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1 Introduction

Noncommutative geometry was shown to provide a promising framework for unification of

all fundamental interactions including gravity [3, 5, 6, 10, 12]. Historically, the search to

identify the structure of the noncommutative space followed the bottom-up approach where

the known spectrum of the fermionic particles was used to determine the geometric data

that defines the space. This bottom-up approach involved an interesting interplay with

experiments. While at first the experimental evidence of neutrino oscillations contradicted

the first attempt [6], it was realized several years later in 2006 ([12]) that the obstruction

to get neutrino oscillations was naturally eliminated by dropping the equality between

the metric dimension of space-time (which is equal to 4 as far as we know) and its KO-

dimension which is only defined modulo 8. When the latter is set equal to 2 modulo 8 [2, 4]

(using the freedom to adjust the geometry of the finite space encoding the fine structure of

space-time) everything works fine, the neutrino oscillations are there as well as the see-saw

mechanism which appears for free as an unexpected bonus. Incidentally, this also solved

the fermionic doubling problem by allowing a simultaneous Weyl-Majorana condition on

the fermions to halve the degrees of freedom.

The second interplay with experiments occurred a bit later when it became clear that

the mass of the Brout-Englert-Higgs boson would not comply with the restriction (that

mH � 170 Gev) imposed by the validity of the Standard Model up to the unification scale.

This obstruction to lower mH was overcome in [11] simply by taking into account a scalar
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field which was already present in the full model which we had computed previously in [10].

One lesson which we learned on that occasion is that we have to take all the fields of the

noncommutative spectral model seriously, without making assumptions not backed up by

valid analysis, especially because of the almost uniqueness of the Standard Model (SM) in

the noncommutative setting.

The SM continues to conform to all experimental data. The question remains whether

this model will continue to hold at much higher energies, or whether there is a unified

theory whose low-energy limit is the SM. One indication that there must be a new higher

scale that effects the low energy sector is the small mass of the neutrinos which is explained

through the see-saw mechanism with a Majorana mass of at least of the order of 1011Gev.

In addition and as noted above, a scalar field which acquires a vev generating that mass

scale can stabilize the Higgs coupling and prevent it from becoming negative at higher

energies and thus make it consistent with the low Higgs mass of 126 Gev [11]. Another

indication of the need to modify the SM at high energies is the failure (by few percent)

of the three gauge couplings to be unified at some high scale which indicates that it may

be necessary to add other matter couplings to change the slopes of the running of the

RG equations.

This leads us to address the issue of the breaking from the natural algebra A which

results from the classification of irreducible finite geometries of KO-dimension 6 (modulo

8) performed in [9], to the algebra corresponding to the SM. This breaking was effected

in [8, 9] using the requirement of the first order condition on the Dirac operator. The first

order condition is the requirement that the Dirac operator is a derivation of the algebra A
into the commutant of Â = JAJ−1 where J is the charge conjugation operator. This in

turn guarantees the gauge invariance and linearity of the inner fluctuations [7] under the

action of the gauge group given by the unitaries U = uJuJ−1 for any unitary u ∈ A. This

condition was used as a mathematical requirement to select the maximal subalgebra

C⊕H⊕M3(C) ⊂ HR ⊕HL ⊕M4(C)

which is compatible with the first order condition and is the main reason behind the unique

selection of the SM.

The existence of examples of noncommutative spaces where the first order condition is

not satisfied such as quantum groups and quantum spheres provides a motive to remove this

condition from the classification of noncommutative spaces compatible with unification [14–

17]. This study was undertaken in a companion paper [13] where it was shown that in the

general case the inner fluctuations of D form a semigroup in the product algebra A⊗Aop,

and acquire a quadratic part in addition to the linear part. Physically, this new phenomena

will have an impact on the structure of the Higgs fields which are the components of the

connection along discrete directions. This paper is devoted to the construction of the

physical model that describes the physics beyond the Standard Model. The methods used

build on previous results and derivations developed over the years. To make this work

more accessible we shall attempt to make the paper self-contained by including the parts

needed from previous works in a brief form.
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The plan of this paper is as follows. In section 2 we review the effect of removing

the first order condition on the form of the inner fluctuations, emphasizing the semigroup

structure. In section 3 we modify the classification of irreducible finite geometries in the

absence of the first order condition and show that the resultant algebra is, almost uniquely,

given by HR ⊕ HL ⊕ M4(C). The model is then based on a noncommutative geometric

space formed as a product of a continuous four dimensional space times the above discrete

space. The associated connection can be viewed either as a 384× 384 matrices, or in more

manageable form as the tensor product of matrices. To present the computations in a

comprehensible form that could be checked by others, we give in section 4 a brief review

of the tenorial notation we developped before. We stress that all calculations performed

in this article using the tensorial method are done by hand, but have the advantage that

they could also be checked using algebraic manipulation programs such as Mathematica or

Maple. In section 5 we compute the inner fluctuations of the Dirac operator on the above

algebra and determine the field content. In section 6 we evaluate the spectral action using

a cutoff function and the heat kernel expansion method, where we show that the resultant

model is the Pati-Salam [21] SU (2)R×SU (2)L×SU (4) type model with all the appropriate

Higgs fields necessary to break the symmetry to U (1)em × SU (3)c . In section 7 we show

that this model truncates correctly to the SM. In section 8 we analyze the potential and

possible symmetry breaking, noting in particular the novel feature that for certain initial

configurations of the Dirac operator some of the inner fluctuations represented as Higgs

fields are fundamental while others are made of quadratic products of the fundamental

ones. For generic initial Dirac operators all Higgs fields are fundamental. Section A is the

appendix where all details of the calculation are given and where we illustrate the power

and precision of noncommutative geometric methods by showing how all the physical fields

arise. This is done to the benefit of researchers interested in becoming practitioners in

the field.

2 First-order condition and inner fluctuations

We briefly summarize the generalization of inner fluctuations to real spectral triples that fail

on the first-order condition, as presented in [13]. In this case, the usual prescription [3] does

not apply, since the operatorD+A±JAJ−1 with gauge potential A =
∑

j aj [D, bj ] (aj , bj ∈
A) does not behave well with respect to the action of the gauge group U(A). In fact, one

would require that conjugation of the fluctuated Dirac operator by the unitary operator

U := uJuJ−1 for u ∈ U(A) can be implemented by a usual type of gauge transformation

A 7→ Au = u[D,u∗] + uAu∗ so that

D +A± JAJ−1 7→ U(D +A± JAJ−1)U∗ ≡ D +Au ± JAuJ−1

However, the simple argument only works if [JuJ−1, A] = 0 for gauge potentials A of the

above form and u ∈ U(A), that is, if the first-order condition is satisfied.

For real spectral triples that possibly fail on the first-order condition one starts with

a self-adjoint, universal one-form

A =
∑

j

ajδ(bj); (aj , bj ∈ A). (2.1)
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The inner fluctuations of a real spectral triple (A,H, D; J) are then given by

D′ = D +A(1) + Ã(1) +A(2) (2.2)

where

A(1) :=
∑

j

aj [D, bj ],

Ã(1) :=
∑

j

âj [D, b̂j ]; âi = JaiJ
−1, b̂i = JbiJ

−1,

A(2) :=
∑

j

âj [A(1), b̂j ] =
∑

j,k

âjak[[D, bk], b̂j ].

Clearly A(2) which depends quadratically on the fields in A(1) vanishes when the first order

condition is satisfied, thus reducing to the usual formulation of inner fluctuations. As such,

we will interpret the terms A(2) as non-linear corrections to the first-order, linear inner

fluctuations A(1) of (A,H, D; J).

The need for such quadratic terms can also be seen from the structure of pure gauge

fluctuations D 7→ UDU∗ with U = uJuJ−1 and u ∈ U(A). Indeed, in the absence of the

first order condition we find that

UDU∗ = u[D,u∗] + û[D, û∗] + û[u[D,u∗], û∗].

In the above prescription this corresponds to taking as a universal one-form A = uδ(u∗).

On a fluctuated Dirac operator D′ such gauge transformation act in a similar way as

D′ 7→ UD′U∗. By construction, it is implemented by the gauge transformation

A 7→ uAu∗ + uδ(u∗)

in the universal differential calculus. In particular, this implies that

A(1) 7→ uA(1)u
∗ + u[D,u∗]

so the first-order inner fluctuations transform as usual. For the term A(2) we compute that

a gauge transformation acts as

A(2) 7→ JuJ−1A(2)Ju
∗J−1 + JuJ−1[u[D,u∗], Ju∗J−1]

where the A(2) on the right-hand-side is expressed using the gauge transformed A(1). This

non-linear gauge transformation for A(2) confirms our interpretation of A(2) as the non-

linear contribution to the inner fluctuations.

It turns out [13] that inner fluctuations come from the action on operators in Hilbert

space of a semi-group Pert(A) of inner perturbations which only depends on the involutive

algebra A and extends the unitary group of A. More precisely, the semi-group Pert(A)

consists of normalized self-adjoint elements in A⊗Aop:

Pert(A) :=

{
∑

j

aj ⊗ bopj ∈ A⊗Aop :
∑

j

ajbj = 1,
∑

j

aj ⊗ bopj =
∑

j

b∗j ⊗ a∗opj

}
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with Aop the involutive algebra A but with the opposite product (ab)op = bopaop. The

semi-group product is inherited from the multiplication in the algebra A⊗Aop, that is:

(
∑

i

ai ⊗ bopi

)(
∑

j

a′j ⊗ (b′j)
op

)
=
∑

i,j

aia
′

j ⊗ (b′jbi)
op,

which indeed respects the above normalization and self-adjointness condition. Note that

the unitary group of A is mapped to Pert(A) by sending a unitary u to u⊗ u∗op.

Given a spectral triple (A,H, D) an inner fluctuation of D by an element
∑

j aj ⊗ bopj
in Pert(A) is now simply given by

D 7→
∑

j

ajDbj .

This covers both cases of ordinary spectral triples and real spectral triples (i.e. those

which are equipped with the operator J). In the latter case one simply uses the natural

homomorphism of semi-groups µ : Pert(A) → Pert(A ⊗ Â) given by µ(A) = A ⊗ Â.

Explicitly, this implies for real spectral triples the following transformation rule:

D 7→
∑

i.j

aiâjDbib̂j

which can indeed be shown [13, Proposition 5] to coincide with the above (2.2).

The structure of a semi-group implies in particular that inner fluctuations of inner

fluctuations are still inner fluctuations —a fact which is not at all direct when looking at

Equation (2.2)— and that the corresponding algebraic rules are unchanged by passing from

ordinary spectral triples to real spectral triples.

3 Classification of finite geometries without first order condition

Some time ago the question of classifying finite noncommutative spaces was carried out

in [9]. The main restriction came from requiring that spinors which belong to the product

of the continuous four dimensional space, times the finite space must be such that the

conjugate spinor is not an independent field, in order to avoid doubling the fermions. This

could only be achieved when the spinors satisfy both the Majorana and Weyl conditions,

which implies that the KO-dimension of the finite space be 6 (mod 8). Consistency with

the zeroth order condition

[a, b◦] = 0 , b◦ = Jb∗J−1, ∀a, b ∈ A

(since A is an involutive algebra this condition is the same if one replaces b◦ by b̂ = JbJ−1)

restricts the center of the complexified algebra to be Z (AC) = C⊕ C. The dimension of

the Hilbert space is then restricted to be the square of an integer. The algebra is then of

the form

Mk (C)⊕Mk (C) .
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A symplectic symmetry imposed on the first algebra forces k to be even k = 2a and the

algebra to be of quaternionic matrices of the form Ma (H) . The existence of the chirality

operator breaksMa (H) and further restricts the integer a to be even, and thus the number

of fundamental fermions must be of the form 4a2 where a is an even integer. This shows

that the first possible realistic case is the finite space with k = 4 to be based on the algebra

A = HR ⊕HL ⊕M4 (C) . (3.1)

A further restriction arises from the first order condition requiring the commutation of the

commutator [D, a] where D is the Dirac operator and a ∈ A with elements b◦, b ∈ A,

[[D, a] , b◦] = 0, a, b ∈ A, b◦ = Jb∗J−1

(since A is an involutive algebra this condition is the same if one replaces b◦ by b̂ = JbJ−1)

This condition, together with the requirement that the neutrinos must acquire a Majorana

mass restricts the above algebra further to the subalgebra

C⊕H⊕M3 (C) . (3.2)

The question is whether the first order condition is an essential requirement for noncom-

mutative spaces. There are known examples of noncommutative spaces where the first

order condition is not satisfied such as the quantum group SU (2)q ([16, 17]). As recalled

in the previous section, the main novelty of not imposing the first order condition is that

the fluctuations of the Dirac operator (gauge and Higgs fields) will not be linear anymore

and part of it A(2) will depend quadratically on the fields appearing in A(1). In this work

we shall study the resulting noncommutative space without imposing the first order condi-

tion on the Dirac operator. Our starting point, however, will be an initial Dirac operator

(without fluctuations) satisfying the first order condition relative to the subalgebra (3.2),

but inner fluctuations would spoil this property.

The noncommutative geometric setting provided answers to some of the basic questions

about the SM, such as the number of fermions in one family, the nature of the gauge

symmetries and their fields, the fermionic representations, the Higgs fields as gauge fields

along discrete directions, the phenomena of spontaneous symmetry breaking as well many

other explanations [10]. In other words, noncommutative geometry successfully gave a

geometric setting for the SM. The dynamics of the model was then determined by the

spectral action principle which is based on the idea that all the geometric invariants of the

space can be found in the spectrum of the Dirac operator of the associated space. Indeed

it was shown that the spectral action, which is a function of the Dirac operator, can be

computed and gives the action of the SM coupled to gravity valid at some high energy scale.

When the couplings appearing in this action are calculated at low energies by running the

RG equations one finds excellent agreement with all known results to within few percents.

The first order condition is what restricted a more general gauge symmetry based on

the algebra HR ⊕ HL ⊕ M4 (C) to the subalgebra C ⊕ H ⊕ M3 (C) . It is thus essential

to understand the physical significance of such a requirement. In what follows we shall

examine the more general algebra allowed without the first order condition, and shall show
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that the number of fundamental fermions is still dictated to be 16. We determine the

inner automorphisms of the algebra A and show that the resulting gauge symmetry is a

Pati-Salam type left-right model

SU (2)R × SU (2)L × SU (4)

where SU (4) is the color group with the lepton number as the fourth color. In addition

we observe that the Higgs fields appearing in A(2) are composite and depend quadratically

on those appearing in A(1) provided that the initial Dirac operator (without fluctuations)

satisfies the order one condition relative to the subalgebra (3.2). Otherwise, there will be

additional fundamental Higgs fields. In particular, the representations of the fundamental

Higgs fields when the initial Dirac operator satisfies the order one condition are (2R, 2L, 1) ,

(2R, 1L, 4) and (1R, 1L, 1 + 15) with respect to SU (2)R × SU (2)L × SU (4) . When such

an order one condition is not satisfied for the initial Dirac operator, the representations

of the additional Higgs fields are (3R, 1L, 10), (1R, 1L, 6) and (2R, 2L, 1 + 15) . There are

simplifications if the Yukawa coupling of the up quark is equated with that of the neutrino

and of the down quark equated with that of the electron. In addition the 1 + 15 of SU (4)

decouple if we assume that at unification scale there is exact SU (4) symmetry between the

quarks and leptons. The resulting model is very similar to the one considered by Marshak

and Mohapatra [20].

4 Summary of tensor notation

Although it is possible to use matrix notation to deal with the physical model, the fact that

the matrix representation (which is a product of matrices) is 384×384 dimensional making

the task daunting and not very transparent, although only involving products of matrices.

We find it much more efficient and practical to use a tensorial notation which simplifies

greatly the algebraic operations. This also has the added advantage of allowing to check

all the steps using computer programs with algebraic manipulations such as Mathematica

and Maple.

We will restrict to the case where Z (AC) = C⊕ C. An element of the Hilbert space

Ψ ∈ H is represented by

ΨM =

(
ψA

ψA
′

)
, ψA′ = ψc

A (4.1)

where ψc
A is the conjugate spinor to ψA. Thus all primed indices A′ correspond to the

Hilbert space of conjugage spinors. It is acted on by both the left algebra M2 (H) and the

right algebra M4 (C). Therefore the index A can take 16 values and is represented by

A = αI (4.2)

where the index α is acted on by quaternionic matrices and the index I byM4 (C) matrices.

Moreover, when grading breaksM2 (H) into HR⊕HL the index α is decomposed to α =
.
a, a

where
.
a =

.
1,

.
2 (dotted index) is acted on by the first quaternionic algebra HR and a = 1, 2

is acted on by the second quaternionic algebra HL . When M4 (C) breaks into C⊕M3 (C)

– 7 –
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(due to symmetry breaking or through the use of the order one condition) the index I is

decomposed into I = 1, i where the 1 is acted on by the C and the i by M3 (C) . Therefore

the various components of the spinor ψA are

ψαI =

(
νR uiR νL uiL
eR diR eL diL

)

= (ψ .
a1, ψ .

ai, ψa1, ψai) , a = 1, 2, a =
.
1,

.
2, i = 1, 2, 3.

The power of the abstract notation can be seen by noting that the Dirac action takes the

very simple form

Ψ∗

MD
N
MΨN (4.3)

which could be expanded to give

ψ∗

AD
B
AψB + ψ∗

A′DB
A′ψB + ψ∗

AD
B

′

A ψB
′
′ + ψ∗

A′DB′

A′ψB′ (4.4)

The Dirac operator can be written in matrix form

D =

(
DB

A DB
′

A

DB
A′ DB

′

A′

)
, (4.5)

where

A = αI, α = 1, · · · , 4, I = 1, · · · , 4 (4.6)

A′ = α′I ′, α′ = 1′, · · · , 4′, I = 1′, · · · , 4′ (4.7)

Thus DB
A = DβJ

αI . Elements of the algebra

A =M4 (C)⊕M4 (C) (4.8)

are represented by

a =

(
Xβ

αδJI 0

0 δβ
′

α′Y J ′

I′

)
(4.9)

where the first block is the tensor product of elements of M4 (C)⊗ 14 and the second blcok

is the tensor product of elements of 14 ⊗M4 (C) . The reality operator J is anti-linear and

interchange the first and second blocks and satsify J2 = 1. It is represented by

J =

(
0 δβ

′

α δJ
′

I

δβα′δJI′ 0

)
× complex conjugation (4.10)

In this form

ao = Ja∗J−1 =

(
δβαY tJ

I 0

0 Xtβ′

α′ δJ
′

I′′

)
(4.11)

where the superscript t denotes the transpose matrix. This clearly satisfies the commuta-

tion relation

[a, bo] = 0. (4.12)
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Writing

b =

(
Zβ
αδJI 0

0 δβ
′

α′W J ′

I′

)
(4.13)

then

bo =

(
δβαW tJ

I 0

0 Ztβ′

α′ δJ
′

I′

)
(4.14)

and so [[D, a] , bo] is equal to

( [
[D,X] ,W t

]B
A

(
(DY −XD)Zt −W t (DY −XD)

)B′

A(
(DX − Y D)W t − Zt (DX − Y D)

)B
A′

[
[D,Y ] , Zt

]B′

A′

)

(4.15)

The order one condition is

[[D, a] , bo] = 0 (4.16)

which admits a solution with non-zero mixing between primed and unprimed indices such as

Dβ′K′

αI = δ
.

1
αδ

β′

.

1′
δ1I δ

K′

1′ k
∗νR (4.17)

only when a, b are restricted to the subalgebra C ⊕ H ⊕M3(C) ⊂ A. Here the k∗νR are

matrices in generation space which will be assumed to be 3 × 3. We also note that the

property that DJ = JD implies that

D B′

A′ = D
B
A .

We further impose the condition of symplectic isometry on the first M4 (C)

(σ2 ⊗ 1) (a) (σ2 ⊗ 1) = a, a ∈M4 (C)

which reduces M4 (C) to M2 (H). From the property of commutation of the grading oper-

ator Gβ
α with M2 (H)

[G,X] = 0

where Gβ
α =

(
12 0
0 −12

)
, reduces the algebra M2 (H) to HR⊕HL. Thus we now have

Xβ
α =

(
X

.

b
.
a

0

0 Xb
a

)
, Xb

a =

(
X1

1 X2
1

−X2
1 X

1
1

)
∈ HL

and similarly for X
.

b
.
a
∈ HR. In matrix form the operator DF has the sub-matrices [10]

D β1
α1 =

(
0 D

.

b1
a1

Db1
.
a1

0

)
, D

.

b1
a1 =

(
Db1

.
a1

)∗
≡ D

.

b
a(l)

D βj
αi =

(
0 D

.

b
a(q)δ

j
i

Db
.
a(q)

δji 0

)
, Db

.
a(q) =

(
D

.

b
a(q)

)∗
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where

D
.

b1
a1 = D

.

b
a(l) =

(
k∗ν 0

0 k∗e

)
, a = 1, 2,

.
b =

.
1,

.
2

and

D
.

b
a(q) =

(
k∗u 0

0 k∗d

)
.

The Yukawa couplings kν , ke, ku, kd are 3 × 3 matrices in generation space. Notice that

this structure gives Dirac masses to all the fermions, but Majorana masses only for the

right-handed neutrinos. This was shown in [9] to be the unique possibility consistent with

the first order condition on the subalgebra (3.2). We can summarize all the information

about the finite space Dirac operator without fluctuations, in the tensorial equation

(DF )
βJ

αI =
(
δ1αδ

β
.

1
k∗ν + δ

.

1
αδ

β
1 k

ν + δ2αδ
β
.

2
k∗e + δ

.

2
αδ

β
2 k

e
)
δ1I δ

J
1 (4.18)

+
(
δ1αδ

β
.

1
k∗u + δ

.

1
αδ

β
1 k

u + δ2αδ
β
.

2
k∗d + δ

.

2
αδ

β
2 k

d
)
δiIδ

J
j δ

j
i

(DF )
β′K′

αI = δ
.

1
αδ

β′

.

1
′ δ

1
I δ

K′

1′ k
∗νR (4.19)

where kνR are Yukawa couplings for the right-handed neutrinos. One can also consider the

special case of lepton and quark unification by equating

kν = ku, ke = kd

where we expect some simplifications.

5 Dirac operator and inner fluctuations on HR ⊕ HL ⊕ M4 (C)

Recall that if one considers inner fluctuations of the Dirac operator one finds that the gauge

transformation takes the form

DA → UDAU
∗, U = uJuJ−1, u ∈ U (A)

which implies that

A→ uAu∗ + uδ (u∗) .

This in turn gives

A(1) → uA(1)u
∗ + u [D,u∗]

A(2) → JuJ−1A(2)Ju
∗ J−1 + JuJ−1

[
u [D,u∗] , Ju ∗J−1

]

where the A(2) in the right hand side is computed using the gauge transformed A(1). Thus

A(1) is a one-form and behaves like the usual gauge transformations. On the other hand

A(2) transforms non-linearly and includes terms with quadratic dependence on the gauge

transformations.

We now proceed to compute the Dirac operator on the product space M × F . The

initial operator is given by

D = γµDµ ⊗ 1 + γ5DF
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where γµDµ = γµ
(
∂µ + 1

4ω
ab

µ γab
)
is the Dirac operator on the four dimensional spin

manifold. Then the Dirac operator including inner fluctuations is given by

DA = D +A(1) + JA(1)J
−1 +A(2)

A(1) =
∑

a [D, b]

A(2) =
∑

a
[
JA(1)J

−1, b
]
.

The computation is very involved thus for clarity we shall collect all the details in the

appendix and only quote the results in what follows. The different components of the

operator DA are then given by

(DA)
.

bJ
.
aI = γµ

(
Dµδ

.

b
.
aδ

J
I − i

2
gRW

α
µR (σα)

.

b
.
a δ

J
I − δ

.

b
.
a

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

))

(DA)
bJ
aI = γµ

(
Dµδ

b
aδ

J
I − i

2
gLW

α
µL (σα)ba δ

J
I − δba

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

))

where the fifteen 4 × 4 matrices (λm)
J

I are traceless and generate the group SU (4) and

Wα
µR, W

α
µL, V

m
µ are the gauge fields of SU (2)R, SU (2)L, and SU (4) . The requirement that

A is unimodular implies that

Tr (A) = 0

which gives the condition

Vµ = 0.

In addition we have

(DA)
bJ
.
aI = γ5

((
kνφb.a + keφ̃b.a

)
ΣJ
I +

(
kuφb.a + kdφ̃b.a

) (
δJI − ΣJ

I

))
≡ γ5Σ

bJ
.
aI (5.1)

(DA)
.

b
′

J ′

.
aI = γ5k

∗νR∆ .
aJ∆ .

bI
≡ γ5H .

aI
.

bJ

where the Higgs field φb.
a
is in the

(
2R, 2L, 1

)
of the product gauge group SU (2)R×SU (2)L×

SU (4), and ∆ .
aJ is in the (2R,, 1L, 4) representation while ΣJ

I is in the (1R, 1L, 1 + 15)

representation. The field φ̃b.
a
is not an independent field and is given by

φ̃b.a = σ2φ
b
.
aσ2.

Note that the field ΣJ
I decouples (and set to δ1I δ

J
1 ) in the special case when there is lepton

and quark unification of the couplings

kν = ku, ke = kd.

In case when the initial Dirac operator satisfies the order one condition for the subalge-

bra (3.2), then the A(2) part of the connection becomes a composite Higgs field where

the Higgs field ΣbJ
.
aI

is formed out of the products of the fields φb.
a
and ΣJ

I while the Higgs

field H .
aI

.

bJ
is made from the product of ∆ .

aJ∆ .

bI
. For generic initial Dirac operators, the
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field
(
A(2)

)bJ
.
aI

becomes independent. The fields ΣbJ
.
aI

and H .
aI

.

bJ
will then not be defined

through equation 5.1 and will be in the (2R, 2L, 1 + 15) and (3R, 1L, 10) + (1R, 1L, 6) rep-

resentations of SU (2)R × SU (2)L × SU (4) . In addition, for generic Dirac operator one

also generates the fundamental field (1, 2L, 4) . The fact that inner automorphisms form a

semigroup implies that the cases where the Higgs fields contained in the connections A(2)

are either independent fields or depend quadratically on the fundamental Higgs fields are

disconnected. The interesting question that needs to be addressed is whether the structure

of the connection is preserved at the quantum level. This investigation must be performed

in such a way as to take into account the noncommutative structure of the space. At any

rate, we have here a clear advantage over grand unified theories which suffers of having

arbitrary and complicated Higgs representations. In the noncommutative geometric set-

ting, this problem is now solved by having minimal representations of the Higgs fields.

Remarkably, we note that a very close model to the one deduced here is the one considered

by Marshak and Mohapatra where the U (1) of the left-right model is identified with the

B − L symmetry. They proposed the same Higgs fields that would result starting with a

generic initial Dirac operator not satisfying the first order condition. Although the bro-

ken generators of the SU (4) gauge fields can mediate lepto-quark interactions leading to

proton decay, it was shown that in all such types of models with partial unification, the

proton is stable. In addition this type of model arises in the first phase of breaking of

SO (10) to SU (2)R × SU (2)L × SU (4) and these have been extensively studied [1]. The

recent work in [18] considers noncommutative grand unification based on the k = 8 algebra

M4 (H)⊕M8 (C) keeping the first order condition.

6 The spectral action for the SU (2)
R
× SU (2)

L
× SU (4) model

Having determined the Dirac operator acting on the Hilbert space of spinors in terms of the

gauge fields of SU (2)R×SU (2)L×SU (4) and Higgs fields, some of which are fundamental

while others are composite, the next step is to study the dynamics of these fields as governed

by the spectral action principle. The geometric invariants of the noncommutative space

are encoded in the spectrum of the Dirac operator DA. The bosonic action is given by

Trace (f (DA/Λ))

where Λ is some cutoff scale and the function f is restricted to be even and positive. Using

heat kernel methods the trace can be expressed in terms of Seeley-de Witt coefficients an :

Trace f (DA/Λ) =
∞∑

n=0

F4−nΛ
4−nan

where the function F is defined by F (u) = f (v) where u = v2, thus F (D2) = f (D).

We define

fk = f (v) vk−1dv, k > 0

– 12 –
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then

F4 =

∫
∞

0
F (u)udu = 2

∫
∞

0
f(v)v3dv = 2f4

F2 =

∫
∞

0
F (u)du = 2

∫
∞

0
f(v)vdv = 2f2

F0 = F (0) = f (0) = f0

F−2n = (−1)n F (n) (0) =

[
(−1)n

(
1

2v

d

dv

)n

f

]
(0) n ≥ 1.

Using the same notation and formulas as in reference [10], the first Seeley-de Witt coeffi-

cient is

a0 =
1

16π2

∫
d4x

√
gTr (1)

=
1

16π2
(4) (32) (3)

∫
d4x

√
g

=
24

π2

∫
d4x

√
g

where the numerical factors come, respectively, from the traces on the Clifford algebra, the

dimensions of the Hilbert space and number of generations. The second coefficient is

a2 =
1

16π2

∫
d4x

√
gTr

(
E +

1

6
R

)

where E is a 384 × 384 matrix over Hilbert space of three generations of spinors, whose

components are derived and listed in the appendix. Taking the various traces we get

a2 =
1

16π2

∫
d4x

√
g
(
(R(−96 + 64)− 8

(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

))

= − 2

π2

∫
d4x

√
g

(
R+

1

4

(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

))
.

It should be understood in the above formula and in what follows, that whenever the

matrices kν , ku, ke, kd and kνR appear in an action, one must take the trace over generation

space. When the initial Dirac operator without fluctuations is taken to satisfy the order

one condition, the fields H .
aI

.
cK and ΣcK

.
aI

will become dependent on the fundamental Higgs

fields. In this case, the mass terms can be expressed in terms of the fundamental Higgs

field to give

H .
aI

.
cKH

.
cK

.
aI = |kνR |2

(
∆ .

aK∆
.
aK
)2

and

2ΣcK
.
aI Σ

.
aI
cK = 2

((
(kν − ku)φc.a +

(
ke − kd

)
φ̃c.a

)
ΣK
I +

(
kuφc.a + kdφ̃c.a

)
δKI

)

((
(k∗ν − k∗u)φ

.
a
c +

(
k∗e − k∗d

)
φ̃

.
a
c

)
ΣI
K +

(
k∗uφ

.
a
c + k∗dφ̃

.
a
c

)
δIK

)
.
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The next coefficient is

a4 =
1

16π2

∫
d4x

√
gTr

(
1

360

(
5R2 − 2R2

µν + 2R2
µνρσ

)
1 +

1

2

(
E2 +

1

3
RE +

1

6
Ω2
µν

))

where Ωµν is the 384× 384 curvature matrix of the connection ωµ. Using the expressions

for the matrices E and Ωµν derived in the appendix, and taking the traces, we get

a4 =
1

2π2

∫
d4x

√
g

[
−3

5
C2
µνρσ +

11

30
R∗R∗ + g2L

(
Wα

µνL

)2
+ g2R

(
Wα

µνR

)2
+ g2

(
V m
µν

)2

+∇µΣ
.
cK
aI ∇µΣaI

.
cK +

1

2
∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ +
1

12
R
(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)

+
1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣
2

+ 2H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+Σ

.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL

]

where Cµνρσ is the Weyl tensor. Thus the bosonic spectral action to second order is given by

S = F4Λ
4a0 + F2Λ

2a2 + F0a4 + · · ·

which finally gives

Sb =
24

π2
F4Λ

4

∫
d4x

√
g

− 2

π2
F2Λ

2

∫
d4x

√
g

(
R+

1

4

(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

))

+
1

2π2
F0

∫
d4x

√
g

[
1

30

(
−18C2

µνρσ + 11R∗R∗
)
+g2L

(
Wα

µνL

)2
+g2R

(
Wα

µνR

)2
+g2

(
V m
µν

)2

+ ∇µΣ
.
cK
aI ∇µΣaI

.
cK +

1

2
∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ +
1

12
R
(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)

+
1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣
2

+ 2H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+Σ

.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL

]
.

The physical content of this action is a cosmological constant term, the Einstein Hilbert

term R, a Weyl tensor square term C2
µνρσ, kinetic terms for the SU (2)R×SU (2)L×SU (4)

gauge fields, kinetic terms for the composite Higgs fields H .
aI

.

bJ
and Σ

.
cK
bJ as well as mass

terms and quartic terms for the Higgs fields. This is a grand unified Pati-Salam type model

with a completely fixed Higgs structure which we expect to spontaneously break at very

high energies to the U (1)× SU (2)× SU (3) symmetry of the SM. We also notice that this

action gives the gauge coupling unification

gR = gL = g.

A test of this model is to check whether this relation when run using RG equations would

give values consistent with the values of the gauge couplings for electromagnetic, weak and

strong interactions at the scale of the Z -boson mass. Having determined the full Dirac

operators, including fluctuations, we can write all the fermionic interactions including the
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ones with the gauge vectors and Higgs scalars. It is given by
∫
d4x

√
g

{
ψ∗

.
aIγ

µ

(
Dµδ

.

b
.
aδ

J
I − i

2
gRW

α
µR (σα)

.

b
.
a δ

J
I − δ

.

b
.
a

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

))
ψ .

bJ

+ ψ∗

aIγ
µ

(
Dµδ

b
aδ

J
I − i

2
gLW

α
µL (σα)ba δ

J
I − δba

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

))
ψbJ

+ ψ∗
.
aIγ5Σ

bJ
.
aIψbJ + ψ∗

aIγ5Σ
.

bJ
aIψ .

bJ
+ Cψ .

aIγ5H
.
aI

.

bJψ .

bJ
+ h.c.

}

7 Truncation to the standard model

It is easy to see that this model truncates to the Standard Model. The Higgs field φb.
a

= (2R, 2L, 1) must be truncated to the Higgs doublet H by writing

φb.a = δ
.

1
.
aǫ

bcHc.

The other Higgs field ∆ .
aI = (2R, 1, 4) is truncated to a real singlet scalar field

∆ .
aI = δ

.

1
.
aδ

1
I

√
σ.

These then imply the relations

ΣbJ
.
aI =

(
δ

.

1
.
ak

νǫbcHc + δ
.

2
.
aH

b
ke
)
δ1I δ

J
1 +

(
δ

.

1
.
ak

uǫbcHc + δ
.

2
.
ak

dH
b
)
δiIδ

J
j δ

j
i

H .
aI

.

bJ
= δ

.

1
.
aδ

.

1
.

b
kνRδ1I δ

J
1 σ

gRW
3
µR = g1Bµ, W±

µR = 0
√

3

2
gV 15

µ = −g1Bµ (Vµ)
i
1 = 0

where V 15
µ is the SU(4) gauge field corresponding to the generator

λ15 =
1√
6
diag (3,−1,−1,−1)

which could be identified with the B − L generator. In particular the components (DA)
.

11
.

11

and (DA)
.

21
.

21
of the Dirac operator simplify to

(DA)
.

11
.

11
= γµ

(
Dµ − i

2
gRW

α
µR (σα)

.

1
.

1
−
(
i

2
gV m

µ (λm)
1

1

))

= γµ

(
Dµ − i

2
gRW

3
µR −

(
i

2
gV 15

µ

√
3

2

))

= γµDµ

(DA)
.

21
.

21
= γµ

(
Dµ − i

2
gRW

α
µR (σα)

.

2
.

2
−
(
i

2
gV m

µ (λm)
1

1

))

= γµ

(
Dµ +

i

2
gRW

3
µR −

(
i

2
gV 15

µ

√
3

2

))

= γµ (Dµ + ig1Bµ)
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which are identified with the Dirac operators acting on the right-handed neutrino and

right-handed electron. Similar substitutions give the action of the Dirac operators on the

remaining fermions and give the expected results. We now compute the various terms in

the spectral action. First for the mass terms we have

1

4
H .

aI
.

bJ
H

.

bJ
.
aI =

1

4

(
δ1.aδ

1
.

b
kνRδ1I δ

J
1 σ
)(

δ
.
a
1δ

.

b
1δ

I
1δ

J
1 k

∗νRσ
)

=
1

4
tr |kνR |2 σ2 = 1

4
cσ2

1

2
ΣcK

.
aI Σ

.
aI
cK =

1

2

∣∣∣
(
δ

.

1
.
ak

νǫbcHc + δ
.

2
.
aH

b
ke
)
δ1I δ

J
1 +

(
δ

.

1
.
ak

uǫbcHc + δ
.

2
.
ak

dH
b
)
δiIδ

J
j δ

j
i

∣∣∣
2

=
1

2
aHH

where

a = tr
(
k∗νkν + k∗eke + 3

(
k∗uku + k∗dkd

))

c = tr (k∗νRkνR)

Next for the a4 term, starting with the gauge kinetic energies we have

g2L
(
Wα

µνL

)2
+ g2R

(
Wα

µνR

)2
+ g2

(
V m
µν

)2 → g2L
(
Wα

µνL

)2
+

5

3
g21B

2
µν + g23

(
V m
µν

)2

where m = 1, · · · , 8 for V m
µν restricted to the SU(3) gauge group. Next for the Higgs kinetic

and quartic terms we have

∇µΣ
.
cK
aI ∇µΣaI

.
cK → a∇µH∇µH

1

2
∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ → 1

2
c∂µσ∂

µσ

1

12
R
(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)
→ 1

12
R
(
2aHH + cσ2

)

1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣
2

→ 1

2
dσ4

2H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
→ 2eHHσ2

Σ
.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL
→ b

(
HH

)
.2

Collecting all terms we end up with the bosonic action for the Standard Model:

Sb =
24

π2
F4Λ

4

∫
d4x

√
g

− 2

π2
F2Λ

2

∫
d4x

√
g

(
R+

1

2
aHH +

1

4
cσ2
)

+
1

2π2
F0

∫
d4x

√
g

[
1

30

(
−18C2

µνρσ + 11R∗R∗
)
+

5

3
g21B

2
µν + g22

(
Wα

µν

)2
+ g23

(
V m
µν

)2

+
1

6
aRHH+b

(
HH

)2
+a |∇µHa|2+2eHH σ2+

1

2
d σ4+

1

12
cRσ2+

1

2
c (∂µσ)

2

]
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where

b = tr

(
(k∗νkν)2 + (k∗eke)2 + 3

(
(k∗uku)2 +

(
k∗dkd

)2))

d = tr
(
(k∗νRkνR)2

)

e = tr (k∗νkνk∗νRkνR) .

This action completely agrees with the results in reference [10].

8 The potential and symmetry breaking

We now study the resulting potential and try to investigate the possible minima:

V =
F0

2π2

(
1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣
2

+ 2H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+Σ

.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL

)

− F2

2π2

(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)
.

However, the Higgs field here are not fundamental and we have to express the potential in

terms of the fundamental Higgs fields φc.
a
, ∆ .

aK and ΣI
K . Expanding the composite Higgs

fields in terms of the fundamental ones, we have for the quartic terms

1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣
2

=
1

2
|kνR |4

(
∆ .

aK∆
.
aL
∆ .

bL
∆

.

bK
)2

Σ
.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL
=
((

(k∗ν − k∗u)φ
.
c
a +

(
k∗e − k∗d

)
φ̃

.
c
a

)
ΣK
I +

(
k∗uφ

.
c
a + k∗dφ̃

.
c
a

)
δKI

)

((
(kν − ku)φb.c +

(
ke − kd

)
φ̃b.c

)
ΣJ
K +

(
kuφb.c + kdφ̃b.c

)
δJK

)

((
(k∗ν−k∗u)φ

.

d
b +

(
k∗e−k∗d

)
φ̃

.

d
b

)
ΣL
J +

(
k∗uφ

.

d
b+k

∗dφ̃
.

d
b

)
δLJ

)

((
(kν − ku)φa.

d
+
(
ke − kd

)
φ̃a.
d

)
ΣI
L +

(
kuφa.

d
+ kdφ̃a.

d

)
δIL

)

2H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
= 2 |kνR |2

(
∆ .

aK∆
.
aL
∆ .

cI∆
.

dI
)

((
(k∗ν−k∗u)φ

.
c
b +

(
k∗e−k∗d

)
φ̃

.
c
b

)
ΣK
J +

(
k∗uφ

.
c
b+k

∗dφ̃
.
c
b

)
δKJ

)

((
(kν − ku)φb.

d
+
(
ke − kd

)
φ̃b.
d

)
ΣJ
L +

(
kuφb.

d
+ kdφ̃b.

d

)
δJL

)
.

Next we have the mass terms

H .
aI

.
cKH

.
cK

.
aI = |kνR |2

(
∆ .

aK∆
.
aK
)2

and

2ΣcK
.
aI Σ

.
aI
cK = 2

((
(kν − ku)φc.a +

(
ke − kd

)
φ̃c.a

)
ΣK
I +

(
kuφc.a + kdφ̃c.a

)
δKI

)

((
(k∗ν − k∗u)φ

.
a
c +

(
k∗e − k∗d

)
φ̃

.
a
c

)
ΣI
K +

(
k∗uφ

.
a
c + k∗dφ̃

.
a
c

)
δIK

)
.
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Figure 1. The scalar potential in some of the ∆ȧI -directions, with all other fields at their SM-vevs

as in equation (8.1). We have put kν = ke = 1 and kνR = ku = kd = 2. With these choices, the

Standard Model vacuum corresponds to ∆
1̇1

= 1
√

2
,Σ1

1
= 2, φ1

1̇
= 1

2
and all other fields are zero. At

this point the Hessian in the ∆-directions is nonnegative.

The potential must be analyzed to determine all the possible minima that breaks the

symmetry SU (2)R×SU (2)L×SU (4) . In this respect it is useful to determine whether the

symmetries of this model break correctly at high energies to the Standard Model.

Needless to say that it is difficult to determine all allowed vacua of this potential,

especially since there is dependence of order eight on the fields. It is possible, however,

to expand this potential around the vacuum that we started with which breaks the gauge

symmetry directly from SU (2)R × SU (2)L × SU (4) to U (1)em × SU (3)c. Explicitly, this

vacuum is given by
〈
φb.a

〉
= vδ

.

1
.
aδ

b
1

〈
ΣI
J

〉
= uδI1δ

1
J 〈∆ .

aJ〉 = wδ
.

1
.
aδ

1
J . (8.1)

We have included several plots of the scalar potential in the ∆ȧJ -directions in figure 1.

A computation of the Hessian in the ∆-directions shows that the SM-vev is indeed a

local minimum.

The first order condition now arises as a vacuum solution of the spectral action as

follows. We let the ∆-fields take their vev according to the scalar potential, i.e. ∆ .
aJ =

wδ
.

1
.
a
δ1J . Since ∆ȧJ is in the (2R, 1L, 4) representation of SU (2)R × SU (2)L × SU (4), this
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Figure 2. The scalar potential in the φbȧ-directions, after the Σ and ∆-fields have acquired their

SM-vevs as in Equation (8.1). Again, we have put kν = ke = 1 and kνR = ku = kd = 2.

vacuum solution is only invariant under the subgroup
{((

λ 0
0 λ̄

)
, uL, λ⊕ λ−1/3u

)
: λ∈U(1), uL∈SU(2), u∈SU(3)

}
⊂ SU (2)R ×SU (2)L ×SU (4) .

This is the spontaneous symmetry breaking to U(1)× SU(2)L × SU(3)c, thus selecting the

subalgebra (3.2). Note that unimodularity on U(A) naturally induces unimodularity of the

spectral Standard Model, hence it generates the correct hypercharges for the fermions.

After the ∆ and Σ-fields have acquired their vevs, there is a remaining scalar potential

for the φ-fields, which is depicted in figure 2. As with the Standard Model Higgs sector,

the selection of a minimum further breaks the symmetry from U(1)× SU(2)L × SU(3)c to

U(1)em×SU(3)c. The plot on the right in figure 2 suggests that, instead of the SM-vacuum,

the vevs of the φ-fields can also be taken of the form
〈
φb.a

〉
= vδ

.

1
.
aδ

b
1 + v′δ

.

2
.
aδ

b
2.

Let us see which of the gauge fields acquire non-zero mass after spontaneous symmetry

breaking, by expanding around the Standard Model vacuum

φb.a = vδ
.

1
.
aδ

b
1 +Hb

.
a

ΣI
J = uδI1δ

1
J +MJ

I

∆ .
aJ = wδ

.

1
.
aδ

1
J +N .

aJ

and keep only terms of up to order 4. First we look at the kinetic term

∇µH .
aI

.

bJ
= ∂µH .

aI
.

bJ
− i

2
gRW

α
µR (σα)

.
c
.
aH .

cI
.

bJ
− i

2
gRW

α
µR (σα)

.
c
.

b
H .

aI
.
cJ

− i

2
gV m

µ (λm)KI H .
aK

.

bJ
− i

2
gV m

µ (λm)KJ H .
aI

.

bK
.

To lowest orders we have

H .
aI

.

bJ
= (k∗νR)2

(
wδ

.

1
.
aδ

1
J +N .

aJ

)(
wδ

.

1
.

b
δ1I +N .

bI

)

= (k∗νR)2
(
w2δ

.

1
.
aδ

1
Jδ

.

1
.

b
δ1I + wδ

.

1
.
aδ

1
JN .

bI
+ wδ

.

1
.

b
δ1IN .

aJ +N .
aJN .

bI

)
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and so

∇µH .
aI

.

bJ
= (k∗νR)2w

(
δ

.

1
.
aδ

1
J∂µN .

bI
+ δ

.

1
.

b
δ1I∂µN .

aJ − i

2
gRW

α
µR (σα)

.

1
.
awδ

1
Jδ

.

1
.

b
δ1I

− i

2
gRW

α
µR (σα)

.

1
.

b
wδ

.

1
.
aδ

1
Jδ

1
I −

i

2
gV m

µ (λm)1I wδ
.

1
.
aδ

1
Jδ

.

1
.

b
− i

2
gV m

µ (λm)1J wδ
.

1
.
aδ

.

1
.

b
δ1I

)

= (k∗νR)2w
(
2 δ

.

1
.
aδ

1
Jδ

.

1
.

b
δ1I∂µN .

11
+ δ

.

1
.
aδ

1
Jδ

.

2
.

b
δ1I∂µN .

21
+ δ

.

1
.
aδ

1
Jδ

i
Iδ

.

1
.

b
∂µN .

1i

+ δ
.

1
.
aδ

1
Jδ

i
Iδ

.

2
.

b
∂µN .

2i
+ δ

.

1
.

b
δ1I δ

.

1
.
aδ

j
J∂µN

.

1j
+ δ

.

1
.

b
δ1I δ

.

2
.
aδ

1
J∂µN .

21
+ δ

.

1
.

b
δ1I δ

.

2
.
aδ

j
J∂µN

.

2j

− igRW
3
µRwδ

.

1
.
aδ

1
Jδ

.

1
.

b
δ1I −

i

2
gRW

−

µRwδ
.

2
.
aδ

1
Jδ

.

1
.

b
δ1I −

i

2
gRW

−

µRδ
.

2
.

b
wδ

.

1
.
aδ

1
Jδ

1
I

− i

(
gRW

3
µR + g

√
3

2
V 15
µ

)
δ

.

1
.
aδ

1
Jδ

.

1
.

b
δ1I −

i

2
gV m

µ (λm)1i wδ
.

1
.
aδ

1
Jδ

.

1
.

b
δiI

from which it is clear that if we write

gRW
3
µR = g1Bµ + g′1Z

′

µ

g

√
3

2
V 15
µ = −g1Bµ + g′1Z

′

µ

then the vector Bµ will not get a mass term while the fields W±

µR, Z
′
µ, V

m
µ (λm)1i (these are

the fields in the coset of
SU(2)R×SU(4)
SU(3)×U(1) ) will all become massive, with mass of order w2 as

can be seen from the kinetic term

∇µΣ
bJ
.
aI = ∂µΣ

bJ
.
aI −

i

2
gRW

α
µR (σα)

.
c
.
aΣ

bJ
.
cI +

i

2
gRW

α
µR (σα)bcΣ

cJ
.
aI

− i

2
gV m

µ (λm)KI ΣbJ
.
aK +

i

2
gV m

µ (λm)JK ΣbK
.
aI .

To lowest orders we have

ΣbJ
.
aI =

((
(kν − ku)φb.a +

(
ke − kd

)
φ̃b.a

)
ΣJ
I +

(
kuφb.a + kdφ̃b.a

)
δJI

)

=
(
(kν − ku)

(
vδ

.

1
.
aδ

b
1 +Hb

.
a

)
+
(
ke − kd

)(
vδ

.

2
.
aδ

b
2 + H̃b

.
a

)) (
uδJ1 δ

1
I +MJ

I

)

+
(
ku
(
vδ

.

1
.
aδ

b
1 +Hb

.
a

)
+ kd

(
vδ

.

2
.
aδ

b
2 + H̃b

.
a

))
δJI

= v
((

(kν − ku) δ
.

1
.
aδ

b
1 +

(
ke − kd

)
δ

.

2
.
aδ

b
2

)
uδJ1 δ

1
I +

(
kuδ

.

1
.
aδ

b
1 + kdδ

.

2
.
aδ

b
2

)
δJI

)

+
(
(kν − ku)Hb

.
a +

(
ke − kd

)
H̃b

.
a

)
uδJ1 δ

1
I +

(
kuHb

.
a + kdH̃b

.
a

)
δJI

+ v
(
(kν − ku) δ

.

1
.
aδ

b
1 +

(
ke − kd

)
δ

.

2
.
aδ

b
2

)
MJ

I

∇µΣ
bJ
.
aI =

(
(kν − ku) ∂µH

b
.
a +

(
ke − kd

)
∂µH̃

b
.
a

)
uδJ1 δ

1
I +

(
ku∂µH

b
.
a + kd∂µH̃

b
.
a

)
δJI

+ v
(
(kν − ku) δ

.

1
.
aδ

b
1 +

(
ke − kd

)
δ

.

2
.
aδ

b
2

)
∂µM

J
I

− i

2
vgRW

α
µR (σα)

.
c
.
a

((
(kν − ku) δ

.

1
.
c δ

b
1 +

(
ke − kd

)
δ

.

2
.
c δ

b
2

)
uδJ1 δ

1
I

+
(
kuδ

.

1
.
c δ

b
1 + kdδ

.

2
.
c δ

b
2

)
δJI

)
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+
i

2
vgLW

α
µL (σα)bc

((
(kν − ku) δ

.

1
.
aδ

c
1 +

(
ke − kd

)
δ

.

2
.
aδ

c
2

)
uδJ1 δ

1
I

+
(
kuδ

.

1
.
aδ

c
1 + kdδ

.

2
.
aδ

c
2

)
δJI

)

− i

2
vgV m

µ (λm)KI

((
(kν − ku) δ

.

1
.
aδ

b
1 +

(
ke − kd

)
δ

.

2
.
aδ

b
2

)
uδJ1 δ

1
K

+
(
kuδ

.

1
.
aδ

b
1 + kdδ

.

2
.
aδ

b
2

)
δJK

)

+
i

2
gvV m

µ (λm)JK

((
(kν − ku) δ

.

1
.
aδ

b
1 +

(
ke − kd

)
δ

.

2
.
aδ

b
2

)
uδK1 δ

1
I

+
(
kuδ

.

1
.
aδ

b
1 + kdδ

.

2
.
aδ

b
2

)
δKI

)
.

For simplicity we will set u = 1. Isolating the gauge dependent part

∇µΣ
11
.

11
⊃ − i

2
v
(
gRW

3
µR − gLW

3
µL

)
kν

∇µΣ
21
.

21
⊃ i

2
v
(
gRW

3
µR − gLW

3
µL

)
ke

∇µΣ
11
.

1i
⊃ − i

2
vgV m

µ (λm)1i (k
ν − ku)

∇µΣ
1j
.

1i
⊃ − i

2
v
(
gRW

3
µR − gLW

3
µL

)
kuδji

∇µΣ
2j
.

2i
⊃ i

2
v
(
gRW

3
µR − gLW

3
µL

)
kdδji

∇µΣ
21
.

11
⊃ − i

2
v
(
gRW

−

µR − gLW
−

µL

)
kν

∇µΣ
11
.

21
⊃ − i

2
v
(
gRW

+
µR − gLW

+
µL

)
ke

∇µΣ
11
.

2i
⊃ 0.

Noticing that gRW
3
µR − gLW

3
µL =

(
g1Bµ − gLW

3
µL

)
+ g′1Z

′
µ shows that the Zµ vector gets

a mass of order of the weak scale gv while the W±

µR and Z ′
µ will get a small correction to

its mass of order gw. Thus we get the correct gauge breaking pattern with the gauge fields

WµL and Z of the Standard model having masses of the order of the electroweak scale. It

is important, however, to see explicitly that the mixing between the Z and Z ′ vectors and

W±

L , W±

R are suppressed.

It remains to minimize the potential to determine all possible minima as well as study-

ing the unified model and check whether it allows for unification of coupling constants

gR = gL = g

in addition to determining the top quark mass and Higgs mass. Obviously, this model

deserves careful analysis, which will be the subject of future work.

We conclude that the study of noncommutative spaces based on a product of a contin-

uous four dimensional manifold times a finite space of KO-dimension 6, without the first

order condition gives rise to almost unique possibility in the form of a Pati-Salam type

model. This provides a setting for unification avoiding the desert and which goes beyond
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the SM. In addition one of the vacua of the Higgs fields gives rise at low energies to a Dirac

operator satisfying the first order condition. In this way, the first order condition arises as

a spontaneously broken phase of higher symmetry and is not imposed from outside.

A Detailed calculations for the practitioner

For the benefit of the reader, we shall present in this appendix a detailed derivation of the

Dirac operator and the spectral action for the noncommutative space on HR⊕HL⊕M4 (C) .

For A(1) we have the definition

(
A(1)

) N

M
=
∑

aPM [D, b]NP (A.1)

where

aNM =

(
X ′β

α δJI 0

0 δβ
′

α′Y ′J ′

I′

)
(A.2)

which in terms of components give

(
A(1)

)βJ
αI

=
∑

aγKαI

(
DδL

γKb
βJ
δL − bδLγKD

βJ
δL

)

=
∑

X
′γ
α

(
DδJ

γIX
β
δ −Xδ

γD
βJ
δI

)
(A.3)

where we use the notation for b to be the same as that of a without primes (i.e. X ′ → X,

Y ′ → Y ). Since DβJ
αI is non vanishing when connecting a dotted index

.
a to a, (cf. (4.18))

we have the non-vanishing components

(
A(1)

)bJ
.
aI

=
∑

X
′
.
c
.
a

(
DdJ

.
cI X

b
d −X

.

d
.
cD

bJ
.

dI

)

= δ1I δ
J
1

(∑
X

′
.
c
.
a

((
δ

.

1
.
aδ

d
1k

ν + δ
.

2
.
aδ

d
2k

e
)
Xb

d

)
−X

.

d
.
c

(
δ

.

1
.

d
δb1k

ν + δ
.

2
.

d
δb2k

e
))

+ δiIδ
J
j δ

j
i

(∑
X

′
.
c
.
a

((
δ

.

1
.
aδ

b
1k

u + δ
.

2
.
aδ

b
2k

d
)
Xb

d

)
−X

.

d
.
c

(
δ

.

1
.

d
δb1k

u + δ
.

2
.

d
δb2k

d
))

= δ1I δ
J
1

(
kνφb.a + keφ̃b.a

)
+ δiIδ

J
j δ

j
i

(
kuφb.a + kdφ̃b.a

)
(A.4)

where

φb.a =
∑

X
′
.

1
.
a X

b
1 −X

′
.
c
.
a X

.

1
.
c δ

b
1 (A.5)

φ̃b.a =
∑

X
′
.

2
.
a X

b
2 −X

′
.
c
.
a X

.

2
.
c δ

b
2 (A.6)

We can check that

φ̃b.a = σ2φ
b
.
aσ2 (A.7)

For example

φ̃1.
1
=
∑

X
′
.

2
.

1
X1

2

=
∑

X
′
.

1
.

2 X
2
1

= φ
2
.

2 (A.8)
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using the quaternionic property of the X. Note that φb.
a
is in the (2R, 2L, 1) representation

of SU (2)R × SU (2)L × SU (4).

Similarly we have
(
A(1)

).bJ
aI

=
((
A(1)

)aI
.

bJ

)∗
(A.9)

(In reality one obtains an expression for
(
A(1)

) .bJ
aI

in terms of φ′b.
a
which is expressed in terms

of the X, but the hermiticity of the Dirac operator forces the above relation and imposes

a constraint on the X. )

Next we have using (4.19)

(
A(1)

)β′J ′

αI
=
∑

aγKαI

(
Dδ′L′

γK bβ
′J ′

δ′L′ − bδLγKD
β′J ′
δL

)

=
∑

X ′γ
α

(
Dβ′L′

γI Y J ′

L′ −Xδ
γD

β′J ′
δI

)

= k∗νR
∑

X ′γ
α

((
δ

.

1
γδ

β′

.

1
′ δ

1
I δ

L′

1′

)
Y J ′

L′ −Xδ
γ

(
δ

.

1
δδ

β′

.

1
′ δ

1
I δ

J ′

1′

))

= k∗νRδ
.
a
αδ

β′

.

1
′ δ

1
I

∑(
X ′

.

1
.
a Y

J ′

1′ −X ′
.
c
.
a X

.

1
.
c δ

J ′

1′

)
(A.10)

(
A(1)

) .b′J ′

.
aI

= k∗νRδ
.

b
′

.

1
′δ1I∆

J ′

.
a (A.11)

where

∆ J ′

.
a =

∑(
X ′

.

1
.
a Y

J ′

1′ −X ′
.
c
.
a X

.

1
.
c δ

J ′

1′

)
≡ ∆ .

aJ (A.12)

which is in the (2R, 1L, 4) representation of SU (2)R × SU (2)L × SU (4) . Again, we can

compute
(
A(1)

)βJ
α′I′

, which gives a similar expression, but using hermiticity we write

(
A(1)

)βJ
α′I′

=
((
A(1)

)α′I′

βJ

)∗
= kνRδβ.

b
δ1

′

α′δJ1∆
.

b
I′ (A.13)

In the conjugate space we have

(
A(1)

)β′J ′

α′I′
=
∑

aγ
′K′

α′I′

(
Dδ′L′

γ′K′b
β′J ′

δ′L′ − bδ
′L′

γ′K′D
β′J ′

δ′L′

)

=
∑

Y ′K′

I′

(
Dβ′L′

α′K′Y
J ′

L′ − Y L′

K′D
β′J ′

α′L′

)
(A.14)

The only non-vanishing expression would involve a D with mixed a′ and
.
b
′

(
A(1)

)b′J ′

.
a
′

I′
=
∑

Y ′K′

I′

(
Db′L′

.
a
′

K′
Y J ′

L′ − Y L′

K′Db′J ′

.
a
′

L′

)

=
∑

Y ′K′

I′

((
δ1

′

K′δL
′

1′

(
δ

.

1′
.

a′
δb

′

1′k
ν
+δ

.

2′
.
a
′δb

′

2′k
e
)
+ δk

′

K′δL
′

l′ δ
l′

k′

(
δ

.

1′
.

a′
δb

′

1′k
u
+δ

.

2′
.
a
′δb

′

2′k
d
))

Y J ′

L′

−Y L′

K′

((
δ1

′

L′δJ
′

1′

(
δ

.

1′
.

a′
δb

′

1′k
ν
+ δ

.

2′
.
a
′δb

′

2′k
e
)
+ δl

′

L′δJ
′

j′ δ
j′

l′

(
δ

.

1′
.

a′
δb

′

1′k
u
+ δ

.

2′
.
a
′δb

′

2′k
d
))))

=

((
k
ν − k

u
)
δ

.

1′
.

a′
δb

′

1′ +
(
k
e − k

d
)
δ

.

2′
.

a′
δb

′

2′

)
ΣJ ′

I′ (A.15)

where

Σ1′

I′ = −
∑

Y ′k′

I′ Y
1′

k′ , Σj′

I′ = Y ′1′

I′ Y
j′

1′ (A.16)
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Notice that if kν = ku and ke = kd which is consistent with the picture of having the lepton

number as the fourth color then ΣJ
I will decouple. Notice that

(
A(1)

) .b′J ′

a′I′
=

((
kνt − kut

)
δ1

′

a′δ
.

b
′

.

1
′ +
(
ket − kdt

)
δ2

′

a′δ
.

b
′

.

2
′

)
ΣJ ′

I′ (A.17)

which implies by the hermiticity of

Ab′J ′

.
a
′

I′
=
(
A

.
a
′

I′

b′Ij′

)∗
(A.18)

that

ΣJ
I =

(
ΣJ
I

)∗
(A.19)

and thus belong to the 1 + 15 representation of SU (4). There is no indication that the

singlet which is equal to the trace ΣI
I should be absent as there is no apparent identity

that equates this trace to zero. In this case we can write

ΣJ
I = Σ̃J

I +
1

4
δJI Σ, Σ = ΣI

I , Σ̃I
I = 0 (A.20)

Thus at first order we have the Higgs fields φ
.

b
a and ∆ .

aI . In addition if the Yukawa

couplings of the leptons are different from the corresponding quarks (and thus requiring

the breaking of the lepton number as the fourth color) then an additional Higgs field ΣJ
I

is also generated.

Next it is straightforward to evaluate various components of JA(1)J
−1 which are

given by

(
JAJ−1

)B
A
= A

B′

A′ (A.21)
(
JAJ−1

)B′

A
= A

B
A′ (A.22)

(
JAJ−1

)B′

A′
= A

B
A (A.23)

(
JAJ−1

)B
A′

= A
B′

A (A.24)

In particular

(
JA(1)J

−1
)bJ

.
aI

=
(
A(1)

)b′J ′

.
a
′

I′

=
(
(kν − ku) δ

.

1
.
aδ

b
1 +

(
ke − kd

)
δ

.

2
.
aδ

b
2

)
ΣJt
I (A.25)

(
JA(1)J

−1
) .b′J ′

.
aI

=
(
A(1)

) .bJ
.
a
′

I′

= k
νRδ

.

1
.
aδ

J ′

1′ ∆
.

b
I

≡ k
νRδ

.

1
.
aδ

J ′

1′ ∆ .

bI
(A.26)

We now evaluate (
A(2)

)N
M

=
∑

aPM
[
JA(1)J

−1, b
]N
P

(A.27)
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First we have
(
A(2)

)βJ
αI

=
∑

aγKαI

((
JA(1)J

−1
)δL
γK

bβJδL − bδLγK
(
JA(1)J

−1
)βJ
δL

)

=
∑

X
′γ
α

((
JA(1)J

−1
)δJ
γI
Xβ

δ −Xδ
γ

(
JA(1)J

−1
)βJ
δI

)
(A.28)

Thus
(
A(2)

)bJ
.
aI

=
∑

X
′
.
c
.
a

((
JA(1)J

−1
)dJ
.
cI
Xb

d −X
.

d
.
c

(
JA(1)J

−1
)bJ

.

dI

)

=
∑

X
′
.
c
.
a

((
(kν − ku) δ

.

1
.
c δ

d
1 +

(
ke − kd

)
δ

.

2
.
c δ

d
2

)
Xb

d

−X
.

d
.
c

(
(kν − ku) δ

.

1
.

d
δb1 +

(
ke − kd

)
δ

.

2
.

d
δb2

))
ΣJt
I (A.29)

=
(
(kν − ku)

(∑
X

′
.

1
.
a X

b
1 −X

′
.
c
.
a X

.

1
.
c δ

b
1

)
+
(
ke − kd

)(∑
X

′
.

2
.
a X

b
2 −X

′
.
c
.
a X

.

2
.
c δ

b
2

))
ΣJt
I

=
(
(kν − ku)φb.a +

(
ke − kd

)
φ̃b.a

)
ΣJt
I (A.30)

From the above calculation it should be clear that
(
A(2)

)bJ
.
aI

could be expressed in terms of

the fundamental Higgs fields φb.
a
and ΣJ

I as a consequence of the special form of the initial

Dirac operator which satisfies the order one condition for the subalgebra (3.2). If this was

not the case, then the field
(
A(2)

)bJ
.
aI

would be an independent and thus fundamental Higgs

field. Similarly
(
A(2)

).bJ
aI

is the Hermitian conjugate of
(
A(2)

)aJ
.

bI
.. Next we have

(
A(2)

) .

b′J ′

.
aI

=
∑

X ′
.
c
.
a

((
JA(1)J

−1
) .b′L′

.
cI

Y J ′

L′ −X
.

d
.
c

(
JA(1)J

−1
).b′J ′

.

dI

)

= k
νR
∑(

X ′
.

1
.
a Y

J ′

1′ −X ′
.
c
.
a X

.

1
.
c δ

J ′

1′

)
∆

.

b
I

= k
νR∆ J ′

.
a ∆

.

b
I

= k∗νR∆ .
aJ∆ .

bI
(A.31)

Collecting all terms we get

(DA)
bJ

.
aI =

(
δ

.

1
.
aδ

b
1k

ν + δ
.

2
.
aδ

b
2k

e
)
δ1I δ

J
1 +

(
δ

.

1
.
aδ

b
1k

u + δ
.

2
.
aδ

b
2k

d
)
δiIδ

J
j δ

j
i

+ δ1I δ
J
1

(
kνφb.a + keφ̃b.a

)
+ δiIδ

J
j δ

j
i

(
kuφb.a + kdφ̃b.a

)

+
(
(kν − ku) δ

.

1
.
aδ

b
1 +

(
ke − kd

)
δ

.

2
.
aδ

b
2

)
ΣJt
I

+
(
(kν − ku)φb.a +

(
ke − kd

)
φ̃b.a

)
ΣJt
I

=
(
kν
(
δ

.

1
.
aδ

b
1 + φb.a

)
+ ke

(
δ

.

2
.
aδ

b
2 + φ̃b.a

)) (
δ1I δ

J
1 +ΣJt

I

)

+
(
ku
(
δ

.

1
.
aδ

b
1 + φb.a

)
+ kd

(
δ

.

2
.
aδ

b
2 + φ̃b.a

))(
δiIδ

J
j δ

j
i − ΣJt

I

)
(A.32)

The other non-vanishing term is

(DA)
.

b
′

J ′

.
aI = k∗νR

(
δ

.

1
.
aδ

.

b
′

.

1
′δ1I δ

J ′

1′ + δ
.

b
.

1
δ1I∆

J ′

.
a + δ

.

1
.
aδ

J ′

1′ ∆
.

b
I +∆ J ′

.
a ∆

.

b
I

)

= k∗νR
(
δ

.

1
.
aδ

J ′

1′ +∆ J ′

.
a

)(
δ
.

b
.

1
δ1I +∆

.

b
I

)
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≡ k∗νR
(
δ

.

1
.
aδ

1
J +∆ .

aJ

)(
δ

.

1
.

b
δ1I +∆ .

bI

)

≡ (DA) .
aI

.

bJ
(A.33)

All other non-vanishing terms are related to the above two by Hermitian conjugation.

Note thatDbJ
.
aI

gives, after spontaneous breaking, the Dirac masses whileD
.

b
′

J ′

.
aI

gives the

Majorana masses. The Higgs fields are composite, the fundamental ones being of similar

form to those of the fermion bilinear.

It is possible to absorb the constant terms (vacuum expectation values) by redefining

the fields

δ
.

1
.
aδ

b
1 + φb.a → φb.a (A.34)

δ
.

1
.
aδ

1
J +∆ .

aJ → ∆ .
aJ (A.35)

δ1I δ
J
1 +ΣJt

I → ΣJ
I (A.36)

so that when the potential of the spectral action is minimized one will get

〈
φb.a

〉
= δ

.

1
.
aδ

b
1 (A.37)

〈∆ .
aJ〉 = δ

.

1
.
aδ

1
J (A.38)

〈
ΣJ
I

〉
= δ1I δ

J
1 (A.39)

Thus

(DA)
bJ
.
aI = γ5

((
kνφb.a + keφ̃b.a

)
ΣJ
I +

(
kuφb.a + kdφ̃b.a

) (
δJI − ΣJ

I

))
≡ γ5Σ

bJ
.
aI (A.40)

(DA)
.

b
′

J ′

.
aI = γ5k

∗νR∆ .
aJ∆ .

bI
≡ γ5H .

aI
.

bJ
(A.41)

and the fundamental Higgs fields are (2R, 2L, 1), (2R, 1L, 4) , (1R, 1L, 1 + 15) . The last of

which ΣJ
I drops out in the case when we take the lepton and quark Yukawa couplings to be

identical. This is a realistic possibility and has the advantage that the Higgs sector becomes

minimal. If, however, we start with a generic initial Dirac operator, then the fields ΣbJ
.
aI

and H .
aI

.

bJ
will be independent fundamental fields in the (2R, 2L, 1 + 15) and (3R, 1L, 10)

and (1R, 1L, 6) representations of SU (2)R × SU (2)L × SU (4) .

The full Dirac operator on the product space M × F is

(DA) = γµDµ ⊗ 1 + γ5DF (A.42)

This gives the gauge fields

AβJ
αI = γµ

∑
X ′γ

α ∂µX
β
γ δ

J
I (A.43)

and in particular

A
.

bJ
.
aI = γµ

∑
X ′

.
c
.
a ∂µX

.

b
.
cδ

J
I

= γµ
(
− i

2
gRW

α
µR

)
(σα)

.

b
.
a δ

J
I (A.44)
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which is the gauge field of SU (2)R . Notice thatW
α
µR are SU (2)R and not U (2) gauge fields

because X ′
.
c
.
a
∂µX

.

b
.
c
depend on quaternionic elements. Similarly

AbJ
aI = γµ

∑
X ′c

a ∂µX
b
cδ

J
I

= γµ
(
− i

2
gLW

α
µL

)
(σα)ba δ

J
I (A.45)

where the Wα
µL are SU (2)L gauge fields. In the conjugate sector we have

Aβ′J ′

α′I′ = γµδβ
′

α′

∑
Y ′K′

I′ ∂µY
J ′

K′

= γµδβ
′

α′

(
i

2
gV m

µ (λm)J
′

I′ +
i

2
gVµδ

J ′

I′

)
(A.46)

where V m
µ and Vµ are the U (4) gauge fields. This implies that

(
JAJ−1

) .bJ
.
aI

= −γµδ
.

b
.
a

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

)
(A.47)

(
JAJ−1

)bJ
aI

= −γµδba
(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

)
(A.48)

where

Tr (λm) = 0 (A.49)

are the generators of the group SU (4) . We deduce that we get new contributions to

(DA)
.

bJ
.
aI = γµ

(
Dµδ

.

b
.
aδ

J
I − i

2
gRW

α
µR (σα)

.

b
.
a δ

J
I − δ

.

b
.
a

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

))
(A.50)

(DA)
bJ
aI = γµ

(
Dµδ

b
aδ

J
I − i

2
gLW

α
µL (σα)ba δ

J
I − δba

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

))
(A.51)

The requirement that A is unimodular implies that

Tr (A) = 0 (A.52)

which gives the condition

Vµ = 0 (A.53)

and thus the gauge group of this space is

SU (2)R × SU (2)L × SU (4)

Summarizing, we have

(DA)
.

bJ
.
aI = γµ

(
Dµδ

.

b
.
aδ

J
I − i

2
gRW

α
µR (σα)

.

b
.
a δ

J
I − δ

.

b
.
a

(
i

2
gV m

µ (λm)
J

I

))
⊗ 13 (A.54)

(DA)
bJ
aI = γµ

(
Dµδ

b
aδ

J
I − i

2
gLW

α
µL (σα)ba δ

J
I − δba

(
i

2
gV m

µ (λm)
J

I

))
⊗ 13 (A.55)
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(DA)
bJ
.
aI = γ5

((
kνφb.a + keφ̃b.a

)
ΣJ
I +

(
kuφb.a + kdφ̃b.a

) (
δJI − ΣJ

I

))
≡ γ5Σ

bJ
.
aI (A.56)

(DA)
.

b
′

J ′

.
aI = γ5k

∗νR∆ .
aJ∆ .

bI
≡ γ5H .

aI
.

bJ
(A.57)

where 13 is for generations and

Dµ = ∂µ +
1

4
ωcd
µ (e) γcd (A.58)

and other components are related to the ones above by

DB′

A′ = D
B
A , DB

A′ = D
B′

A , DB′

A = D
B
A′ . (A.59)

Again, for generic initial Dirac operators ΣbJ
.
aI

and H .
aI

.

bJ
will be independent fundamen-

tal fields.

We now proceed to calculate (DA)
2 . The first step is to expand D2 into the form

(DA)
2 = − (gµν∂µ∂ν +Aµ∂µ +B) (A.60)

and from this extract the connection ωµ

(DA)
2 = − (gµν∇µ∇ν + E) (A.61)

where

∇µ = ∂µ + ωµ. (A.62)

This gives

ωµ =
1

2
gµν (Aν + Γν) (A.63)

E = B − gµν
(
∂µων + ωµων − Γρ

µνωρ

)
(A.64)

Ωµν = ∂µων − ∂νωµ + [ωµ, ων ] (A.65)

where Γν = gρσΓν
ρσ and Γρ

µν is the Christoffel connection of the metric gµν .We now proceed

to evaluate the various components of D2 :

(
(DA)

2
)bJ
aI

= (DA)
.
cK
aI (DA)

bJ
.
cK + (DA)

cK
aI (DA)

bJ
cK

= Σ
.
cK
aI Σ

bJ
.
cK

+

[
γµ
(
Dµδ

c
aδ

K
I − i

2
gLW

α
µL (σα)ca δ

K
I + δca

(
i

2
gV m

µ (λm)
K

I

))
(A.66)

· γν
(
Dνδ

b
cδ

J
K − i

2
gLW

α
νL (σα)bc δ

J
K + δbc

(
i

2
gV m

µ (λm)
J

K

))]
13

(
(DA)

2
).

bJ

.
aI

= (DA)
.
cK
.
aI (DA)

.

bJ
.
cK + (DA)

cK
.
aI (DA)

.

bJ
cK + (DA)

.
c
′

K
′

.
aI (DA)

.

bJ
.
c
′

K
′

= H .
aI

.
cKH

.
cK

.

bJ +ΣcK
.
aI Σ

.

bJ
cK
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+

[
γµ
(
Dµδ

.
c
.
aδ

K
I − i

2
gRW

α
µR (σα)

.
c
.
a δ

K
I + δ

.
c
.
a

(
i

2
gV m

µ (λm)
K

I

))

· γν
(
Dνδ

.

b
.
cδ

J
K − i

2
gRW

α
νR (σα)

.

b
.
c δ

J
K + δ

.

b
.
c

(
i

2
gV m

µ (λm)
J

K

))]
(A.67)

(
(DA)

2
)bJ

.
aI

= (DA)
cK
.
aI (DA)

bJ
cK + (DA)

.
cK
.
aI (DA)

bJ
.
cK

= γ5γ
µΣcJ

.
aI

(
Dµδ

b
cδ

J
K − i

2
gLW

α
µL (σα)bc δ

J
K + δbc

(
i

2
gV m

µ (λm)
J

K

))

− γ5γ
µ

(
Dµδ

.
c
.
aδ

K
I − i

2
gRW

α
µR (σα)

.
c
.
a δ

K
I + δ

.
c
.
a

(
i

2
gV m

µ (λm)
K

I

))
ΣbJ

.
cK

= γµγ5∇µΣ
bJ
.
aI (A.68)

where the covariant derivative ∇µ is with respect to the gauge group SU (2)R × SU (2)L ×
SU (4) .

(
(DA)

2
).

b
′

J ′

.
aI

= (DA)
.
cK
.
aI (DA)

.

b
′

J ′

.
cK + (DA)

.

c′K′

.
aI (DA)

.

b
′

J ′

.
c
′

K′

= γµγ5

(
Dµδ

.
c
.
aδ

K
I − i

2
gRW

α
µR (σα)

.
c
.
a δ

K
I + δ

.
c
.
a

(
i

2
gV m

µ (λm)
K

I

))
H .

cK
.

bJ

− γµγ5H .
aI

.
cK

(
Dµδ

.

b
.
c
δJK − i

2
gRWα

µR (σα)
.

b
.
c δ

J
K + δ

.

b
.
c

(
i

2
gV m

µ (λm)
J

K

))

= γµγ5∇µH .
aI

.

bJ
(A.69)

where the covariant derivative now will be with respect to SU (2)R × SU (4). Next we have

(
D2
)b′J ′

.
aI

= D
.
c
′

K
′

.
aI D

b′J ′

.
c
′

K
′

= H .
aI

.
cKΣ

.
cK
bJ (A.70)

and finally

(
(DA)

2
).

b
′

J ′

aI
= (DA)

.
cK
.
aI (DA)

.
b′J ′

.
cK

= Σ
.
cK
.
aI H .

cK
.

bJ
(A.71)

We then list the entries of the matrices (ωµ)
N
M , (E)NM which are deduced from the form of

the operator (DA)
2 . First we have

(ωµ)
bJ
aI =

((
1

4
ωcd
µ (e) γcd

)
δbaδ

J
I − i

2
gLW

α
µL (σα)ba δ

J
I − i

2
gV m

µ (λm)JI δ
b
a

)
⊗ 13 (A.72)

(ωµ)
.

bJ
.
aI =

((
1

4
ωcd
µ (e) γcd

)
δ
.

b
.
aδ

J
I − i

2
gRW

α
µL (σα)

.

b
.
a δ

J
I − i

2
gδ

.

b
.
aV

m
µ (λm)JI

)
⊗ 13 (A.73)

(ωµ)
B′

A′ = (ωµ)
B
A (A.74)

This in turn implies that the components of the curvature

Ωµν = ∂µων − ∂νωµ + [ωµ, ων ] (A.75)

– 29 –



J
H
E
P
1
1
(
2
0
1
3
)
1
3
2

are given by

(Ωµν)
bJ
aI =

((
1

4
Rcd

µνγcd

)
δbaδ

J
I − i

2
gLW

α
µνL (σα)ba δ

J
I − i

2
gV m

µν (λ
m)JI δ

b
a

)
⊗ 13 (A.76)

(Ωµν)
.

bJ
.
aI =

((
1

4
Rcd

µνγcd

)
δ
.

b
.
aδ

J
I − i

2
gRW

α
µνR (σα)

.

b
.
a δ

J
I − i

2
gV m

µν (λ
m)JI δ

.

b
.
a

)
⊗ 13 (A.77)

(Ωµν)
B′

A′ =
(
Ωµν

)B
A

(A.78)

Comparing with equation (A.61) we deduce that

− (E)bJaI =

((
1

4
Rδbaδ

J
I +

1

2
γµν

(
− i

2
gLW

α
µνL (σα)ba δ

J
I − i

2
gV m

µν (λ
m)JI δ

b
a

))
13

+Σ
.
cK
aI Σ

bJ
.
cK

)
(A.79)

(−E)
.

bJ
.
aI =

((
1

4
Rδ

.

b
.
aδ

J
I +

1

2
γµν

(
− i

2
gRW

α
µνR (σα)

.

b
.
a δ

J
I − i

2
gV m

µν (λ
m)JI δ

.

b
.
a

))
13

+H .
aI

.
cKH

.
cK

.

bJ +ΣcK
.
aI Σ

.

bJ
cK

)
(A.80)

− (E)bJ.aI = γµγ5∇µΣ
bJ
.
aI (A.81)

− (E)
.

b
′

J ′

.
aI = γµγ5∇µH .

aI
.

bJ
(A.82)

(−E)b
′J ′

.
aI = H .

aI
.
cKΣ

.
cK
bJ (A.83)

(−E)
.

b
′

J ′

aI = Σ
.
cK
aI H .

cK
.

bJ
(A.84)

Evaluating the various traces of the 384 × 384 matrices on spinor and generation space,

we get

Tr (E) = tr
(
EA

A + EA′

A′

)
= tr

(
EA

A + E
A
A

)
(A.85)

−tr (E)aIaI = 4

[
3

4
R (2) (4) +H

.

cK
aI H

aI
.
cK

]
(A.86)

−tr (E)
.
aJ
.
aI = 4

[
3

4
R (2) (4) +H .

aI
.
cKH

.
cK

.
aI +ΣcK

.
aI Σ

.
aI
cK

]
(A.87)

−1

2
Tr (E) = 4

(
12R+H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)
(A.88)

Next

Tr
(
Ω2
µν

)M
M

= 2Tr
(
Ω2
µν

)A
A

= 2Tr
((

Ω2
µν

) .
aI
.
aI

+
(
Ω2
µν

)aI
aI

)
(A.89)

Tr
(
Ω2
µν

)aI
aI

= Tr

(((
1

4
Rcd

µνγcd

)
δbaδ

J
I − i

2
gLW

α
µνL (σα)ba δ

J
I − i

2
gV m

µν (λ
m)ji δ

b
a

)
⊗ 13

)2

= 4

[
−1

8
R2

µνρσ (4) (2) (3)−
1

4
g2L
(
Wα

µν

)2
(4) (2) (3)− 1

4
g2
(
V m
µν

)2
(3) (2) (2)

]

= 4
[
−3R2

µνρσ − 6g2L
(
Wα

µνL

)2 − 3g2
(
V m
µν

)2]
(A.90)
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Tr
(
Ω2
µν

) .
aI
.
aI

= Tr

(((
1

4
Rcd

µνγcd

)
δ
.

b
.
aδ

J
I − i

2
gRW

α
µνR (σα)

.

b
.
a δ

J
I − i

2
gV m

µν (λ
m)JI δ

.

b
.
a

)
⊗ 13

)2

= 4
[
−3R2

µνρσ − 6g2R
(
Wα

µνR

)2 − 3g2
(
V m
µν

)2]
(A.91)

Therefore
1

2
Tr
(
Ω2
µν

)M
M

= 24
[
−R2

µνρσ − g2L
(
Wα

µνL

)2 − g2R
(
Wα

µνR

)2 − g2
(
V m
µν

)2]
(A.92)

Next we compute (
E2
)B
A
= EC

AE
B
C + EC′

A EB
C′ (A.93)

and listing the components of this matrix we get
(
E2
)bJ
aI

= EcK
aI E

bj
cK + E

.
cK
aI E

bJ
.
cK + E

.
c
′

K′

aI EbJ
.
c
′

K′
(A.94)

(
E2
) .bJ

.
aI

= E
.
cK
.
aI E

.

bJ
.
cK + EcK

.
aI E

.

bJ
cK + Ec′K′

.
aI E

.

bJ
c′K′ + E

.
c
′

K
′

.
aI E

.

bJ
.
c
′

K′
(A.95)

Collecting terms and tracing we obtain for the right-handed components

tr
(
E2
) .
aI
.
aI

= tr

{(
γµγ5∇µΣ

bJ
.
aIγ

νγ5∇νΣ
.
aI
bJ

)
+
(
γµγ5∇µH .

aI
.

bJ
γνγ5∇νH

.
aI

.

bJ
)

+H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+

((
1

4
Rδ

.

b
.
aδ

J
I +

1

2
γµν
(
− i

2
gRW

α
µνR (σα)

.

b
.
a δ

J
I

− i

2
gV m

µν (λ
m)JI δ

.

b
.
a

))
13 +H .

aI
.
cKH

.
cK

.

bJ +ΣcK
.
aI Σ

.

bJ
cK

)2}
(A.96)

= 4

[
1

4
(−2)

(
−1

4
g2R
(
Wα

µνR

)2
(2) (4) (3)− 1

4
g2
(
V m
µν

)2
(2) (2) (3)

)

+
1

16
R2 (2) (4) (3)+

1

2
R
(
H .

aI
.
cKH

.
cK

.
aI+ΣcK

.
aI Σ

.
aI
cK

)
+∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ

+∇µΣ
bJ
.
aI∇

µΣ
.
aI
bJ +H .

aI
.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+
∣∣∣H .

aI
.
cKH

.
cK

.

bJ +ΣcK
.
aI Σ

.

bJ
cK

∣∣∣
2
]

= 4

[
3

2

(
2g2R

(
Wα

µνR

)2
+ g23

(
V m
µν

)2)
+

3

2
R2 +∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ

+∇µΣ
bJ
.
aI∇

µΣ
.
aI
bJ +

1

2
R
(
H .

aI
.
cKH

.
cK

.
aI+ΣcK

.
aI Σ

.
aI
cK

)
+H .

aI
.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL

+
∣∣∣H .

aI
.
cKH

.
cK

.

bJ +ΣcK
.
aI Σ

.

bJ
cK

∣∣∣
2
]

(A.97)

and for the left-handed components

tr
(
E2
)aI
aI

= tr

{((
R

4
δbaδ

J
I +

1

2
γµν

(
− i

2
gLW

α
µνL (σα)ba δ

J
I − i

2
gV m

µν (λ
m)JI

)
δba

)
13

+Σ
.

cK
aI Σ

bJ
.
cK

)2

+ γµγ5∇µΣ
.
cK
aI γ

νγ5∇νΣ
aI
.
cK +

∣∣∣Σ
.
cK
aI H .

cI
.

bJ

∣∣∣
2
}

= 4

[
1

4
(−2)

(
−1

4
g2L
(
Wα

µνL

)2
(2) (4) (3)− 1

4
g23
(
V m
µν

)2
(2) (2) (3)

)

+
1

16
R2 (2) (4) (3) +

1

2
RΣ

.
cK
aI Σ

aI
.
cK +∇µΣ

.
cK
aI ∇µΣaI

.
cK

+Σ
.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL
+
∣∣∣Σ

.
cK
aI H .

cI
.

bJ

∣∣∣
2
]
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= 4

[
3

2

(
2g2L

(
Wα

µνL

)2
+ g23

(
V m
µν

)2)
+

3

2
R2 +∇µΣ

.
cK
aI ∇µΣaI

.
cK

+
1

2
RΣ

.
cK
aI Σ

aI
.
cK +Σ

.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL
+
∣∣∣Σ

.
cK
aI H .

cI
.

bJ

∣∣∣
2
]

(A.98)

Collecting all terms we finally get

1

2
tr
(
E2
)
= 4

[
3
(
g2L
(
Wα

µνL

)2
+ g2

(
V m
µν

)2
+ g2R

(
Wα

µνR

)2
+R2

)

+ 2∇µΣ
.
cK
aI ∇µΣaI

.
cK +∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ +
1

2
R
(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)

+ 2Σ
.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL
+ 4H .

aI
.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+
∣∣∣H .

aI
.
cKH

.
cK

.

bJ
∣∣∣
2
]

(A.99)

The first two Seely-de Witt coefficients are, first for a0

a0 =
1

16π2

∫
d4x

√
gTr (1)

=
1

16π2
(4) (32) (3)

∫
d4x

√
g

=
24

π2

∫
d4x

√
g (A.100)

then for a2 :

a2 =
1

16π2

∫
d4x

√
gTr

(
E +

1

6
R

)

=
1

16π2

∫
d4x

√
g
(
(R(−96 + 64)− 8

(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

))

= − 2

π2

∫
d4x

√
g

(
R+

1

4

(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

))
(A.101)

With all the above information we can now compute the Seeley-de Witt coefficient a4 :

a4 =
1

16π2

∫
d4x

√
gTr

(
1

360

(
5R2 − 2R2

µν + 2R2
µνρσ

)
1 +

1

2

(
E2 +

1

3
RE +

1

6
Ω2
µν

))

(A.102)

and where we have omitted the surface terms. Thus

1

2
Tr

(
E2 +

1

3
RE +

1

6
Ω2
µν

)

= 4

[
3
(
g2L
(
Wα

µνL

)2
+ g2

(
V m
µν

)2
+ g2R

(
Wα

µνR

)2
+R2

)
+ 2∇µΣ

.
cK
aI ∇µΣaI

.
cK

+∇µH .
aI

.

bJ
∇µH

.
aI

.

bJ +
1

2
R
(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)

+ 4H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+ 2Σ

.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL
+
∣∣∣H .

aI
.
cKH

.
cK

.

bJ
∣∣∣
2

− 1

3
R
(
12R+H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)

−R2
µνρσ − g2L

(
Wα

µνL

)2 − g2R
(
Wα

µνR

)2 − g2
(
V m
µν

)2
]
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[
−R2

µνρσ −R2 + 2g2L
(
Wα

µνL

)2
+ 2g2R

(
Wα

µνR

)2
+ 2g2

(
V m
µν

)2

+ 2∇µΣ
.
cK
aI ∇µΣaI

.
cK +∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ +
1

6
R
(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)

+
∣∣∣H .

aI
.
cKH

.
cK

.

bJ
∣∣∣
2

+ 4H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+ 2Σ

.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL

]
(A.103)

Collecting terms we get

a4 =
1

2π2

∫
d4x

√
g

[
1

30

(
5R2 − 8R2

µν − 7R2
µνρσ

)
+ g2L

(
Wα

µνL

)2

+ g2R
(
Wα

µνR

)2
+ g2

(
V m
µν

)2
+∇µΣ

.
cK
aI ∇µΣaI

.
cK +

1

2
∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ

+
1

12
R
(
H .

aI
.
cKH

.
cK

.
aI +ΣcK

.
aI Σ

.
aI
cK +H

.
cK
aI H

aI
.
cK

)
+

1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣
2

+ 2H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
dL +Σ

.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL

]
(A.104)

Using the identities

R2
µνρσ = 2C2

µνρσ +
1

3
R2 −R∗R∗ (A.105)

R2
µν =

1

2
C2
µνρσ +

1

3
R2 − 1

2
R∗R∗ (A.106)

where R∗R∗ = 1
4ǫ

µνρσǫαβγδR
αβ

µν R γδ
ρσ .

1

30

(
5R2 − 8R2

µν − 7R2
µνρσ

)
= R2 1

30

(
5− 8

3
− 7

3

)
+

1

30
C2
µνρσ (−4− 14)+

1

30
R∗R∗ (4+7)

= −3

5
C2
µνρσ +

11

30
R∗R∗ (A.107)

Then a4 simplifies to

a4 =
1

2π2

∫
d4x

√
g

[
−3

5
C2
µνρσ +

11

30
R∗R∗ + g2L

(
Wα

µνL

)2
+ g2R

(
Wα

µνR

)2
+ g2

(
V m
µν

)2

+∇µΣ
.
cK
aI ∇µΣaI

.
cK +

1

2
∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ +
1

12
R
(
H .

aI
.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)

+
1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣
2

+ 2H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+Σ

.
cK
aI Σ

bJ
.
cKΣ

.

dL
bJ Σ

aI
.

dL

]
(A.108)
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