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As a rule, mean-field theories applied to a fluid that can undergo a transition from saturated vapor

at density qt to a liquid at density q‘ yield a van der Waals loop. For example, isotherms of the chemical

potential lðT; qÞ as a function of the density q at a fixed temperature T less than the critical temperature

Tc exhibit a maximum and a minimum. Metastable and unstable parts of the van der Waals loop can be

eliminated by the Maxwell construction. Van der Waals loops and the corresponding double minimum

potentials are mean-field artifacts. Simulations at fixed l ¼ lcoex for qt < q < q‘ yield a loop, but for

sufficiently large systems this loop does not resemble the van der Waals loop and reflects interfacial

effects on phase coexistence due to finite size effects. In contrast to the van der Waals loop, all parts of

the loop found in simulations are thermodynamically stable. The successive umbrella sampling

algorithm is described as a convenient tool for seeing these effects. It is shown that the maximum of the

loop is not the stability limit of a metastable vapor but signifies the droplet evaporation-condensation

transition. The descending part of the loop contains information on Tolman-like corrections to the

surface tension, rather than describing unstable states.VC 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4754020]

I. INTRODUCTION

Statistical mechanics provides a bridge from the micro-
scopic description of many-particle systems to their macro-
scopic properties.1,2 In particular, statistical mechanics aims
at computing the equation of state for a given interaction as a
function of thermodynamic state variables such as the tem-
perature T and the density q ¼ N=V, where N is the particle
number and V is the volume of the system.3,4

For most cases of interest no accurate methods exist to
perform this task by analytical calculations.3 The advent of
computer simulation methods such as Monte Carlo and mo-
lecular dynamics provide the toolkit needed to solve prob-
lems in classical statistical mechanics.3,5–7 However,
progress has often been hampered by the misconceptions
inherited from approximate theories, which have led some
scientists to misinterpret results from experiments and
simulations.

An archetypical example of such a misinterpretation
involves the van der Waals loop, which appears in the van
der Waals equation of fluids8 and is taught in the context of
the condensation of a saturated vapor. Similar loops appear
in more sophisticated theories of fluids such as density func-
tional theory and integral equation theories, and the reality
of van der Waals loops is taken as a well-established fact by
many researchers. Because computer simulations invariably
produce loops in isotherms of intensive thermodynamic vari-

ables as a function of density,9,10 the interpretation of such
loops as van der Waals loops is almost irresistible.
However, such an interpretation is incorrect. Computer sim-

ulations yield (apart from statistical errors that can be reduced
by running the simulation longer) exact results for finite size
systems.5–7 Rigorous arguments of statistical mechanics show
that in the thermodynamic limit N ! 1 and V ! 1 with
q ¼ N=V ¼ constant, the thermodynamic potential is a con-
vex function of the density q.1 This property is invoked in the
van der Waals context by making the ad hoc double tangent
construction, eliminating the free energy hump in between
the vapor density qt and the liquid density q‘ or, equivalently,
eliminating the metastable and unstable parts of the van der
Waals loop by the Maxwell construction.1,2 The exact results
from computer simulations should not give the metastable or
unstable parts of a chemical potential l versus q isotherm.
The entire loop is perfectly stable,9–14 including the sections
where ð@l=@qÞT is negative. The explanation for the occur-
rence of loops is that computer simulations are for systems
for which both N and V are finite, and the loop is due to finite
size effects.12–14 Consequently, the free energy hump that
inevitably results from a simulation in the canonical (N,V,T)
ensemble for qt < q < q‘ is a finite size effect as well.

12,13 It
results from interfacial effects related to two-phase coexis-
tence in the simulation box and hence is proportional to a sur-
face to volume ratio. For finite N and V, we will always
observe both a loop in the l versus q isotherm, and a hump in
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the thermodynamic potential in the two-phase coexistence
region. Both these features vanish only in the thermodynamic
limit, when the straight lines l ¼ lcoex of the Maxwell con-
struction and the double tangent construction emerge.

This consideration is not unique to the vapor-liquid transi-
tion, and can be generalized to any first-order transition,
because at such a transition we always have to traverse a
two-phase region between two coexisting phases when we
choose the density of an extensive thermodynamic variable
as a control parameter.1–3

The maximum of the lðqÞ isotherm observed in a simulation
should not be interpreted as a spinodal point separating metasta-
ble from unstable states,3 because all parts of the simulated iso-
therm are thermodynamically stable. How should we interpret
such a maximum? As we shall see, the answer is that this maxi-
mum at some density q1 is the signature of the droplet
evaporation-condensation transition.15–18 For qt < q1, the sys-
tem is in a homogeneous vapor state, and for q > q1 inhomoge-
neous two-phase configurations prevail where a droplet coexists
with the surrounding supersaturated gas. In the thermodynamic
limit, q1 ! qt and the height of the maximum vanishes.

The outline of the remainder of the paper is as follows: In
Sec. II, we recall themain properties of the van derWaals theory.
Section III describes the isotherms and the thermodynamic
potential for the truncated and shifted Lennard-Jones fluid. Sec-
tion IV discusses the information on interfacial free energies that
we can extract from such data, and Sec. V summarizes our
results and discusses related considerations for other phase tran-
sitions. The Appendix gives some details on the non-standard
parts of the simulation algorithms and their implementation.

II. SUMMARY OF VAN DER WAALS THEORY

The free energy density f � F=V per unit volume accord-
ing to the van der Waals theory can be written as1,2,4

fvdwðT;qÞ ¼ kBTq ln

�

k3q

1�q=ð3qcÞ

�

� kBTq�
9

8
kBTc

q2

qc
;

(1)

where k is the thermal de Broglie wavelength of the fluid
particles, and the molecular parameters have been eliminated
in favor of the critical density qc and the critical temperature
Tc. The pressure p ¼ �ð@F=@VÞN;T is thus

p ¼ qkBT

1� q=ð3qcÞ
� 9

8
kBTc

q2

qc
; (2)

and the chemical potential l becomes

l ¼
�

@F

@N

�

T;V

¼
�

@f

@q

�

T;V

¼ kBT ln
k3q

1� q=ð3qcÞ

þ kBTq=ð3qcÞ
1� q=ð3qcÞ

� 9

4
kBTc

q

qc
: (3)

The expansion of Eqs. (1)–(3) around qc, which is accu-
rate when T is close to Tc,

19 yields

fvdw ¼ fc þ lcðq� qcÞ þ
9

8
kBTcqc

�

T

Tc
� 1

��

q� qc
qc

�2

þqckBTc
9

64

�

q� qc
qc

�4

þ � � � ; (4)

where fc and lc are the free energy density and chemical
potential at the critical point. For the chemical potential and
the pressure, we obtain

l¼lcþkBTcqc
9

4

�

q�qc
qc

�

"

T

Tc
�1þ1

4

�

q�qc
qc

�2
#

; (5)

p� pc

pc

�

2� q� qc
qc

�

¼ 8

�

T

Tc
� 1

��

1þ q� qc
qc

�

þ 3

�

q� qc
qc

�3

; (6)

where pc ¼ 3qckBTc=8Þ.2 From Eqs. (5) and (6), we recognize
that both l� lc and p� pc contain terms in ðq� qcÞ3 for
T ¼ Tc and develop loops if we consider isotherms for T < Tc.
Because coexisting vapor (v) and liquid ð‘Þ phases must be

at the same chemical potential, we conclude that l
v
¼ l‘ ¼ lc

slightly below Tc, and hence the coexisting phases are obtained
by setting the square bracket in Eq. (5) equal to zero. We solve
for q and obtain the two solutions

qt�qcð1�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�T=Tc
p

Þ and q‘¼qcð1þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�T=Tc
p

Þ:
(7)

The critical exponent b is defined by q� qc / ð1� T=TcÞb,
and thus we obtain the mean-field result b ¼ 1=2. The extrema
of the loop, which define the spinodal points found from
@l=@qÞT ¼ 0, occur at

qst ¼ qc

�

1� 2
ffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� T=Tc
p

�

; (8a)

qs‘ ¼ qc

�

1þ 2
ffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� T=Tc
p

�

: (8b)

The values of these extrema are ðls � lcÞ=ðkBTcqcÞ
¼ 6

ffiffiffi

3
p

ð1� T=TcÞ3=2.
As an example, Fig. 1 shows the thermodynamic Landau

potential per unit volume, fLandau � f � lq, and the chemical
potential lðq; TÞ plotted versus q at T=Tc ¼ 0:78 as given by
the van der Waals theory

fLandau ¼ fvdwðq; TÞ � fc � ðq� qcÞlc: (9)

The “folklore” interpretation of the double-well in fvdw and
the loop in terms of metastable and unstable states is included,
even though there is no sound physical basis for such an inter-
pretation because thermodynamic functions are well defined
only in thermal equilibrium. Rigorous methods of statistical
mechanics yield for the region between q

v
and q‘ in Fig. 1 only

the physically correct horizontal lines for these curves.20

III. DOUBLE-WELL POTENTIALS AND THE LOOPS

IN ISOTHERMS OBSERVED IN SIMULATIONS:

WHAT DO THEY MEAN?

As an example, we consider a fluid whose particles interact
pairwise with the truncated and shifted Lennard-Jones potential

uðrÞ ¼ 4e

"

�

r

r

�12

�
�

r

r

�6

þ C

#

ðr � rcÞ

0; ðr > rcÞ
:

8

>

<

>

:

(10)

1100 Am. J. Phys., Vol. 80, No. 12, December 2012 Binder et al. 1100

Downloaded 29 May 2013 to 128.131.48.66. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



Here, r is the distance between the particles, e describes
the strength, and r describes the range of the potential. For
computational efficiency, the potential is cut off at r ¼ rc
but is shifted by the constant C to make it continuous at
r ¼ rc. In the following a small value for rc is chosen,
namely, twice the distance of the minimum of uðrÞ, that is,
rc ¼ 2:21=6r. In this case C ¼ 127=16384. For this choice,
the critical temperature has been estimated to be
Tc ¼ 0:999e=kB.

21 Only the untruncated Lennard-Jones
potential can be taken as an almost realistic description of
the interaction between atoms in rare gases such as neon, ar-
gon, and krypton, or between almost spherical molecules
such as methane. Although the value of Tc for the potential
in Eq. (10) is about 30% lower than the corresponding
value22 for the untruncated potential, if e and r are chosen
such that the experimentally observed critical temperature
and critical density for these systems coincide with Tc and
qc, Eq. (10) reproduces the thermal properties of these sys-
tems very well over a wide temperature range.23 Not only
are the (Ising-like) critical exponents24 nicely reproduced
but so are the temperature dependence of the coexistence
curve qtðTÞ and q‘ðTÞ in the ðq; TÞ plane, the saturation
pressure pcoexðTÞ, and the interfacial tension ct‘ðTÞ between
coexisting vapor and liquid.23 Thus, Eq. (10) is both a toy
model of statistical mechanics and a model that describes
the properties of some simple but real systems. In the fol-
lowing, we will choose units such that r ¼ 1.

We now discuss a Monte Carlo simulation of the model
in the grand canonical ðlVTÞ ensemble and use a cubic
L� L� L box with periodic boundary conditions in all direc-
tions to avoid surface effects. The simulation samples the
probability distribution PlVTðNÞ of observing particle number
N in the system. We shall show that rich information on phase
coexistence can be deduced from this basic quantity.

The basic steps of the grand canonical Monte Carlo algo-
rithm7 are straightforwardly implemented. Assume the sys-
tem is in a state with N particles and ~X ¼ ð~x1;…;~xNÞ
represents the coordinates of the particles in the simulation
box. We first generate a pseudo-random number to decide
whether an insertion step, N ! N þ 1, or a deletion step,
N ! N � 1, should be attempted. If it is an insertion step, a
random position~xNþ1 for the new particle is chosen; if it is a
deletion step, the index i of the particle to be considered for
deletion is randomly assigned. In this way, a trial configura-
tion ~X

0
is generated, and the program computes the energy

difference DU ¼ Uð~X0Þ � Uð~XÞ between the trial configuration
and the original configuration ~X, where Uð~XÞ ¼ P

i<j uðrijÞ. In
practice, most pairs (i,j) are not affected by the change ~X ! ~X

0
,

and thus we need to check only the immediate neighborhood

of the particle, that is, inserted or deleted. At this point, the

advantage of choosing a short-range truncated potential as in

Eq. (10) rather than the full Lennard-Jones potential should

be clear. The details of the actual implementation of this step

(such as Verlet neighbor lists and cell lists) are well docu-

mented7,25 and will not be described here. Then, the Metrop-

olis test is made where a random number r equally

distributed in the unit interval [0,1] is drawn and compared

with the acceptance probability WN!Nþ1 or WN!N�1, respec-

tively. These acceptance probabilities are

WN!Nþ1 ¼ min 1;
V

ðN þ 1Þk3
exp½�ðDU � lÞ=kBT�

� �

;

(11a)

WN!N�1 ¼ min 1;
Nk3

V
exp½ðDU � lÞ=kBT�

� �

: (11b)

If r is less than the acceptance probability, the trial config-
uration is accepted; otherwise it is rejected, and the old con-
figuration is counted once more for any averaging. This
Monte Carlo move is repeated many times.
If we implement this standard grand canonical algorithm,

for l close to lcoexðTÞ where the vapor and liquid phases
can coexist, we find that PlVTðNÞ is always strongly peaked
near hNilVT such that q ¼ hNilVT=V is either q

v
or q‘. It is

not straightforward to sample the full distribution PlVNðTÞ
at all intermediate values of N corresponding to densities q
in the two-phase coexistence region, q

v
< q < q‘. We wish

to construct a free energy function that is the analog of
VfLandauðq; TÞ in Eq. (9) but is exact for the chosen volume
given by

FðN;V; TÞ ¼ �kBT lnPlVTðNÞ þ lN þ F0; (12)

where F0 is an unimportant constant. To find F(N,V,T),
we need to bias the sampling to force the system into the
two-phase coexistence region. This biasing can be done
conveniently by a method known as successive umbrella
sampling.26

The idea of this method is to subdivide the density range
into several windows, which are sampled consecutively or in
parallel. For instance, a window may be allowed to contain 10
or 11 particles, and we count how often the state with 11 par-
ticles is visited in comparison with the state that contains 10
particles: PlVTð11Þ=PlVTð10Þ. Grand canonical insertion or

Fig. 1. Plot of the Landau potential fLandauðq; TÞ and the chemical potential

lðq;TÞ versus density, as given by Eqs. (5) and (6).
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deletion moves that result in 9 or 12 particles are rejected and
the previous state is counted instead. The complete probability
distribution can be obtained by multiplying these ratios

PðnÞ
Pð0Þ ¼

Pð1Þ
Pð0Þ

Pð2Þ
Pð1Þ � � �

PðnÞ
Pðn� 1Þ : (13)

In practice, we take the logarithm of both sides to avoid
large numbers, which may cause problems due to limited nu-
merical accuracy

ln
PðnÞ
Pð0Þ

� �

¼ ln
Pð1Þ
Pð0Þ

� �

þ ln
Pð2Þ
Pð1Þ

� �

þ � � �

þ ln
PðnÞ

Pðn� 1Þ

� �

: (14)

If we multiply Eq. (14) by 1/(kBT) and divide it by the vol-
ume of the simulation box, we directly obtain the free energy
function.

Now, it becomes apparent why a subdivision into win-
dows is advantageous. Instead of sampling the entire range
of densities at once, for which we would need to overcome a
large free energy barrier, only small differences in the free
energy within a window are sampled. Window sizes may be
increased, but restricting the window to one size keeps the
free energy differences small within a window. To further
improve the accuracy, the algorithm may be combined with
weighting schemes as described in Ref. 26.

We note that to obtain PlVTðNÞ for l close to lcoexðTÞ, it
is not necessary to make many independent runs, and we can
apply standard histogram reweighting methods27 to estimate
Pl0VTðNÞ for a l0 close to l as follows:

Pl0VTðNÞ ¼ exp½ðl0 � lÞN=kBT�PlVTðNÞ: (15)

This histogram reweighting method is very useful for finding
the value lcoexðTÞ which is unknown a priori. Here, we use the
equal weight rule,28,29 which states that for l ¼ lcoexðTÞ the
areas beneath the peak representing the vapor (with N � q

v
VÞ

and the peak representing the liquid (with N � q‘VÞ must be
equal. Although this rule was originally backed only by rough
phenomenological arguments,28 it has been rigorously justi-
fied.29 Equation (15) is also useful for constructing the deriva-
tive of Eq. (12), by which we define the chemical potential
function ~lðNÞ.12

~lðNÞ�
�

@FðN;V;TÞ
@N

�

T;V

¼l�kBT

�

@ lnPlVTðNÞ
@N

�

T;V

:

(16)

By using these methods, we can obtain the simulation
counterpart to Fig. 1, and plot fLðT; qÞ ¼ ½FðN;V; TÞ
�FðVq‘;V; TÞ�=V and DlLðT; qÞ ¼ ~lðNÞ � lcoexðTÞ versus
q as in Fig. 2. If this calculation could be done exactly in the
thermodynamic limit, F(N,V,T) would be the standard Helm-
holtz free energy, with a horizontal line between q

v
and ql.

From Fig. 2, we might be tempted to conclude that the
effective potential fLðT; qÞ has a double well shape, irrespec-
tive of how large L is chosen, and similarly DlLðT; qÞ always
has a loop, overshooting DlLðT; qÞ ¼ 0 (corresponding to
l ¼ lcoexðTÞ on the vapor side), and undershooting it on the
liquid side.

We note that finite size effects are negligibly small for den-
sities q < q

v
and q > q‘ but are very pronounced in the two-

phase coexistence region. We find that for small L the shape
of fLðT; qÞ and DlLðT; qÞ are smooth, qualitatively resem-
bling their van der Waals counterparts, but rounded kinks are
visible for larger L, which become sharper with increasing L,
indicating that singularities develop as L ! 1. Another re-
markable feature is that for sufficiently large L, fLðT; qÞ and
DlLðT; qÞ develop strictly horizontal parts for densities near
the density of the rectilinear diameter, qd ¼ ðq

v
þ q‘Þ=2. The

height of the plateau in Fig. 2(a) scales as fLðT; qdÞ / 1=L,
which implies that in the thermodynamic limit the system con-

verges to the double-tangent construction, as it should. Similarly,

DlLðT; qdÞ is independent of L such that DlLðT; qdÞ ¼ 0 for all

L, provided L is not too small. The range of densities q around

qd over which the plateau extends increases slowly with increas-

ing L, and the features seen to the right and to the left of the pla-

teau decrease in magnitude when L increases, jDlLðT; qÞj ! 0

as L ! 1 for all q
v
� q � q‘. Thus, the simulation results con-

verge to the results that are obtained from general and rigorous

Fig. 2. Plot of the (a) free energy function fLðT;qÞ=kBT and (b) the chemical

potential difference DlLðT;qÞ=kBT versus the density q for temperature

T ¼ 0:78Tc, as obtained from successive umbrella sampling simulations of

the truncated Lennard-Jones model, Eq. (9). The curves are for different val-

ues of L and require several days of simulation time. For reasons of clarity,

only data for L¼ 11.3, 15.8, 22.5 are shown here. Data for further system

sizes can be found in Refs. 13 and 14.
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Fig. 3. Plot of the chemical potential difference DlLðT; qÞ=kBT versus the density q for T ¼ 0:78Tc and L¼ 20.3, indicating the various regimes of two-phase

coexistence and the (rounded) transitions between them. Homogeneous vapor occurs for q < q1. For q1 < q < q2 a spherical droplet coexists with the sur-

rounding vapor in the simulation box. The transition at q1 is the droplet evaporation/condensation transition. For q2 < q < q3 a cylindrical droplet (connected

to itself by periodic boundary conditions) coexists with the surrounding vapor, and for q3 < q < q4 a liquid slab coexists with the vapor in such a way that two

planar interfaces separating the liquid and vapor are also connected to themselves by periodic boundary conditions. For q > qd the roles of vapor and liquid

are interchanged. For q4 < q < q5, a cylindrical vapor bubble coexists with the surrounding fluid. For q5 < q6, a spherical vapor bubble coexists with the sur-

rounding fluid, and for q > q6 there is a homogeneous fluid.

Fig. 4. Snapshots of a (a) homogeneous gas, (b) spherical droplet, and (c) a cylindrical droplet and (d) slab configuration. Also shown is a (e) cylindrical bub-

ble, a (f) spherical bubble, and the (g) homogeneous liquid phase for L¼ 15.8 and T ¼ 0:78Tc. The densities shown are q ¼ 0:02; 0:05; 0:17; 0:37; 0:58; 0:66,
and 0.76 for (a)–(g), respectively.
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arguments about phase coexistence which are valid in the ther-

modynamic limit,1

fL!1ðT; qÞ ¼ 0 and DlL!1ðT; qÞ ¼ 0 ðq
v
� q � q‘Þ;

(17)

although the convergence to this limiting behavior is slow.
In any case, it is clear that computer simulations do not
require any ad hoc recipes such as the Maxwell construction
to cut-off the loop in the van der Waals isotherm in Fig. 1,
whereas mean-field type theories do.

The interpretation of the structure revealed by the Landau
potential fLðT; qÞ in Fig. 2(a) and the chemical potential iso-
therms DlLðT; qÞ in Fig. 2(b) is clarified in Figs. 3 and 4,
where in the thermodynamic limit, the strictly horizontal
parts described by Eq. (17) are simply two-phase coexistence
regions, described by the lever rule.1 Thus, a state at density
q with q

v
< q < q‘ has a volume fraction x of liquid and a

volume fraction 1� x of vapor, with

x ¼ ðq� q
v
Þ=ðq‘ � q

v
Þ: (18)

In a macroscopic system, where surface effects due to
boundaries (such as the walls of a container) are usually not
considered, the shape of the coexisting macroscopic domains
of vapor and liquid are disregarded. This neglect is not
appropriate for a computer simulation, for which the system
is finite. Although effects due to container walls are elimi-
nated by the periodic boundaries, the effect of the interfacial
free energy c‘vðTÞ between the coexisting vapor and liquid is
important and controls the shape of the coexisting domains,
such that at each q; fLðT; qÞ has a minimum.

Figure 3 shows the results, using the isotherm for L¼ 20.3 as
an example. Although for L ! 1 phase coexistence according
to the lever rule extends over the full regime q

v
< q < q‘, as

0 < x < 1, this phase coexistence does not hold for finite sys-
tems. Homogeneous vapor occurs for q < q1 with q1 > q

v
,

and homogeneous liquid occurs for q > q6, with q6 < q‘.
States that would be metastable in the thermodynamic limit are
stable in finite systems, because the relative free energy cost of
forming interfaces for q

v
< q < q1 and q6 < q < q‘ is still

too unfavorable. There are no metastable states in the thermo-
dynamic limit because the system would nucleate immediately.
The first appearance of a droplet at q � q1 (or a bubble at
q � q6) occurs via a rounded discontinuous transition18 called
the droplet (bubble) evaporation/condensation transition, which
we shall not discuss in detail here. Here we only mention that
in the thermodynamic limit this transition converges to bulk
coexistence.

In three dimensions, we expect the power laws12,18

q1 � q
v
/ L�3=4 and q‘ � q6 / L�3=4: (19)

Some evidence in favor of Eq. (19) has been obtained
recently by Schrader et al.12 Because the slope of DlLðT; qÞ=
kBT for T not too close to Tc at q ¼ q

v
or q ¼ q‘ is of order

unity, we can conclude that jDlLðT; qÞj=kBT at q1 and q6 has
extrema whose height (or depth) also scales as jDlLðT; qÞj
=kBT / L�3=4. Hence, it is understandable that the structure
seen in Fig. 2 vanishes slowly as L increases.

In any case, it is extremely misleading to interpret the
extrema of the isotherms DlLðT; qÞ at q1 and q6 as spinodal
points in the sense of the van der Waals loop. We emphasize
again that all parts of the loop in Figs. 2 and 3 are fully sta-

ble, and the enhancement of the stability region of vapor (for
q
v
< q < q1Þ and liquid (for q6 < q < q‘Þ means that in fi-

nite systems the stability of homogeneous states is enhanced
in comparison with phase-separated ones. This consideration
may have interesting applications in the context of nanosys-
tems, because in such systems the effective width of a two-
phase coexistence region is q1 < q < q6 and not q

v
< q

< q‘. We note that for such applications it is essential to con-
sider the actual physical boundary conditions rather than peri-
odic ones. Although many qualitative aspects of our discussion
can be carried over to this setting (for example, for walls with
conditions of partial wetting sphere-cap shaped droplets
are found rather than full spherical ones30,31), an exhaus-
tive study of this problem remains to be done.
Figure 4 presents snapshots of the two-phase states that

are observed in a simulation. Due to the small size of the
bubbles and droplets, these objects undergo strong statistical
fluctuations in their size and in their shape. At the transition
densities q1; q6; …, we observe fluctuations where the droplet
(or bubble) completely disappears for a while and then reap-
pears again. Similarly, at the other transition densities ðq2; q5)
there are fluctuations that carry the system from a spherical to
a cylindrical shape of the interface or vice versa; near q3 and
q4 fluctuations from cylindrical to flat interfaces and back
occur. These fluctuations are rare, because free energy barriers
in phase space need to be overcome, and if the simulation runs
are too short, the data as shown in Fig. 2 are plagued by hyster-
esis effects (see Ref. 16 for an example of this problem in the
context of the lattice gas model). As a result, a quantitative
study of finite size rounding of all these various transitions at
q1; q2;… remains a challenge for the future. Finite size
effects on critical phenomena as well as first-order transitions
between bulk phases are much better understood.6

For L ! 1 the volume fraction x at which the droplet to
cylinder or cylinder to slab-transition occurs can be found by
considering the relative cost of the surface free energies as a
function of density. For L ! 1 the surface free energy cost
of spheres of radius R is 4pR2c

v‘, for cylinders of radius R it
is 2pRLc

v‘, and for slabs it is 2L2c
v‘ (in this case, the total

interfacial area is 2L2 because there are two planar interfa-
ces). We have made use of the fact that for R and L ! 1 the
fluctuations in the shape of the domains can be neglected, as
well as the curvature dependence of c

v‘.
14 As a consequence,

we find that the volume fraction x2 that corresponds to q2
(the droplet to cylinder transition) becomes11

x2 ¼ 4p=81 � 0:155; (20)

and x3 (corresponding to q3, the cylinder to slab transition) is
11

x3 ¼ 1=p � 0318: (21)

We can check from Fig. 2 that the rounded kink correspond-
ing to the cylinder-slab transition is already close to the latter
estimate, and the droplet to cylinder transition has not yet con-
verged to a unique location. In the limit L ! 1 there would
just be horizontal straight lines extending from q

v
to ql.

IV. WHAT CAN WE LEARN ABOUT INTERFACIAL

TENSIONS?

So far we have argued that fLðT; qÞ and DlLðT; qÞ as
shown in Fig. 2 do not contain information on metastable
and unstable homogeneous states of the fluid as predicted by
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the van der Waals theory, but rather contain interfacial con-
tributions corresponding to the various patterns of phase
coexistence as illustrated in Figs. 3 and 4. Now, we discuss
what can be learned from a quantitative study of these data
about the underlying interfacial phenomena.

The simplest case is the slab configuration where the pla-
teau of fLðT; qÞ is strictly horizontal. The latter means that a
variation of q causes only a change in the relative amounts
of the two phases, but the total interfacial area does not
change. If the two interfaces can be treated as independent of
each other rather than interacting, we can conclude that

fLðT;qÞ ¼ ð2=LÞcðLÞ
v‘ ðTÞ and hence c

ðLÞ
v‘ ¼ LfLðT;qÞ=2;

(22)

where c
ðLÞ
v‘ is the surface tension. (Remember that fLðT; qÞ is

normalized by the volume.) Figure 5 illustrates Eq. (22) for
the truncated Lennard-Jones potential. We note that there
must exist a systematic correction to Eq. (22), because the
line that can be fitted to the data when plotted versus 1/L is
not horizontal, but has a nonzero slope. This effect was
found in the first application of this method to the two-
dimensional lattice gas,32 for which the interfacial tension is
known from Onsager’s exact solution.33 Hence, this model
was used as a test of this approach. The common interpreta-
tion is that the periodic boundary condition (at length scale
L) cuts off the long wavelength part of the interfacial fluctua-
tions (corresponding to capillary waves).34 Therefore, an
extrapolation of the results to 1=L ! 0 is needed. Also note
the increase of the scatter between successive estimates as L
increases, which indicates the difficulty of accurately sam-
pling the functions fLðT; qÞ and DlLðT; qÞ near the sphere-
cylinder and cylinder-slab transitions. Any systematic error
due to hysteresis might lead to a slight misjudgment of the
location of these transitions. An error in the location of such
a transition causes a systematic over- or under-estimation of
the height of the flat plateau in Fig. 2(a). In principle, this
error can be reduced by a substantial increase in computa-
tional effort. However, the data of Fig. 5 show that current
computer resources are still a significant limitation if we
wish to obtain a relative estimate of c

v‘ðTÞ to better than 1%.

Although the usefulness of fLðT; qÞ to extract estimates of
the interfacial tension of planar interfaces has been recog-
nized for a long time,32 and this technique is widely used for
various systems,35 it has been understood only recently how
we can utilize the observation of phase coexistence between
droplet and vapor (or bubbles and liquid) to obtain informa-
tion on the interfacial tension of curved interfaces.12–14 For a
spherical droplet (or bubble), we expect a systematic varia-
tion as follows. (R is the radius of the droplet or bubble, and
we consider the limit R ! 1.)

ct‘ðT;RÞ ¼ ct‘ðT;1Þ=½1þ 2dðTÞ=Rþ 2½‘ðTÞ=R�2�;
(23)

where ct‘ðT;1Þ ¼ t
ð1Þ
t‘ ðTÞ, the interfacial tension of a pla-

nar interface, and the leading correction 2dðTÞ=R involves
the Tolman length.36 The magnitude and even the sign
of this length have been controversial.13,14,35 Because for
R ! 1 we can go from a droplet to a bubble via a change of
sign of the radius of curvature of the interface separating the
vapor and liquid, we can conclude that the sign of the leading
correction to ct‘ðT;RÞ for droplets must be opposite to that
of bubbles. Another interesting result is that the temperature
dependence of dðTÞ should be weak,37 and the length ‘ðTÞ
appearing in the subleading correction scales as the bulk cor-
relation length.38,39 Thus, for many cases such as nucleation
theory3 for which R does not exceed the correlation length
by more than a factor of 10, it is actually the term 2½‘ðTÞ=R�2
that yields the dominant curvature correction.38,39

The key observation that allows us to study Eq. (23) is that
the presence of an equilibrium loop in DlLðq; TÞ (see Fig. 2)
for a finite system implies that for a range of chemical poten-
tials there are three physically distinct systems at different
densities at the same chemical potential (see Fig. 6). Although
the density is inhomogeneous, we can explicitly verify that

Fig. 5. The normalized surface tension ct‘r
2=kBT determined according to

Eq. (22) from the data of Fig. 2 plotted versus r=L. A straight line fit (as

shown) yields ct‘r
2=kBT ¼ 0:37560:002.

Fig. 6. Illustration of the numerical procedure for determining the density

triplets qa, q, and qb for a given value of L. If we select the density q indi-

cated by the vertical line near q ¼ 0:1, then by drawing the horizontal line

as shown, we can read off the homogeneous phase densities from the plot.

The three solutions ðqa; q; qbÞ ¼ ð0:0366; 0:1126; 0:7241) are highlighted

by vertical lines. The state at density qa is a homogeneous vapor, and the

state at density qb is a homogeneous liquid. The state at overall density q is

a spherical droplet coexisting with vapor. From fLðT;qÞ shown in the lower

part of the figure we can determine the free energies of the corresponding

systems.
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the chemical potential is homogeneous (as has been tested ex-
plicitly in Ref. 12 by applying the Widom test particle
method40). For example, consider a system with a droplet
whose overall density is q ¼ N=V. If we consider a subbox of
the system well inside the vapor region and outside the tail of
the interfacial density profile of the droplet, we can conclude
that the density in this subbox must be the density qa (see
Fig. 6) equal to the density of a uniform vapor. The vapor in
the subbox is at the same chemical potential as that of the
droplet, which is the same as that of the whole system. Hence,
all physical properties of the vapor outside a droplet and of a
homogeneous vapor must be identical. For large enough drop-
lets, which reach a constant density in their interior, we can
similarly conclude that the density in the droplet center corre-
sponds to the liquid at density qb.

Because the free energy of a system is additive with
respect to contributions from its subsystems, we can write
(Va and Vb are subvolumes at phases a and b)

fLðT; qÞ ¼
Va

V
fLðT; qaÞ þ

Vb

V
fLðT; qbÞ þ f excL ðT; qÞ;

(24)

where V ¼ Va þ Vb, and f excL ðT; qÞ is the excess contribu-
tion related to the presence of an interface in the inho-
mogeneous system at density q (see Fig. 6). Similarly,
we can use the fact that particle numbers are additive,
Na ¼ Vaqa and Nb ¼ Vbqb in the inhomogeneous system
to write

qðT;DlÞ ¼ qaðT;DlÞ
Va

V
þ qbðT;DlÞ

Vb

V
þ Nexc=V;

(25)

Equation (25) indicates there can be an excess Nexc of par-
ticle number associated with the existence of the interface
such that N ¼ Na þ Nb þ Nexc. By definition, there is no
excess volume associated with the interface, which is just a
dividing surface.34 If Vb (for a droplet, as considered in
Fig. 6) is known, it is straightforward to obtain the appropri-
ate radius R from Vb ¼ 4pR3=3.

One issue is where should we put the spherical dividing
surface between the two phases a and b to find the volume
Vb. If we consider the definition

34

Nexc ¼ 0 ðequimolar dividing surfaceÞ; (26)

a knowledge of q, qa, and qb from Fig. 6 in Eq. (25) readily

yields Va � 4pR3
e

3
and Vb ¼ V � Va (where the volume V ¼ L3

is known), and hence the resulting equimolar radius Re also is

known. By using these results, together with fLðT; qaÞ;
fLðT; qbÞ, and fLðT; qÞ, which all can be read from Fig. 6, we

can also obtain f excL ðT; qÞ. If we attribute the latter to the effec-

tive surface tension cefft‘ ðT;ReÞ ¼ f excL ðT; qÞ=ð4pR2
eÞ, we obtain

a surface tension depending on Re, if the equimolar dividing

surface is chosen to define it. This simple choice has been used

in Refs. 12 and 13.
Physically, however, the most meaningful choice of a

Gibbs dividing surface is not the equimolar surface
defined by Nexc ¼ 0, but the surface of tension,34 which is
defined as the dividing surface for which the correspond-
ing interface has the minimum possible surface tension.

For a general partitioning V ¼ Va þ Vb with dividing sur-
face 4pR2 the interface tension ct‘ðT;RÞ resulting from
Eq. (24) is

ct‘ðT;RÞ ¼ ½Vf excL ðT;RÞ � DlðT; qÞNexc�=4pR2: (27)

As an example, Fig. 7 shows the variation of ct‘ðT;RÞ
with R for the parameters used in Fig. 6. We see that
ct‘ðT;RÞ has a minimum at Rs � 5:5839 slightly smaller
than Re � 6:0431. It is the value of the surface tension at the
surface of tension that should be used when considering
nucleation phenomena.41

We can define an effective (radius-dependent) Tolman
length as34

dðRs; TÞ ¼ ReðTÞ � RsðTÞ: (28)

However, as a caveat we mention that in the present
example dðRs; TÞ is still positive (d � 0:45 for Rs � 5:58Þ,
while there is evidence that for Rs ! 1 the limiting value
d � limRs!1 dðRs; TÞ is negative, d � �0:1.14 In other
words, the effective Tolman length initially has positive val-
ues and systematically decreases. It changes sign for a very
large value of Rs which is difficult to access even by simula-
tions on a supercomputer.
Figure 8 summarizes what can be said currently on the

curvature dependent vapor-liquid interfacial tension
ct‘ðT;RsÞ of both droplets and bubbles. The data are nor-
malized by the interface tension of a planar interface. If
the widely used capillarity approximation of nucleation
theory,3,41 which completely neglects the curvature-
dependence of the surface tension, were valid, all the data
should collapse onto a horizontal straight line (at unity).
The data clearly show that the capillarity approximation is
inaccurate. Errors are in the range from about 5 to 25% for
droplets or bubbles with radii of a few r. (At our choice of
q‘ a radius Rs ¼ 5r corresponds to a droplet with about
Nb ¼ 372, and the error is about 7%.) Because c3t‘ðT;RsÞ
enters into the argument of an exponential proportional to
the nucleation barrier, accurate estimates of ct‘ðT;RsÞ are
necessary for a quantitatively reliable discussion of nuclea-
tion barriers.

Fig. 7. Plot of ct‘ðT;RÞ versus R for the state T ¼ 0:78Tc, q ¼ 0:1126 shown

in Fig. 6 using Eqs. (24)–(27) with L¼ 20.3. The equimolar radius Re ¼ 6:0435
is shown as a vertical dotted line. The location of the radius Rs ¼ 5:5839 of the

surface of tension is shown by a full vertical line. From Ref. 14.
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Figure 8 also shows that the deviations for bubbles are
larger than for droplets. Some residual dependence of the
data on the value of L is also evident. From Fig. 2, it is clear
that some residual finite size effects are inevitable for den-
sities close to where the droplet evaporation-condensation
transition or the transition of the droplet from spherical to
cylindrical shape occur. For small L, these effects become
more prominent. The size dependence in Fig. 8 is not quite
regular, but in view of the size effects seen in Fig. 5 for the
surface tension of flat interfaces, this irregularity probably is
spurious and is due to insufficient statistics. Some systematic
size effects may still be hidden in the data because we use
averages for estimating Dl and disregard the strong (and for
small systems non-Gaussian) fluctuations of this variable
completely in our analysis. Nevertheless, the basic features
of loops in isotherms beyond van der Waals are understood,
and simulations provide tools for rich insights into interfacial
phenomena.

V. CONCLUDING REMARKS

We have discussed the meaning of loops in isotherms of
the chemical potential as a function of density for vapor to
liquid transitions with the help of grand canonical Monte
Carlo simulations and the successive umbrella sampling
algorithm. In principle, the same questions could be asked
using canonical Monte Carlo or molecular dynamics simula-
tions, and sampling the chemical potential by the Widom
particle insertion method. However, because conservation of
the density causes very slow relaxation of long wavelength
density fluctuations, the present approach is computationally
more efficient.

We have described various pieces of evidence which show
that the similarity of these l versus q loops with the loops
predicted by the van der Waals equation and related mean-
field theories is only superficial. Although the loop in the lat-
ter case describes metastable and unstable homogeneous
states for densities inside of the coexistence curve, the actual
loop seen in simulations reflects finite size effects, and all
parts of it are thermodynamically stable. For large enough

simulation volumes, we can observe various distinct regimes
of various types of two-phase equilibria, with well character-
ized transitions between them (such as the droplet evapora-
tion/condensation transition, transitions between spherical
and cylindrical droplets (or bubbles), and transitions from
cylindrical droplets (or bubbles) to slab-like states.) The use-
fulness of this interpretation for deducing information on the
surface tension of flat and curved interfaces was demon-
strated, and open problems relating to accuracy were briefly
mentioned.
Studying a first-order phase phase transition using the

density of an extensive thermodynamic variable as a control
parameter is not restricted to the vapor-liquid transition or
the closely related problem of demixing in binary fluids or
solids. A classic related problem is the order-disorder tran-
sition, using, for example, the internal energy density as a
control variable rather than the particle number density. In
this case, we would observe loops of the inverse tempera-
ture as a function of energy density. A complication is the
degeneracy of the ordered phase. For example, there is one
disordered phase in the q-state Potts model, but the ordered
phase is q-fold degenerate. If we apply an equal area rule to
the distribution of the energy density, there are corrections
of order ln q=V to the inverse temperature where the transi-
tion occurs in the thermodynamic limit, and the plateau cor-
responding to slab configurations is not flat.42 To estimate
interfacial free energies, it is better to focus on the inverse
temperature where the plateau due to the two interfaces
becomes strictly horizontal. However, obtaining informa-
tion on the free energy of curved interfaces is still an open
problem.
Even more difficult is the extension of these considerations

to liquid-solid transitions, for which the description of the
order and its degeneracy is much more complex than for the
Potts model, and sampling the free energy hump throughout
the two-phase-coexistence region is much more difficult.
Although loops of inverse temperature versus energy are fre-
quently observed in simulations of various systems, extracting
useful information from these loops in most cases is difficult.
We have argued against considering the location of the

extrema of the loops in the isotherm as valid estimates for
the stability limits of metastable phases because these
extrema are due to a finite size effect of the droplet/bubble
evaporation/condensation transition. Metastable states that
are long-lived over some parameter range are very common
in nature. What is a valid estimate for the limit of metastabil-
ity? Our answer is that metastability is a valid concept only
in a kinetic context,3 and we need to consider the decay of a
metastable state in time via nucleation events. Because the
lifetime of metastable states becomes too short to observe if
the nucleation barrier is of order DF=kBT � 10 or less, our
results for the surface tensions of droplets and bubbles in
Fig. 8 can be used to provide estimates of nucleation bar-
riers,12–14 at least for vapor-liquid systems.
A double well free energy function, as described in

Sec. II, is the starting point of all the renormalization group
treatments of critical phenomena.43 Do our results imply a
critique of such concepts? The answer is no. The idea is that
near a critical point long-range spatial correlations of the
order parameter density develop. For a fluid, we can partition
the system into cells of linear dimension ‘ such that ‘ is
much larger than r, but smaller than the correlation length n.
Hence, there is no possibility for phase separation inside a
cell, and a coarse-grained free energy density describing

Fig. 8. Results for the reduced spherical interface tension ct‘ðT;RsÞðTÞ ver-
sus 1=Rs at T ¼ 0:78Tc, and five values of the linear dimension L. The lower

data set refers to bubbles, the upper data set to droplets. The thin lines illus-

trate the results that we would obtain if the analysis based on Fig. 6 is carried

beyond its presumed range of validity. From Ref. 14.
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cells of linear dimension ‘ with a homogeneous density q
inside the cell throughout the regime q

v
� q � q‘ makes

sense. Our study pertains to the opposite limit, L 	 n. A
range r 
 ‘ < n exists only in the immediate vicinity of
critical points.44

VI. SUGGESTED PROBLEM

For readers who have had some experience with Monte
Carlo simulations of off-lattice models of fluids, we give a
suggestion for homework.

Use the Metropolis algorithm to do a canonical Monte
Carlo simulation of the truncated Lennard-Jones potential
in Eq. (10). Consider a system with L ¼ 15:8r and periodic
boundary conditions. Choose T ¼ 0:78�=kB and simulate a
system with N¼ 230 particles using local particle displace-
ments. Let the system evolve for some time and visualize
the resulting configuration. What is the final configuration
if you use 1500 particles instead? The two densities are
chosen so that a liquid droplet is obtained for the first one
and a slab configuration is obtained for the higher density
system as indicated in Figs. 3 and 4. The goal of this exer-
cise is to learn about the finite-size transition, which can be
used to determine the surface tension and free energies of
droplets.
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APPENDIX: THE METROPOLIS AND SUCCESSIVE

UMBRELLA SAMPLING ALGORITHMS

The Metropolis algorithm
Generate a starting configuration.
Repeat:

1. Canonical Monte Carlo: displace particle at random.
2. Grand canonical Monte Carlo: attempt the insertion or de-

letion of a particle with equal probability.
3. Compute the energy difference between the trial and old

configuration DE ¼ Etrial � Eold.
4. Compute the transition probability: canonical Monte

Carlo: W ¼ expð�bDEÞ, where b¼ 1/(kBT)
5. grand canonical Monte Carlo: W given by Eq. (11).
6. Generate a random number r in [0,1].
7. If r < W, accept the trial change; else reject it.
8. Increase the histogram for the observable Oð~XÞ.

Successive umbrella sampling
Set up a configuration in first density window. For each

density window ½N;N þ 1�:
Repeat:

1. Grand canonical insertion or deletion attempt. N ! N0.
2. If N0 is outside the window, reject the trial move and take

HðNÞ ¼ HðNÞ þ 1; else accept or reject the move accord-
ing to the Metropolis criterion. If the trial move is accepted,
HðN0Þ ¼ HðN0Þ þ 1; otherwise, HðNÞ ¼ HðNÞ þ 1.

3. Use the ratio of histograms HðN þ 1Þ=HðNÞ to compute
PðN þ 1Þ=PðNÞ.
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