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Beyond Triplet Loss: Person Re-identification with

Fine-grained Difference-aware Pairwise Loss
Cheng Yan*, Guansong Pang*, Xiao Bai, Jun Zhou, Lin Gu

Abstract—Person Re-IDentification (ReID) aims at re-
identifying persons from different viewpoints across multiple
cameras. Capturing the fine-grained appearance differences is
often the key to accurate person ReID, because many iden-
tities can be differentiated only when looking into these fine-
grained differences. However, most state-of-the-art person ReID
approaches, typically driven by a triplet loss, fail to effectively
learn the fine-grained features as they are focused more on
differentiating large appearance differences. To address this issue,
we introduce a novel pairwise loss function that enables ReID
models to learn the fine-grained features by adaptively enforcing
an exponential penalization on the images of small differences and
a bounded penalization on the images of large differences. The
proposed loss is generic and can be used as a plugin to replace
the triplet loss to significantly enhance different types of state-
of-the-art approaches. Experimental results on four benchmark
datasets show that the proposed loss substantially outperforms a
number of popular loss functions by large margins; and it also
enables significantly improved data efficiency.

Index Terms—Person Re-Identification, Fine-grained Differ-
ence, Representation Learning, Triplet Loss, Pairwise Loss

I. INTRODUCTION

Person re-identification (ReID), aiming at re-identifying

people from viewpoints across multiple cameras, is a critical

computer vision task due to its crucial applications in video

surveillance, multi-camera tracking and forensic search. Al-

though person ReID has attracted extensive research attentions

in recent years, one largely unsolved challenge is how to

effectively capture the fine-grained appearance differences of

different persons. This problem is crucial to person ReID,

because in real-world ReID applications images of different

identities can often be differentiated only when looking into

these fine-grained differences. This issue manifests itself in

popular person ReID benchmarks such as CUHK03 [1], Mar-

ket1501 [2] and DukeMTMC [3]. To provide a straightfor-

ward illustration, we explore and visualize the distribution

of average pairwise distances on these datasets. The results

are shown in Figure 1. It is clear that inter-person distances1

(i.e., distance between an image pair of different persons) can
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1 Images of each person are normally treated as samples from an individual

class; so class and person/identity are used interchangeable in this study.

be rather small due to fine-grained differences between these

images, e.g., the demonstrated CUHK03 anchor image and the

negative sample at the right bottom in the first row in Figure 1

have only small differences in the bags and glasses the two

persons carry. On the other hand, intra-person distances (i.e.,

distance between an image pair of the same person) can be

large due to the fine-grained differences, e.g., the background

object in the positive sample at the left bottom in the first row

of Figure 1. Consequently, the identified persons may contain a

large number of false positive errors. Similar results can also

be observed in the Market1501 [2] and DukeMTMCC [3].

Therefore, the ability to capture those fine-grained appearance

differences is the key to accurate person ReID.

Inspired by the tremendous success of deep learning, many

methods [4], [5], [6] have been introduced to learn deep

expressive representations for person ReID and achieved state-

of-the-art performance. Typically, most of these methods [7],

[8], [4], [9], [5], [10], [11], [12], [6], [13], [14], [15], [16],

[17], [18], [19], [20] employ a triplet loss [7], [5], [13] or

its combination of a classification loss [10], [11], [12] as the

driving force to extract relevant features. Under this generic

framework, several approaches have been developed to learn

semantically-rich and/or local features, such as the global

feature-based approach [14], [15], data augmentation-based

approach [6], [13] and striping approach [21], [10].

Fig. 1. Distribution of average distances between an anchor image and other
images from the same person or different persons. Many image pairs have
small inter-person distances in popular ReID benchmarks (see Table I in
Section V for detailed statistics). The distances are calculated using features
extracted from ResNet50.

However, the triplet loss, which enforces that inter-person

distances are larger than intra-person distances by a predefined

margin, is less effective in learning the fine-grained differences
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due to two main reasons: (i) as shown in Figure 2, the triplet

loss function is dominated by infinitely increasing penalization

on large differences between images of the same identity; (ii) it

does not enforce sufficient penalization on the images of small

differences. For example, triple loss enforces no penalization

on the small intra-person differences and imposes a linearly

increased penalization on the small inter-person differences.

As a result, the triplet loss can only capture the high-level

similarities and differences, and thus, it is ineffective in scenes

where the fine-grained differences are the key to person ReID.

To address the aforementioned issues, we propose a novel

fine-grained difference-aware (FIDI) loss for person ReID.

This fine-grained difference-aware property refers to the ca-

pability of our loss in adaptively penalizing small inter-person

or intra-person appearance differences. Particularly, the FIDI

loss enforces an exponentially large penalization on images of

those fine-grained differences while at the same time imposing

a bounded penalization on their counterparts, i.e., images of

large inter-person or intra-person differences. The exponential

penalization drives the model to be sensitive to small dif-

ferences, while the bounded penalization effectively reduces

the bias towards large differences. The resulting models can

balance expressive features learned from both large and small

differences. Additionally, due to the fine-grained difference-

aware property, our loss can also leverage the training data

more efficiently than the triplet loss.

A number of studies [9], [22], [12] have dedicated to

exploring loss functions other than the triplet loss function

for more effective and/or efficient person ReID. Contrastive

loss [23] is a well-known pairwise loss that learns features

for face recognition or re-identification. However, it has sim-

ilar weaknesses as the triplet loss. Additionally, the single

predefined hard margin in these losses also makes it hard

to adaptively penalize distance distributions within different

person identities.Quadruplet loss [9] equips a quadruplet deep

network with quadruplet inputs to replace the triplet loss.

However, it is limited to specific network structures and is

hard to be extended. Batch-hard triplet loss [22], [12] is

another widely used person ReID loss that optimizes the

margin between the most dissimilar intra-person distance and

the most similar inter-person distance in each batch. The batch-

hard operation is also explored to improve the contrastive loss

for the ReID task [10]. The recently proposed circle Loss [24]

combines the triplet loss with a softmax cross-entropy loss

and re-weights each similarity to highlight the less-optimized

similarity scores. However, although its batch-wise loss helps

regularize the feature learning, it is built upon the triplet loss

and thus exhibits similar behaviors in handling the fine-grained

feature issues.

In summary, this paper makes the following four main

contributions.

• We reveal that the widely-used triplet loss function,

arguably currently the most popular ReID loss, has in-

herent difficulties in handling fine-grained appearance

differences. This loss is ineffective in challenging ReID

cases where different identities can be only distinguished

by the fine-grained differences.

• We introduce a novel pairwise relationship-based loss

function, termed fine-grained difference-aware (FIDI)

loss. This FIDI loss enforces exponentially large penal-

ization on small appearance differences while at the same

time imposing bounded penalization on large differences.

As a result, the FIDI-enabled models can effectively learn

expressive features from both large and small appearance

differences.

• The fine-grained difference-aware property also empow-

ers the FIDI loss to harness the image samples more

effectively and is thus substantially more data-efficient

than the triplet loss.

• We demonstrate that the FIDI loss can be used as a plugin

to replace the triplet loss and work effectively in different

types of state-of-the-art approaches.

Experimental results on four benchmark datasets show that

the FIDI loss substantially improves the triplet loss by a large

margin, e.g., typically 10%-20% improvement in effectiveness.

We also show the FIDI loss based models can also largely

outperform state-of-the-art vehicle ReID models.

The rest of our paper is organized as follows: In Section II,

we review the related works for person ReID. Then we provide

corresponding research background and discuss relevant loss

functions for person ReID in Section III. Section IV intro-

duces the proposed FIDI loss function. Experimental results,

visualization and ablation studies are presented in Section V.

Finally, the conclusions are given in Section VI.

II. RELATED WORK

Many studies [8], [25] learn feature representations for

person ReID by fine-tuning convolutional networks with a

classification loss. Different approaches have been introduced

to further improve the performance, including data augmenta-

tion, striping, and global feature approaches. In this section,

we review three types of person ReID approaches.

A. Data Augmentation-based Approach

Data augmentation is an effective way to improve the feature

learning capacity for CNN. There are generative adversarial

networks (GANs) [6], [13], pose estimation [14], [15], random

erasing [26] in this category.

GAN based approaches use GAN to generate more data

for training. Mask or pose guided frameworks obtain the

semantic information from pose estimation or segmentation

models. These methods use other networks to generate image

to increase the number of input images or improve the mask

of input for augmentation. However, the benefit comes from

the help of other networks with extra semantic information.

By contrast, random erasing randomly selects a rectangle

region and assigns random values either on image [26] or

CNN feature maps [10]. Among these data augmentation-

based methods, random erasing is arguably the simplest yet

highly effective method without extra computation cost.

B. Striping-based Approach

Striping based methods aim at enforcing the learner to pay

more attention to different parts of the identities by combining
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striping local features. Part based networks are widely adopted

in these methods [25], [21], [10] to separate feature maps into

several parts. They build multi-branch neural networks to learn

local features in each of the predefined parts of the identities

with one-branch network dedicated to one part, and then they

concatenate these features to perform ReID during inference.

PCB [21] is the first part-based deep learning methods for

person re-identification. It replaces the original global pooling

layer with a spatial conventional pooling layer to separate

the last convolution into several pieces of column vectors for

independent pooling, in which each part refers to a body part

of person. These feature then are concatenated for final feature

learning. To further improve the accuracy, both global feature

and part-based local feature are learned and used [27], [10].

The added features often result in accuracy improvement.

Though these striping methods are often the best performers

on different benchmark datasets, they often involve more

network parameters and expensive computation than single-

branch network-based methods.

C. Global Feature-based Approach

Global feature-based approach focuses on a single network

structure as the backbone to learn global identity features.

These methods work on the sampling process [28], [29], loss

design [22] or learning process [12]. Among them, the loss

function is very crucial for feature learning and most relevant

to our work.

The combination of classification loss and ranking loss such

as triplet loss is one of the most widely-used loss functions for

person ReID [7], [8], [4], [9], [5]. The triplet loss often works

better than contrastive loss, since the triplet inputs provides

a better guarantee of the distance margin than the pairwise

contrastive loss. However, the triplet constraint is loose in the

sense that it ignores the triplets when the predefined margin is

met. The triplet loss is also cumbersome as the triplet sample

space is often excessively large for large-scale data. A few

studies attempt to address these issues for person ReID. One

such example is a quadruplet loss with quadruplet network [9],

but it is limited to specific network structures. Circle loss

[24] is another closely related work that re-weights each

similarity to highlight the less-optimized similarity scores,

but the weighting factors are defined in a self-paced manner

and need more calculation. Other methods [22], [12] avoid

the explicit generation of hard triplet samples. Instead they

work with batch-wise hard triplet loss, which optimizes the

margin between the most dissimilar intra-person distance and

the most similar inter-person distance in each batch. This en-

hanced triplet loss becomes more sensitive to small appearance

differences than the basic triplet loss. However, its inherent

penalization mechanism does not change.

III. RESEARCH BACKGROUND

This section introduces person re-identification problem and

a widely-used state-of-the-art frameworks to illustrate how our

proposed loss could be plugged in.

A. Problem Formulation

In a person ReID system, let X = {xi, yi}
N
i=1 be a set of

N training samples, where xi is an image sample and yi is

its identity/class label. The person ReID algorithm learns a

mapping function φ : X 7→ F which projects the original data

points X to a new feature space F . This space F should shrink

the intra-person distance while push the inter-person distance

as large as possible. Given a query image q and φ, the ReID

algorithm first computes this distance between φ(q) and every

image φ(x) from a gallery image set G, and then returns the

images that have the smallest distance. It should be noted that,

for the sake of real-world applications, the gallery image set

and the training image set have no overlapping, i.e., the query

person does not appear in the training set. Therefore, is is also

regarded as a zero-shot problem. This largely distinguishes

person ReID from general image retrieval tasks.

B. Triplet Loss-based Approach

The triplet loss is a widely-used loss function which takes

a collection of triplet samples to learn feature representations

space where the inter-class distances are greater than intra-

class distances by at least a predefined margin m. A triplet

is composed of three samples xa, xp and xn, where xa is

an anchor sample. xp is a positive sample that comes from

the same person as xa, while xn is a negative sample taken

from an identity different from that of the anchor. The generic

triplet loss (TL) is given as follows:

Ltl = [d(za, zp)− d(za, zn) +m]+, (1)

where z = φ(x) denotes the learnt feature representation of

x. d(·, ·) is the distance of two samples. m is a predefined

margin and [·]+ represents max(·, 0). Contrastive loss can be

regarded as a special case of triplet loss where d(za, zn) +m
is 0 for similar pairs and d(za, zp) is 0 for dissimilar pairs.

Convolutional networks are often employed to instantiate the φ
function. The triplet loss is the key ingredient here, but Eqn.(1)

requires the high-quality triplets as input. An advanced triplet

loss, termed batch triplet loss (BTL) that is widely-used in

person ReID, incorporates hard triplet mining into the loss

calculation in each batch [7], [4], [9], [5]. BTL is defined as

follows:

Lbtl = [ max
p=1...Bp

d(za, zp)− min
n=1...Bn

d(za, zn) +m]+, (2)

where maxp=1...Bp
d(za, zp) represents the maximum distance

between anchor and all Bp positive samples in a batch.

minn=1...Bn
d(za, zn) represents the minimum distance be-

tween anchor and all Bp negative samples in the batch.

To complement the triplet-based local features, a classi-

fication loss is used in recent methods [27], [10], [12] to

work together with the triplet loss for a global constraint in

the optimization. This helps learn class-level global features

effectively. The classification loss is defined as:

Lcla =

N
∑

i=1

E(z⊺i W,yi), (3)
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Fig. 2. An overview of the fine-grained difference-aware pairwise loss-based framework. It consists of a deep CNN-based network backbone, our proposed
FIDI loss and a classification loss. This framework is exactly the same as the widely-used triplet loss-based framework except that the triplet loss is replaced
with our FIDI loss. The network backbone can be various CNN architectures. Unlike the triplet loss that neglects small appearance differences due to the
potential dominance of unbounded penalization on images of large intra-person differences, our FIDI loss can effectively capture the fine-grained intra-
person/inter-person appearance differences, e.g., image pairs having small appearance difference as in the red boxes above. We achieve this by enforcing
exponentially large penalization on images of small differences and bounded penalization on images of large differences.

where E(·) is the cross entropy loss. W is the weight matrix

to map zi to classification labels xi encoded as one-hot vector

yi in the output layer. This classification loss is added in

the output classification layer. A batch normalization layer is

normally employed between the triplet loss-enabled feature

layer and the output layer to speed up training and stabilize

the performance.

This framework works effectively in different benchmark

datasets. Recent advances incorporate data augmentation or

striping strategies [27], [10] to achieve new state-of-the-art

performance. However, the triplet loss, either Ltl or Lbtl,

fails to learn expressive features from fine-grained differences.

This is because: (i) the triplet loss is not sensitive to small

differences, i.e., it enforces no penalization on small intra-

person differences or small penalization on small inter-person

differences; (ii) the loss grows linear infinitely w.r.t. the

increasing intra-person distances and has no upper bound. As

a result, the optimization may be dominated by large intra-

person differences.

IV. FINE-GRAINED DIFFERENCE-AWARE (FIDI) LOSS

This section introduces our fine-grained difference-aware

(FIDI) loss to address the bottleneck issue with the triplet

loss.

A. The Proposed Framework

Our proposed framework aims to leverage the capability of

the FIDI loss in capturing fine-grained differences to learn

well discriminative and generalized features for the person

ReID task. Specifically, as shown in Figure 2, our framework

is composed of three modules: deep convolutional network-

based feature mapping, the FIDI loss and the classification

loss. We use exactly the same framework as the triplet loss

approach except that the triplet loss is replaced with our FIDI

loss. Note that we use this setting to facilitate a straightforward

comparison with triplet loss-based approaches in our empirical

studies. As discussed in Section V-D3, The FIDI loss could

also improve other frameworks.

The procedure of our framework is as follows. It first uses

a convolutional neural network to map image data into a

low-dimensional space. Compared to quadruplet loss [9], here

this backbone network is not limited to any specific deep

convolutional network structures. Then the proposed FIDI loss

enforces a pairwise constraint to the projected features by

applying exponentially increasing penalization to small differ-

ences and bounded loss to large differences. This enables the

learner to adaptively capture the fine-grained differences while

enforce a desired margin between the feature representations

of different identities. Finally, we use a batch normalization

layer and a fully connected layer without bias as the classifier,

which is optimized using the cross entropy loss in Eqn.(3).

Particularly, the FIDI loss is built upon relative entropy [30],

a measure of the distance between two distributions. Let K be

a known distribution of training image pairs, i.e., the ground

truth identity labels, and U be an unknown distribution we aim

to learn, then the FIDI loss is defined as follows:

Lfidi = D(U||K) +D(K||U), (4)

where

D(U||K) =
∑

pij∈P

upij
log

αupij

(α− 1)upij
+ kpij

, (5)

where pij = {xi,xj} is a pair of image samples and P is

a collection of image pairs; kpij
∈ K and kpij

= 1 if the

image pair xi and xj are from the same identity, and kpij
=

0 otherwise; upij
is taken from an unknown distribution U ,

which is the distribution of feature level relationship of image
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(a) Probability (b) Loss (k = 0) (c) Loss (k = 1)

Fig. 3. (a) Exponential vs. sigmoid distance-to-probability functions, (b) Loss w.r.t. inter-person distance and (c) Loss w.r.t. intra-person distance. One desired
property of exponential distribution based distance-to-probability function is that its probability is exponentially sensitive to changes within a small distance.
As shown in (b) and (c), our loss function exponentially punishes the similar/dissimilar pairs that have small distance whle imposing bounded loss to large
distances.

pairs in P; and α > 1 is a parameter to control the scale of

Lfidi. Since K is the supervised information and is known a

priori, our target is to learn upij
∈ U such that the distribution

U is close to K as much as possible.

The original relative entropy is one of the most popular and

effective losses used in different learning tasks. However, it

could not effectively reflect the true distance between distri-

butions in our task due to the asymmetric and the lack of fine-

grained difference-aware characteristic. Our Lfidi enhances it

to achieve the following two main advantages:

• Our loss is a symmetric metric with a desired inter-class

margin.

• Our loss enforces fine-grained difference-aware penal-

ization on small differences and bounded loss on large

differences

B. Exponential Loss on Images of Fine-grained Differences

One key ingredient in Eqn.(4) is the distance-to-probability

function η that maps the distance in the representation space,

d(zi, zj), to the probability distribution U , i.e., upij
=

η(d(zi, zj)). In FIDI loss, we introduce an exponential

distribution-based distance-to-probability function η to effec-

tively penalize hard samples. Particularly, η is defined as

follows:

upij
= e−βd(zi,zj), (6)

where β is a parameter to control the scale of the probability

distribution. We have upij
→ 0 with increasing pairwise

distance, and upij
→ 1 in the opposite.

We use the exponential distribution-based η because it is

more sensitive and imposes more meaningful penalization on

small differences compared to the commonly-used sigmoid

function 1
1+e−d or its advanced variant 1

1+e−βd [4], [31], [29],

where d denotes the pairwise distance and the parameter β
controls the scale of the distribution shape.

Specifically, as shown in Figure 3(a), the exponential distri-

bution shape is significantly more sensitive to the distance than

the sigmoid distribution shape, especially when the pairwise

distance is small. As a result, as shown in Figure 3(b-c),

the exponential distribution based η results in exponentially

varying relative entropy loss w.r.t. both the intra- and inter-

person distances, whereas the sigmoid distribution-based loss

applies rather conservative penalization in such cases.

One main benefit brought by the exponentially sensitive

penalization is the capability in learning the fine-grained differ-

ence of the image pairs. Specifically, as shown in Figure 3(b),

for image pairs that come from different persons but with

small distances, the FIDI loss applies penalization inversely

exponential to the distance and applies nearly zero loss to the

pairs that have large inter-person distance; by contrast, the

triplet loss may enforce no penalization on image pairs which

have very small inter-person distance. In a similar sense, as

shown in Figure 3(c), for image pairs that come from the same

person, no penalization is enforced by the triplet loss on the

image pairs that have small intra-person distance; by contrast,

the FIDI loss also applies exponential penalization to such

cases.

The resulting FIDI loss-based model effectively learns fine-

grained feature representations that are significantly improved

over the triplet loss. The fine-grained difference-aware ability

also enables the FIDI loss-based model to leverage the labeled

data substantially more efficiently than its counterpart, result-

ing in more data-efficient learning.

C. Bounded Loss on Images of Large Differences

Unlike triplet loss that has an infinitely linearly increasing

penalization w.r.t. images of large appearance differences,

the FIDI loss has a bounded loss on the large differences,

which effectively prevents the dominance of images of large

differences in the optimization. Specifically, the bounded loss

of the FIDI loss can be provided as follows.

lim
u→0

Lfidi = 0, when k = 0;

lim
u→0

Lfidi = log
α

(α− 1)
, when k = 1.

(7)

This states that for image pairs from different identities, i.e.,

k = 0, we have a lower loss bound of zero with u approaching

to zero. Recall that the pairwise distance increases as u → 0.

In other words, similar to the triplet loss, the FIDI loss does

not penalize the image pairs if they are from different identities
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with a large distance in the new space. On the other hand, for

image pairs from the same identity, while the triplet loss has

an infinitely increasing loss, the FIDI loss imposes an upper

loss bound of log α
(α−1) w.r.t. increasing intra-person distance.

This upper bound is controlled by the hyperparameter α and

can be easily tuned during training.

As shown in Figure 3(c), the punishment of triplet loss

can be very large, given image pairs with very large intra-

person distances. This hinders the triplet loss to learn the

fine-grained differences from image pairs that have small intra-

person distances. By contrast, the FIDI loss treats these sam-

ples equally and enforces a bounded penalization, preventing

the domination of the large appearance differences over the

counterpart small differences.

D. Symmetric Metric with a Desired Margin

Different from the original relative entropy that is asymmet-

ric, our loss in Eqn.(4) is symmetric, as it is easy to see that

we get the same results when switching upij
and kpij

. This

characteristic eases the optimization of the feature learning

and also helps learn more meaningful features.

Although the FIDI loss does not explicitly define a margin

between intra- and inter-person image pairs as in the triplet

loss, the FIDI loss can still achieve some implicit margins.

This is because Eqn. (4) enforces the substantially small intra-

person distances while at the same time encourages large inter-

person distances, resulting in some implicit margins between

intra- and inter-person image pairs. However, the margins are

not directly predefined as in the triplet loss, but they are

controlled by the parameter β in Eqn. (6).

V. EXPERIMENTS

A. Datasets

We evaluate the performance on four widely used per-

son ReID datasets, including Market1501 [2], DukeMTMC-

ReID [3], CUHK03-D and CUHK03-L [1], and two vehicle

datasets, VeRi-776 [32] and VehicleID [33].

Market1501 is a large person ReID dataset containing

12,936 images from 751 identities in the training data, and

3,368 query images and 19,732 gallery images from 750

identities in the testing data. These images were captured from

6 different camera viewpoints with manual bounding boxes.

There are about 17 images for each identity.

DukeMTMC-ReID is a subset of DukeMTMC [34] for

person ReID. The images are cropped by hand-drawn bound-

ing boxes. The data was taken from 8 cameras of 1,404

identities with respective 16,522, 2,228 and 17,661 images

in the training, query and gallery sets.

CUHK03-D and CUHK03-L contain the same image set

with 14,096 images from 1,467 identities captured from two

cameras in CUHK campus, but their identity-bounding box

were created by different methods. CUHK03-D used pedes-

trian detectors to create the bounding boxes while that of

CUHK03-L was manually labeled. The pedestrian detector-

based method is more challenging than the manually labeled

one since the former is less accurate.
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ID-IV and ID-VII in different views look very different. These datasets also
contain many images with occlusion.

VeRi-776 is a vehicle dataset in which all the images were

captured in natural and unconstrained traffic environment.

It contains about 50,000 images of 776 vehicles across 20

surveillance cameras with different orientations. This dataset

is widely used in vehicles re-identification tasks because each

image is captured from 2 to 18 viewpoints with different

illuminations and resolutions. These images are also labeled

with bounding boxes over the whole vehicle body.

VehicleID is a large-scale vehicle dataset that contains

221,763 images with 26,267 vehicles. All the images were

captured from multiple surveillance cameras with no overlap-

ping. There are three test subsets with different sizes and we

use the largest test set which contains 20,038 images of 2,400

vehicles.

Note that the person/vehicle identities in the training and

testing sets have no overlapping in all the used datasets. An

image example is given in Figure. 4, in which we give two

images from the same person with different views. There are

many hard/easy examples from different/same person in these

datasets. For example, the images of ID-I and ID-II in View-II

look very similar and the images of same person of ID-IV and

ID-VII in different views look very different. These datasets

also contain many images with occlusion.

B. Evaluation Protocol

Following the standard protocol in [31], [29], [21], [35],

[36], we use Cumulated Matching Characteristics (CMC) and
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mean average precision (mAP) to evaluate the performance

on all datasets. We report the cumulated matching accuracy

at rank 1 (R-1 for short) and the mAP value of the retrieval

performance. Specifically, for all queries, we compute

R1 =

Q
∑

q=1

r1/Q, (8)

where Q is the number of queries and r1 is defined as

r1 =

{

1, the first top-ranked sample is the query identity

0, otherwise,
(9)

The mean average precision (mAP) is defined as

mAP =

Q
∑

q=1

AveP (q)/Q, (10)

where AveP (q) is the average precision (AP) for a given query

q.

Note that all the reported results here do not involve re-

ranking which may be used as an extra step to further improve

the accuracy.

C. Understanding the Resulting Feature Representations

We aim to understand the effectiveness of feature represen-

tations by looking into the fidelity and the saliency map of

learned features.

1) Fidelity of Feature Representations: The feature repre-

sentations fidelity measures how faithful the obtained feature

represents the expectation, i.e. intra-person distances should be

larger than inter-person distances. To efficiently evaluate this

type of fidelity, we consider the number of erroneous cases

where (i) anchor images have smaller inter-person distances

than the their maximal intra-person distances, termed Error-I,

or (ii) anchor images have larger intra-person distances than

their minimal inter-person distances, termed Error-II. We count

these two types of erroneous cases using feature representa-

tions of four different methods, including pre-trained features

extracted from a pre-trained ResNet502 (PF) and features

obtained by fine-tuning ResNet50 using respectively batch-

hard constrastive loss (BCL), batch-hard triplet loss (BTL) and

our proposed loss (FIDI). The statistics of erroneous cases on

three person ReID benchmarks are reported in Table I.

It is clear from Table I that pre-trained features would

result in a large number of erroneous cases, especially the

Error-I cases. This indicates that most images of difference

identities exhibit large similar appearance in both training

and testing data, leading to small inter-person distances. The

datasets also contain some Error-II cases that may be seen

as outliers, because intra-person distances is rarely larger

than minimal inter-person distances. To address these issues,

models should be able to effectively learn the small appearance

differences while prevent the impact of the outlying cases.

After fine-tuning the models using either BCL, BTL or FIDI,

2https://github.com/kaiminghe/deep-residual-networks

the number of erroneous cases is significantly reduced in both

training and testing data. In training data, BCL and BTL

perform very well in enforcing intra-person distances to be

smaller than inter-person distances, often achieving smaller

error rates than FIDI. However, they perform significantly

less effective than FIDI in the testing data, especially on

the Error-I measure. This may indicate that both BCL and

BTL overfit the training data rather than capturing the fine-

grained appearance differences to distinguish the inter-person

images. By contrast, with exponentially large penalization,

FIDI enforces the models to learn any possible fine-grained

appearance differences in the training data. Since the fine-

grained differences are typically very difficult to learn, for

some cases, even for humans, FIDI does not perform as well

as BCL and BTL in the training data. However, its capability

of discriminating the fine-grained differences pays off in the

testing data.

2) Attention Maps: We further examine the resulting at-

tention maps of our loss and the competing loss functions.

We focus on comparing our FIDI loss to the BTL loss,

because BTL is generally more effective and is much more

widely-used than BCL in person ReID. Specifically, these

two losses are plugged into one of the best ReID models,

Baseline [12]. The attention maps are then obtained by apply-

ing the Grad-CAM visualization method [37] with Baseline

to create pix-wise gradient visualizations. The attention maps

on the last output feature maps are shown on Figure 5. The

BTL-enabled Baseline highlights single discriminative parts

only, which may correspond to the parts that have large

appearance differences to other images. In contrast, our FIDI

loss-enabled Baseline can effectively attend to diverse large

and small discriminative parts in different cases, e.g., shoes

and heads in identity images taken different angles, different

accessories and occluded identities. For example, in the 1st

row in Figure 5, despite different angles and identities, our

method can consistently pay attention to both small (shoes

and heads) and large (the main body dress) discriminate parts,

while the competing method focuses on a small discriminative

region of the main body only. This demonstrates that the BTL

loss-based models can be dominated and swayed by large

appearance differences. Therefore, their attention is normally

on single highly discriminative parts. In contrast, our loss can

effectively drive the ReID models to pay attention on different

body parts by enforcing the importance of distinguishing fine-

grained differences.

3) Summary of Comparison: Overall, by enforcing expo-

nentially large penalization on images of small appearance

differences and bounded penalization on images of large

differences, our FIDI pairwise loss brings in two major benefits

compared to existing widely-used pairwise and triplet losses.

First, the FIDI-enabled models can effectively capture fined-

grained appearance differences, where the competing methods

fail. This significantly improves the feature representations as

demonstrated by significantly small errors in testing data in

Table I. Second, as illustrated in Figure 5, our loss effectively

pushes the ReID models to attend to diverse discriminative

parts since fine-grained differences may appear in different

body parts. This is important for distinguishing different
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TABLE I
AVERAGE ERRONEOUS DISTANCE CASES OVER ALL IMAGES OF EACH DATASET IN FOUR FEATURE SPACES. ERROR-I REFERS TO THE AVERAGE NUMBER

OF ANCHOR IMAGES WHICH HAVE SMALLER INTER-PERSON DISTANCES THAN THEIR MAXIMAL INTRA-PERSON DISTANCES, WHILE ERROR-II IS THE

AVERAGE NUMBER OF ANCHOR IMAGES WHICH HAVE LARGER INTRA-PERSON DISTANCES THAN THEIR MINIMAL INTER-PERSON DISTANCES. PF REFERS

TO PRE-TRAINED FEATURES EXTRACTED FROM A PRE-TRAINED RESNET50. BCL, BTL AND FIDI ARE FEATURE SPACES RESULTED BY FINE-TUNING

RESNET50 USING RESPECTIVELY BATCH-HARD CONSTRASTIVE LOSS, BATCH-HARD TRIPLET LOSS AND OUR PROPOSED LOSS. THE AVERAGE NUMBER

OF IMAGES PER IDENTITY IS 9.6 IN CUHK03, 17 IN MARKET1501 AND 23 IN DUKEMTMC. THE BEST RESULTS ARE BOLDFACED IN EACH GROUP.

Data Method

CUHK03 Market1501 DukeMTMC

9.6 images/ID 17 images/ID 23 images/ID
Error-I Error-II Error-I Error-II Error-I Error-II

Training Data

PF 4316 7 9596 15 13677 19
BCL 0.008 0.010 1.977 0.397 6.360 4.420
BTL 0.005 0.008 1.905 0.295 3.310 3.655
FIDI 0.252 0.023 2.072 0.261 3.721 1.807

Testing Data

PF 2973 7.617 11687 506.7 13258 24.15
BCL 85.06 6.600 276.3 19.18 925.7 20.89
BTL 95.11 6.611 261.5 18.36 910.6 20.61
FIDI 45.02 6.310 229.1 16.50 819.3 19.54

OriginalBaselineOurs OriginalBaselineOurs

DukeMTMC CUHK03-D

Fig. 5. Visualization of attention maps of our FIDI loss-enabled model (Ours)
and the batch-hard triplet loss-enabled model (Baseline). Our method learns
diverse important attention, but Baseline only focuses on small discriminative
parts. The diverse attention maps from Ours span over the whole person rather
than some local areas in Baseline.

identities with some similar appearances, e.g., in dress, shoes

and/or accessories. Models embodied with our loss would

enjoy above two factors that are critical to accurate person

ReID.

D. Enabling Different Type of Person ReID Models in Real-

world Datasets

To have a comprehensive evaluation on real-world datasets,

the FIDI loss is used to replace the batch-hard triplet loss

in three types of recent state-of-the-art approaches, including

data augmentation, global feature and striping approaches.

Specifically, we choose the best performer(s) in each type of

these approaches and them simply replace the triplet loss with

our proposed FIDI loss, with all the other modules unchanged.

The batch size and the number of identities in each batch are

respectively set to 128 and 8 by default. The hyperparameters

α and β in the FIDI loss are tuned via cross validation for

each data set.

1) Enabling Data Augmentation Methods: This sec-

tion compares our loss to several data augmentation-based

methods, including GAN-based methods [38], [13] and

segmentation-based masking methods [14], [39]. Note that,

these methods employ other networks to generate images to

obtain semantic information, which brings extra computational

consumption. Baseline1 [12] without data augmentation, i.e.,

random erasing, is the best performer. Therefore we plugged

the FIDI loss into this method. Note that Baseline1 contains

a center loss and we discard this loss in our Baseline1 model

by replacing the triplet loss with our FIDI.

The comparison results are shown in the second row in

Table II. Although Baseline1 has significantly outperformed

all the other competing methods in this category, the FIDI loss-

enabled Baseline1 can still consistently beat the original Base-

line1 in both mAP and R-1 across all the four datasets. Particu-

larly, the improvement is significantly larger on the challenging

datasets than the relatively easy ones, e.g., the improvement

can be as large as 20.9%-21.3% in mAP and 22.1%-22.7%

in R-1 on the two CUHK03 datasets whereas it is 2.7%-3.4%

in mAP and 0.7%-1.3% in R-1 on Market1501/DukeMTMC.

This demonstrates that the FIDI loss-enabled Baseline1 not

only inherits the superior capability as in the original Baseline1

but also leverages the fine-grained difference-aware ability of

the FIDI loss to learn extra discriminative information from the

hard samples. This is especially true for the two challenging

CUHK03 datasets in which we have much less images and

the triplet loss-based models become overfitting (see Table I

for detail).

2) Enabling Global Feature-based Methods: We then ex-

amine the plugging of the FIDI loss into the global feature-

based methods. There are seven methods for comparison,
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TABLE II
MAP AND R-1 OF DIFFERENT METHODS ON FOUR BENCHMARK DATASETS. BCL AND BTL RESPECTIVELY DENOTE BATCH CONTRASTIVE LOSS AND

BATCH TRIPLET LOSS. THE BEST PERFORMANCE PER GROUP IS BOLDFACED.

Type Methods
Market1501 DukeMTMC CUHK03-D CUHK03-L
mAP R-1 mAP R-1 mAP R-1 mAP R-1

Data
Augumentation

SPReID [14] 81.3 92.5 71.0 84.4 - - - -
Camstyle [13] 68.7 88.1 53.5 75.3 - - - -
PN-GAN [38] 72.6 89.4 53.2 73.6 - - - -
SVDNet [39] 62.1 82.3 56.8 76.7 37.3 41.5 37.8 40.9
Baseline1 (BTL) [12] 82.3 93.5 71.0 84.9 52.5 54.2 55.3 56.3
Baseline1 (FIDI) 84.5 94.2 73.4 86.0 63.5 66.1 67.1 69.1

Global
Feature

TriNet [22] 69.1 84.9 - - - - - -
AWTL [40] 75.7 89.5 63.4 79.8 - - - -
AOS [28] 70.4 86.4 62.1 79.1 43.3 47.1 - -
GSRW [41] 82.5 92.7 66.4 80.7 - - - -
Mancs [29] 82.3 93.1 71.8 84.9 60.5 65.5 63.9 69.0
BCL [42] 67.6 86.4 58.6 78.2 - - - -
CL [24] 84.9 94.2 - - - - - -
Baseline2 (BTL)[12] 85.9 94.5 76.4 86.4 58.2 60.5 60.2 62.1
Baseline2 (BCL) 84.0 92.3 74.5 83.6 60.5 63.3 64.9 66.4
Baseline2 (FIDI) 86.8 94.5 77.5 88.1 69.1 72.1 73.2 75.0

Striping

AlignedReID [43] 77.7 90.6 67.4 81.2 - - - -
MLFN [11] 70.4 86.4 62.1 79.1 47.8 52.8 49.2 54.7
PCB [21] 77.4 92.3 65.3 81.9 53.2 59.7 - -
IANet [44] 83.1 94.4 73.4 87.1 - - - -
PL-Net [45] 69.3 88.2 - - - - - -
MCG [46] 78.3 92.6 69.4 84.7 - - 55.3 61.7
BDB [10] 84.3 94.2 72.1 86.8 69.3 72.8 71.7 73.6
BDB (FIDI) 85.2 94.8 74.5 88.6 71.7 74.5 73.8 76.9
MGN [27] 86.9 95.7 78.4 88.7 66.0 66.8 67.4 68.0
MGN (FIDI) 86.9 95.4 79.8 89.7 73.0 76.1 76.3 78.9

including TriNet [22], AWTL [40], AOS [28], GSRW [41],

Mancs [29], BCL [42] and Baseline2 [12]. These methods

only employ simple single branch structure for training, which

have less parameters to learn. All methods have only one

pipeline with the basic ResNet50 as the backbone and use

the feature representations obtained after global pooling. Note

that, Baseline2 [12] is the Baseline1 with random erasing data

augmentation. We also discard the centre loss and replace the

triplet loss by our FIDI loss. We not only report the results of

BCL [42] but also the results of Baseline2 (BCL), which is

the Baseline2 [12] with BTL function being replaced by the

BCL function from [42].

The results are given in the third row in Table II. It is clear

that the FIDI loss-enabled Baseline2 consistently enhances

the best performer in this group of methods, the original

Baseline2, with significant improvement on the two CUHK03

datasets by 18.8%-20.3% in mAP and 19.2%-20.9% in R-

1. This is because the FIDI loss-enabled Baseline2 can still

gain the full benefits brought by a bag of different tricks used

in Baseline2 while at the same time significantly improving

Baseline2 when the datasets become more challenging.

3) Enabling Striping-based Methods: Lastly the FIDI loss

is evaluated with the stripe-based methods, including some

recent promising methods BDB [10] and MGN [27]3. These

methods are typically much more difficult to train and are

computationally expensive than the other methods, because

3DSA [47] also achieves state-of-the-art results on CUHK03-D and
CUHK03-L datasets, but we cannot plug our loss into it since its source
code is not available.

they involve multi-branch complex network structures. Since

there is no consistent superiority of MGN and BDB over each

other, we plug our FIDI loss into both methods.

The results are shown in the last row in Table II. We

can see that the performance of both BDB and MGN is

substantially improved in nearly all cases on the four datasets.

Particularly, the FIDI loss consistently enhances BDB in both

mAP and R-1 across all cases, especially lifting its mAP

performance by 1.1% on Market1501, 4.2% on DukeMTM,

3.4% on CUHK03-D and 3.7% on CUHK03-L. The FIDI loss

significantly improves MGN by 10.1%-13.2% in mAP and

13.9%-16.0% in R-1 on the two complex CUHK03 datasets.

The FIDI loss-enabled MGN only works comparably well to,

or less effectively than, the original MGN on Market1501.

This may be due to that Market1501 is a simple and small

dataset while MGN is a model with very complex architecture.

Therefore, training MGN with our FIDI loss may lead to

overfitting on this dataset.

4) Summary of Comparison: Overall, three main observa-

tions can be drawn across all the comparisons in Table II.

First, our FIDI loss consistently and substantially improves

all three types of recently proposed triplet loss-based state-of-

the-art methods by a large margin on DukeMTMC and the

two CUHK03 datasets. It is especially true on the complex

CUHK03 datasets where the plugin of the FIDI loss typically

results in 10%-20% improvement in both mAP and R-1, but

the FIDI loss may not have clear advantages over the triplet

loss on simple and/or small datasets such as Market1501.

Second, by using the FIDI loss, simple models can perform
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Fig. 6. mAP results on four datasets with varying percentage of training data.
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Fig. 7. R1 results on four datasets with varying percentage of training data.

substantially better than the complex models that use the

triplet loss, e.g., ‘Baseline2 (FIDI)’ vs. BDB on Market1051,

DukeMTMC and CUHK03-L. Third, the superiority of the

FIDI loss sets new state-of-the-art results on DukeMTM,

CUHK03-D and CUHK03-L, achieving 3.1%-7.2% improve-

ment in mAP and 2.3%-4.6% improvement in R-1 over the

prior best performance on the last two datasets.

E. Enhancing Data Efficiency

This section evaluates the data efficiency of the FIDI loss-

enabled models. To do this, we reduce the training data by

randomly removing 25% identities each step. The mAP results

are given in Figure 6 and Figure 7.

It is clear that the FIDI loss-enabled models outperform

their corresponding counterparts in all the training data settings

across the four datasets, with substantial improvement in most

cases. The performance of the proposed loss on the easy

datasets Market1501 and DukeMTMC is mainly due to its

shared key similar properties as the triplet loss, e.g., having

an inter-class margin, while the superiority of our loss on the

challenging datasets CUHK03-D and CUHK03-L is due to its

fine-grained difference-aware capability and the bounded loss

for easy samples. It is very impressive that even when three

FIDI loss-enabled models use 25% less training data, they still

can perform substantially better than the same models that use

the triplet loss by a margin of at least 7.3% on CUHK03-D and

CUHK03-L. This indicates that when handling challenging

data, using a fine-grained difference-aware loss function is

a much more cost-effective way than increasing the training

data.

F. Beyond Person ReID: Enabling Vehicle ReID

To further evaluate the capability of our proposed loss,

we evaluate the performance of the Baseline2 (FIDI) on two

vehicle ReID datasets, VeRi-776 [32] and VehicleID [33].

1) Comparison with State-of-the-art Vehicle ReID Methods:

We compare our method with 11 state-of-the-art vehicle ReID

methods, including S-CNN [48], AAVER [49], VAMI [50],

PROVID [18], MSVR [51], FDA-NET [52], OIFE [53],

RAM [54], FACT [32], P-R [55] and Baseline2 [12]. The P-

R and Baseline2 are more recent methods that have better

performance than others.

The results are shown on Table III. We can see from the

results that the Baseline2 (FIDI) outperforms most vehicle

ReID methods by a large margin. Compared to Baseline2,

our method achieves 1.3% - 2.6% improvement on mAP and

and 0.6% - 0.7% improvement on R-1. This demonstrates that

the proposed FIDI loss can effectively generalize from person

ReID to vehicle ReID.

2) Visualization of Ranking Results: To provide a more

straightforward illustration of the effectiveness, we present a

set of visual image ranking results for vehicle ReID on VeRi-

766 in Figure 8. We only show the results of Baseline2 (FIDI)

and Baseline2 [12] because Baseline2 has better performance

than all the other competing methods. As shown in Figure 8,

with the increase of returned images, the accuracy of Baseline2

decreases. For example, the 15-th and 20-th returned images of
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TABLE III
MAP AND R-1 PERFORMANCE ON VEHICLE REID DATASETS.

Methods
VeRi-776 VehicleID

mAP R-1 R-1 R-5

S-CNN [48] 58.3 83.5 - -

AAVER [49] 66.4 90.2 63.5 85.6

VAMI [50] 50.1 77.0 - -

PROVID [18] 53.4 81.6 - -

MSVR [51] 49.3 88.6 63.0 73.1

FDA-NET [52] 55.5 84.3 55.5 74.7

OIFE [53] 51.4 92.4 67.0 82.9

RAM [54] 61.5 88.6 67.7 84.5

FACT [32] 27.8 61.4 - -

P-R [55] 74.3 94.3 74.2 86.4

Baseline2 [12] 75.7 95.2 77.5 91.0

Baseline2 (FIDI) 77.6 95.7 78.5 91.9

Baseline2 in the 2nd row are highly similar to the query image

but they are actually different vehicles. This happens because

Baseline2 fails to distinguish the fine grained appearance

differences in the front of the vehicles. In contrast, Baseline2

(FIDI) can effectively capture the fined-grained differences

and thus is able to return the images of the same vehicles

taken from different viewpoints rather than the vehicles that

are different from the query vehicle but share large similar

appearance.

Query

Ours

Baseline

Ours

Baseline

1st 5th 10th 15th 20th

Ours

Baseline

Fig. 8. Exemplar Ranking Results from Our Model, Baseline2 (FIDI), and
the Original Baseline2.

G. Implication for Parameter Tuning

The two hyperparameters α and β, which respectively

control the loss bound for easy samples and the sensitivity of

the FIDI loss w.r.t. the pairwise distance, can be well tuned via

cross validation. This section aims at providing some starting

points of the parameter tuning based on our empirical results.

Here α = 1.05 and β = 0.5 are used by default and we vary

one parameter with the other one fixed to examine its impact

on the performance. Due to the page limit, we only present

the mAP results of Baseline2 (FIDI) in Figure 9.

Fig. 9. mAP results w.r.t α and β in the FIDI loss

In general, FIDI is not sensitive to α unless it is too large.

When the α is set to a small value, the punishment on images

of small differences reduces, which decreases the final perfor-

mance. On the right panel, we can see that it is beneficial to set

a large β for challenging datasets CUHK03-D and CUHK03-

L since in such cases our loss becomes more sensitive to

the pairwise distance. Our loss imposes exponentially larger

penalization on images of small differences that results in

performance improvement. On the other hand, a relatively

small β is more plausible for handling easier datasets like

Market1501 and DukeMTM.

VI. CONCLUSIONS

This paper introduces a novel loss function called fine-

grained difference-aware (FIDI) pairwise loss for the person

ReID task. The FIDI loss not only ensures a similar inter-class

margin as the triplet loss, but more importantly, also effectively

penalizes images of both fine-grained and large appearance

differences, especially on images of fine-grained differences.

This delivers a significant improvement of three types of recent

state-of-the-art ReID models in terms of both effectiveness and

data efficiency. The improvement is particularly remarkable on

complex datasets on which most current methods fail to work

effectively. Also, our FIDI loss is simple and can replace the

triplet loss as a plugin. All these characteristics make the FIDI

loss a substantially more effective alternative to the widely-

used triplet loss. We are performing large-scale studies to

examine the applicability of replacing the triplet loss with the

FIDI loss in other critical computer vision tasks.
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