth resources by using same system wiring

resources and on-chip I/O interfaces, while implementing both re-

ceiver and transmitter driver circuitry on each lane. This approach

resembles previously proposed tristate bi-directional bus technolo-

gies [56] or former technologies such as the Intel front-side bus [10],

albeit with just two bus clients. However our proposal leverages fast

singled ended signalling while allowing a dynamically controlled

asymmetric bandwidth allocation via on-the-fly reconfiguration of

the individual lane direction within a link.

Static and dynamic cache partitioning techniques were widely

explored in the context of CPU caches and QoS [8, 14, 22, 51,

52] For example, Rafique et. al [52] proposed architectural support

for shared cache management with quota-based approach. Qureshi

et. al [51] proposed to partition cache space between applications.

Jaleel et. al [22] improved on this by proposing adaptive insertion

policies. Recently, cache monitoring and allocation technologies

were added to Intel Xeon processors, targeted for QoS enforcement

via dynamic repartitioning of on-chip CPU cache resources [14]

between applications. Efficient cache partitioning in the GPU has

been explored in context of L1 caches [31] to improve application

throughput. While dynamic cache partitioning has been widely used

for QoS and L1 utilization, to the best of our knowledge it has never

been used to try to optimize performance when caches are backed

by NUMA memory systems.

8 CONCLUSIONS

With transistors growth slowing and multi-GPU programming re-

quiring re-architecting of GPU applications, the future of scalable

single GPU performance is in question. We propose that much like

CPU designs have done in the past, the natural progression for con-

tinuous performance scalability of traditional GPU workloads is to

move from a single to multi-socket NUMA design. In this work

we show that applying NUMA scheduling and memory placement

policies inherited from the CPU world is not sufficient to achieve

good performance scalability. We show that future GPU designs will

need to become NUMA-aware both in their interconnect manage-

ment and within their caching subsystems to overcome the inherent

performance penalty that NUMA memory systems introduce. By

leveraging software policies that preserve data locality and hard-

ware policies that can dynamically adapt to application phases, our

proposed NUMA-aware multi-socket GPU is able to outperform

current GPU designs by 1.5⇥, 2.3⇥, and 3.2⇥, while achieving

89%, 84%, and 76% of theoretical application scalability in 2, 4, and

8 GPU sockets respectively. Our results indicate that the challenges

of designing a multi-socket NUMA GPU can be solved through

a combination of runtime and architectural optimization, making

NUMA-aware GPUs a promising technology for scaling GPU per-

formance beyond a single socket.
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