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Since November 2019 the SARS-CoV-2 pandemic has caused nearly 200 million infection

and more than 4 million deaths globally (Updated information from the World Health

Organization, as on 2nd Aug 2021). Within only one year into the pandemic, several

vaccines were designed and reached approval for the immunization of the world

population. The remarkable protective effects of the manufactured vaccines are

demonstrated in countries with high vaccination rates, such as Israel and UK. However,

limited production capacities, poor distribution infrastructures and political hesitations still

hamper the availability of vaccines in many countries. In addition, due to the emergency of

SARS-CoV-2 variants with immune escape properties towards the vaccines the global

numbers of new infections as well as patients developing severe COVID-19, remains high.

New studies reported that about 8% of infected individuals develop long term symptoms

with strong personal restrictions on private as well as professional level, which contributes

to the long socioeconomic problems caused by this pandemic. Until today, emergency

use-approved treatment options for COVID-19 are limited to the antiviral Remdesivir, a

nucleoside analogue targeting the viral polymerase, the glucocorticosteroide

Dexamethasone as well as neutralizing antibodies. The therapeutic benefits of these

treatments are under ongoing debate and clinical studies assessing the efficiency of these

treatments are still underway. To identify new therapeutic treatments for COVID-19, now

and by the post-pandemic era, diverse experimental approaches are under scientific

evaluation in companies and scientific research teams all over the world. To accelerate

clinical translation of promising candidates, repurposing approaches of known approved

drugs are specifically fostered but also novel technologies are being developed and are

under investigation. This review summarizes the recent developments from the lab bench

as well as the clinical status of emerging therapeutic candidates and discusses possible

therapeutic entry points for the treatment strategies with regard to the biology of SARS-

CoV-2 and the clinical course of COVID-19.
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SARS-CoV2 REPLICATION CYCLE

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) is a positive-sense, single-stranded RNA virus that
belongs to the lineage b-coronavirus-2b the family

Coronaviridae and the order Nidovirales (1). The name

coronavirus is derived from the crown-like appearance of the

spike proteins of the virus particles under an electron

microscope. The viral genome measures approximately 30 kb,

and contains fourteen Open Reading Frames (ORF) coding for
twenty-seven viral proteins, some of which are not-yet

functionally characterized. The virion consists of four

structural proteins: Spike (S), Envelope (E), Membrane (M),

and Nucleocapsid (N). The S protein, located on the virion

surface, primarily binds to the cell-surface receptor

Angiotensin Converting Enzyme 2 (ACE2). Due to its strong

antigenicity and indispensable role during virus entry, the S
protein serves as a target for antiviral treatments and vaccine

design. It contains two functional subunits: The S1 subunit

binds to and interacts with the cell-surface receptors, while the

S2 subunit mediates membrane fusion (2, 3). Alongside S

protein binding, cleavage of S proteins at the polybasic

cleavage-sites by the membrane-associated Transmembrane
Protease Serine 2 (TMPRSS2) and the lysosomal cysteine

protease Cathepsin-L facilitates membrane-fusion and virus

entry at the cellular endosomes (4, 5). The released viral

genomic RNA (gRNA), which carries a cap-structure and a

polyA-tail, serves as a direct template for the cellular ribosome-

mediated translation of the two large ORFs: ORF1a and ORF1b.

The polyprotein products pp1a and pp1ab are independently
cleaved by the viral proteases nsp3 and nsp5, which are also

prominent drug targets, and post-translationally processed into

sixteen non-structural proteins (nsps). Of these sixteen nsps,

nsp12 assembles the other nsps to constitute the viral

replication-transcription machinery, and also confers catalytic

activity to the RNA-dependent RNA polymerase (RdRp), which
then catalyzes genome replication and RNA processing (6). The

encapsidated progeny gRNAs are then assembled into viral

particles in the Endoplasmic Reticulum (ER)-Golgi complex,

together mediated by the membrane proteins. The fully

assembled virus particles then bud out of the ER-Golgi complex

and are released out of the host-cell by membrane exocytosis.

COVID-19 CLINICAL MANIFESTATION

SARS-CoV-2 is mainly transmitted by aerosols and infects the

cells in the upper respiratory tract (7). However, depending on
the viral load, replication speed and local immune response, it is

further disseminated to the lower respiratory tract and other

organs within days or weeks post infection, by which it is

reported to cause severe damage to lungs, stomach, intestine,

kidney, heart, blood vessels, liver, brain and skin (8–10). Early

symptoms appear after an incubation period of 1-14 days but
many infected individuals can remain asymptomatic despite high

viral loads, which promotes viral transmission even before the

clinical diagnosis of positive infection. Most common early

symptoms include fever, dry cough, myalgia, fatigue, and loss

of smell and taste. In addition, some patients manifest sputum

production, hemoptysis, headache, sore throat, chest pain and

gastrointestinal symptoms like diarrhea, nausea and vomiting (7,
11, 12). Dyspnea and pneumonia can develop in a median time

span of eight days after symptom onset. In laboratory

examina t ions , l eukopen ia , l ymphopen ia , anemia ,

thrombocytopenia, elevated ferritin and d-dimer level such as

an elevated CRP, which were recognized to correlate with

severity. Likewise, elevated plasma concentrations of pro-
inflammatory cytokines IL-2, IL-6, IL-7, IL-10, GCSF, IP10,

MCP1, MIP1A, and TNF-a are predictive for a severe

outcome (11, 13). Due to the lack of wide-spread pre-existing

adaptive immunity towards the newly emerged zoonotic SARS-

CoV-2 virus, the human innate immune response poses the first

critical barrier against the infection and is an important

determinant of the disease trajectories.
In general, the immune response to SARS-CoV-2 infection

can be broadly described in three phases (14). The early phase is

predominated by virus replication in the upper respiratory

epithelium, but also involve the intestinal epithelium and

vascular endothelium, due to the high expression of ACE2

receptors in these linings (15, 16). This phase is often
accompanied by mild respiratory and systemic symptoms. The

quality and potency of the induced early immune response is

critical in this phase and decisive for further disease

development. The second phase is characterized by both, viral

replication and development of lung inflammation with massive

recruitment of cytokine-expressing immune cells to the site of
infection. Patients often experience first signs of hypoxia and are

admitted to hospital during this phase. The third phase describes

severe COVID-19 and is specified by systemic hyper-

inflammation with high blood levels of inflammatory

cytokines. The systemic involvement causes symptoms like

septic shock, respiratory failure, cardiopulmonary collapse and

may even lead to multi-organ dysfunction and death (11).
Even though all age groups can be infected by SARS-CoV-2,

particularly elderly patients have an increased risk of mortality.

Comorbidities such as obesity, hypertension, chronic obstructive

pulmonary diseases (COPD), diabetes, cardiovascular and

cerebrovascular diseases have been reported as risk factors for

severe COVID-19 (10, 17). These patients required more
intensive care and experienced more often complications like

Acute Respiratory Distress Syndrome (ARDS), coagulation

Abbreviations: ACTT, Adaptive COVID-19 Treatment Trial; ADE, Antibody-

dependent Infection Enhancement; ARDS, Acute Respiratory Distress Syndrome;

CFS, Chronic Fatigue Syndrome; COPD, Chronic Obstructive Pulmonary

Diseases; DAA, Direct-Acting Antivirals; eEF1A, eukaryotic translation

Elongation Factor 1 Alpha; EMA, European Medicines Agency; EUA,

Emergency Use Authorization; FDA, Food and Drug Administration; FIASMA,

Funct iona l Inhib i tors o f Acid Sphingomyel inase ; GBPA, 4-(4-

Guanidinobenzyloxy)Phenylacetic Acid; HCQ, Hydroxy-Chloroquine; hrsACE2,

Recombinant human soluble ACE2; LPV/r, Lopinavir/ritonavir; ME, Myalgic

Encephalomyelitis; NICE, National Institute for Health and Care Excellence; NSP,

Non-Structural Proteins; ORF, Open Reading Frames; OSCI, Ordinal Scale for

Clinical Improvement; RdRp, RNA-dependent RNA Polymerase; rhIFNa,

Recombinant Human IFN-a; rSIFN, Recombinant Super-Compound

Interferon; HTA, Host-Targeting Antivirals; SARS-CoV-2, Severe Acute

Respiratory Syndrome Coronavirus 2.

Kumar et al. Clinical Status of COVID-19 Therapeutics

Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 7522272

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


dysfunction, sepsis, and death (10–12, 18). Additionally,

immunosuppressed patients as well as cancer patients have

been reported as a highly vulnerable group due to low

protective antibody responses (19, 20).

Clearly, these dynamics in viral replication and immune

activation as well as the patient’s individual constitution require
specified therapeutic strategies that are aligned to the disease phase

and time of treatment onset. Here, we summarize the current state

of development and experiences from first in-human applications of

the many antiviral and immunomodulatory drugs that are under

investigation in single or combinatorial approaches for the

treatment and prevention of COVID-19.

DIRECT-ACTING ANTIVIRALS (DAA)

According to their essential enzymatic functions for the

replication of SARS-CoV-2, the S protein, the viral polymerase

as well as the viral proteases are the most prominent targets for

diverse virus-targeting antiviral strategies.

Umifenovir
Umifenovir (Arbidol) has been previously applied against some
enveloped and non-enveloped viruses especially Influenza A and

B, and recently against hepatitis C virus (HCV) (21). Although

the mechanism of action of Umifenovir is not exactly

understood, it was suggested to inhibit trimerization of the

SARS-CoV-2 S protein (22). Molecular simulations indicated

that it stabilizes the RBD-ACE2 complex, thus limiting
conformational rearrangements associated with membrane

fusion and virus entry (23). While some clinical studies

showed that Umifenovir positively affects patient recovery and

mortality, other studies reported that treatment of patients not

requiring intensive care does not show different results than the

control group in terms of recovery and virus clearance (24–26).

A study comparing Arbidol and Lopinavir/ritonavir (LPV/r)
treatments reported that Arbidol had a significantly positive

effect on clinical and laboratory improvements on COVID-19

patients (24, 25). Another study comparing Arbidol and LPV/r

combined therapy with LPV/r therapy alone shows that the

group receiving the combination therapy was associated with a

higher rate of coronavirus test negative conversions rate on day 7
(combination group %75, control group %35) and on day 14

(combination group %94, control group %52,9) and significant

improvement in chest CT scans (combination group %69,

control group %29) at day 7 (24, 25). In contrast, a meta-

analysis of 137 reports on the efficacy and safety concludes

that Umifenovir is safe, led to higher negative PCR rates after

14 days but had no positive effects on patient recovery (27).
Despite these contradictory results, further combinatorial studies

with different antivirals and interferons (IFN) are planned

(Clinical study identifier: NCT04350684, NCT04273763).

Clofazimine
Clofazimine is an orally available and FDA (Food and Drug

Administration)-approved anti-leprosy drug and has been

shown to reduce SARS-CoV-2 infection by inhibiting spike-

dependent cell fusion and the activity of the viral helicase in

many in vitro, ex vivo and in vivo systems (28). Interestingly, it

demonstrated synergistic antiviral activity in combination with

Remdesivir. A Phase-II clinical trial (NCT04465695) is ongoing,

evaluating dual therapy with Clofazimine and IFN-b1b for
treatment of hospitalized COVID-19 patients in China.

Convalescent Sera and Monoclonal
Antibodies
Like for other virus infections, the therapeutic value of
convalescent sera that contain neutralizing antibodies to SARS-

CoV-2 was evaluated. Although early clinical studies

demonstrated improvement of symptoms and viral clearance

within an average of 5-6 days in patients receiving convalescent

plasma treatment (29–32), results from recent large-scale trials,

such as the RECOVERY Collaborative Group, report the absence
of positive outcomes (33, 34). With respect to the general

associated risks of convalescent plasma therapy regarding

blood product transfusion (e.g. blood-borne infections, allergic

reactions), transfusion-related acute lung injury and the potential

for antibody-dependent infection enhancement (ADE), this

treatment option is considered with care (35). Importantly,

convalescent sera treatment of immunosuppressed patients
with chronic SARS-CoV-2 infections resulted in the evolution

of virus variants with immune escape mutations (36). Similar

problems occurred during treatment of patients with mild to

moderate COVID-19 with the monoclonal antibody

Bamlavinimab that targets the S protein Receptor Binding

Domain (RBD) and was given Emergency Use Authorization
(EUA) in November 2020. However, due to complications and

rapid resistance development, the EUA was withdrawn in April

2021 (FDA News release, April 2021). More promising is the use

of monoclonal antibody cocktai ls . Combination of

Bamlanivimab and Etesevimab, which are both human

immunoglobulin G1 (IgG1) kappa antibodies that target

different epitopes of the SARS-CoV-2 spike protein (37, 38)
showed a significant decrease in viral load in nose and upper

respiratory tract on the 11th day post treatment in a randomized

Phase-II study performed with 577 mild/moderate COVID-19

patients (39). The combination was given EUA by the FDA for

the use in patients with a high risk of developing severe COVID-

19. Also, the European Medicines Agency (EMA) initiated a
rolling review process for approval.

Another antibody cocktail named REGN-COV2 contains the

two non-competing neutralizing antibodies Casirivimab and

Imdevimab, both targeting the S protein RBD (40). Results

from a clinical study with 275 patients showed that REGN-

COV2 reduced viral loads with a greater effect in patients whose

immune response was not yet initiated or had a high initial viral
load. No side effects were seen and its use was considered safe

(41). In addition, recent clinical trials tested use of REGN-COV2

for preventive treatment. This demonstrated 73% protection of

househo ld contac t s f rom symptomat i c in fe c t ions

(NCT04452318). Another approach is based on an engineered,

double acting recombinant human antibody VIR-7831
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(Sotrovimab). This engineered antibody is derived from a

parental antibody (S309) that was isolated from the memory B

cells of a SARS-CoV-2 survivor. Sotrovimab targets a highly

conserved glycan in the S protein that is part of a region not

competing with ACE2 binding and does not cover any of the

reported positions that are mutated in the current SARS-CoV-2
variants of concern. To improve serum half-life and mucosal

distribution, Sotrovimab contains several modifications in the Fc

region. In addition, VIR-7832, which is otherwise identical to

VIR-7831, contains a GAALIE mutation to promote the

induction of CD8+ T-cells during viral respiratory infections.

Importantly, both antibodies demonstrated efficient
neutralization of SARS-CoV-2 including the Alpha, Beta and

Gamma variants in the context of a VSV-pseudotype model (42).

EUA application was filed to the FDA for VIR-7831 in March

2021 according to the observed 85% reduction of hospitalization

or death in Phase-III clinical trials and EMA has started a rolling

review for treatment of patients with mild to moderate COVID-
19, which do not require oxygenation but are at risk to develop

severe disease. In addition, VIR-7831 is currently investigated in

a randomized multi-centre Phase-II/III clinical study for

treatment of mild COVID-19 in outpatients (NTC04545060).

Human Recombinant Soluble ACE2
(hrsACE2)
ACE2 is the major receptor for SARS-CoV-2 and a regulator of

the renin-angiotensin system that protects many tissues,

including the lung, from injuries and has a role on blood

pressure regulation and electrolyte homeostasis. Because of

these functions, it is seen as a good therapeutic candidate for
COVID-19 by using it as a decoy receptor and immune regulator

(43, 44). A soluble version of the human ACE2 protein

(hrsACE2, APN01) reduces the SARS-CoV-2 viral load 1000-

5000- fold in cell cultures and shows an inhibitory effect on cell

attachment in human blood vessel and kidney organoids. In

addition, the combination therapy with Remdesivir and human

soluble ACE2 reduced the dose of Remdesivir and human ACE2
required for treatment, as it inhibited both, the binding of the

virus to the cell and its replication (45). Clinical studies

confirmed safety and tolerabi l i ty of hrsACE2 and

demonstrated clinical benefits, such as more ventilation-free

days and reduced RNA loads (NCT00886353, NCT01597635)

(NCT04335136) (45). Based on these positive outcomes it was
announced that APN01 will be included in the large-scale NIH-

funded ACTIV Phase-II clinical trial (ACTIV-4d RAAS).

Furthermore, combination of recombinant soluble human ACE

with Remdesivir was shown to enhance its antiviral effects

in vitro (46). An alternative approach utilizes the therapeutic

molecule obtained by binding the human Fc region to the ACE2

receptor by antibody engineering techniques (47). Fusion of the
human IgG Fc moiety to the ACE2 ectodomain moiety results in

an extended half-life. A version of ACE2 IgG1 Fc is currently

evaluated in a Phase-I clinical trial. Developing this therapeutic

candidate, it has been optimized with IgG4-Fc to facilitate Fc

receptor activation and prevention of antibody-dependent

disease development (48).

Remdesivir
Remdesivir is metabolized in host cells to form a nucleoside

triphosphate that competes with ATP for incorporation into
progeny viral RNA by the viral polymerase (4) and has proven

effectiveness against coronaviruses in vitro and in vivo (49–51).

Studies of the ACTT-1 trial (NCT04280705) showed that

Remdesivir shortens the recovery time (median 11 days

compared to 15 days in the placebo group) (52, 53) of

ventilated COVID-19 patients and was granted EUA for use in

severe COVID-19 patients in the US and the EU. Considering
the results of other clinical studies, FDA gave full approval of

Remdesivir for COVID-19 treatment a few month later in the US

(52–54). However, the WHO SOLIDARITY study reported that

Remdesivir had little or no effect on the length of hospitalization,

transition to ventilation, or overall mortality and recommended

against the use of it for COVID-19 treatment (55). In line with
this study, in patients with mild to moderate COVID-19 without

respiratory support, Remdesivir does not provide a significant

benefit but can shorten the recovery time in patients with an

early diagnosis (≤10 days) (56). Despite the controversial results

of the available clinical trials, Remdesivir is widely used as

standard care in combination with dexamethasone for critically

ill COVID-19 patients (56). Further clinical studies evaluating
time of application, effect on comorbidities and diverse drug

combination are still ongoing.

Favipiravir
Favipiravir is a prodrug and acts by transforming into a

metabolite of ribofuranosyl 5’triphosphate (57) that inhibits

viral RNA polymerases (58, 59). It is effective against many
RNA viruses such as Lassa, Marburg and Nipah virus, and is

approved for the treatment of influenza in Japan (60). Many

clinical studies have assessed the effectiveness of Favipiravir for

treatment of COVID-19 and it was approved in several countries.

However, data availability of the results of these studies is

difficult preventing proper meta-analysis (61). Previous studies

reported teratogenicity and embryotoxicity in different study
models, thus use in pregnant women should be avoided (60, 62).

Clinical studies in patients with mild and moderate COVID-19,

comparing Favipiravir, Umifenovir and LPV/r treatments have

shown that time of viral clearance and recovery of radiological

findings are faster in patients using Favipiravir (63, 64). In a

clinical study investigating the effectiveness of chloroquine and
Favipiravir, no significant difference was found between the two

drugs (65). Currently, clinical studies for at-home medication are

underway within the PRINCIPLE trial (66).

Molnupiravir
Molnupiravir (MK-4482) is an orally available nucleoside

analogue with similar mechanism to Favipiravir and inhibits

effectively SARS-CoV-2 in in vitro and in vivo (67, 68). It is
currently evaluated in Phase-II/III trials for outpatients and

inpatients with COVID-19 (NCT04405739, NCT04405570,

NCT04575584). In combination with Favipiravir in hamster

models of SARS-Cov-2, Molnupiravir was able to reduce the

viral load in the lungs of infected hamsters by approximately 5
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log10 (68, 69). Molnupiravir increased the frequency of

mutations in MERS-CoV viral RNA in infected mice, and in

the SARS-Cov-2 treatment study, the number of these mutations

in the Molnupiravir/Favipiravir combination group was found to

be significantly higher than that in the highest dose group of

Molnupiravir alone. These results indicate a similar mode of
action for the marked decrease in infectious viral loads observed

in the combination therapy group for SARS-CoV-2 (68).

Lopinavir/ritonavir (LPV/r)
LPV/r is a broad-spectrum protease inhibitor used in the

treatment of AIDS. Due to its low bioavailability when taken

orally, it is used in combination with the pharmacokinetic
enhancer ritonavir. LPV/r is supposed to target the SARS-

CoV-2 C-like proteinase (3CLpro) substrate binding site,

which is highly conserved among all coronaviruses (69).

Despite this expected broad-spectrum effect, clinical studies

have not shown a significant difference in clinical

improvement between patients receiving standard therapy

with/without LPV/r or Umifenovir (70, 71). Although the
results have reduced the trust in LPV/r therapy, other studies

reported that adding ribavirin and IFN-b1b to LPV/r therapy

results in faster recovery and virus clearance in SARS-CoV-2

patients (72, 73). Most patients using LPV/r experienced non-

serious side effects (mostly gastrointestinal problems). However,

it has been reported in clinical studies that some patients were
unable to continue treatment due to serious side effects (74). In

addition, it is known that it may cause hypertriglyceridemia,

hypercholesterolemia, pancreatitis, hepatotoxicity and cardiac

problems. The use of LPV/r, especially with drugs that prolong

the QT interval (time from the start of a Q wave to the end of the

next T wave in an electrocardiogram), which describes the time

taken by the cardiac ventricles to depolarize and repolarize, is
one of the important issues to be considered (75).

HOST-DIRECTED ANTIVIRALS (HDA)

All viruses, including SARS-CoV-2, exploit the host cell

resources to replicate and ensure transmission to other hosts.
Virus-host interactions occur at all stages of the viral life cycle

and provide numerous factors that are crucial for virus survival

and therefore may represent targets for antiviral approaches. A

major advantage of targeting the host rather than the virus is the

low risk of resistance development and the high potential of

broad use against other pathogens that rely on related cellular
proteins or processes.

(Hydroxy-) Chloroquine
Huge efforts have been taken to systematically screen existing

drug libraries in order to find treatments for COVID-19 (76).

This revealed a number of repurposed candidates such as

(Hydroxy-) Chloroquine (HCQ), which has previously shown

beneficial effects in the treatment of malaria and autoimmune
diseases and displayed controversially discussed antiviral

properties against HIV and SARS-CoV (77). HCQ increases

the pH of cellular endosomes and vacuoles and thereby affects

the activity of many enzymes, including Cathepsin L, which is

needed to mediate cleavage of the SARS-CoV-2 S protein,

followed by membrane fusion and release of the viral genome

into the host cell (78, 79). Even though chloroquine exhibited

antiviral effects against both SARS-CoV and SARS-CoV-2 in

vitro, and also in mice using the common-cold corona virus
OC43 (80–83), all clinical trials failed to protect patients from

severe COVID-19 (84–86). This discrepancy might be explained

by the dependency of SARS-CoV-2 on another protease, namely

TMPRSS2, which is important for virus entry and remains

unaffected by HCQ (79). Due to the lack of efficacy, the FDA

revoked the EUA for HCQ in June 2020 (87).

Camostat and Nafamostat
Direct targeting of the host cell protease TMPRSS2, which

cleaves and thus activates the S protein (88, 89), Camostat

mesylate or its active metabolite 4-(4-guanidinobenzyloxy)

phenylacetic acid (GBPA) demonstrated efficient antiviral

activity against SARS-CoV and SARS-CoV-2 in vitro (4, 90).

Currently, Camostat, which is approved in Japan for the
treatment of chronic pancreatitis, is evaluated in diverse

international clinical trials of all phases for the treatment

of hospitalized and non-hospitalized COVID-19 patients

in various disease stages and comorbidities for single or

combination treatments with other drugs (NCT04455815,

NCT04321096) (91).
In a comparative in vitro study with Nafamostat mesylate,

another protease inhibitor targeting TMPRSS2, inhibition of

SARS-CoV-2 entry was 15-fold higher compared to treatment

with Camostat mesylate. In addition, Nafamostat mesylate

showed higher inhibition of SARS-CoV-2 infection in vitro

(92). Several Phase-II/III clinical trials with Nafamostat

mesylate for treatment of hospitalized COVID-19 patients are
current ly ongoing (NCT04352400 , NCT04473053 ,

NCT04623021). However, whether the required concentrations

of these inhibitors can be attained in the human lung remain to

be determined (93). Nevertheless, these studies demonstrate that

targeting the main host proteases involved in the virus lifecycle

provides a promising approach to inhibit viral replication and
thus have initiated numerous studies that aim to characterize

host protease in various stages of virus infection, as reviewed

previously (94, 95).

Fluoxetine
Recently, the therapeutic effect of Functional Inhibitors of Acid

Sphingomyelinase (FIASMA) such as the antidepressant

Fluoxetine to inhibit SARS-CoV-2 cell entry has been
investigated by several groups. This revealed, that Fluoxetine

treatment efficiently reduced viral entry and replication without

cytotoxic effects in vitro (96, 97). A follow-up study further

showed pronounced drug synergism of Fluoxetine and

Remdesivir, thereby providing additional therapeutic options

for COVID-19 treatment (98). In addition to endolysosomal
acidification, Fluoxetine was shown to disrupt the NFkB/IL-6

axis, which is associated with cytokine-induced pathologies

during COVID-19 (99). On this basis, a pharmacokinetic study

estimated efficient inhibition of SARS-CoV-2 at a commonly

Kumar et al. Clinical Status of COVID-19 Therapeutics

Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 7522275

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


well-tolerated concentration of Fluoxetine used for treatment of

depression (100). A retrospective observational study

investigated a potential beneficial effect of anti-depressant

intake, including Fluoxetine, during COVID-19. The results

indicated a significant reduction in the risk of intubation and

death in hospitalized COVID-19 patients (101). Furthermore, an
ongoing Phase-IV clinical trial investigates the potential of

Fluoxetine treatment to reduce intubation and death from

SARS-CoV-2 infection (NCT04377308).

Plitidepsin
For translation of viral proteins, SARS-CoV-2 relies on the host

cellular translation machinery. Recently, a well-described inhibitor
of the eukaryotic translation elongation factor 1 alpha (eEF1A),

called Plitidepsin (Brandname: Aplidin) was discovered and

characterized to have potent antiviral effects against SARS-CoV-2

(102–104). Intriguingly, Plitidepsin inhibited virus infections more

efficient than Remdesivir by a factor of 27.5 in vitro. Moreover,

SARS-CoV-2 titers in lungs of mice expressing human ACE2 were

significantly reduced upon prophylactic treatment with Plitidepsin,
facilitated by eEF1A inhibition (105). Furthermore, it exhibits

antiviral potential against the SARS-CoV-2 Alpha variant (106).

Plitidepsin has originally been developed for the treatment of

multiple myeloma (103). Interestingly, in earlier studies with

myeloma patients, Plitidepsin has also been used in combination

with the anti-inflammatory drug dexamethasone (107). This
provides already existing data for drug tolerance in combination

therapies of dexamethasone and Plitidepsin in COVID-19 patients

as well. However, EMA refused marketing authorization of

Plitidepsin as an anti-cancer medication twice, in 2017 and 2018.

The safety and tolerability of Plitidepsin was recently evaluated in

COVID-19 patients in a Phase-I trial (NCT04382066) but results

have not been released yet. In addition, a Phase-III trial for use of
Plitidepsin in patients with moderate COVID-19 was filed but not

yet started (NCT04784559).

MEK Inhibitor ATR-002
Host kinases represent another group of cellular targets against

SARS-CoV-2 infection (108). The RAF/MEK/ERK-signaling

cascade is known to be a central pathway involved in virus
replication of several RNA viruses, including influenza, RSV and

coronavirus (109–112). Previous studies using the MEK inhibitor

ATR-002 demonstrated reduced influenza viral titers by preventing

export of viral ribonucleoprotein complexes during the viral

infection cycle (109, 113). Moreover, there are indications that

treatment with ATR-002 reduced cytokine expression, such as

TNF-a, IL-1b, and IP-10 in vitro and in vivo and thereby could
help to counteract or rebalance the SARS-CoV-2 induced

hyperactivation of the immune response (114). A Phase-I clinical

trial demonstrated that ATR-002 is safe and very well tolerated in

humans with little or no drug related side effects (NCT04385420).

Currently, ATR-002 is tested in a Phase-II clinical trial RESPIRE for

treatment of COVID-19 (NCT04776044).

Ivermectin
Ivermectin is an antiparasitic drug that has been used for years,

thus providing well described pharmacokinetic data, is readily

available and quite inexpensive. Even though several studies

demonstrated promising positive aspects of Ivermectin

treatment (115), being anti-inflammatory properties (116),

prophylaxis treatment (NCT04668469), inhibition of virus

replication (117), and patient survival (118), Ivermectin is not

recommended as a COVID-19 drug by the FDA, EMA, and
WHO. This is mainly explained by methodological limitations of

various studies such as small sample sizes, the use of concomitant

medications and controversial data (119). Further studies

showed that up to 100-fold higher concentrations will be

needed to achieve a concentration necessary for an antiviral

effect (120). To finally clarify whether Ivermectin has beneficial
effects in COVID-19 treatment the University of Oxford

announced to add Ivermectin to the PRINCIPLE trial.

Emerging Drug Candidates
Besides large drug screens, many research groups focused on the

identification of novel virus-host interactions using genome

wide-CRISPR/Cas screens (121–124). This revealed several

factors that play a central role in various host pathways during
infection, such as the cholesterol and phosphatidylinositol

pathway, inflammatory signaling, cell cycle regulation or PML

nuclear body formation and might represent new targets for

antiviral approaches. One of the most prominent targets

identified was the lysosomal transmembrane protein

TMEM106B. Upon knock out (KO), SARS-CoV-2 replication
was impaired (121). Consistent with this finding another

research group further found TMEM106B expression to be

induced during SARS-CoV-2 infection in patients and

suggested a role of TMEM106B in virus entry (125). Another

top-ranked protein was the membrane trafficking factor Rab7A.

Knockout of Rab7A resulted in the sequestration of the SARS-

CoV-2 receptor molecule ACE2 inside the cell and thereby led to
reduced viral entry (121). In the light of emerging mutations that

potentially reduce vaccine efficacy and the lack of specific

antiviral therapeutics against SARS-CoV-2, these studies lay

the ground for broadly active antivirals in the future.

INTERFERONS

IFNs are host cell-secreted signaling molecules that stimulate the
concerted expression of antiviral restriction factors in infected and

neighboring cells in an autocrine or paracrine manner, to restrict

replication and prevent transmission of the invading pathogens. As

other viruses, SARS-CoV-2 also antagonizes IFN-induction in

infected cells, thereby calling for exogenous IFN-administration as

a therapeutic strategy, which is already being exploited for treating

diverse virus infections (126, 127). IFNs exist in three different types:
Type-I, Type-II and Type-III, with distinct biological and antiviral

properties. Despite its potential to antagonize IFN-induction, SARS-

CoV-2 intriguingly demonstrates remarkable sensitivity towards

lower doses of exogenous IFNs (128, 129), suggesting that early

therapeutic application, and possibly prophylaxis with IFNs could

be clinically promising. Thus, already early in the pandemic, the
therapeutic potential of exogenous IFNs, mostly in combination

with other treatments, was subject to clinical investigations.
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Type-I IFNs
Although many clinical studies have investigated the benefits of

type I IFNs for the treatment of SARS-CoV-2 infections and
COVID-19, the outcomes were highly diverse. This is facilitated

by the differences in the study design, involving combinations

with diverse other treatments as well as the selection of

individual therapeutic entry points during the disease course,

which strongly affect the antiviral actions of IFNs.

Two open-labelled trials assessed the efficacy of cotherapy of

IFN-b1b (NCT04276688) or IFN-b1a (IRCT20151227025726N12)
with LPV/r on mild-moderate COVID-19 hospitalized patients.

The multicentre trial reported that the early triple cotherapy

involving systemic administration of IFN-b1b with LPV/r was

superior and safe compared to LPV/r alone, in attenuating the

disease symptoms, and in reducing the clinical duration of viral

shedding and hospital admission (73). Similarly, another single-
centre retrospective trial (IRCT20151227025726N12) also reported

favourable clinical outcomes of systemic IFN-b1a-addition with

standard medications (LPV/r) and stated that although the

mortality rates of the two groups were comparable, multivariate

analysis showed that not-receiving IFN-b1a was significantly

associated with all-cause mortality, alongside others factors like

comorbidities and non-invasive ventilation (130), further
corroborating the clinical benefits of early systemic IFN-b1b
administration in cotreatment settings.

Only two associated clinical trials were performed on severe

COVID-19 patients to assess the clinical benefits of IFN-b as

therapeutic additive to standard medications (HCQ plus LPV/r or

atazanavir/ritonavir) and reported favorable clinical outcomes. The
trial administering IFN-b1b (IRCT20100228003449N27) reported

that the test group had a shorter time to clinical improvement and

discharge day and a lower 28-days mortality rate than the control

group not receiving IFN-b1b (131). Although the other trial

(IRCT20100228003449N28) reported that addition of IFN-b1a
did not significantly accelerate the time to clinical improvement,
it significantly accelerated the hospital discharge rate to day-14,

lowered the 28-days mortality rate, and also improved the survival

rates when administered during the early phase of the disease (132).

In contrast to systemic administration, two clinical trials evaluated

the therapeutic benefits of administering nebulized IFN early during

mild COVID-19 and reported clinical benefits. An uncontrolled

exploratory study found that nebulized IFN-a2b, alone or
combined with Arbidol, reduced the time of quantifiable virus in

the upper respiratory tract and reduced the duration of elevated

inflammatory markers like IL-6 and CRP in the blood (133). In line

with this, the multi-center trial (NCT04385095) on moderate

hospitalized and ambulatory patients reported that nebulized

IFN-b1a favored faster recovery than the control group,
quantified based on the WHO Ordinal Scale for Clinical

Improvement (OSCI) (134).

The timing of IFN-administration is likely a strong

influential factor on the disease trajectory of COVID-19.

Therefore, a retrospective multicenter cohort study carried-

out in COVID-19 patients investigated the association between

the timing of IFN-a2b administration with its clinical
outcomes through regression analysis (135). Importantly, the

study found that early administration was significantly

associated with reduced in-hospital mortality and confers

positive clinical outcomes. Similarly, a single-center

retrospective-cohort clinical trial evaluated the therapeutic

potency of IFN-b1b administration on moderate/severe

pneumonia-positive hospitalized COVID-19 patients. The
study reported that IFN-b1b-treatment did not significantly

decrease in-hospital mortality at this disease stage, highlighting

that IFN administration in the later stages of disease

progression would have minimal to no significant clinical

benefits (136). While several smaller clinical trials have

reported mixed results based on diverse primary and
secondary outcomes on the therapeutic benefits of IFN

administration in single or cotreatment regimens in mild-

moderate as well as on severe hospitalized and ambulatory

patients, the WHO SOLIDARTY Consortium Trial is the

largest clinical trial till-date that evaluated the therapeutic

effects of IFN-b1a administration (and other drugs including
HCQ, Remdesivir and LPV) in several thousand COVID-19

patients. The interim results from their multicenter trial at 405

hospitals in 30 countries conclude that there are no beneficial

effects of IFN-administration, in terms of reducing in-patient

morta l i ty , in i t ia t ion of mechanical vent i la t ion, or

hospitalization duration (Interim Results of WHO Solidarity

Consortium Trial, Feb 2021).
Although more Type I IFNs exist in humans, currently only

IFN-b (IFN-b1a and IFN-b1b) and IFN-a2 (IFN-a2b) as well as
some engineered forms of IFNs are of clinical relevance.

However, recent studies investigated the activity against SARS-

CoV-2 of all twelve existing IFN-a subtypes, and demonstrated

highly efficient and subtype-specific antiviral properties (137,
138), which strongly emphasizes that IFN-a subtypes should be

included in clinical investigations in order to increase our IFN-

therapeutic arsenal.

Type-III IFNs
Encouraged by the preclinical evidences on the inhibitory

potential of IFN-l1 on SARS-CoV-2 replication in vitro and

in vivo (139, 140), two Phase-II clinical trials evaluated the

therapeutic efficacy of single-dose subcutaneous administration

of pegylated (peg) IFN-l1a in ambulatory uncomplicated
COVID-19 patients. While the COVID-LAMBDA trial

(NCT04331899) reported that the treatment regimen neither

reduced the duration of virus shedding, nor alleviated disease

symptoms (141), the ILIAD trial (NCT04354259) reported that

the treatment regimen significantly accelerated virus clearance as

quant ified by qRT-PCR of SARS-CoV-2 vRNA in
nasopharyngeal swabs, concluding that peg-IFN-l1a
administration has therapeutic benefits to shorten virus

shedding and prevent clinical progression (142). Currently

ongoing trials aim to further evaluate the therapeutic efficacy

of single dose (NCT04343976) or double-dose (NCT04534673

and Phase-IIb of NCT04354259) subcutaneous administration of

peg-IFN-l1a in hospitalized moderate COVID-19 patients, in
terms of clinical time to reach negative qRT-PCR outcome,

mortality rate and recovery period. Results from these trials
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would likely throw light for choosing optimal treatment regimen

to achieve favorable clinical outcomes in hospitalized patients.

Other IFNs
Several clinical trials investigated the therapeutic benefits of

other non-conventional IFN subtypes. For instance, a non-

randomized clinical trial (ChiCTR2000030262) on mild
COVID-19 patients tested the therapeutic efficacy of aerosol

inhalation of IFN-k with Topical Trefoil Factor Family-2 (TFF2),

which is a peptide isoform demonstrating proven therapeutic

benefits against gastrointestinal disorders associated with

mucosal damage (143). This treatment regimen significantly

improved clinical outcomes, including cough-relief, CT-
imaging, and vRNA negativity, altogether favoring an early

discharge from hospitalization (144). Another Phase-II clinical

trial (ChiCTR2000029638) was conducted on moderate to severe

COVID-19 patients to evaluate the safety and efficacy of

Recombinant Super-Compound Interferon (rSIFN-co) versus

traditional nebulized IFNa-2b, alongside standard antivirals

(LPV/r or Umifenovir) (145). The trial observed that co-
treatment with rSIFN-co was safer and more efficacious than

traditional IFNa-2b for treating moderate to severe COVID-19,

warranting further clinical trials of rSIFN, alone or in

combination with other antiviral agents.

While the concept of cotreatment classically revolves around

the use of two different drugs, or currently with a drug combined
with an IFN-type, to accomplish improved clinical benefits at

lower doses of the individual agents, encouraging results came

out of clinical trials evaluating combinations of two different IFN

types. For instance, based on the synergic inhibition of SARS-

CoV-2 replication by type-I and type-II IFN combinations (146–

149), a controlled clinical trial was conducted to assess the

efficacy and safety of subcutaneous IFN-a2b and IFN-g
coadministration along standard medication (LPV/r), in SARS-

CoV-2-positive hospitalized patients (150). The trial reported

that IFN-a2b+IFN-g cotreatment eliminated the virus earlier

than IFN-a2b standalone treatment, although the latter also

demonstrated appreciable efficacy for SARS-CoV-2 treatment.

IFN Prophylaxis
While several trials evaluated the therapeutic benefits of IFN

administration, preliminary trials are also being deployed on a

prophylactic setting to prevent infections. Inspired by the

preclinical studies on the high maintenance of IFN

concentration as nasal droplets (129, 151), a prospective open-

label clinical trial (NCT04320238) evaluated the prophylactic

administration of recombinant human IFN-a (rhIFNa) nasal
droplets on medical staff in Hubei, China. From the trial the

authors concluded that prophylactic application was remarkably

effective in preventing COVID-19 in medical staff that are at a

high risk of acquiring infection, which was confirmed by negative

pulmonary CT scans and the absence of other clinical symptoms

(152). Along the same line, the PROTECT Trial (NCT04344600)
currently evaluates the prophylactic potential of a single

subcutaneous peg-IFN-l1 administration on non-hospitalized

individuals that are at a high risk of SARS-CoV-2 infection due

to household exposure.

IMMUNOMODULATORS

Because the development of COVID-19 is strongly driven by a

dysregulated, often overshooting immune response, different
immune modulatory treatments are considered for early and

late phases of COVID-19 and several promising approaches for

immuno-therapeutic treatments are under clinical investigations.

Dexamethasone
Glucocorticoids such as Dexamethasone constitute a frequently

used class of anti-inflammatory drugs and have been used to
treat chronic rhinosinusitis, chronic respiratory diseases or

autoimmune disorders like rheumatoid arthritis (153, 154).

Apart from their extensive use, they are very well-studied,

widely available and also inexpensive (155). Dexamethasone

disrupts inflammatory processes by decreasing the peripheral

concentration and function of immune cells and limits the

release of cytokines such as TNF-a and IL-1 from
macrophages and other antigen-presenting cells (156, 157).

The preliminary results from RECOVERY trial indicated that

an oral or intravenous Dexamethasone dose of 6 mg given once

daily for up to 10 days resulted in 35% less COVID-19 related

deaths in patients on ICU who require mechanical ventilation

and 20% less in non-ventilated patients on oxygen therapy (158).
In addition, hospitalization time was significantly reduced. In

contrast, there was no benefit for patients who do not receive

respiratory aid. Based on this preliminary report the FDA and

EMA endorsed the use of Dexamethasone for treatment of

COVID-19 in late 2020. Later trials in COVID-19 patients

with ARDS support this finding and report reduced overall

mortality, and an increase in ventilation-free days (159, 160)
Since November 2020, the Adaptive COVID-19 Treatment Trial

4 (ACTT-4) is active for a Phase-III study evaluating

combinational therapy using Dexamethasone and Remdesivir

in hospitalized patients (NCT04640168) as previous studies

showed that combining Dexamethasone and Remdesivir

enhances the positive effect of Remdesivir, leading to reduced
mortality in hospitalized patients (161). Despite the promising

results in ARDS and COVID-19 patients, there is still

uncertainty about the overall effectiveness of glucocorticoids

for COVID-19 patients as corticosteroids can also induce

unwanted adverse effects, such as hyperglycemia, bacterial,

fungal and viral infections, skin changes, adrenal suppression,

myopathy and effects on wound healing and bone metabolism.
Furthermore, there are potential ophthalmic, gastrointestinal,

cardiovascular and psychiatric side effects (154).

IL-6 Receptor Antagonists
The proinflammatory cytokine IL-6 is one of the hallmark
cytokines upregulated during severe COVID-19 and represents

a predictive marker for the need of mechanical ventilation in

accordance with CRP levels (162). Based on the critical role of IL-

6 signaling, therapeutic approaches employed strategies to

inhibit IL-6 signaling to reduce inflammation.

Tocilizumab and Sarilumab are both monoclonal antibodies,
which inhibit the membrane-bound and the soluble form of the

IL-6 receptor (163). Tocilizumab is already widely used for the
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treatment of diverse chronic and autoinflammatory diseases like

rheumatoid arthritis, systemic juvenile idiopathic arthritis and

others (164–167). The benefit of Tocilizumab treatment for

hospitalized COVID-19 patients has been investigated in

several clinical studies, however, early clinical trials conducted

in Brazil were terminated due to safety issues (168). The first
successful study was conducted in China with a cohort of only 15

COVID-19 patients. After administration of Tocilizumab, IL-6

levels first spiked but then decreased in 66.7% of the patients. A

repeated dose of Tocilizumab was suggested to be more likely to

improve the status of critically ill patients (169). Another study

showed that Tocilizumab immediately improved the clinical
outcome in severe and critical COVID-19 patients while no

adverse side effects were registered (170). Since 2020, Roche is

conducting three trials investigating the effect of Tocilizumab on

COVID-19. The COVACTA trial showed a reduction in

hospitalization time in COVID-19 patients treated with

Tocilizumab, but there was no significant clinical improvement
nor mortality reduction [NCT04320615; (171)]. The EMPACTA

trial dealt with ethnic minorities and observed a reduction of

mechanical ventilation by day 28, but also no difference in

mortality between treated and non-treated patients

[NCT04372186; (172)]. Lastly, the REMDACTA trial was

enrolled to evaluate the safety and efficacy of the combination

of Tocilizumab and Remdesivir in patients hospitalized with
severe COVID-19 pneumonia, but did not meet the primary

endpoint of earlier hospital discharge with treatment

(NCT04409262). Additionally, other studies (NCT4356937,

NCT04331808, NCT04346355) could also not show a benefit

of Tocilizumab in preventing death (173–175). Critics also point

out the high price of Tocilizumab, turning it to a drug only
available in wealthy countries instead of a global treatment

approach (176). Despite these disappointing results, the large-

scale REMAP-CAP and RECOVERY trials concluded that for

hospitalized, critically-ill COVID-19 patients, treatment with

either Tocilizumab or Sarilumab improved the survival and

other clinical outcomes, suggesting a superiority to standard

care and an additive benefit when administered in combination
with Dexamethasone (REMAP-CAP NCT02735707;

RECOVERY Collaborative Group NCT04381936). Since 26th

of June 2021, the FDA gave an EUA for Tocilizumab

(Actemra) for the treatment of hospitalized pediatric or adult

COVID-19 patients, when they are in need for supplemental

oxygen, mechanical ventilation or ECMO. Later, at the 6th of
July 2021, the WHO officially recommended the usage of IL-6

receptor blockers based on a network meta-analysis with data

from clinical trial investigators in 28 countries (WHO).

Anti-IL-6 Antibodies
Siltuximab is a human-mouse chimeric monoclonal antibody

against IL-6, which is approved for treatment in HIV-negative

patients with multicentric Castleman’s disease (177). Preliminary
data from a study with 21 COVID-19 patients suffering from

ARDS indicated an improvement of the clinical condition after

treatment with Siltuximab in 7 of the patients, while 9 patients

stabilized with no clinically relevant improvement and

the condition of the remaining 5 patients worsened

[NCT04322188; (178)] Ongoing studies investigate the efficacy

and safety of Siltuximab for COVID-19 treatment in comparison

and in combinat ion wi th cor t i cos tero ids such as

methylprednisolone (NCT04329650, NCT04486521).

MAPK p38 Inhibitors
The mitogen-activated protein kinase (MAPK) p38 is associated
with dysbalanced inflammatory processes in different

pathologies and well-studied in animal models of acute lung

and myocardial injury (179, 180). Mechanistically, p38-mediated

phosphorylation of downstream kinases regulates the expression

of proinflammatory cytokines such as IL-6, TNF-a and IL-1b. In
the context of a dysbalanced immune response, such as in severe
COVID-19 (11, 181), overexpression of these cytokines is

suspected to contribute to organ damage and the described

immunopathologies, suggesting that therapeutic interventions

that reduce the expression of these cytokines could provide

beneficial treatments for COVID-19. Recent work has

demonstrated that p38 is activated during SARS-CoV-2

infection in vitro (180, 182, 183) and that blocking of p38
signaling by using pharmacological inhibitors that bind to the

ATP binding pocket of this kinase resulted in decreased cytokine

levels in vitro (182). Based on this observation Grimes et al.

suggested p38 signaling as a promising therapeutic target for

immunomodulatory therapeutic approaches of COVID-19

(184). In August 2020, Fulcrum Therapeutics initiated a Phase-
III clinical trial with losmapimod, a clinically pre-evaluated but

non-licensed, orally available p38 inhibitor, to investigate its

effect on mortality and clinical outcome in hospitalized patients

with moderate COVID-19, which are at risk to develop severe

disease (NCT04511819). The results of this study are not

yet released.

JAK Inhibitors
The Janus Kinase (JAK) family members play an essential role

for the intracellular cytokine receptor signaling (185). They

closely interact with signal transducer and activator of

transcription (STAT) proteins and thereby contribute to

inflammation and antiviral responses (186). Already in

February 2020, Richardson et al. introduced Baricitinib, a JAK
kinase inhibitor, to be trialed in COVID-19 patients (187) as it

showed inhibitory properties against IL-6 and STAT3

phosphorylation and is approved for treatment of rheumatoid

arthritis (188). Consistently, rhesus macaques had reduced

inflammation in the lung upon treatment during SARS-CoV-2

infection, however, virus titers remained unaffected,

demonstrating that it has immunomodulatory but not antiviral
properties (189). However, in combination with Remdesivir,

Baricitinib reduced the recovery time of patients receiving

high-flow oxygen or noninvasive ventilation (190). Of note,

pa t i ents a l so underwent s tandard trea tment wi th

corticosteroids, which limits the validity of the effect of

Baricitinib. Nevertheless, on November 19th 2020, Baricitinib
received EUA from the FDA in combination with

Remdesivir (191).

Similar to Baricitinib, the JAK inhibitor Tofacitinib is also

approved as an anti-rheumatic drug (192). When applied to
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COVID-19 patients with high levels of CRP within the TOFA-

COV-2 trial, Tofacitinib treatment lowered the lung damage and

CRP levels, increased the oxygen saturation and thus was

suggested as an effective medication for managing the cytokine

levels during COVID-19 (193) (NCT04750317).

In June 2021, a clinical trial using JAK inhibitor Ruxolitinib for
treatment of COVID-19 patients was completed (RUXCOVID

NCT04362137). Ruxolitinib is already an approved medication

for myelofibrosis since 2012 (194). Unfortunately, the

RUXCOVID trial sponsored by Novartis Pharmaceuticals could

not meet the primary outcome of reducing the number of COVID-

19 patients with severe complication such as ICU care, mechanical
ventilation or death (NCT04362137). Before, a small study in 2020

indicated significant clinical improvement of patients with

hyperinflammation during COVID-19 without signals of

Ruxolitinib-induced toxicity (195). Based on these results, a

Phase-II clinical trial has been completed, but only comprised 3

patients and did not publish any results (NCT04331665). More
studies are currently recruiting participants to further assess the

efficiency of Ruxolitinib for treating COVID-19 patients suffering

from hyperinflammation and dysregulated immune responses

(NCT04334044, NCT04338958, NCT04581954).

Emerging Immunomodulatory
Treatment Strategies
Based on the rationale that the reduction of the overly activated

proinflammatory response during COVID-19 improves clinical

outcomes, many studies investigate approaches to target

proinflammatory processes and other cytokines. Similar to the

mechanism of IL-6 antagonists, antagonists of the IL-1 family
and TNF blockers were investigated. The IL-1b antagonist

Anakinra could successfully ameliorate the cytokine storm in

infected patients with severe sepsis (196). A completed meta-

analysis of clinical publications could already demonstrate a

reduced mortality rate in treated patients (197),NCT04443881).

Hence, new clinical trials with Anakinra are planned, injecting

100 mg Anakinra subcutaneously for up to 10 days
(NCT04357366, NCT04643678, NCT04362111 (198, 199).

Other potential measures focus on targeting mononuclear

macrophage recruitment and their function or even stem cell

therapy (200 , 201) NCT04366063 ; NCT04486001 ;

NCT04252118; NCT04437823), but there is no clinical

information yet whether this is of benefit in COVID-19 patients.

LONG COVID

In addition to the treatment of acute COVID-19, the need for

efficient therapeutic options for the long-term consequences of the

infection rapidly increases as many infected individuals suffer from

Long COVID (202). Reports on the symptoms of Long COVID

range from pulmonary manifestations such as shortness of breath,

persistent cough and declined lung function to extrapulmonary
manifestation like fatigue, anxiety and depression, memory loss,

anosmia as well as declined kidney function, gastrointestinal

complaints and heart damage (203–206).

Whilst this condition was first described as post COVID-19

syndrome or chronic COVID-19, the patient-derived name Long

COVID or Long-haul COVID has recently been favored within

the literature to draw attention to its severity (207, 208). The

National Institute for Health and Care Excellence (NICE) further

divides Long COVID into three separate groups according to the
time of symptom duration: (I) acute COVID-19 (for up to

4 weeks) (II) ongoing symptomatic COVID-19 (4 to 12 weeks)

(III) post-COVID-19 syndrome (more than 12 weeks) (COVID-

19 Rapid Guideline, Dec 2020) (209, 210).

The knowledge of Long COVID is still rather small and it is not

even clear if all reports of long-lasting effects on patient´s health
describe the same entity (211). There are multiple different

hypotheses of what may trigger Long COVID that still remain to

be investigated. Ideas range from a post-viral syndrome similar to

myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a

potential persistence of the virus in certain organs, an auto-immune

triggered disease mechanism and post-intensive care syndrome
(212). It was recently shown that a median of 4 months after

COVID-19 diagnosis the SARS-CoV-2 N-protein could be detected

within enterocytes in 5 out of 14 intestinal biopsies illustrating that

antigen-persistence could potentially play a role in the development

of Long COVID (213). Another disease mechanism that was

recently suggested is that of an orthostatic intolerance syndrome

caused by a disruption of the autonomic nervous system through
infection with the SARS-CoV-2 virus (214). In 31 patients suffering

from Long COVID symptoms two to seven different functional

autoantibodies against G-coupled receptors could be detected

illustrating that autoimmunity might play a role in the

development of Long COVID (215). There is also a lack of

information on how to best treat Long COVID patients. In a
recent not yet peer-reviewed prospective observational study

receiving the vaccination seemed to be beneficial to the recovery

process at a median of 32 days after the vaccination. In 5.6% of the

44 vaccinated participants, symptoms increased, whilst 14.2% of the

22 not-vaccinated participants reported such an increase. Symptom

resolution was experienced in 23.2% of those vaccinated in

comparison to 15.4% of those not vaccinated. A difference
between the Biontech-Pfizer or the AstraZeneca vaccine used in

this study could not be observed (216).

The largest survey about the impact of different vaccines on

the symptoms of patients suffering from Long COVID was

conducted by the patient advocacy group LongCOVIDSOS via

an online questionnaire with 900 participants. In 56.7% of all
participants, symptoms overall improved after vaccination, while

18.7% experienced a deterioration. Only in 2.9% of participants

all symptoms worsened. Interestingly, the Moderna mRNA

vaccine appeared to be especially beneficial in relieving

symptoms (217). Accordingly, it appears that receiving the

vaccine is at least not harmful for those suffering from Long

COVID. It has recently been suggested that an infection with
SARS-CoV-2 results in an increasing amount of double negative

B memory cells, which are dysfunctional. RNA vaccination

reduced the number of those cells. This could be a potential

reason why RNA vaccination seems to relieve the symptom

burden in some patients (218).
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To gain more insight into Long COVID the post-

hospitalization study (PHOSP-COVID) has been set up in the

UK and will recruit 10.000 patients that have been hospitalized

with COVID-19, in order to better understand the short-,

medium- and long-term consequences of infection via

collecting patient data and material for one year after discharge
from hospital (www.phosp.org).

CONCLUDING REMARKS

More than one and a half years into the SARS-CoV-2 pandemic, the

treatment options for severe COVID-19 are still very limited.
However, as this review highlights, the number of new drug

candidates that are in clinical development or have already

received EUA and are on the way to full approval is constantly

growing. This include the immunomodulatory JAK inhibitor

Baricitinib and the IL-6 receptor blocker tocilizumab, which both

targets prevent signaling pathways that are involved in the

expression levels of proinflammatory cytokines. The success of

such approaches in the treatment of COVID-19 emphasizes that

immunomodulatory and not primarily antiviral treatments are the
key to COVID-19 therapies as the late-stage clinical manifestation

of this disease is dominated by imbalanced inflammatory responses

rather than by virus replication itself (Figure 1).

However, antiviral approaches aiming to reduce viral

replication are similarly required to prevent the development of

COVID-19 which is most successful in the earlier stages of the
disease and can prevent further systemic dissemination of the virus

and development of systemic inflammation. Under these

considerations, combination of antiviral and immunomodulatory

drugs or drugs that comprise both actions offers the broadest

FIGURE 1 | COVID-19 Progression vs Treatment Options. The infection phase of COVID-19 begins 1-week post exposure to SARS-CoV2 (Asymptomatic phase)

and lasts for 4 weeks from the time of onset of symptoms, marked by a steady increase and resolution in virus titer between the first 2 weeks, during which Direct-

Acting Antivirals (DAA), alone or in combination with Host-Targeting Antivirals (HTA) or Recombinant Interferons, could be potential treatment options. Week-2 until

week-4 marks the resolution of infection phase, and onset of pulmonary phase (week-1, week-2) followed by inflammatory phase (week-3, week-4), during which

Immunomodulators, mostly in combination with Antivirals, could be potential treatment options. Interferon Prophylaxis could be a preventive strategy on suspected

exposure to SARS-CoV2 during the asymptomatic, pre-infection phase. (Timecourse not to be exactly scaled; varies depending on patient heterogeneity and virus

variant). Figure modified from (135), and created with BioRender.com.
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treatment window and appears most promising to achieve positive

clinical outcomes in COVID-19 patients.

Clearly, the majority of the new therapeutic options are

constituted of repurposed drugs or derived from classical

therapeutic strategies such as treatment with convalescent sera

or monoclonal antibodies, that are already in clinical use for
other diseases and for which the route of administration, safety

and side effects in humans is already well characterized.

Nevertheless, as this review summarizes, there are also novel

strategies, such as the ACE2-Fc fusion protein. Next to clinical

therapeutics, home-treatment options are also being assessed for

several drugs with the aim to reduce the time of viral shedding
and the burden of milder disease. Another advantage of an

increased arsenal of treatment options against SARS-CoV-2

and COVID-19 can be seen in potential to prevent the

development of long-term complications like Long COVID.
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