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Abstract. User-contributed messages on social media sites such as Twit-
ter have emerged as powerful, real-time means of information sharing on
the Web. These short messages tend to reflect a variety of events in real
time, earlier than other social media sites such as Flickr or YouTube,
making Twitter particularly well suited as a source of real-time event
content. In this paper, we explore approaches for analyzing the stream
of Twitter messages to distinguish between messages about real-world
events and non-event messages. Our approach relies on a rich family of
aggregate statistics of topically similar message clusters, including tem-
poral, social, topical, and Twitter-centric features. Our large-scale exper-
iments over millions of Twitter messages show the effectiveness of our
approach for surfacing real-world event content on Twitter.

1 Introduction

Social media sites (e.g., Twitter, Facebook, and YouTube) have emerged as pow-
erful means of communication for people looking to share and exchange infor-
mation on a wide variety of real-world events. These events range from popular,
widely known ones (e.g., a concert by a popular music band) to smaller scale,
local events (e.g., a local social gathering, a protest, or an accident). Short mes-
sages posted on social media sites such as Twitter can typically reflect these
events as they happen. For this reason, the content of such social media sites
is particularly useful for real-time identification of real-world events and their
associated user-contributed messages, which is the problem that we address in
this paper.

Twitter messages reflect useful event information for a variety of events of
different types and scale. These event messages can provide a set of unique
perspectives, regardless of the event type [9, 23], reflecting the points of view
of users who are interested or even participate in an event. In particular, for
unplanned events (e.g., the Iran election protests, earthquakes), Twitter users
sometimes spread news prior to the traditional news media [13, 20]. Even for
planned events (e.g., the 2010 Apple Developers conference), Twitter users often
post messages in anticipation of the event, which can lead to early identification
of interest in these events. Additionally, Twitter users often post information on
local, community-specific events (e.g., a local choir concert), where traditional
news coverage is low or nonexistent.
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Identifying events in real time on Twitter is a challenging problem, due to
the heterogeneity and immense scale of the data. Twitter users post messages
with a variety of content types, including personal updates and various bits
of information [17]. While much of the content on Twitter is not related to
any particular real-world event, informative event messages nevertheless abound.
As an additional challenge, Twitter messages, by design, contain little textual
information, and often exhibit low quality (e.g., with typos and ungrammatical
sentences).

Several research efforts have focused on identifying events in social media in
general, and on Twitter in particular [3, 7, 20, 21]. Event identification in social
media sites such as Flickr is often performed retrospectively [7], finding patterns
in the data after an event has occurred rather than identifying the event as soon
as its associated content is posted. Recent work on Twitter has started to process
data as a stream, as it is produced, but has mainly focused on identifying events
of a particular type (e.g., news events [21], earthquakes [20]). Other work has
aimed to identify the first Twitter message associated with an event [18].

Our focus in this work is on online identification of real-world event con-
tent. We identify each event—and its associated Twitter messages—using an
online clustering technique that groups together topically similar tweets. We
then compute revealing features for each cluster to help determine which clus-
ters correspond to events. Importantly, we design features to distinguish between
real-world events and a special family of non-events, namely, Twitter-centric
“trending topics” that carry little meaning outside the Twitter system. These
Twitter-centric activities often share similar temporal distribution characteris-
tics with real-world events, as discussed below. Thus, distinguishing between
these kinds of content is one challenging task that we address. Specifically, our
contributions are as follows:
• We propose a general online clustering framework, suitable for large-scale

social media sites such as Twitter, which employs a post-clustering classifi-
cation step to identify real-world event content (Section 4.1).

• We identify revealing cluster features, to learn event classification models
(Sections 4.2 and 4.3).

• We validate the effectiveness of our techniques using a dataset of over 2.6
million Twitter messages (Section 5).

Finally, we discuss our findings and future work (Section 6).

2 Related Work

We describe relevant related work in four areas: event identification in textual
news, event identification in social media, and topic detection as well as event
identification on Twitter.

Previous work on event identification in textual news (e.g., newswire, radio
broadcast) [1] leveraged natural language processing tools (e.g., named-entity
extraction, part-of-speech tagging) for online identification of news events in a
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stream. Such tools do not perform well over Twitter messages, given the message
length and characteristics, as noted above. More significantly, this line of research
generally assumes that all documents contain event information. In contrast, the
problem that we address is the separation of event messages from other messages.

While event detection in textual news documents has been studied in depth,
the identification of events in social media sites is still in its infancy. Looking
at text stream data from social data blogs and email, Zhao et al. [25] detect
events using textual, social, and temporal document characteristics, but do so
retroactively, not in “online” settings. Other research considers event identifica-
tion in other social media data, such as Flickr [3, 7], where structured context
features (e.g., title, description, tags) can help measure the similarity of social
media documents (e.g., photographs) that correspond to the same event [3].

Twitter has attracted specialized attention among social media sites, with
recent efforts focusing on detection of general topics [19] and trending topics
[16, 6] in Twitter messages. While some topics on Twitter correspond to events,
others reflect Twitter-specific conversations and other non-event content (see
Section 3). The techniques in this paper go beyond detection of emerging topics
to identify real-world events.

Few related papers explored the idea of detecting events on Twitter, but with
different goals or constraints than the work we present here. Sakaki et al. [20]
developed techniques for identifying earthquake events on Twitter by monitoring
keyword triggers (e.g., “earthquake” or “shaking”). In their setting, the event
must be known a priori, and should be easily represented using simple keyword
queries. Sankaranarayanan et al. [21] identified late breaking news events on
Twitter using clustering, along with a text-based classifier and a set of news
“seeders,” which are handpicked users known for publishing news (e.g., news
agency feeds). Finally, Petrović et al. [18] used locality-sensitive hashing to detect
the first tweet associated with an event in a stream of Twitter messages. We use
the general text-based classifier suggested in [21] and a method for identifying top
events suggested by Petrović et al. [18] as baseline approaches in our evaluation
(Section 5).

3 Background and Problem Definition

In this section, we provide an overview of Twitter and the features of Twitter
that are relevant to our work. We then define the problem that we address in
this paper.

3.1 Background: Twitter

Twitter is a popular social media site, with nearly 200 million registered users
as of January 2011. Twitter’s core function allows users to post short textual
messages, or tweets, which are up to 140 characters long. While there are several
widely used services that enable the exchange of short messages (e.g., Facebook,
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Tumblr), we focus our discussion and experiments on Twitter due to the promi-
nence of this site and the availability of data. However, our techniques could be
adapted to similar sites, with an appropriate mapping of the Twitter-specific
classification features listed below.

Several features play an important role on Twitter. Specifically, Twitter users
can use a hashtag annotation format (e.g., #sb45) to indicate what their posted
messages are about (e.g., “watching Superbowl 45 #sb45”) or capture other
aspects related to the message. In addition, Twitter allows several ways for users
to directly converse and interact by referencing each other in messages using the
@ symbol. A retweet is a message from one user that is “forwarded” by a second
user to the second user’s social network, commonly using the “RT @username”
text as prefix to credit the original (or previous) poster (e.g., “RT @justinbieber
Tomorrow morning watch me on the today show”). A reply is a public message
from one user that is a response to another user’s message. Replies start with
the replied-to user @username (e.g., “@mashable check out our Twitter study”).
A mention is a message that includes some other username in the text of the
message (e.g., “attending a talk by @pogue”).

Twitter currently employs a proprietary algorithm to display trending topics,
consisting of terms and phrases that exhibit “trending” behavior. While Twit-
ter’s trending topics sometimes reflect current events (e.g., “world cup”), they
often include keywords for popular conversation topics (e.g., “#bieberfever,”
“getting ready”), with no discrimination between the different types of content.

3.2 Problem Definition

We now define the notion of real-world event in the context of a Twitter message
stream, and provide a definition of the problem that we address in this paper.

The definition of event has received attention across fields, from philosophy
[10] to cognitive psychology [24]. In information retrieval, the concept of event
has prominently been studied for event detection in news [1]. We borrow from
this research to define an event in the context of our work. Specifically, we
define an event as a real-world occurrence e with (1) an associated time period
Te and (2) a time-ordered stream of Twitter messages Me, of substantial volume,
discussing the occurrence and published during time Te.

According to this definition, events on Twitter include widely known occur-
rences such as the presidential inauguration, and also local or community-specific
events such as a high-school homecoming game or the ICWSM conference. Non-
event content, of course, is prominent on Twitter and similar systems where peo-
ple share various types of content such as personal updates, random thoughts
and musings, opinions, and information [17].

As a challenge, non-event content also includes forms of Twitter activity
that trigger substantial message volume over specific time periods [4], which is a
common characteristic of event content. Examples of such non-event activity are
Twitter-specific conversation topics or memes (e.g., using the hashtag #things-
parentssay), and retweet activities, characterized by a “storm” of retweets of
popular Twitter users (e.g., an inspiring comment by Lady Gaga). Our goal is
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to differentiate between messages about real-world events and non-event mes-
sages, where non-event messages include those for “trending” activities that are
Twitter-centric but do not reflect any real-world occurrences.

We are now ready to define our event identification problem, as follows (Fig-
ure 1):

Consider a time-ordered stream of Twitter messages M . At any point
in time t, our goal is to identify real-world events and their associated
Twitter messages present inM and published before time t. Furthermore,
we assume an online setting for our problem, where we only have access
to messages posted before time t.

Fig. 1. Conceptual diagram: Twitter event identification.

4 Separating Event and Non-Event Content

We propose to address the event identification problem using an online clustering
and filtering framework. We describe this framework in detail (Section 4.1), and
then discuss the different types of features that we extract for clusters (Section
4.2), as well as the classification model that we use (Section 4.3) to separate
event and non-event clusters.

4.1 Clustering and Classification Framework

We elected to use an incremental, online clustering algorithm in order to effec-
tively cluster a stream of Twitter messages in real time. For such a task, we
must choose a clustering algorithm that is scalable, and that does not require
a priori knowledge of the number of clusters, since Twitter messages are con-
stantly evolving and new events get added to the stream over time. Based on
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these observations, we propose using an incremental clustering algorithm with a
threshold parameter that is tuned empirically during a training phase. Incremen-
tal clustering has been shown to be an effective technique for event detection in
textual news documents [2]. Such a clustering algorithm considers each message
in turn, and determines a suitable cluster assignment based on the message’s
similarity to the existing clusters. Specifically, given a threshold τ , a similarity
function σ, and message stream M = m1, . . . ,mn, the algorithm considers each
message mi in order and computes its similarity σ(mi, cj) against each existing
cluster cj , for j = 1, . . . , k. (Initially, k = 0.). If there is no cluster whose simi-
larity to mi is greater than τ , the algorithm creates a new cluster ck+1 for mi.
Otherwise, mi is assigned to a cluster cj with the maximum σ(mi, cj).

For scalability, we use a centroid representation of each cluster, which con-
sists of summary statistics of all messages in the cluster. The centroid of a cluster
is the average weight of each term across all documents in the cluster. We rep-
resent each message as a tf-idf weight vector of its textual content, and use the
cosine similarity metric, as defined by Kumaran and Allan [12], as the clustering
similarity function σ. Based on our experiments on training data, we perform
traditional text processing steps such as stop-word elimination and stemming,
and also double the weight of hashtag terms as they are often indicative of the
message content.

We have explored different threshold settings and other variations of this
clustering algorithm, including a periodic second pass to handle fragmentation,
which is a known drawback of this incremental clustering approach. However,
the specific optimization of this clustering algorithm is beyond the scope of this
paper and is the subject of ongoing and future work, as well as of other related
papers [5, 21, 18]. Rather, the focus of this work is on techniques for separating
event and non-event content using features of topically similar Twitter messages.
Note that the features and techniques that we use for this purpose are general
enough that they can be applied to any Twitter dataset that has been clustered
or aggregated by topic, irrespective of the specific clustering algorithm used.

To identify all event clusters in the stream, we compute a variety of revealing
features using statistics of the cluster messages (Section 4.2). Since the clusters
constantly evolve over time, we must periodically update the features for each
cluster and compute features of newly formed clusters. We subsequently pro-
ceed to invoke a classification model (Section 4.3) that, given a cluster’s feature
representation, decides whether or not the cluster, and its associated messages,
contains event information. With the appropriate choice of classification model,
we can also select the top events in the stream at any point in time, according
to the clusters’ probability of belonging to the event class.

4.2 Cluster-Level Event Features

We compute features of Twitter message clusters in order to reveal characteristics
that may help detect clusters that are associated with events. While each of
these features may not necessarily indicate event content in isolation, combining
them with other revealing features in a principled way (e.g., using a trained
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classifier) can help identify event clusters, as we will see. We examine several
broad categories of features that describe different aspects of the clusters we
wish to model. Specifically, we consider temporal, social, topical, and Twitter-
centric features.

Temporal Features The volume of messages for an event e during the event’s
associated time Te exhibits unique characteristics (see the definition of event
in Section 3.2). To effectively identify events in our framework, a key challenge
is to capture this temporal behavior with a set of descriptive features for our
classifier. We design a set of temporal features to characterize the volume of
frequent cluster terms (i.e., terms that appear frequently in the set of messages
associated with a cluster) over time. These features capture any deviation from
expected message volume for any frequent cluster term or a set of frequent cluster
terms. Specifically, we aggregate the number of messages containing each term
into hourly bins and define Mt,h as the number of messages posted during hour
h and containing term t, and Mh as the total number of messages posted during
hour h.

For the n most frequent terms in the cluster, where n is determined empir-
ically, we compute two types of features to reveal the trending behavior that is
characteristic of events. First, we compute the deviation from expected volume
for a term at the time when we compute the features (i.e., at the time when we
invoke the classifier; see Section 4.3). This metric captures a single-point repre-
sentation of trending behavior for each term. Second, we compute the quality of
fit of an exponential function to the term’s binned data leading up to the time
when we invoke the classifier. The exponential fit captures the rate of increase
in message volume over time. A good quality fit signifies a true exponential rise
in related content, an indication of trending behavior [14].

Fig. 2. Documents per hour with the term “valentine” for 72 hours prior to 2 p.m. on
Valentine’s Day.
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We compute the expected number of messages for a term t at the end of
hour h0 by averaging the number of messages containing t in the preceding
hours (1, . . . , h0 − 1), weighted by the total number of messages at each hour
to account for the varying volume of messages across different hours; formally,
µt,h0 =

∑h0−1
i=1

Mt,i

Mi
/(h0 − 1). Correspondingly, σt,h0 is the standard deviation

of the number of messages containing t over the preceding hours. We define
the deviation from expected message volume for term t at hour h0 as (Mt,h0

Mh0
−

µt,h0)/σt,h0 . The deviation from expected volume features in a cluster, then,
include a set of deviation values for the most frequent terms, as well as an
average value over all top terms. This value is generated by weighting the top
terms by their relative support in the cluster messages (e.g., if terms t1, t2, and
t3 appeared in 300, 200, and 100 cluster messages, respectively, their weights
would be 0.5, 0.33, and 0.17).

The second set of temporal features reflects the degree to which the volume of
messages containing a term t exhibits an exponential growth in the hours leading
up to h0. We compute a histogram using Mt,i, where i = (h0− 72), . . . , (h0− 1);
this models the volume of messages with the term for the 72 hours leading up to
h0. This method generally reflects the trending behavior in the social Web [14].
We use the least squares method to fit an exponential function to the histogram,
smoothed using a moving average, and compute the R2 statistic to measure
the quality of the fit. Figure 2 shows an example of this exponential trending
behavior for the term “valentine” around Valentine’s Day, 2010.

Social Features We designed social features to capture the interaction of users
in a cluster’s messages. These interactions might be different between events,
Twitter-centric activities, and other non-event messages [4]. As mentioned (Sec-
tion 3.1), user interactions on Twitter include retweets, replies, and mentions.
Our social features include the percentage of messages containing each of these
types of user interaction out of all messages in a cluster.

To motivate the use of these features, consider the Twitter messages in Fig-
ure 3. Clusters that include a high percentage of retweets, especially of a single
post by a popular Twitter user (e.g., Justin Bieber’s message, retweeted over 100
times in Figure 3), may not contain real-world event information [4]. Similarly,
a high percentage of cluster messages containing replies (e.g., Paris Hilton’s
reply in Figure 3) may indicate non-event content, since when people spread
event information they tend to do so via general broadcast messages rather than
individual conversations. On the other hand, many celebrities, politicians, com-
panies, venues, and shows own Twitter accounts (e.g., Ashton Kutcher’s show
@FFLShow with guest @kurt13warner in Figure 3). Therefore, unlike retweets,
a high percentage of Twitter mentions of one of these entities might imply that
the cluster refers to an event, where the entity is an active participant or the
subject of the event.

Topical Features Topical features describe the topical coherence of a clus-
ter, based on a hypothesis that event clusters tend to revolve around a central
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Fig. 3. Examples of social interaction on Twitter.

topic, whereas non-event clusters do not. Rather, non-event clusters often center
around a few terms (e.g., “sleep,” “work”) that do not reflect a single theme (e.g.,
with some messages about sleep, others about work, and a few about sleeping at
work). Messages in event clusters are likely to share more terms, as they identify
key characteristics of the events they describe (e.g., “Couric,” “Obama,” and
“interview” are common among messages describing Katie Couric’s interview of
President Obama).

To estimate this coherence of a cluster, we compute the average or median
similarity of messages to the cluster centroid using the cosine similarity metric.
Additionally, we compute the percentage of messages in the cluster containing
the most frequent term, the second most frequent term, and so on. Finally, we
look at how many of the most frequent terms are contained in at least n% of
the messages in the cluster, for empirically determined values of n.

Twitter-Centric Features While the goal of our classifier is to distinguish be-
tween event and non-event data, we highlight the differences between non-event
clusters that correspond to Twitter-centric activities, which are a specific class
of non-event messages (Section 3.2), and the real-world event clusters that we
wish to identify. As discussed above, Twitter-centric activities often exhibit char-
acteristics that resemble real-world events, especially as captured by temporal
features, which generally offer a strong signal for the presence of event content.
To address this challenge, we design a set of features that target commonly
occurring patterns in non-event clusters with Twitter-centric behavior.

Twitter-centric discussions often exhibit unique hashtag usage characteris-
tics (e.g., #whenimolder tag indicating discussion on things Twitter users wish
to do when they get older). We design features to capture these characteristics
and differentiate the Twitter-centric activities from other non-event content and
from real-world events. Specifically, we compute statistics relating to tag usage,
including the percentage of cluster messages that contain tags, and the percent-
age of cluster messages that contain the most frequently used tag. A large value
of the latter serves as an indication that the messages in the cluster revolve
around a tagged conversation topic.
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Importantly, we also determine if the most frequently used tag is a concatena-
tion of multiple words. Multi-word tags are highly indicative of Twitter-centric
discussions that do not correspond to real-world events (e.g., #firstdaterulez,
#BadWrestlingNames). Unfortunately, identifying them is a challenging task
since they often contain short-hand notations, acronyms, and slang that may
be difficult to parse. Using a dictionary-based method for parsing the tags into
several terms may be inefficient and difficult to implement due to the variety of
potential terms that may be included in the tags. We have experimented with
identifying these multi-word tags using such an approach with limited success.
Instead, we design capitalization-based features to detect such multi-word tags:
we observed that when more than one letter of a tag is capitalized by some users,
and this capitalization is consistent among these users, it frequently indicates
that a tag consists of multiple words. Since we do not rely on a dictionary, our
approach can be applied to tweets in any language that uses capitalization rules.

4.3 Event Classification

Using the above features, we train an event classifier by applying standard ma-
chine learning techniques (see Section 5). This classifier predicts which clusters
correspond to events at any point in time (i.e., at any point in the stream; see
Section 3.2). Specifically, to identify event clusters at the end of hour h, we first
compute the features of all clusters with respect to h, and then use the classifica-
tion model with each cluster’s feature representation to predict the probability
that the cluster contains event information.

Due to the large volume of data on Twitter, it is possible that at any point
in time the classifier may label many clusters as events. In an event browsing
scenario, where users look for information on current events, it is essential to
display a select subset of these identified event clusters. To that end, we are
interested in the ability of our classifier to select the top events according to
their probability of belonging to the event class, with respect to any point in the
stream. Note that a temporal component is built into some of the features, and
we recompute the features prior to classification, so the temporal relevance of
the top selected clusters is inherently captured by our classifier.

We compare the results of our classifier against several baseline approaches
next.

5 Experiments

We evaluated our event identification strategies on a large dataset of Twitter
data. We describe this dataset and report the experimental settings (Section
5.1), and then turn to the results of our experiments (Section 5.2).

5.1 Experimental Settings

Data: Our dataset consists of over 2,600,000 Twitter messages posted during
February 2010. We are interested in identifying events both with local and with
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broad geographical interest. To ensure that our dataset substantially covers local
events, we decided to collect messages posted by users of one specific location,
namely, New York City (i.e., by Twitter users whose location, as entered by
the users and shown on their profile, is in the New York City area)3. We chose
this location as it consistently generated a high volume of tweets. While the
location as reported by Twitter users is not always accurate, it does provide a
reliable approximation [11]. Since we do not currently use location-based signals
in our identification approach (a task that is reserved for future work), focusing
on messages from a specific geo-location does not reduce the generality of our
results. We collected these messages via a script, which continuously requested
the most recent messages from the Twitter API. For each collected Twitter
message, we record its textual content, the associated timestamp (i.e., the time
at which the tweet was posted), and the username of the user who posted the
tweet.

We cluster our dataset in an online fashion as described in Section 4.1. We
use the data from the first week in February to calibrate statistics such as term
frequency over time, which are needed to compute our temporal features. We
then use the second week of February to train our event classifiers and baselines.
Finally, we report our results on test data selected from the latter half of February
(i.e., Weeks 3 and 4). Annotations: We use human annotators to label clusters
for both the training and testing phases of our event identification experiments.
These annotators were instructed to label each cluster according to four different
categories (see Section 4.3): real-world event, Twitter-centric activity, other non-
event, and ambiguous. To ease annotation, as a representation of each cluster,
the annotators were shown the 10 most frequent terms in the cluster, along
with their respective counts, and sample Twitter messages from the cluster. For
clusters with more than one central theme (e.g., with top keywords “south,”
“park,” “west,” “sxsw,” and “cartman,” referring to either the “South Park”
show or the “South by Southwest” festival), the annotators used the ambiguous
label. Ambiguous clusters were not used for training, but were treated as non-
events for testing.

For the training set, we randomly selected 504 clusters from the top-20
fastest-growing clusters according to hourly message volume at the end of each
hour in the second week of February 2010. Each cluster was labeled by two an-
notators, and their agreement was measured using Cohen’s kappa (κ=0.683),
indicating substantial agreement. After removing 34 ambiguous clusters and
dropping 96 clusters on which the annotators disagreed, we were left with 374
clusters.

For the test set, we used 300 clusters collected at the end of five different
hours in the third and fourth weeks of February 2010. These five hours were
sampled uniformly at random from five bins partitioned according to the volume
of messages per hour over these two weeks. This sampling technique assures
that we test our classifiers during hours with different volumes of messages.

3 Note that events with broad geographical interest are also naturally captured in our
dataset.
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At the end of each hour we select the 20 fastest-growing clusters according to
hourly volume, the top-20 clusters according to our classifier (Section 4.3), and
20 random clusters, for a total of 60 clusters per hour, or 100 clusters per method
over the five hours. We used two human annotators to label each cluster and
achieved substantial agreement (κ=0.83). We discuss our handling of annotator
disagreements on the test set in the description of our evaluation.
Training Classifiers: We train a classifier to distinguish between real-world
event and non-event clusters (RW-Event). We extracted cluster-level features
for each cluster in the training set, as described in Section 4.2. We also used a
few additional features that did not fall under the groups described in Section
4.2, such as the cluster size and average length of cluster tweets. We used the
Weka toolkit [22] to train our event classifier. We first applied a resampling filter
to balance the class distribution, which was skewed towards the non-event class,
and then we trained and evaluated the classifier using 10-fold cross validation.
We explored a variety of classifier types and selected support vector machines
(specifically, Weka’s sequential minimal optimization implementation) for RW-
Event, as it yielded the best overall performance in exploratory tests over the
training set. We also fit logistic regression models to the output of the support
vector machine, to obtain probability estimates of the class assignment.

As a baseline, we use a strong text classification approach that identifies
events based on the textual content of the messages in the cluster. Specifically,
we trained a Näıve Bayes classifier (NB-Text) that treats all messages in a clus-
ter as a single document, and uses the tf-idf weights of textual terms as features.
This classifier, distinguishing between events and non-events, is similar to the
one used by Sankaranarayanan et al. [21] as part of their approach for identifying
news in Twitter messages. We train this Näıve Bayes classifier using Weka, with
the same methodology described above.
Evaluation: We use our annotated test set of 100 randomly selected clusters to
evaluate the performance of each classifier. For this, we use the macro-averaged
F1 metric [15]. This evaluation metric is widely used and is effective for eval-
uating classification results where it is desirable to assign an equal weight to
the classifier’s performance on each class. Here, macro-averaged F1 is preferable
to its alternative, micro-averaged F1 [15], which weighs each instance equally,
causing predictions on the larger non-event class to dominate the score. In this
evaluation we omit test clusters on which our annotators disagree.

In addition to classification performance, we evaluate our RW-Event clas-
sifier’s ability to identify events among a set of top clusters, ordered by their
probability of belonging to the event class at the end of each hour. We refer to
this task as “event surfacing.” Since the number of clusters in the stream may
be large, we only classify clusters that have over 100 messages. Similarly, we do
not classify clusters that did not have newly added documents in the hour prior
to the time when we invoke the classifier.

As a baseline for the event surfacing task, we consider the event thread
selection approach presented by Petrović et al. [18], which selects the fastest-
growing threads in a stream of Twitter messages and then re-ranks them based



Beyond Trending Topics: Real-World Event Identification on Twitter 13

on thread entropy and unique number of users. Preliminary experiments on our
training data indicated that selecting clusters based on such re-ranking strategies
(i.e., selecting clusters with the highest number of unique users and entropy
above a threshold) yields similar results as selecting the fastest-growing clusters.
Note that the re-ranking strategies were not used to select the top clusters,
which is our goal, and optimizing the selection of fastest-growing clusters that
have the highest number of unique users and low entropy is reserved for future
work (in fact, similar features already exist in our models). In addition to the
fastest-growing clusters baseline (Fastest), we compare our approach against a
technique that selects clusters randomly (Random).

To evaluate the event surfacing task, we select two standard metrics, namely,
Precision@K and NDCG [8], which capture the quality of ranked lists with
focus on the top results. Precision@K simply reports the fraction of correctly
identified events out of the top-K selected clusters, averaged over all hours.
Precision@K is set-based and does not consider the relative rank of the clusters.
An alternative metric that is sensitive to the rank of the events in the top selected
clusters is the normalized discounted cumulative gain (NDCG) metric. We use
the binary version of NDCG [8], to measure how well our approach ranks the top
events relative to their ideal ranking. To handle annotator disagreements in this
scenario, where we need to examine ordered lists, removing the disagreements
from the evaluation is not desirable given the evaluation metrics used. Instead, we
penalize the RW-Event classifier if either annotator disagreed with our classifier’s
prediction, but only penalize the baselines if both annotators disagreed with their
predicted label. We thus give the “benefit of the doubt” to the baselines, hence
making our results more robust.

5.2 Experimental Results

We begin by examining the performance of our RW-Event classifier against the
NB-Text baseline classifier on the training and test sets. The performance on the
training set reflects the accuracy of each classifier computed using 10-fold cross-
validation. The test performance measures how well each classification model
predicts on the test set of 100 randomly selected clusters.

Table 1 shows the F1 scores of the classifiers on both the training and test sets.
As we can see, the RW-Event classifier outperformed NB-Text over both training
and test sets, showing that it is overall more effective in predicting whether or
not our clusters contain real-world event information. A deeper examination of
our results revealed that the NB-Text classifier was especially weak at classifying
event clusters, accurately predicting only 25% of event clusters on the test set. A
sample of event clusters identified by RW-Event, and their most frequent terms,
are presented in Table 2.

The next set of results describes how well our RW-Event classifier performs
for the “event surfacing” task. Recall that the goal of this task is to identify
the top events in the stream per hour. We report Precision@K (Figure 4) and
NDCG@K (Figure 5) scores for varying K, averaged over the five hours selected
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Classifier Validation Test

NB-Text 0.785 0.702
RW-Event 0.849 0.837

Table 1. F1 score of our classifiers on training and test sets.

Description Terms

Senator Bayh’s retirement bayh, evan, senate, congress, retire
Westminster Dog Show westminster, dog, show, club
Obama & Dalai Lama meet lama, dalai, meet, obama, china
NYC Toy Fair toyfairny, starwars, hasbro, lego
Marc Jacobs Fashion Show jacobs, marc, nyfw, show, fashion
Table 2. Sample events identified by the RW-Event classifier.

for the test set. We compared the results of RW-Event to two baselines: Fastest
and Random (Section 5.1).

Not surprisingly, the proportion of events identified by the Random technique
is very low, as most data on Twitter does not contain event information. The
proportion of events identified by the Fastest technique was higher than that of
Random. The RW-Event classifier performed well across the board, better than
both baselines according to both precision and NDCG.
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Fig. 4. Precision @ K for our classifier and baselines.

Examining the mistakes made by the RW-Event classifier, the most promi-
nent misclassification occurs in cases where a Twitter user (usually a company
or service) posts messages on a broad topic (e.g., job listings with tags such
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Fig. 5. NDCG @ K for our classifier and baselines.

as #jobs, #nycjobs) using multiple Twitter accounts and a similar message
“template,” complete with hashtags. A possible reason for this behavior is that
features of our model such as the number of messages from the top author were
not adequately captured in the training process. Since we selected training data
by sampling from the fastest-growing clusters per hour, many of our training ex-
amples did not exhibit this behavior and, therefore, we were not able to properly
model it. We plan to explore this issue further in future work.

6 Conclusions

We presented an end-to-end approach for identifying real-world event content
on Twitter. This work provides the first step in a series of tools that improve on
the generic analysis of “trending topics.”

Our techniques for event identification offer a significant improvement over
baseline and existing approaches, showing that we can identify real-world event
content in a large-scale stream of Twitter data. We thus help unveil important
information from, and about, real-world events as they are reflected through the
eyes of hundreds of millions of users of Twitter and similar social media sites.

In future work, we aim to reason even more finely about different types of
events that are reflected in Twitter data. For example, real-world events may
include news events [21], local small-scale community events, breaking and emer-
gency events [20], and so forth. Given a robust classification of events, extending
the work described here, we can improve prioritization, ranking, and filtering
of extracted content on Twitter and similar systems, as well as provide more
targeted and specialized content visualization.
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