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ABSTRACT: Wave packet propagation succeeding electron transfer (ET) from alizarin
dye molecules into the nanocrystalline TiO2 semiconductor has been studied by ultrafast
transient absorption spectroscopy. Because of the ultrafast time scale of the ET reaction of
about 6 fs, the system shows substantial differences to molecular ET systems. We show that
the ET process is not mediated by molecular vibrations, and therefore classical ET theories
lose their applicability. Here the ET reaction itself prepares a vibrational wave packet and
not the electromagnetic excitation by the laser pulse. Furthermore, the generation of
phonons during polaron formation in the TiO2 lattice is observed in real time for this
system. The presented investigations enable an unambiguous assignment of the involved
photoinduced mechanisms and can contribute to a corresponding extension of molecular
ET theories to ultrafast ET systems like alizarin/TiO2.

■ INTRODUCTION

Molecular electron transfer (ET) belongs to the most
important and ubiquitously encountered processes in the fields
of chemistry and biology. The standard theoretical treatment
for molecular ET was developed by Marcus1,2 providing a
correlation of the difference in Gibb’s free energy (ΔG)
between donor and acceptor, the curvature of the potential
energy surfaces (PES), and the reorganization energy (λ).
Within the framework of this nonadiabatic theory, ET rates of
many systems were predicted quite well. Further quantum
mechanical extensions by theories of Hopfield3 and Jortner4

were then even able to further extend the scope of theoretical
ET models. All of these ET theories are based on the
assumption that the energies of the donor and the acceptor
states are matched by energy fluctuations caused by the
surrounding solvent acting as thermal bath.
In a standard photoinduced ET reaction a bimolecular donor

(D)−acceptor (A) system is excited from the ground state DA
into the Franck−Condon region of a higher electronic state
DA* (Figure 1a). In a classical view the system can
subsequently propagate along the PES of the electronic
configuration DA*, approximated as one-dimensional parabola.
Energy conservation allows the electronic transition between
the states DA* and D+A− only at the intersection of the two
PESs. In the picture of electronic quantum dots the
propagation of the system on the PES of the state DA* leads
to a periodic modulation of the electronic energy level of the
donor (Figure 1a, inset) corresponding to the potential energy
in the PES picture. In the configuration where the energies of
donor and acceptor levels match (i.e., exactly at the crossing

point of the DA* and the D+A− parabolas), ET can occur as a
tunneling process with a certain probability, depending on the
electronic coupling matrix element between the state DA* and
the charge-separated state D+A−. Based on this microscopic
view of ET, macroscopic rates can be calculated by assuming a
thermal occupation of the energy eigenstates of the DA*
potential. Thus, within the Marcus picture, the overall ET
process is mediated by molecular vibrations.
For photoinduced ET reactions at molecule−semiconductor

interfaces a fundamentally different situation is found resulting
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Figure 1. Sketch of (a) bimolecular ET and (b) ET at molecule/
semiconductor interfaces in the potential energy surface and the
electronic quantum dot picture (inset). The parabolas approximating
the PESs near minimum are drawn with different curvatures to indicate
that the strong coupling to the TiO2 can influence the PESs of the
molecule.
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in a dramatic change of the energetics and ET kinetics.5−16

Such reactions play a crucial role in photocatalysis,17−20 the
photographic process,21 and, most importantly, dye/semi-
conductor systems applied in dye-sensitized solar cells.22−25

In these systems the dye acts as electron donor which can be
excited by a photon usually in the visible spectral range whereas
the acceptor level is the energetically broad conduction band of
the semiconductor. As a consequence, the D+A− energy surface
splits up into a manifold of acceptor parabolas, so an energy
matching mechanism via molecular vibrations is obsolete for
the situation depicted in Figure 1b. However, there are also
dye−semiconductor systems where vibrational motion facili-
tates the ET. In that case the ET occurs preferentially each time
the vibrational wave packet reaches an intersection of the DA*
PES and an acceptor parabola of the D+A− manifold leading to
a step-like ET process.9

Obviously, interface systems differ fundamentally from
conventional molecular ET arrangements, and the underlying
processes have been studied extensively by quantitative
computational analysis for different dye/semiconductor systems
including alizarin/TiO2.

26−31

Here, we present investigations on the dye alizarin coupled
onto TiO2 colloidal nanocrystals. As this dye/semiconductor
system exhibits an ultrafast photoinduced ET with a time
constant of about 6 fs,11 it provides the ideal prerequisites for
studies on the coherent coupling of the ET reaction to
molecular and semiconductor lattice vibrations because the
charge separation occurs much faster than any significant
molecular motion. For the assignment of the observed
oscillations, the nonreactive reference system alizarin/ZrO2 is
also investigated, and the results are compared to those of
alizarin/TiO2. We will show that in the case of alizarin/TiO2

the ET is not mediated by molecular vibrations, but here the
ET-associated charge separation itself excites coherent
molecular oscillations, a process beyond the traditional Marcus
theory of ET.

■ EXPERIMENTAL METHODS

Sample Preparation. The preparation of the dye/semi-
conductor systems has been published elsewhere.8,11 Briefly,
ZrO2 and TiO2 colloidal nanoparticles have been obtained from
hydrolysis of TiCl4 and ZrCl4. The investigated alizarin/ZrO2

and alizarin/TiO2 samples were prepared from the colloidal
nanoparticles and had final alizarin concentrations of 0.5 mM.

Transient Absorption Spectroscopy. The dye/semi-
conductor systems were investigated as colloidal solutions
using a conventional femtosecond pump/probe setup.8,12,32

The transient absorbance changes after excitation were
recorded by supercontinuum probe pulses generated in a
CaF2 plate which covered a spectral range from 400 to 650 nm.
For excitation we used pump pulses from a noncollinear optical
parametric amplifier.33 The excitation wavelength was adjusted
to 495 nm according to the spectral position of the alizarin
absorption band. The system had a temporal resolution of 20−
30 fs dependent on the probe wavelength. A detailed
description of the experimental setup can be found in ref 11.

■ RESULTS AND DISCUSSION

The spectral properties of the investigated samples as well as
the transient absorption dynamics related to the population and
depopulation of electronic states can be found in elsewhere.8,11

Here, we exclusively focus on the oscillatory patterns observed
in time-resolved measurements which have not been subject of
our earlier studies.
The periodic deformation of a molecule due to a classical

oscillatory motion, e.g., triggered by photoexcitation with an
ultrashort laser pulse, can cause a periodic spectral shift of the
absorption and emission bands of the molecule in the particular
electronic state what leads to a frequency-modulated dynamic
spectrum.34−36 Consequently, the absorbance changes observed
in femtosecond experiments at a certain spectral position are
then a superposition of the exponential kinetics of electronic
population and depopulation dynamics and the overlaid
oscillatory kinetics due to the molecular vibrations. Subtracting
a fit curve satisfying the exponential characteristics of the
transients yields the oscillatory residual, the real time signal of
structural molecular vibrations.
The 2D spectra of the residual oscillations obtained for the

alizarin/ZrO2 and the alizarin/TiO2 system are shown in Figure
2. The alizarin/ZrO2 2D spectrum has oscillation patterns in
the spectral range between 400 and 550 nm (Figure 2a). The
oscillation observed for the alizarin/TiO2 system exhibits larger
amplitudes and a significantly different wavelength dependence
with stronger contributions at longer wavelengths (Figure 2b).

Figure 2. 2D spectra of the residual oscillations for (a) the alizarin/ZrO2 and (b) the alizarin/TiO2 system.
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The extracted oscillatory signals at different wavelengths are
evaluated by a global Fourier transformation, resulting in the
Fourier transformed (FT) spectra for alizarin/ZrO2 and
alizarin/TiO2 shown in Figure 3.

On the basis of identical experimental conditions in both
cases, ZrO2 and TiO2, all deviations between the two presented
spectra should reflect differences in the reaction mechanism. As
previously described, in the case of ZrO2 no electron injection
into the conduction band can be observed, at most a partial
population of energetically low-lying surface states.8 Thus, the
comparison of the Fourier spectra of the two systems allows a
distinction between different kinds of vibrational normal modes
with respect to their excitation mechanism. Two different types
of molecular vibrations can be discerned, either corresponding
to oscillations directly excited by the applied laser pulse or
representing the response of the dye molecule and the
semiconductor nanocrystal upon the ET reaction.
Type I: Oscillations Excited by the Laser Pulse.

Oscillatory contributions with an explicit intensity in the FT
spectra at ∼650 cm−1 (Figure 3, mode labeled “A”) for both the
alizarin/ZrO2 and the alizarin/TiO2 system are observed. In the
case of ZrO2 the correlated FT spectrum in Figure 3a shows a
maximum in the spectral region where the slope in the alizarin
excited state absorption (ESA) band (Figure 3a, right) is large.
This observation is indicative of a frequency-modulated
transient absorption spectrum due to a periodic spectral shift
of the alizarin ESA band. In a difference spectrum, the strongest
modulation is observed at spectral positions where the slope in
the absorption of the oscillating species is large. Therefore, the
modes detected for alizarin/ZrO2 indeed reflect wave packet
propagations in the alizarin excited state. The alizarin/TiO2

system undergoes an ET reaction much faster than the time
scale of any molecular motion (τET = 6 fs, corresponding to a
frequency of 5000 cm−1). So in the corresponding FT spectrum
(Figure 3b) the amplitude of the prepared mode at ∼650 cm−1

exhibits maxima at the spectral positions where the slope in the
absorption spectrum of the alizarin cation (Figure 3b, right) is
large. Considering that the determined frequencies are almost
identical for both investigated systems, the same generation
mechanism can be expected. Hence, for the alizarin/TiO2

system the mode labeled “A” is a vibrational molecular normal
mode excited by the laser pulse surviving the ET process
undisturbed. This mode preserves full vibrational coherence
during the ET reaction which gives experimental evidence that
molecular ET can occur keeping a fixed phase relation of the
nuclear wave function. The comparable frequencies of 647
cm−1 for alizarin/TiO2 and 659 cm−1 for alizarin/ZrO2 imply
similar geometries of the alizarin excited state and the alizarin
cation.
In Figure 3a, additional modes are found for alizarin/ZrO2 at

∼220 and ∼500 cm−1 which are not observed for the alizarin/
TiO2 system. The amplitude maxima of these modes coincides
with the alizarin ESA at ∼450 nm indicative of wave packet
propagations in the alizarin excited state.
Ground state oscillations, excited by an impulsive stimulated

Raman scattering (ISRS) process, were not found in our
system. These modes would be easy to identify, since they
should have an identical appearance in the FFT spectra for the
TiO2 as well as for the ZrO2 system with a spectral signature
related to the alizarin ground state absorption.

Type II: Oscillations Excited by the ET Reaction
Coherent Response of the System. Besides vibrational
modes of “type I”, reflecting the evolution of a quantum
mechanical wave packet generated by the laser pulse as already
observed for other adsorbates,37 the FT spectrum of alizarin/
TiO2 in Figure 3b reveals a fundamentally different type of
vibrational mode: At a frequency of 460 cm−1 in the alizarin/
TiO2 system two prominent peaks occur (Figure 3, labeled as
“B”), which are absent in the nonreactive alizarin/ZrO2 system.
It can therefore be concluded that the mechanism for preparing
this kind of oscillatory wave packet is not the photoexcitation
with the ultrashort laser pulse and the related S−S* transition
of the alizarin, but the ET reaction itself. Hence, these
measurements allow the direct observation of a vibrational wave
packet, generated by a chemical (ET) reaction and not by the
impact of the electromagnetic field of a pulsed laser. This
mechanism is only possible for systems reacting much faster
than the vibrational dephasing of the relevant modes.
In contrast to the observed “type I” oscillations, the wave

packet does not only survive the ET reaction but the ET-related
charge transfer prepares a coherent superposition of vibrational
modes by projecting the population from the S*-PES to the S+/
TiO2-PES of the charge separated state. As the S+/TiO2 PES is
expected to lie asymmetrically above the S0/TiO2 ground state
(cf. Figure 1), the wave packet starts to propagate toward the
new energy minimum. In a picture of electron density this
scenario corresponds to a situation where the excitation from
the S0 to the S* state changes the electron density in a way that
the equilibrium molecular geometry is not changed in this
special normal coordinate. However, after the ultrafast ET
reaction the electronic configuration of the alizarin cation is
characterized by a new equilibrium configuration (with respect
to the normal coordinate for the 460 cm−1 mode).
Consequently, the alizarin cation will start to oscillate around
the new equilibrium geometry. This is corroborated by the
wavelength dependence of this mode illustrated in Figure 3b.
For alizarin/TiO2 the mode at 460 cm−1 thus directly reflects
the coherent response of the molecular structure to the

Figure 3. Fourier transformed spectra of (a) the alizarin/ZrO2 system
and (b) the alizarin/TiO2 system. The three marked frequencies (“A”,
“B’, “C”) assign molecular eigenmodes with their amplitude maxima
(vertical lines). (a, right) Excited state absorption band obtained from
transient absorption measurements on alizarin/ZrO2 (see ref 12). (b,
right) Absorption spectrum of alizarin cation (see ref 8). The arrows
indicate which peak in the 2D plots correspond to the respective
slopes in the absorption spectra.
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preceding ET process. Earlier quantum dynamical calculations
on the dye/semiconductor system coumarin 343/TiO2

indicated that the ultrafast ET can indeed prepare wave packets
on the PES of the acceptor states, which then start to
oscillate.38

The pronounced peak at 145 cm−1 in the TiO2 system
(Figure 3, labeled ”C”) correlates almost perfectly with the
most dominant Raman band found in anatase TiO2.

39,40 The
origin of a transiently modulated transmittance of the actually
transparent medium TiO2 in a spectrally and temporally
resolved measurement can be explained by a time-dependent
modulation of the refractive index of TiO2 due to lattice
vibrations. This effect of electronic coherence and impulsive
stimulated Raman scattering for spectrally broad probe pulses
was extensively described by Kovalenko et al.41

Additional experiments on coumarin 343 coupled to the
surface of TiO2 and ZrO2 nanocrystals have been conducted. In
analogous measurements on coumarin 343/TiO2 exactly the
same mode at 145 cm−1 is observed (Figure 4a) despite the

different nature of the dye whereas neither in the system
alizarin/ZrO2 nor in coumarin/ZrO2 (Figure 4b) any
oscillation at this frequency could be found. The oscillation
at 145 cm−1 thus represents ET-induced lattice vibrations of the
TiO2 crystal. This observation is in line with earlier studies
which revealed charge separation induced lattice vibrations for
PbSe quantum dot/TiO2 heterostructures,42 CdSe quantum
dots,43 and quantum dot/methylviologen complexes.35 On the
basis of ultraviolet photoemission spectroscopy and two-
photon photoemission, Gundlach et al. reported a vibrational
excited ionized perylene dye along with a broad energy
distribution of electrons injected to the TiO2.

44,45 In contrast to
these investigations, wave packets in real time at distinct probe
wavelengths are measured in our study. The results allows to
unambiguously trace the source of the observed vibrational
modes.
In Figure 4b a mode with moderate amplitude at 175 cm−1 is

observed for alizarin/ZrO2 which is in good agreement with a
dominant mode at 180 cm−1 measured for monoclinic ZrO2.

46

Since electron transfer from photoexcited alizarin to the ZrO2

conduction band is not possible, the observed mode is probably
related to the ZrO2 nanoparticle surface. It is known that
electron transfer to surface trap states can occur on the
femtoseconds time scale.8

While in an energetic picture the electron is transferred from
the molecular energy level into the conduction band of the

TiO2 nanocrystal, in coordinate space this transition corre-
sponds to a real displacement of electronic probability density
from the molecule to the nanocrystal with a subsequent
distortion of the TiO2 crystal lattice due to the altered
electrostatic field. In other words, this distortion can be
described by a more or less pronounced self-trapping
mechanism of the electron due to the formation of a polaron.
The ultrafast time scale of the injection of the additional charge
and the correlated formation of a polaron leads to a coherent
excitation of lattice vibrations, i.e., of phonons, which can then
be detected by transient spectroscopy. So the mode at 145
cm−1 is a pure semiconductor property and represents the
coherent response of the electron acceptor on the changed
charge distribution after the ET. This mode of the TiO2 lattice
is the equivalent to the molecular oscillation of the alizarin
cation at 460 cm−1 regarding their excitation mechanism. Based
on the broad absorption bands in the stationary spectra of
adsorbed alizarin and coumarin we assume that there is no
prominent electronic coherence which might generate oscil-
latory signatures.
To rule out that the observed oscillations are directly caused

by optical excitation of the TiO2 though ISRS, a solution of
colloidal TiO2 nanocrystals without coupled dye was measured.
It showed negligible oscillatory signals, implying that the
oscillation was not triggered by the laser pulse itself.
An excitation mechanism caused by the distribution of

electron density in the S* state can be ruled out, as the excited
state of the adsorbed alizarin persists only for about 6 fs, a time
much shorter than the observed 145 cm−1 molecular oscillation
period. The observed vibration can hardly be excited by the
altered electron configuration upon excitation because the total
momentum will be small due to the short lifetime of the excited
state. This assumption is substantiated by the fact that in the
two nonreactive ZrO2 systems no common mode is found.
Phonon emission during the cooling process of the injected,

hot electron as reason for the mode excited at 145 cm−1 can
also be ruled out. The cooling process does not lead to a
coherent excitation of lattice vibrations, as cooling times lie on a
time scale of several hundreds of femtoseconds, much longer
than the observed oscillation period. Here, like in most cases,
cooling is a noncoherent process.

■ CONCLUSIONS

In conclusion, propagating wave packets are identified, both on
the donor and the acceptor side of an ultrafast ET system,
which are prepared directly by the ET process and not by the
initial photoexcitation. In contrast to usual molecular ET,
ultrafast reactions as presented here are not mediated by
molecular oscillations, but on the contrary, they themselves
generate a coherent superposition of vibrational eigenmodes.
The findings underline the need to further expand ET theories
for a valid description of reactions on the sub-10 fs time scale
found at molecule/solid state interfaces.
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