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Abstract — The proliferation of wireless and mobile devices has 
fostered the demand of context aware applications, in which 
location is often viewed as one of the most significant contexts. 
Classically, trilateration is widely employed for testing network 
localizability; even in many cases it wrongly recognizes a 
localizable graph as non-localizable. In this study, we analyze the 
limitation of trilateration based approaches and propose a novel 
approach which inherits the simplicity and efficiency of 
trilateration, while at the same time improves the performance 
by identifying more localizable nodes. We prove the correctness 
and optimality of this design by showing that it is able to locally 
recognize all 1-hop localizable nodes. To validate this approach, a 
prototype system with 19 wireless sensors is deployed. Intensive 
and large-scale simulations are further conducted to evaluate the 
scalability and efficiency of our design.  

I. INTRODUCTION 

Pervasive and mobile systems for context-aware 
computing are growing at a phenomenal rate. In most of 
today’s applications such as pervasive medicare, smart space, 
wireless sensor network surveillance, mobile peer-to-peer 
computing, etc., location is one of the most essential contexts. 

Many methods have been proposed in the literature and 
used in practice to localize wireless devices. One method to 
determine the location of a device is manual configuration, 
which may not be feasible for large-scale deployments or 
mobile systems. Another popular system, Global Positioning 
System (GPS), is not suitable for indoor environments and 
suffers high hardware cost. 

In recent years, a number of schemes have been proposed 
for in-network localization, in which some special nodes 
(called beacons or seeds) know their global locations and the 
rest ones determine their locations by measuring the 
Euclidean distances to their neighbors. Several distance 
ranging methods, such as Radio Signal Strength (RSS) [22] 
and Time Difference of Arrival (TDoA) [19], are adopted in 
practical systems. Based on those approaches, the ground 
truth of a wireless ad-hoc network can be modeled by a 
distance graph G = (V, E, d), where V is the set of wireless 
nodes, E is the set of links, and d(u, v) denotes the distance 
measurements between a pair of nodes u and v. Consequently, 
an essential question is followed as whether or not a network 
is localizable by given its distance graph. A graph G = (V, E, 
d) with possible additional constraint I (such as the known 
locations of some beacon nodes) is called localizable if there 

is a unique location v’ of every node v such that the distance 
d(u, v) = d(u’, v’) for all links in E and constraint I is 
preserved.  

Finding the location of all nodes that respect the given 
distance measurements d and constraint I is also called graph 
embedding in the Euclidean space. Previous studies have 
shown that localizability problem is closely related to the 
graph rigidity [4, 8, 9, 12]. A graph is called generically rigid 
(or called rigid) if one cannot continuously deform the graph 
embedding in the plane while preserving the distance 
constraints [12]. Here the word “generically” means the 
distances are algebraically independent, i.e., no degeneracy. A 
graph is generically globally rigid (or called globally rigid) if 
there is a unique realization in the plane [8]. Indeed, the 
solvability of network localization is equivalent to the global 
rigidity property of graphs [4, 8]. Certainly, rigidity is a 
necessary condition of global rigidity. Figure 1 shows an 
example of rigid graphs which is not globally rigid by having 
two distinct embeddings in 2D plane. In this case, node 4 can 
“flip” above nodes 1 and 2 while still preserving distance.  
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Figure 1: A rigid graph with two distinct embeddings. 

 
Jackson et al. [9] prove that a graph is globally rigid if and 

only if it is 3-connected and redundantly rigid. A graph is 
redundantly rigid if the removal of any edge results in a graph 
that is still rigid. This statement provides a sufficient and 
necessary condition for testing global rigidity. Hence, 
localizability of a graph can be answered in polynomial time 
in a centralized manner by testing the 3-connectivity and 
redundant rigidity. Designing an efficient distributed 
algorithm for global rigidity, however, is non-trivial as neither 
connectivity nor rigidity can be tested locally by nature. For 
example, Figure 2 shows a graph consisting of two known 
3-connected components and three edges (1, 6), (2, 5), and (3, 
4) between them. In this case, three bridge edges are far away 
from each other. By employing any localized algorithm on 
this example, a single node (without loss of generality, say 
node 1), using the information only from neighbors within a 
constant number of hops, cannot be aware of the existence of 



edges (2, 5) and (3, 4) that are not incident upon itself. Thus it 
fails to identify the entire graph as 3-connected. For rigidity, 
the situation is the same as connectivity. 
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Figure 2: Global information is needed to test 

connectivity. 
 

As a compromise, trilateration is proposed for testing 
localizability based on the fact that the location of an object 
can be determined if the distances to three references are 
known. Accordingly, it is possible to identify localizable 
nodes in a network by iteratively applying trilaterations. In 
practice, trilateration is widely used [16, 17, 20] as it is fully 
distributed, easy to implement, and efficient in terms of 
communication and computation. 

Trilatertion based approaches, however, recognize only a 
subset (called trilateration extension) of globally rigid graphs. 
In Figure 3(a), two globally rigid components are connected 
by nodes i (i=1,2,…,7). Suppose the nodes 1, 2, 3, and 4 in the 
left component are known as localizable. The localizability 
information, however, cannot propagate to the other part by 
trilateration since none of the nodes 5, 6, and 7 connects to 
three localizable nodes. Obviously, trilateration wrongly 
reports that nodes in the right component are not localizable, 
ignoring the fact that the entire graph is globally rigid. 
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(b) Border nodes. 

Figure 3: The deficiency of trilateration. 
 

A similar situation is recurrent for the border nodes, as 
illustrated in Figure 3(b). In this case, nodes 1 and 2 cannot be 
localized by trilateration even though nodes 3, 4, and 5 are 
localized. Unfortunately, the entire graph in Figure 3(b) is 
globally rigid and thus localizable. Importantly, border nodes 
are often more critical in many applications. For example, a 
sensor network for forbidden region monitoring has special 
interests on when and where intruders crash into, which are 
collected by border nodes only. 

These observations expose the deficiency of trilateration 
based methods. In this study, we address the challenge of 
designing localized algorithms for localizability testing that 
can recognize as many globally rigid networks as possible, or 
as many localizable nodes in a partially localizable network as 
possible. Our study shows that trilateration is actually a 
special case, the simplest with 4 nodes, of wheel graphs [23], 
which motivates us to explore the possibility of generalizing 
the idea of trilateration.  

The main contributions of this paper are as follows. Based 
on the fact that wheel structures are globally rigid, we present 
a distributed algorithm to find localizable nodes by testing 
whether they are included in some wheel graphs within their 
neighborhoods. The algorithm inherits the simplicity and 
efficiency of trilateration, while at the same time improves the 
performance by identifying more localizable nodes. We prove 
the optimality of this design: it is able to recognize all 1-hop 
localizable nodes using only local information.  

We validate this design by deploying a prototype system 
with 19 TelosB sensor nodes. The large-scale simulations are 
further conducted to examine the efficiency and scalability. 
The results show that our design remarkably outperforms the 
widely used trilateration. 

The rest of the paper is organized as follows. In Section II, 
we focus on the problem of identifying localizable nodes 
within neighborhoods. The protocol for network localizability 
is presented in Section III, as well as the correctness and 
optimality. Our prototype implementation and simulation are 
discussed in Section IV. We summarize related work in both 
localization and graph rigidity literatures in Section V and 
conclude the work in Section VI. 

II. NODE LOCALIZABILITY 

A. The Wheel Graph 

A wheel graph Wn is a graph with n vertices, formed by 
connecting a single vertex to all vertices of an (n-1)-cycle. 
The vertices in the cycle will be referred to as rim vertices, the 
central vertex as the hub, an edge between the hub and a rim 
vertex as a spoke, and an edge between two rim vertices as a 
rim edge. Figure 4 shows a particular realization of a wheel 
graph W6, in which node 0 is the hub and others are rims. 

The wheel graph has many good properties. From the 
standpoint of the hub vertex, all elements, including vertices 
and edges, are in its one-hop neighborhood, which indicates 
that the wheel structure is fully included in the neighborhood 
graph of the hub vertex. 
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Figure 4: A wheel graph W6. 

 
Furthermore, wheel graphs are important for localizability 

because they are globally rigid in 2D space. 
 

Lemma 1. [4] The wheel graph Wn is globally rigid. 
Proof: The graph Wn is redundantly rigid and 3-connected. 
Accordingly, it is globally rigid. ■ 

 
Thus, all vertices in a wheel structure with 3 beacons are 

uniquely localizable, which indicates an approach to identify 
localizable vertices. Note that realizing graphs is still NP-hard 
even for globally rigid graphs [4, 21]. 

B. Conditions for Node Localizability 

In this section, we analyze the conditions for single node 
localizability by using localized information. Note that the 
word “localized” refers to the knowledge of direct neighbors. 

We define the distance graph GN of a wireless ad-hoc 
network. Each wireless communication device (e.g., laptop, 
RFID, or sensor node) is modeled as a vertex of GN and there 
is an un-weighted edge connecting two vertices if the distance 
between them can be measured or both of them are in known 
locations, e.g., beacon nodes.  

The closed neighborhood graph of a vertex v, denoted by 
N[v], is a subgraph of GN containing only v and its one-hop 
(direct) neighbors and edges between them in GN. We also 
define the open neighborhood graph N(v), where N(v) is 
obtained by removing v and all edges incident to v from N[v]. 
Note that N[v] is the local information known by a vertex v. 

According to the previous analysis, if a vertex in N[v] is 
included in a wheel graph centered at v, it is localizable by 
given three beacons. The localizability issue now can be 
transformed to finding wheel vertices in N[v] when given a 
number of known localizable vertices. 

We first consider the presence of 3 localizable vertices in 
N[v]. There are two cases of their distribution: 1), the hub v 
and two rim vertices; 2), three rim vertices. In the second case, 
v can be easily localized by trilateration. As a result, this case 
degenerates to the first one. We thus focus on the first case in 
the following analysis. Without loss of generality, suppose the 
two rim localizable vertices are v1 and v2.  

To show that a vertex x belongs to a wheel structure in N[v] 
centered at v and including two vertices v1 and v2, it is 
equivalent to show that x lies on a cycle containing v1 and v2 
in N(v). Accordingly, we turn to find whether a given group of 
3 vertices (x, v1, and v2) are on a cycle in N(v). According to 
Dirac [3], if a graph G is 3-connected, for any three vertices in 
G, G has a cycle including them. Therefore, if N(v) is 
3-connected, all vertices are included in some wheels in N[v]. 

The requirement of 3-connectivity, however, is too critical to 
be realistic and not necessary indeed. 

As we know, N(v) is a distance graph, in which there is an 
edge (x, y) if the distance between two vertices x and y is 
known. Thus, the edge (v1, v2) should exist in N(v) since v1 
and v2 are known as localizable. This observation helps to 
release the connectivity requirement to 2-connectivity. 

A 2-connected component in a graph G is a maximal 
subgraph of G without any articulation vertex whose removal 
will disconnects G. For simplicity, we use blocks to denote 
2-connected components henceforth if no confusion caused. 

 
Lemma 2.  In a graph G with an edge (v1, v2), any other 
vertex x belongs to the block B including v1 and v2 if and only 
if it is on a cycle containing v1 and v2.  
Proof: Sufficiency. The graph B’, as shown in Figure 5, is 
constructed by adding a vertex v0 and two edges (v0, v1) and 
(v0, v2) to B. We show that B’ is also a block by the fact that 
the removal of any vertex cannot disconnect B’. There are two 
cases: 1), if v0 is removed, the remaining graph, actually B, is 
connected definitely; 2), if a vertex in B is removed, the 
remaining vertices originally in B are still connected because 
B is 2-connected and v0 is connected by either v1 or v2. Thus, 
B’ is a block and there are at least two vertex disjoint paths 
between any two vertices. Suppose the two disjoint paths 
connecting a vertex x and v0 are p1 and p2, illustrated in Figure 
6. Then x is on a cycle in B’ by simply cascading p1 and p2. 
Due to the construction of B’, we can replace two consecutive 
edges (v0, v1) and (v0, v2) in the cycle by a shortcut (v1, v2), 
resulting another cycle containing x, v1, and v2 in B.  
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Figure 5: The construction of B’. 
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Figure 6: x has 2 disjoint paths to v0. 

 
Necessity. Suppose to the contrary that a vertex x is on a 

cycle containing v1 and v2 but not included in B. We construct 
B’ by adding the cycle to B; specifically, add all vertices and 
edges of the cycle to B if they are not in B originally, as 
illustrated in Figure 7. There is no articulation vertex in B’ and 
B’ is also 2-conncted. According to the construction of B’, at 
least x is a newly introduced element, which indicates B is 
properly included by B’, contradicting the maximality 
assumption of blocks. ■ 
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Figure 7: B is properly included in B’. 

 
According to Lemma 2, it follows a more general 

conclusion. 
 
Lemma 3.  If a graph G is 2-connected, then G’ is globally 
rigid, where G’ is obtained by adding a vertex v0 and edges 
between v0 to all vertices in G. 
Proof: We take an arbitrary edge (v1, v2) in G. Since G is 
2-connected, every other vertex x in G is on a cycle 
containing v1 and v2 by Lemma 2; and further belongs to a 
globally rigid wheel structure in G’ including v0, v1, and v2. 
Since every wheel in G’ shares three vertices, all vertices are 
actually in the only one globally rigid component. ■ 
 

Using Lemma 2 and Lemma 3, the wheel vertices can be 
identified by calculating blocks in neighborhood graphs. Note 
that not all blocks in N(v) are localizable. As shown in Figure 
8, two wheels centered at v are not rigid to each other. Indeed, 
localizability also depends on the distribution of beacons. As 
we know, beacons are fully connected and entirely included in 
a unique block. Based on this, we propose a sufficient and 
necessary condition to find wheel vertices. 

 

 
Figure 8: Two wheels centered at v. 

 
Theorem 1.  In a neighborhood graph N[v] with k (k>=3) 
localizable vertices vi (i=1, …, k and v = vk), any vertex (other 
than vi) belongs to a wheel structure with at least 3 localizable 
vertices if and only if it is included by the unique block in N(v) 
containing k-1 localizable vertices. 
Proof: Sufficiency. If a vertex x belongs to a wheel with 3 
localizable vertices in N[v], it is on a cycle in N(v) containing 
at least 2 localizable vertices, say v1 and v2. According to 
Lemma 2, x is included in the block of v1 and v2, which 
actually contains all k-1 localizable vertices. 

Necessity. If a vertex x is included by the block of 
localizable vertices in N(v) (let v1 and v2 denote two of them), 
then x, v1, and v2 are on a cycle because (v1, v2) in N(v). By 
adding vk back, x belongs to the corresponding wheel with 3 
localizable vertices in N[v]. ■ 

So far, we achieve a necessary and sufficient condition for 
finding localizable vertices. In addition, we can see that the 
trilateration is a special case of wheel graphs. Suppose a 
vertex v is localized by trilateration based on three reference 
nodes. In N[v], these reference nodes are pairwise connected 
because they are localizable. Thus, v is the hub vertex of the 
wheel where 3 references are the rim vertices. Trilateration is 
actually the minimum wheel graph with 4 vertices. 

C. Algorithm and Correctness 

According to Theorem 1, finding wheel vertices can be 
implemented by calculating blocks. Suppose there are k 
localizable vertices in a neighborhood graph N[v]. 

 
Algorithm 1: Node Localizability 
1: if k>=3, then 
2: find all blocks in N(v), 

denoted by Bi, i=1,...,m; 
 let B1 be the unique one of

localizable nodes; 
3: for each vertex x not being 

marked in B1 
4: mark x localizable; 
5: connect x to all other

localizable ones; 
6: end for 
7: end if 

 
The core part of Algorithm 1 is to find blocks in a graph 

G=(V, E). This can be done by depth first search in linear time 
in terms of the size of graphs. Hence the time complexity of 
Algorithm 1 is O(|V|+|E|). 

Algorithm 1 is designed to find wheel vertices in N[v] that 
are localizable by Theorem 1. The remaining question is that 
does Algorithm 1 find all localizable vertices in N[v]? In other 
words, is there any localizable vertex that is not included by 
any wheel in N[v]? In the following, we prove that, as 
expected, Algorithm 1 finds all localizable vertices in N[v].  

 
Lemma 4. [6] (Necessary condition for node localizability) 
In a graph G, if a vertex is uniquely localizable, it must have 
three vertex disjoint paths to three distinct localizable vertices. 

 
Theorem 2.  (Correctness) In a neighborhood graph N[v], a 
vertex is marked by Algorithm 1 if and only if it is uniquely 
localizable in N[v].  
Proof: Sufficiency. Algorithm 1 finds wheel structures with at 
least 3 beacons in N[v]. According to Lemma 1, all vertices 
belonging to these wheels are localizable.  

Necessity. If a vertex x is localizable in N[v], by Lemma 4, 
it has three disjoint paths pi to three distinct known localizable 
vertices vi, i=1, 2, 3, respectively. All vi are connected with 
each other in N[v]. As illustrated in Figure 9, there are three 
cases: 1, x is the hub vertex v, then it is in the wheel in which 
all vi construct the rim cycle; 2, v is one of vi (without loss of 
generality, assume v3), then x is included in a wheel graph 
centered at v and having the rim cycle cascading p1, (v1, v2), 
and p2; 3, x is on a cycle by cascading p1, (v1, v3), (v3, v2), and 
p2. This is a simple cycle because v3 cannot be in p1 and p2 due 



 

v1

v2
v3

x

p1

p2 p3

 

v1

v2

v x

p1

p2

 

v1

v2

v3 x

p1

p2

p3

 
(a) (b) (c) 

Figure 9: x belongs to a wheel structure. 
 

to the separation of pi. Therefore, in all cases, x is included in 
a wheel graph in N[v] and marked by Algorithm 1. ■ 

 
Theorem 2 also guarantees the optimality of Algorithm 1 

since it finds the maximum number of localizable vertices in 
N[v]. 

III. NETWORK-WIDE LOCALIZABILITY 

The previous section discusses the node localizability in 
neighborhood graphs. Now, we consider the localizability for 
entire networks. We call this problem the network-wide 
localizability test so as to distinguish with the case of a single 
node. 

A. The Wheel Extension 

Similar to the trilateration extension, we first define the 
wheel extension. 

 
Definition 1.  
A graph G is a wheel extension if there are 
(a) three pairwise connected vertices, say v1, v2, and v3; and 
(b) an ordering of remaining vertices as v4, v5, v6…, such that 

any vi is included in a wheel graph (a subgraph of G) 
containing three early vertices in the sequence. 
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Figure 10: A wheel extension graph. Here the grey nodes 
are beacons; an edge denotes that the distance between 
the two end-nodes is known. 
 

Lemma 5.  The wheel extension is globally rigid. 
 

The proof of Lemma 5 is straightforward so we skip it. 
The family of wheel extensions is actually a superset of 
trilateration extensions. Figure 10 shows an example which is 
a wheel extension but not a trilateration extension. The node 
deployment in Figure 10 is classical and often used to analyze 
coverage and connectivity problems in which location is 
critical. 

B. The Localizability Protocol 

For localizability, it is important to know whether a graph 
is a wheel extension. In this section, we present a distributed 
protocol which tests the localizability by marking all 
localizable nodes in a network. The protocol works in an 
iterative manner in which a node marked in the current 
iteration acts as a known localizable one (or beacon) in 
subsequent iterations. Localizability information diffuses step 
by step and reaches the entire network after a number of 
iterations. 

A particular iterative process is shown in Figure 10. First, 
three beacons are given and marked with 0. In the first 
iteration, nodes marked 1 are identified because they are 
included in a wheel graph with 3 beacons. Such a procedure 
continues until all localizable nodes are marked. 

The localizability protocol is given in Algorithm 2, which 
is conducted in a distributed manner at each node. If all nodes 
in a network are marked by Algorithm 2, the network graph is 
a wheel extension; and vice versa. 

 
Algorithm 2: Network Localizability 

1: exchange neighbor list 
between neighbors; 

2: construct N[v]; 
3: if N[v] has >= 3 localizable 

nodes 
4: run Algorithm 1 on N(v), 

obtaining a number of 
blocks Bi; (Assume B1 is the 
unique localizable one) 

5: mark v and B1 localizable;
6: inform B1 the change; 
7: Update N(v); 
8: end if; 



9: while(true) 
10: wait for state change of 

neighbor nodes; 
11: update N(v); 
12: if any non-marked Bi has >=2 

localizable nodes 
13: mark Bi localizable; 
14: update N(v); 
15: inform Bi the change; 
16: end if 
17: end while 

 
We now analyze the time complexity of Algorithm 2 

running on a graph G with n vertices. Since Algorithm 1 is 
only executed on the vertices with at least three localizable 
ones in N[v], these vertices are localizable and will be finally 
marked by Algorithm 2. Therefore, the running time of 
Algorithm 2 is output sensitive. In the worst case, Algorithm 1 
will be executed in all vertices in G. Let d(v) denote the 
degree of a vertex v. In line 2, calculating blocks in N(v) costs 
O(d(v)2) time in dense graphs or O(d(v)) in sparse graphs. In 
the while loop between line 3 to 11, at most d(v) neighbors are 
marked and informed. Hence, the total running time of 
Algorithm 2 are ∑v∈GO(d(v)2+d(v)) = O(n3) in dense graphs 
and ∑v∈GO(d(v)) = O(n) in sparse graphs. The bound is tight 
due to the instance of G = Kn, where Kn is the complete graph 
of n vertices.  

In practice, a wireless ad-hoc network cannot be 
excessively dense because the communication links only exist 
between nearby nodes due to signal attenuation. In addition, 
the mechanism of topology control reduces redundant links to 
alleviate collision and interference. Hence, the proposed 
algorithm is practically efficient. 

C. Correctness and Optimality 

To analyze the correctness of Algorithm 2, we first define 
the concept of k-hop localizability. 

 
Definition 2. In a network, a node is k-hop localizable if it 
can be localized by using only the information of at most 
k-hop neighbors.  

Clearly, 1-hop localizable is the most critical condition for 
all k and the set of k-hop localizable nodes is monotonically 
increasing. 

 
Theorem 3. In a graph G, a vertex marked by Algorithm 2 if 
and only if it is 1-hop localizable in G. 
Proof: Sufficiency. This part holds because Algorithm 2 marks 
a vertex if it is in a 1-hop wheel with 3 localizable nodes. 

Necessity. If a vertex x is 1-hop localizable, it is included 
in a wheel with 3 localizable nodes by Theorem 2. The hub 
vertex, may be x or not, certainly knows these 3 localizable 
nodes, thus x will be marked by Algorithm 2 when Algorithm 
1 is executed on the hub vertex. ■ 

 
Theorem 3 not only guarantees the correctness of 

Algorithm 2, but also indicates the set of localizable nodes is 
not dependent on the ordering of node processing. 

D. Advantages 

Compared to the previous trilateration based methods, the 
advantages of the proposed protocol lies in: 
(1) Capability: recognizing a superset of localizable nodes. 
(2) Efficiency: taking O(n) running time for sparse graphs 

and O(n3) for dense ones. 
(3) Low cost: introducing no extra wireless communication 

cost by using only localized information. 

IV. PERFORMANCE EVALUATION 

A. Prototype Implementationt 

The localizability protocol is implemented on the 
hardware platform of the OceanSense project [1, 25]. In this 
project, wireless sensors are deployed off the seashore. In our 
experiment, 19 TelosB nodes are distributed in a 200m*300m 
area, floating on the sea surface. Sensor movements, however, 
are restricted in a disk area because of anchors [25]. The 
network continuously reports back data as well as the network 
topology every 30 minutes.  

In our experiments, we employ radio signal strength for 
distance ranging, such that the communication links can be 
viewed as a distance graph. Four out of 19 nodes are set as 
beacons and the remaining 15 nodes test localizability by 
carrying on the proposed protocol (WHEEL). We collect a 
number of instances of the network topology from 4-hour data. 
For comparison, we also calculate the theoretical upper bound 
(TRI) of all trilateration based approaches. 
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Figure 11: Prototype Performance. 

 
The results are plotted in Figure 11, in which the blue bars 

denote the number of nodes localized by TRI; while red ones 
denote the nodes which can be identified by WHEEL but not 
TRI. Among all 8 network topologies, 5 of them obtain 
notable improvements by using WHEEL to recognize more 
localizable nodes. 

B. Large-scale Simulation 

Large-scale simulations are further conducted to examine 
the effectiveness and scalability of this design under varied 
network parameters. 

We generate networks of 400 nodes randomly, uniformly 
deployed in a unit square [0, 1]2. The unit disk model with a 



radius is adopted for communication and distance ranging. 
For each evaluation, we integrate results from 100 network 
instances.  

Figure 12 studies the relationship between connectivity 
and rigidity. The curve ri denotes the percentage of 
i-connected networks in varied radius while rg denotes 
globally rigid networks. Like many other properties for 
random geometric graphs, both connectivity and rigidity have 
transition phenomena. It can be seen that rg lies between r3 
and r6 and is closer to r3. This observation reflects the 
theoretical conclusion that 3-connectivity is a necessary 
condition while 6-connectivity is a sufficient one for global 
rigidity.  
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Figure 12: The relationship between connectivity and 
rigidity. 

 
We then explore the impact of network topology on 

localizability. As shown in Figure 13 (a), for both strategies, 
the percentage of globally rigid networks grows along with 
the increasing of communication radius. Note that the 
transition phenomena appear again at the radii around 0.16. It 
can be seen that WHEEL provides a smaller hitting radius 
than TRI, which exhibits a strong applicability of WHEEL 
since it can work well in relatively low-density or sparsely 
connected networks.  

Such conclusion becomes obvious for the number of 
localizable nodes in partially localizable networks, as shown 
in Figure 13 (b). It studies the capability of recognizing 
localizable nodes in a partially localizable network. We can 
see that WHEEL remarkably surpasses TRI. At radius 0.158, a 
90% of localizable nodes are identified by WHEEL while TRI 
only marks 5% under the same network settings. 

We also study the performances of TRI and WHEEL at 
some specific communication radii. In this evaluation, the 
number of recognized localizable nodes of 100 network 
instances is shown in Figure 14(a) and (b) with radius r = 0.15 
and r = 0.16, respectively. As shown in Figure 14(a), WHEEL 
identifies 27% nodes as localizable while TRI cannot work at 
all due to the sparse network connectivity. When r = 0.16, 
WHEEL recognizes more than 90% localizable nodes in 73 
cases while TRI only mark less than 10% localizable nodes in 
77 cases. The observation supports the conclusion that at a 
specific range of communication radius (or connectivity), 
WHEEL remarkably outperforms TRI. 
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(a) Percentage of globally rigid graphs 
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(b) Percentage of localizable nodes 

Figure 13: Comparison of TRI and WHEEL. 

0 20 40 60 80 100
0

20

40

60

80

100

Network Instances

%
 o

f L
oc

al
iz

ab
le

 N
od

es

 

 

 TRI
 WHEEL

 
(a) Radius r = 0.15 
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(b) Radius r = 0.16 

Figure 14: Comparison of TRI and WHEEL (2). 



  

(a) Case 1 (b) Case 2 (c) Case 3 
Figure 15: Networks with “H” holes. 

  
(a) Case 1 (b) Case 2 (c) Case 3 

Figure 16: Networks with “K” holes. 
 

We further provide two examples to show how WHEEL 
outperforms TRI. In Figure 15, a particular network with an 
“H” hole is generated in which 400 nodes are randomly 
distributed. The blue dots denote the nodes marked by TRI by 
given three beacons, while reds denote the nodes marked by 
WHEEL but not by TRI. Neither TRI nor WHEEL can mark 
the remaining blacks. WHEEL can easily step over gaps, such 
as borders or barriers, and recognize more nodes than TRI. 
The same phenomenon recurs in the second network instance 
with a “K” hole, shown in Figure 16. We conducted more 
simulations and the results are consistent. 

V. RELATED WORK 

A. Localization Literature 

Many localization algorithms adopt distance ranging 
techniques (called range-based), including Radio Signal 
Strength (RSS) [22] and Time Difference of Arrival (TDoA) 
[19]. RSS maps received signal strength to distance according 
to a signal attenuation model, while TDoA measures the 
signal propagation time for distance calculation. Based on 
them, localization is conducted by exploring rigid graph 
structures. Some works [4, 6] study the relationship between 
network localization and rigidity properties of ground truth 
graphs. 

The majority of localization algorithms [2, 19, 20] assume 
a dense network such that iterative trilateration (or 
multilateration) can be carried out. Other methods [5] record 
all possible locations in each positioning step and prune 

incompatible ones whenever possible, which, in the worst 
case, can result in an exponential space requirement. Recently, 
a method [13] of exploring rigid topology structure without 
distance is proposed which provides a novel view for 
range-free localization. 

B. Graph Rigidity Literature 

In graph rigidity literature, many efforts have been made 
to explore the combinatorial conditions for rigidity. Laman 
[12] first pointed out that a graph G(V, E) is generically rigid 
if it has a induced subgraph in which edges are 
“independently” distributed. The statement also leads to an 
O(|V|2) algorithm [11] for rigidity test. For global rigidity, a 
sufficient and necessary condition [9] is presented based on 
the results in [8] by combining both redundant rigidity and 
3-connectivity. Recently, Jackson and Jordan [10] prove a 
sufficient condition of 6 mixed connectivity, which improves 
a previous result of 6-connectivity by [15]. 

There are also some results for random geometric graphs. 
Assuming the unit disk model, many researchers [7, 14, 18, 
24] considered critical conditions for graph connectivity. 
Simulation results [4] ensure that the hitting radius of global 
rigidity is between 3- and 6-connectivity in probability sense. 
In addition, the asymptotic hitting radius for trilateration 
graphs is also given in [4]. 

VI. CONCLUSION 

Trilateration, as a basic building block of many existing 
localization approaches, often wrongly recognize localizable 



graphs as non-localizable. To address the issue, we analyze 
the limitation of trilateration based approaches and propose a 
novel approach, called WHEEL, based on globally rigid 
wheel graphs. This design inherits the simplicity and 
efficiency of trilateration, while at the same time significantly 
improves the performance by identifying more localizable 
nodes. To validate this approach, a prototype system with 19 
wireless sensors is deployed. Large-scale simulations are 
further conducted to evaluate the scalability and efficiency. 
Experimental results show that WHEEL greatly outperforms 
previous approaches. Such improvements, however, are 
observed from intensive simulations. It is still lack of 
theoretical analyses of the gap between WHEEL and 
trilateration, as well as the gap between WHEEL and the 
theoretical upper bound, which is a direction of our future 
studies. 
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