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Abstract

It is by now a well-established fact that the usual two-dimensional tensor
product wavelet bases are not optimal for representing images consisting
of different regions of smoothly varying greyvalues, separated by smooth
boundaries. The chapter starts with a discussion of this phenomenon from
a nonlinear approximation point of view, and then proceeds to describe
approaches that have been suggested as a remedy. The methods can be
sorted roughly into two groups: Adaptive geometry-based approaches such
as wedgelets and related constructions on one hand, and directional frames,
such as curvelets or ridgelets, on the other. We discuss wedgelets and
curvelets in more details, as representatives of the different branches. These
systems are first described in the continuous setting, and their construction
is motivated by a discussion of their nonlinear approximation properties.
We then present digital implementations of the schemes. For wedgelets
and related transforms, we present a new method which results in a sig-
nificant speedup, in comparison to preexisting implementations. We also
give a short description of the contourlet approach to discrete curvelets. In
the last section, we present the results of nonlinear approximation exper-
iments, comparing wedgelets, contourlets and wavelets, and comment on
the potential of the new techniques for image coding.
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Introduction

It is by now a well-established fact that the usual two-dimensional mul-
tiresolution wavelets perform suboptimally when dealing with images of
the cartoon class, i.e., images consisting of domains of smoothly varying
greyvalues, separated by smooth boundaries. In this chapter we review
some of the constructions that were proposed as a remedy to this problem.
We focus on two constructions, wedgelets [14] and curvelets [5]. Both sys-
tems stand for larger classes of image representation schemes; let us just
mention ridgelets [3], beamlets [15], contourlets [14, 13], platelets [26] and
surflets [6] as close relatives.

The chapter starts with a discussion of the failure of wavelet ONB’s.
The reason for expecting good approximation rates for cartoon-like im-
ages is the observation that here the information is basically contained in
the edges. Thus, ideally, one expects that smoothness of the boundary
should have a beneficial effect on approximation rates. However, the ten-
sor product wavelets usually employed in image compression do not adapt
to smooth boundaries, due to the isotropic scaling underlying the multires-
olution scheme. The wedgelet scheme tries to overcome this by combining
adaptive geometric partitioning of the image domain with local regression
on the image segments. A wedgelet approximation is obtained by mini-
mizing a functional that weighs model complexity (in the simplest possible
case: the number of segments) against approximation error. By contrast,
the curvelet approach can be understood as a directional filterbank, de-
signed and sampled so as to ensure that the system adapts well to smooth
edges (the key feature here turns out to be hyperbolic scaling) while at the
same time providing a frame. Here nonlinear approximation is achieved by
a simple truncation of the frame coefficients.

After a presentation of these constructions for the continuous setting,
we then proceed with a description of methods for their digital implementa-
tion. We sketch a recently developed, particularly efficient implementation
of the wedgelet scheme, as well as the contourlet approach to curvelet im-
plementation, as proposed by Do and Vetterli.

In the last section, we present some numerical experiments to compare
the nonlinear approximation behavior of the different schemes, and con-
trast the theoretical approximation results to the experiments. We close
by commenting on the potential of wedgelets and curvelets for image cod-
ing. Clearly, the nonlinear approximation behavior of a scheme can only
be used as a first indicator of its potential for image coding. The good ap-
proximation behavior of the new methods for small numbers of coefficients
reflects their ability to pick out the salient geometric features of an image
rather well, which could be a very useful property for hybrid approaches.
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Figure 1.1: Wavelet coefficients of an image with smooth edges. The detail images
are renormalized for better visibility.

1.1 The Problem and Some Proposed Solutions

Besides the existence of fast decomposition and reconstruction algorithms,
the key feature that paved the way for wavelets is given by their ability
to effectively represent discontinuities, at least for one dimensional signals.
However, it has been observed that the tensor-product construction is not
flexible enough to reproduce this behaviour in two dimensions. Before we
give a more detailed analysis of this failure, let us give a heuristic argument
based on the wavelet coefficients displayed in Figure 1.1. Illustrations like
this are traditionally used to demonstrate how wavelets pick salient (edge)
information out of images. However, it has been observed previously (e.g.
[12]), that Figure 1.1 in fact reveals a weakness of wavelets rather than
a strength, showing that wavelets detect isolated edge points rather than
edges. The fact that the edge is smooth is not reflected adequately; at each
scale j the number of significant coefficients is proportional to 2j times the
length of the boundary, regardless of its smoothness.

A more quantitative description of this phenomenon can be given in
terms of the nonlinear approximation error. Suppose we are given an or-
thonormal basis (ψλ)λ∈Λ of a Hilbert space of (one- or two-dimensional)
signals, for a suitable index set Λ. For a signal f and N ≥ 0 we let εN (f)
denote the smallest possible squared error that can be achieved by approx-
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imating f by a linear approximation of (at most) N basis elements, i.e.

εN (f) = inf { ‖f −
∑

λ∈Λ′
αλψλ‖2

: Λ′ ⊂ Λ with |Λ′| = N, (αλ) ∈ CΛ} .

The study of the nonlinear approximation error can be seen as a precursor
to rate-distortion analysis. Since we started with an orthonormal basis,
the approximation error is easily computed from the expansion coefficients
(〈f, ψλ〉)λ∈Λ, by the following procedure: Reindex the coefficients to ob-
tain a sequence (θm)m∈N of numbers with decreasing modulus. Then the
Parseval relation associated to the orthonormal basis yields

εN (f) =
∞∑

m=N+1

|θm|2 . (1.1)

Let us now compare the approximation behaviour of one- and two-
dimensional wavelet systems. We only give a short sketch of the argument,
which has the purpose to give a closer description of the dilemma surround-
ing two-dimensional wavelets, and to motivate the constructions designed
as remedies. Generally speaking, the mathematics in this paper will be
held on an informal level.

Let f : [0, 1] → R be a bounded function that is piecewise n-times
continuously differentiable, say outside a finite set S ⊂ [0, 1] of singularities,
and let (ψj,k)j≥0,k∈Z be a wavelet orthonormal basis consisting of compactly
supported functions with n − 1 vanishing moments. Then on each dyadic
level j, corresponding to scale 2−j , the number of positions k such that the
support of ψj,k contains a singularity of f is fixed (independent of j), and
for these coefficients we can estimate

|〈f, ψj,k〉| ≤ ‖f‖∞‖ψj,k‖1 = C2−j/2 .

For the remaining k, an n-term Taylor expansion of f together with the
vanishing moments of ψj,k allows the estimate

|〈f, ψj,k〉| ≤ C2−j(n+1/2) .

Observe that there are O(2j) such candidates, whereas the singularities
contribute a fixed number for each scale. Hence, sorting the coefficients by
size, we obtain the estimate |θm| ≤ Cm−n−1/2, which can be plugged into
(1.1) to yield εN (f) ≤ CN−2n.

The constructions presented in this chapter are to a large extent moti-
vated by the desire to achieve a similar behaviour in two dimensions. First,
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however, we need to define the analogue of piecewise Cn. Our image do-
main is the square [0, 1]2. We call an image f : [0, 1]2 → R piecewise smooth
if it is of the form

f(x) = f1(x) + 1Ω(x)f2(x) . (1.2)

Here 1Ω is the indicator function of a compact subset Ω ⊂ [0, 1]2 with a
boundary ∂Ω that is C2, by which we mean that there is a twice continu-
ously differentiable parametrization of ∂Ω. The functions f1 and f2 belong
to suitable classes of smooth functions, that may depend on the setting.
For the case that both f1 and f2 are C2 as well, there exist theoretical
estimates which yield that generally the optimal approximation rate will
be of O(N−2) [7].

We are going to show that wavelet bases fall short of this. For the
following discussion, it suffices to assume that f1 and f2 are in fact constant.
Observe that the estimates given below can be verified directly for the two-
dimensional Haar wavelet basis and the special case that f1 = 1, f2 = 0, and
Ω is the subset of [0, 1] below the diagonal x = y. This is a particularly
simple example, where the pieces f1 and f2 are C∞, the boundary is a
straight line (hence C∞) and not particularly ill-adapted to the tensor
product setting, and yet wavelet bases show poor nonlinear approximation
rates.

We pick a two-dimensional wavelet basis, constructed in the usual way
from a one-dimensional multiresolution analysis [19], and want to describe
the approximation error of f in this basis. Whenever a wavelet does not
meet the boundary of Ω, the smoothness of the functions f1, f2 entails
that the wavelet coefficients can be estimated properly. The problems arise
when we consider those wavelets that meet the boundary. As before, for
each wavelet of scale 2−j meeting the boundary of Ω,

|〈f, ψj,k,l〉| ∼ 2−j ,

where we have now sharpened our observation to mean that there exists up-
per and lower estimates between the two sides, at least for sufficiently many
coefficients. (This is easily seen for the example involving Haar wavelets
and diagonal boundary.) Hence, the scale-dependent decay behaviour for
the coefficients corresponding to singularities is better than in one dimen-
sion, but it holds for a crucially larger number of coefficients, which spoils
the overall performance of the wavelet system. More precisely, as the sup-
ports of the wavelets are (roughly) squares of size ∼ 2−j shifted along the
grid 2−jZ2, the number of wavelets at scale 2−j meeting the boundary is
of O(2j). Thus we obtain |θm| ∼ m−1, and this results in εN (f) ∼ N−1.

A few observations are in order here: First, note that the arguments we
present are indifferent to the smoothness of the boundary; for any boundary
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of finite length we would obtain a similar behaviour. This is the blindness
of wavelet tensor products to edge smoothness, that we already alluded
to above: By construction, wavelets are only designed to represent discon-
tinuities in the horizontal or vertical directions, and cannot be expected
to detect connections between neighboring edge points. It should also be
noted that the problem cannot be helped by increasing the number of van-
ishing moments of the wavelet systems. (Again, this can already be verified
for the diagonal boundary case.)

In the following subsections, we describe recently developed schemes
that were designed to improve on this, at least for the continuous setting.
The digitization of these techniques will be the subject of Sections 1.2 and
1.3. The following remark contains a disclaimer that we feel to be necessary
in connection with the transferal of notions and results from the continuous
to the discrete domain.

Remark 1.1.1 In this paper we describe schemes that were originally de-
signed for continuous image domains, together with certain techniques for
digitization of these notions. In this respect, our paper reflects the current
state of discussion. It is not at all trivial to decide how results concern-
ing asymptotic behavior actually apply to the analysis and design of image
approximation schemes for the discrete setting. Observe that all nonlinear
approximation results describing the asymptotic behavior for images with
bounded domain necessarily deal with small scale limits; for pixelized im-
ages, this limit is clearly irrelevant. Also, as we will encounter below, in
particular in connection with the notion of angular resolution, the continu-
ous setting may lead to heuristics that hardly make sense for digital images.

Note that the relevance of asymptotic results to coding applications is
also not altogether clear: The asymptotic results describe the right end of
the nonlinear approximation curves. Thus they describe how effectively the
approximation scheme adds finer and finer details, for numbers of coeffi-
cients that are already large, which in compression language means high
bit rate coding. By contrast, from the point of view of compression the left
end of the nonlinear approximation curve is by far more interesting. As the
approximation results in the final section of this chapter show, this is also
where the new schemes show improved performance, somewhat contrary to
the asymptotic results developed for the continuous setting.

1.1.1 Wedgelets

Wedgelets were proposed by Donoho [14], as a means of approximating
piecewise constant images with smooth boundaries. The wedgelet dictio-
nary by definition is given by the characteristic functions of wedge-shaped
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sets obtained by splitting dyadic squares along straight lines. Donoho pro-
posed to consider the approximation by this particular dictionary. Lest the
dictionary terminology leads readers astray, let us emphasize here that the
approximation is not performed by popular dictionary-related algorithms
such as matching pursuit, but rather driven by a certain functional, that
depends on a regularization parameter.

For the description of wedgelets, let us first define the set of dyadic
squares of size 2−j ,

Qj = {[2−jk : 2−j(k + 1)[×[2−j` : 2−j(` + 1)[: 0 ≤ k, ` < 2j} ,

and Q =
⋃∞

j=0Qj . A dyadic partition of the image domain is given by
any partition (tiling) Q of [0, 1[2 into disjoint dyadic squares, not necessarily
of constant size. A wedgelet partition is obtained by splitting each
element q ∈ Q of a dyadic partition Q into (at most) two wedges, q =
w1∪w2, along a suitable straight line. The admissible lines used for splitting
elements of Qj are restricted to belong to certain prescribed sets Lj ; we
will comment on the choice of lines below. A wedgelet segmentation is
a pair (g, W ) consisting of a wedge partition W , and a function g that is
constant on all w ∈ W . See Figure 1.2 for an example.

A wedgelet approximation to an image f is now given as the minimizer
of the functional

Hλ,f (g, W ) = ‖f − g‖22 + λ|W | , (1.3)

over all admissible wedgelet segmentations (g, W ). Here λ acts as a regu-
larization or scale parameter: For λ = 0, the minimization algorithm will
return the data f , whereas λ →∞ will eventually produce a constant image
as minimizer. We denote the minimizer of Hλ,f as (ĝλ, Ŵλ). The following
remark collects the key properties that motivate the choice of wedgelets
and the associated functional.

Remark 1.1.2 (1) Given the optimal partition Ŵλ, the optimal ĝλ is
found by a simple projection procedure: For each w ∈ Ŵλ, ĝλ|w is simply
the mean value of g over w. Hence finding the optimal wedgelet segmenta-
tion is the same as finding the optimal partition.
(2) Dyadic partitions are naturally related to quadtrees. More precisely,
given a dyadic partition W , consider the set V of all dyadic squares q such
that there exists p ∈ W with p ⊂ q. The inclusion relation induces a
quadtree structure on V , and W is just the set of leaves in V . The quadtree
structure is the basis for a fast algorithm for the computation of the optimal
wedgelet segmentation Wλ, by recursive application of the following princi-
ple: Let [0, 1]2 = q1 ∪ q2 ∪ q3∪4 be the decomposition into the four smaller
dyadic squares. Then, for a fixed parameter λ, three cases may occur:
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1. Ŵλ = {[0, 1[2} ;

2. Ŵλ is obtained by a wedgesplit applied to [0, 1]2 ;

3. Ŵλ =
⋃4

i=1 V̂ i
λ, where each V̂ i

λ is the optimal wedgelet segmentation
of qi associated to the restriction of f to qi, and to the regularization
parameter λ.

Note that for a fixed λ with minimizer (ĝλ, Ŵλ), ĝλ is the minimizer of
the norm distance ‖f − g‖22 among all admissible wedgelet segmentations
(g, W ) with at most N = |Ŵλ| wedges. This observation is will be used as
the basis for the computation of nonlinear approximation rates.

Let us next consider the nonlinear approximation behaviour of the
scheme. The following technical lemma counts the dyadic squares meeting
the boundary. Somewhat surprisingly, the induced dyadic partition grows
at the same speed.

Lemma 1.1.3 Let f be piecewise constant, with C2 boundary ∂Ω. Let
Qj(f) denote the set of dyadic square q ∈ Qj meeting ∂Ω. Then, there
exists a constant C such that |Qj(f)| ≤ 2jC holds for all j ≥ 1. Moreover,
for each j there exists a dyadic partition Wj of [0, 1]2 containing Qj(f),
with |Wj | ≤ 3C2j.

Proof. The statement concerning Qj(f) is straightforward from a Tay-
lor approximation of the boundary. The dyadic partition Wj is obtained
inductively: Wj+1 is obtained by replacing each dyadic square in Qj(f) by
the four dyadic squares of the next scale. Thus

|Wj+1| = |Wj | − |Qj(f)|+ 4|Qj(f)| = |Wj |+ 3|Qj(f)| .

Thus an easy induction shows the claim on |Wj |. ¤
We obtain the following approximation result. The statement is in spirit

quite close to the results in [14], except that we use a different notion of
resolution for the wedgelets, which is closer to our treatment of the digital
case later on.

Theorem 1.1.4 Let f be piecewise constant with C2 boundary. Assume
that the set Lj consists of all lines taking the angles {−π/2+−2−j`π : 0 ≤
` < 2j}. Then the nonlinear wedgelet approximation rate for f is O(N−2),
meaning that for N ∈ N there exists a wedgelet segmentation (g, W ) with
|W | ≤ N and ‖f − g‖22 ≤ CN−2.

Proof. For N = 2j , the previous lemma provides a dyadic partition Wj

into O(N) dyadic squares, such that the boundary is covered by the ele-
ments of Qj∩Wj . Observe that only those dyadic squares contribute to the
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squared approximation error. In each such square, a Taylor approximation
argument shows that the boundary can be approximated by a straight line
in O(2−2j) precision. The required angular resolution allows to approxi-
mate the optimal straight line by a line from Lj up to the same order of
precision. Now the incurred squared L2-error is of order O(2−3j); the addi-
tional O(2−j) factor is due to the diameter of the dyadic square. Summing
over the O(2j) squares yields the result. ¤

We note that the theorem requires that the number of angles increases
as the scale goes to zero; the angular resolution of Lj scales linearly with
2j . Observe that this requirement does not make much sense as we move
on to digital images. In fact, this is the first instance where we encounter
the phenomenon that intuitions from the continuous model prove to be
misleading in the discrete domain.

1.1.2 Curvelets

Curvelets are conceptually closer to wavelets. While wedgelet approxi-
mation relies on adaptive geometric segmentation of the image domain,
curvelet approximation uses a fixed system of building blocks. A curvelet
system is a family of functions γj,l,k indexed by a scale parameter j, a
position parameter k ∈ R2, and an orientation parameter l, yielding a tight
frame of the image space. Thus, image approximation is performed by ex-
panding the input in the curvelet frame and quantizing the coefficients, just
as in the wavelet setting. However, the effectiveness of the approximation
scheme critically depends on the type of scaling, and the sampling of the
various parameters. Unlike the classical construction of 2D wavelets in the
group-theoretically defined continuous wavelets, as introduced by Antoine
and Murenzi [1], which also incorporate scale, position and orientation pa-
rameters, the scaling used in the construction of curvelets is anisotropic,
resulting in atoms that are increasingly more needle-like in shape as the
scale decreases.

Let us know delve into the definition of curvelets. The following con-
struction is taken from [5], which describes the most recent generation of
curvelets. A precursor was described in [4] (”curvelets 99” in the terminol-
ogy of [5]), which has a more complicated structure, relying on additional
windowing and the ridgelet transform. A comparison of the two types of
curvelets is contained in [5]. Both constructions are different realizations of
a core idea which may be summarized by the catchphrase that the curvelet
system corresponds to a critically sampled, multiscale directional filterbank,
with angular resolution behaving like 1/

√
scale.

As the filterbank view suggests, curvelets are most conveniently con-
structed on the frequency side. The basic idea is to cut the frequency
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plane into subsets that are cylinders in polar coordinates. The cutting
needs to be done in a smooth way however, in order to ensure that the
resulting curvelets are rapidly decreasing.

For this purpose, we fix two window functions,

ν : [−π, π] → C , w : R+ → C .

Both ν and w are assumed smooth; for ν we require that its 2π-periodic
extension νper is smooth as well. In addition, we pick w to be compactly
supported. ν acts as angular window; in order to guarantee that the func-
tions constructed from ν are even. Moreover, we impose that ν fulfills (for
almost every ϑ)

|νper(ϑ)|2 + |νper(ϑ− π)|2 = 1 , (1.4)

which guarantees that the design of curvelets later on covers the full range
of angles. Equation (1.4) allows to construct partitions of unity of the
angular domain into a dyadic scale of elements: Defining νj,l = ν(2jϑ−πl),
for l = 0, . . . , 2j − 1, it is easily verified that

2j−1∑

l=0

|νj,l(θ)|2 + |νj,l(θ + π)|2 = 1 . (1.5)

A similar decomposition is needed for the scale variable. Here we make the
additional assumption that

|w0(s)|2 +
∞∑

j=1

|w(2js)|2 = 1 , (1.6)

for a suitable compactly supported C∞-function w0. w should be thought
of as a bump function concentrated in the interval [1, 2].

In the following we will frequently appeal to polar coordinates, i.e., we
will identify ξ ∈ R2\{0} with (|ξ|, θξ) ∈ R+×]−π, π]. By abuse of notation,
we let w(ξ) = w(|ξ|) and ν(ξ) = ν(θξ), and likewise for the dilated versions.

The scale and angle windows allow a convenient control on the design
of the curvelet system. The missing steps are now to exert this control
to achieve the correct scale-dependent angular resolution, and to find the
correct sampling grids (which shall depend on scale and orientation). For
the first part, filtering with the scale windows (wj)j≥0 splits a given signal
into its frequency components corresponding to the annuli Aj = {ξ ∈ R2 :
2j ≤ |ξ| < 2j+1}. In each such annulus, the number of angles should be
of order 2j/2, by the above slogan. Thus we define the scale-angle window
function ηj,l, for j ≥ 1 and 0 ≤ l ≤ 2bj/2c − 1, on the Fourier side by

η̂j,l(ξ) = wj(|ξ|)(ν2bj/2c,l(θξ) + ν2bj/2c,l(θξ + π)) . (1.7)
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In addition, we let η̂0,0 = w0 (observing the usual abuse of notation),
which is responsible for collecting the low-frequency part of the image. Up
to normalization and introduction of the translation parameter, the family
(ηj,l)j,l is the curvelet system. By construction, η̂j,l is a function that is
concentrated in the two opposite wedges of frequencies

Wj,l = {ξ ∈ R2 : 2j ≤ |ξ| ≤ 2j+1 , θξ or θξ +π ∈ [2−bj/2cl, 2−bj/2c(l+1)]} ,

as is illustrated in Figure 1.3.
Now (1.6) and (1.5) implies for almost every ξ ∈ R2 that

∑

j,l

|η̂j,l(ξ)|2 = 1 , (1.8)

and standard arguments allow to conclude from this that convolution with
the family (ηj,l)j,l conserves the L2-norm of the image, i.e.

‖f‖22 =
∑

j,l

‖f ∗ ηj,l‖22 . (1.9)

The definition of the curvelet frame is now obtained by critically sampling
the isometric operator f 7→ (f ∗ ηj,l)j,l. The following theorem states the
properties of the resulting system, see [5] for a proof.

Theorem 1.1.5 There exist frequency and scale windows ν, w, normal-
ization constants cj,l > 0 and sampling grids Γj,l ⊂ R2 (for j ≥ 0, l =
0, . . . , 2bj/2c − 1) with the following properties: Define the index set

Λ = {(j, l, k) : j ≥ 0, l = 0, . . . 2bj/2c, k ∈ Γj,l} .

Then the family (γλ)λ∈Λ, defined by

γj,l,k(x) = cj,lηj,l(x− k)

is a normalized tight frame of L2(R), yielding an expansion

f =
∑

λ∈Λ

〈f, γλ〉γλ . (1.10)

The following list collects some of the geometric features of the curvelet
system:

1. The shift in the rotation parameter implies that γj,l(x) = γj,0(Rθj,l
),

where θj,l = πl2−bj/2c, and Rθ denotes the rotation matrix

Rθ =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.
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2. γ̂j,0,0 is essentially supported in a union of two rectangles of dimen-
sions O(2j×2bj/2c), and the associated sampling lattice can be chosen
as Γj,0 = δ1,jZ × δ2,jZ, with δ1,j ∼ 2j and δ1,j ∼ 2bjc. As could be
expected from the previous observation, Γj,l = Rθj,l

Γj,0.

3. By the previous observation, the change of sampling lattices from j
to j + 2 follows an anisotropic scaling law,

Γj+2,0 ≈ DΓj,0 , where D =
(

4 0
0 2

)

The discussion in [5] suggests that, at least conceptually, it is useful
to think of all curvelets to be descended from the two basic curvelets
γ1,0 and γ2,0, by the relation γj+2,0(x) ≈ det(D)1/2γj,0(Dx).

4. Summarizing, the γj,l are a system of rapidly decreasing functions
that oscillate at speed of order 2bj/2c, primarily in the (cos(θj,l), sin(θj,l))
direction. As j → ∞, the essential support of γj,l,0 scales like a rec-
tangle of size 2−j×2−bj/2c, when viewed in the appropriate coordinate
system.

The following theorem shows that up to a logarithmic factor the curvelet
system yields the desired nonlinear approximation behaviour for piecewise
C2 functions. One of the remarkable features of the theorem is that the
approximation rate is already achieved by simple nonlinear truncation of
(1.10). Observe that this is identical with best N -term approximation only
for orthogonal bases; however, the curvelet system is only a tight frame,
and cannot be expected to be an orthogonal basis.

Theorem 1.1.6 ([5, Theorem 1.3])
Let f be a piecewise C2 function with C2 boundary. For N ∈ N, let
ΛN (f) ⊂ Λ denote the indices of the N largest coefficients. Then there
exists a constant C > 0 such that

‖f −
∑

λ∈ΛN

〈f, γλ〉γλ‖22 ≤ CN−2(log N)3 . (1.11)

For a detailed proof of the theorem we refer to [5]. In the following we
present a shortened version of the heuristics given in [5]. They contrast
nicely to the wavelet case discussed above, and motivate in particular the
role of anisotropic scaling for the success of the curvelet scheme.

Suppose we are given a piecewise smooth image f , and a fixed scale
index j. We start the argument by a geometric observation that moti-
vates the use of anisotropic scaling and rotation: Recall from the wavelet
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case that O(2j) dyadic squares of size 2−j are needed to cover the edge.
This time we consider a covering by rectangles of size 2−bj/2c× 2−j , which
may be arbitrarily rotated. Then a Taylor approximation of the boundary
shows that this can be done by O(2j/2) such rectangles, which is a vital
improvement over the wavelet case.

Next we want to obtain estimates for the scalar products 〈f, γj,l,k〉,
depending on the position of the curvelet relative to the boundary. Recall
that γj,l,k is a function that has elongated essential support of size 2−bj/2c×
2−j , in the appropriately rotated coordinate system, and oscillates in the
”short” direction.

Then there are basically three cases to consider, sketched in Figure 1.4:

1. Tangential: The essential support of γj,l,k is close in position and
orientation to one of the covering boxes, i.e., it is tangent to the
boundary.

2. Transversal: The essential support is close in position to one of the
covering boxes, but not in orientation. Put differently, the support
intersects the boundary at a significant angle.

3. Disjoint: The essential support does not intersect the boundary.

The argument rests on the intuition that only the tangential case yields
significant coefficients. One readily expects that the disjoint case leads
to negligible coefficients: the image is smooth away from the boundary,
hence the oscillatory behavior of the curvelet will cause the scalar product
to be small. By looking more closely at the direction of the oscillation,
we can furthermore convince ourselves that the transversal case produces
negligibly small coefficients as well: The predominant part of the essential
support is contained in regions where f is smooth, and the oscillations
across the short direction imply that this part contributes very little to the
scalar product.

Thus we have successfully convinced ourselves that only the tangential
case contributes significant coefficients. Here we apply the same type of
estimate that we already used in the wavelet cases, i.e.

〈f, γj,l,k〉 ≤ ‖f‖∞‖γj,k,l‖1 ≤ C2−3j/4 ,

due to the choice of normalization coefficients cj,l. Since there are O(2j/2)
boxes, the sampling of the position and angle parameter in the curvelet sys-
tem implies also O(2j/2) coefficients belonging to the tangential case. Ig-
noring the other coefficients, we therefore have produced –rather informal–
evidence for the statement that the sorted coefficients obey the estimate

|θm| ≤ Cm−3/2 .
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Now, using the fact that the operator

`2(Λ) 3 (αλ)λ∈Λ 7→
∑

λ∈Λ

αλγλ

is normdecreasing, as the adjoint of an isometry, we can finish the argument
by the estimate

‖f −
∑

λ∈ΛN

〈f, γλ〉γλ‖22 = ‖
∑

λ∈Λ\ΛN

〈f, γλ〉‖22 ≤
∞∑

m=N+1

|θm|2 ≤ CN−2 .

Observe that the logarithmic factor in the statement of Theorem 1.1.6 has
disappeared in the course of the argument. This is just an indicator of the
degree of oversimplification of the presentation.

Remark 1.1.7 We close the section by citing another observation from
[5], which allows a neat classification of wavelet, curvelet and ridgelet
schemes by means of their angular resolution: Wavelets have a constant an-
gular resolution, for curvelets the angular resolution behaves like 1/

√
scale,

for ridgelets like 1/scale.

1.1.3 Alternative approaches

Beside the two methods described in the previous subsections, various re-
cent models were developed from different heuristic principles for the in-
formation content of natural images. It is outside the scope of this paper
to describe all of them in detail; in the following we briefly sketch some of
the more prominent approaches.

Among the interesting methods for the representation we can cite the
bandelets [17], which makes use of redundancies in the geometric flow, cor-
responding to local directions of the image grey levels considered as a planar
onedimensional field. The geometry of the image is summarized with local
clustering of similar geometric vectors, the homogeneous areas being taken
from a quadtree structure. A bandelet basis can be viewed as an adaptive
wavelet basis, warped according to the locally selected direction. Bandelet
decomposition achieves optimal approximation rates for Cα functions. This
method presents similarities with optimal wedgelet decompositions in that
it uses geometric partitioning of the image domain, according to the min-
imization of a certain complexity-distortion functional. For instance, ban-
delets decomposition combined with a rate-distortion method, leads to a
quite competitive compression scheme. It has been already applied success-
fully to a very specific case, the compression of ID photos; see the website
[25].
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Another possible modelling is based on the use of triangulations, which
corresponds to a quite different philosophy. By their flexibility, adaptive
irregular triangulations have very good approximation behavior. It can be
shown that the optimal rates of approximation can be attained (see [17])
when we require that every conform triangulation is allowed for the repre-
sentation. The main problem encountered by these methods is the sheer
number of possible triangulations. In practice, especially for the purpose
of implementation, one is forced to consider highly reduced triangulations
classes, while still trying to obtain nearly optimal results.

To mention an example of such an approach, the method proposed in
[9] uses a greedy removal of pixels, minimizing at each step the error among
the possible triangulations. The class of triangulations under consideration
is reduced to the set of Delaunay triangulations of a finite set of pixel po-
sitions, which allows a simplified parameterization, only using the point
coordinates, without any connectivity information about the according tri-
angulation. This fact is employed in a suited scattered data compression
scheme. For natural images, the rate-distortion performances achieved are
comparable with those obtained by wavelet methods, leading to very differ-
ent kind of artefacts. In particular it avoids ringing artefacts, but smoothes
textured areas.

An approach which is in a sense dual to the majority of the schemes
described here are brushlets, introduced by Meyer and Coifman [20]. While
most of the approaches we mentioned so far involve some form of spatial
adaptation to the image content, brushlet approximations are based on the
adaptive tiling of the frequency plane. As might be expected from this de-
scription, the experiments in [20] show that brushlets are quite well adapted
to the representation of periodic textures, which shows that the brush-
let approach is somewhat complementary to geometric approaches such as
wedgelets. By construction, brushlets have trouble dealing with piecewise
smooth images, which constitute the chief class of benchmark signals in
this chapter. It is well-known that the Fourier transform is particularly
ill-suited to dealing with piecewise smooth data. Hence any scheme that
uses the Fourier transform of the image as primary source of information
will encounter similar problems.

Finally, let us mention dictionary-based methods, usually employed in
connection with pursuit algorithms. As most of the approaches described
in this chapter are based more or less explicitly on redundant systems of
building blocks, there are necessarily some similarities to dictionary-based
methods. The use of highly redundant dictionaries for image representa-
tions is the subject of a separate chapter in this volume, to which we refer
the interested reader.
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1.2 Digital Wedgelets

Let us now turn to algorithms and discrete images. In this section we
describe a digital implementation of Donoho’s wedgelet algorithm. For no-
tational convenience, we suppose the image domain to be Ω = {0, . . . , 2J −
1} × {0, . . . , 2J − 1}. In this setting, dyadic squares are sets of of the type
[2jk, 2j(k + 1)− 1]× [2j`, 2j(` + 1)− 1], with 0 ≤ k, ` < 2J−j . Our goal is
to describe an efficient algorithm that for a given image f ∈ RΩ computes
a minimizer of

Hλ,f (g,W ) = ‖f − g‖22 + λ|W | , (1.12)

where W is a wedge partition of Ω and g is constant on each element of W .
As in the continuous setting, wedge partitions are obtained from dyadic
partitions by splitting dyadic squares along straight lines. It turns out that
there are several options of defining these notions; already the digitization
of lines is not as straightforward an issue as one might expect.

In the following, we use the definitions underlying our implementation,
described in more detail in [10, 16]. Other digitizations of wedgelets can be
used for the design of wedgelet algorithms, and to some extent, the following
definitions are just included for the sake of concreteness. However, as we
explain below, they also provide particularly fast algorithms.

We fix a finite set Θ ⊂]−π/2, π/2] of admissible angles. The admissible
discrete wedgelets are then obtained by splitting dyadic squares along lines
meeting the x-axis at an angle θ ∈ Θ.

Definition 1.2.1 Let θ ∈]−π/2, π/2] be given, and define v⊥θ = (− sin(θ), cos(θ)).
Moreover, let

δ = max{| sin(θ)|/2, | cos(θ)|/2} .

The digital line through the origin in direction vθ is then defined as

L0,θ = {p ∈ Z2 : −δ < 〈p, v⊥θ 〉 ≤ δ} . (1.13)

Moreover, we define Ln,θ, for n ∈ Z, as

Ln,θ =
{ {p + (n, 0) : p ∈ L0,θ} : |θ| > π/4
{p + (0, n) : p ∈ L0,θ} : |θ| ≤ π/4 .

In other words, Ln,θ is obtained by shifting L0,θ by integer values in the
vertical direction for flat lines, and by shifts in the horizontal direction
for steep lines. In [10] we prove that the set (Ln,θ)n∈Z partition Z2, i.e.
Z2 =

⋃•
n∈Z Ln,θ; see also [16, Section 3.2.2].

Now we define the discrete wedge splitting of a square.



Beyond wavelets: New image representation paradigms 17

Definition 1.2.2 Let q ⊂ Z2 be a square, and for (n, θ) ∈ Z2×[−π/2, π/2[,
let L(q, θ) denote the set of discrete lines Ln,θ such that Ln,θ ∩ q 6= ∅ and
Ln+1,θ ∩ q 6= ∅. The according wedge splitting is the partition of q in two
wedges {w1

n,θ(q), w
2
n,θ(q)} defined by





w1
n,θ(A) =

⋃
k≤n

Lk,θ ∩A

w2
n,θ(A) =

⋃
k>n

Lk,θ ∩A
.

Our description of discrete wedgelets is somewhat nonstandard due to
the fact that we use a globally defined set of angles and lines. The advantage
of our definition is that it allows the efficient solution of the key problem
arising in rapid wedgelet approximation, namely the efficient computation
of image mean values over wedges of varying shapes and sizes. In a sense,
this latter problem is the only serious challenge that is left after we have
translated the observations made for the continuous setting in Remark 1.1.2
to the discrete case: Again the minimization problem is reduced to finding
the best wedgelet segmentation, and the recursive minimization procedure
is fast, provided that for every dyadic interval the optimal wedgesplit is
already known. This requires the computation of mean values, for large
numbers of wedges, and here our definitions pay off.

In the following two subsections we give algorithms dealing with a some-
what more general modell, replacing locally constant by locally polynomial
approximation. In other words, we consider minimization (1.12) for func-
tions g that are given by polynomials of fixed degree r on the elements of the
segmentation. Thus the following also applies to the platelets introduced in
[26]. The more general problem requires the computation of higher degree
image moments over wedge domains, but is otherwise structurally quite
similar to the original wedgelet problem. In principle this generalization
is straightforward, but with preexisting techniques it was simply not com-
putationally feasible. Our implementation, which can be downloaded from
[25], allows to use models up to order two, in very reasonable computation
time.

Subsection 1.2.1 sketches the key technique for moment computation.
It relies on precomputed lookup-tables containing cumulative sums over
certain image domains. The number of lookup-tables grows linearly with
the number of angles in Θ and the number of required moments. This
way, the angular resolution of the discrete wedges can be prescribed in a
direct and convenient way, and at linear cost, both computational and in
terms of memory requirements. Subsection 1.2.2 contains a summary of
the algorithm for the minimization of (1.12). For more details we refer to
[10, 16].
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1.2.1 Rapid summation on wedge domains: Discrete Green’s theorem

As explained above, efficient wedgelet approximation requires the fast eval-
uation integrals of the form

∫
w

f(x, y)dxdy, over all admissible wedges w.
For higher order models, image moments of the form

∫
w

f(x, y)xiyjdxdy
need to be computed; for the discrete setting, the integral needs to be re-
placed by a sum. In the following we present a sketch of our techniques
providing a fast solution to this problem.

For exposition purposes, let us first consider the continuous setup. We
let Q+ denote the positive quadrant, Q+ = R+

0 × R+
0 . Given z ∈ Q+,

and θ ∈] − π/2, π/2], let Sθ(z) = z + R−(cos(θ), sin(θ)) ∩ Q+. Moreover,
denote by Ωθ(z) ⊂ Q+ the domain that is bounded by the coordinate axes,
the vertical line through z, and Sθ(z), see Figure 1.5. Define the auxiliary
function Kθ : Q+ → R as

Kθ(z) =
∫

Ωθ(z)

f(x, y) dx dy ; (1.14)

note that this implies Kπ/2 = 0, as the integral over a set of measure zero.
Let us now consider a wedge of fixed shape, say a trapezoid w, with

corners z1, z2, z3, z4, as shown in the right hand part of Figure 1.5. Then
(1.14) implies that

∫

w

f(x, y) dx dy = Kθ(z4)−Kθ(z3)−K0(z1) + K0(z2). (1.15)

In order to see this, observe that w = Ωθ(z4) \ (Ωθ(z3)∪Ω0(z1). Hence the
integral over w is obtained by subtracting from Kθ(z4) the integrals over
Ωθ(z3) and Ω0(z1), and then adding the part that is subtracted twice, i.e.
the integral over Ωθ(z3) ∩ Ω0(z1) = Ω0(z2).

Note that the evaluation of the right-hand side of (1.15) involves only 4
operations, supposing that Kθ and K0 are known. Similar results can then
be obtained for the different kind of wedge domains arising in the general
scheme, and more generally for all polygonal domains with boundary seg-
ments belonging to angles in Θ. As a side remark, these considerations
in fact just describe a special case of Green’s theorem; see [10] for a more
complete discussion of this connection.

The discrete implementation of (1.15) and related formulae is described
in [10]. The discrete analogs Kd

θ of the auxiliary functions can be stored in
matrices of the same size as the image, and they are efficiently computable
in linear time, by cumulative summation first in the vertical direction, and
then along the lines Ln,θ. As a main result of this discussion, we record:
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Theorem 1.2.3 For any angle θ ∈]−π/2, π/2], the auxiliary matrix Kd
θ is

computable in O(22J ). After computing Kd
θ and Kd

0 , the sum
∑

(x,y)∈w f(x, y)
is obtainable using at most 6 operations, for every wedge domain w obtained
by splitting a dyadic square along a line with angle θ.

1.2.2 Implementation

Now, combining Donoho’s observations from Remark 1.1.2 with the tech-
niques outlined in the previous section, we obtain the following algorithm
for the minimization of (1.12). In the following, N denotes the number of
pixels, N = 22J .

1. Compute the auxiliary matrices Kd
θ,i,j , for all θ ∈ Θ, which are nec-

essary for the computation of the moment of index i, j to be used in
the next steps. Local regression of order r requires (r + 1)(r + 2)/2
such moments. By the considerations in the previous subsection, the
overall memory and time requirements for this computation step is
therefore (r + 1)(r + 2)/2×N × (a + 1), where a = |Θ|.

2. For each dyadic square q, we need to select a best local wedge-
regression model among the possible wedge splitting of this square.
For each digital line l, we compute the (r + 1)(r + 2)/2 moments in
fixed time, using the appropriate version of (1.15). This allows to
solve the corresponding regression problems over w1

l and w2
l , which

requires O(r3) flops. Finally, we compute the according discrete l2-
error. This procedure applies to the |Θ|2j+1 admissible discrete lines
passing through q.

For each q, we need then to store the line l̂nq,θq which corresponds to
the minimal error, the associated two sets of optimal coefficients of
the local regression models, and the incurred squared error Eq.

The whole procedure needs to be carried out for all 2N−1
3 dyadic

squares.

3. Once Step 2. is finished, we are in a position to find out the wedgelet
partition Ŵλ(f) which minimizes (1.12) for a given parameter λ, using
the algorithm sketched in Remark 1.1.2. The algorithm runs through
all dyadic squares, starting from the smallest ones, i.e. single pixels.

Hence, if we consider a dyadic square q, its children qi, i = 1, . . . , 4
have already been treated, and we know an optimal partition for
each qi, denoted by Ŵλ(qi), and also the associated error Eqi,λ and
penalization λ|(Ŵλ(qi))|.
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The optimal partition of A is then the solution to the comparison of
two partitions, Ŵ (q) and ∪4

i=1Ŵλ(qi). The according error is given
by

Eq,λ = min{Eq + λ|Ŵ (q)|,
4∑

i=1

Eqi,λ} , (1.16)

and according to the result of the comparison, we store the corre-
sponding optimal wedge partition Ŵq,λ. The process stops at the top
level, yielding the minimizer (ĝλ, Ŵλ).

We summarize the results concerning the computational costs in the
following proposition.

Proposition 1.2.4 Step 1. requires O(aNr3) flops and a memory storage
of O(aN2r3) . Step 2. also requires O(aNr3) flops and a memory storage
in O(rN). Step 3. requires O(N) flops.

The following observations are useful for fine-tuning the algorithm perfor-
mance:

Remark 1.2.5 (a) In actual implementation, allocation for the auxiliary
matrices storing Kd

θ turns out to be a crucial factor. A closer inspection
shows that in the steps 1. and 2., the angles in Θ can be treated consec-
utively, thus reducing memory requirement to O(Nr3). This results in a
considerable speedup.
(b) The use of a fixed set Θ of angles for splitting dyadic squares of varying
size is not very efficient: For small dyadic squares, a small difference in
angles yields identical wedgesplits. Roughly speaking, a dyadic square of
size 2j can resolve O(2j) angles. It is possible to adapt the algorithm to
this scaling. Note that this scale-dependent angular resolution is precisely
the inverse of what is prescribed by Theorem 1.1.4. Numerical experiments,
documented in [16, Sect.6.3], show that this scale dependent angular reso-
lution leads to the same approximation rates as the use of a full set of 2J

angles, valid for all scales.
(c) A further highly interesting property of the algorithm is the fact that
only the last step uses the regularization parameter. Thus the results of the
previous steps can be recycled, allowing fast access to (ĝλ, Ŵλ) for arbitrary
parameters λ.

1.3 Digital Curvelets: Contourlets

The curvelet construction relies on features that are hard to transfer to the
discrete setting, such as polar coordinates and rotation. Several approaches
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to digital implementation have been developed since the first inception of
curvelets, see e.g. [21, 12, 14]. In the following we present the approach
introduced by Do and Vetterli [12], which to us seems to be the most
promising among the currently available implementations, for various rea-
sons: It is based on fast filterbank algorithms with perfect reconstruction;
i.e., the tight frame property of curvelets is fully retained, in an algorith-
mically efficient manner. Moreover, the redundancy of the transform is
1.333, which is by far better than the factor 16J +1 (J = number of dyadic
scales in the decomposition) reported in [21]. It is clear that from a coding
perspective, redundancy is a critical issue.

The starting point for the construction of contourlets is the observation
that computing curvelet coefficients can be broken down into the following
three steps, compare Figure 1.3:

1. Bandpass filtering using the scale windows wj .

2. Directional filtering using the angular windows νj,l.

3. Subsampling using the grids Γj,l, resulting in a tight frame expansion
with associated inversion formula.

The discrete implementation follows an analogous structure, see Figure 1.6.

1. The image is passed through a pyramid filterbank, yielding a sequence
of bandpassed and subsampled images.

2. Directional filterbanks [2, 11], are applied to the difference images in
the pyramid, yielding directionally filtered and critically subsampled
difference images. The angular resolution is controlled in such a way
as to approximate the scaling of the angular resolution prescribed for
the curvelet system.

3. The directional filterbanks have an inherent subsampling scheme,
that makes them orthogonal when employed with perfect reconstruc-
tion filters. Combining this with a perfect reconstruction pyramid
filterbank, the whole system becomes a perfect reconstruction filter-
bank with a redundancy factor of 1.333 inherited from the pyramid
filter.

The filterbank uses time-domain filtering, leading to linear complex-
ity decomposition and reconstruction algorithms. The effect of combined
bandpass and directional filtering can be inspected in a sample decomposi-
tion of a geometric test image in Figure 1.7. The filterbank implementation
computes the coefficients of the input image with respect to a family of dis-
crete curvelets or contourlets. A small sample of this family is depicted in
Figure 1.8, showing that the anisotropic scaling properties of the continuous
domain curvelet system are approximately preserved.
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1.4 Experiments and coding

1.4.1 Approximation properties

We have conducted tests with real and artificial images to compare the
different approximation schemes. We used standard test images, see Figure
1.10. The wavelet approximations were obtained by the standard matlab
implementation, using the db4 filters. The contourlet approximations were
obtained using the matlab contourlet toolbox [8], developed by Do and
collaborators. For wedgelets we used our implementation available at [25].

A naive transferal of the approximation results obtained in Section 1.1
would suggest that the new schemes outperform wavelets in the high-bit-
rate area, i.e., as the number of coefficients per pixel approaches 1. How-
ever, for all images, wavelets have superior approximation rates in these
areas. By contrast, contourlets and wedgelets perform consistently better
in the low-bit-rate area. Given the fact that the contourlet system has
the handicap of a redundancy by a factor of 1.333, and the fact that the
approximation is obtained by simple thresholding, the consistently good
approximation behaviour of contourlets for extremely small numbers of co-
efficients is remarkable. Wedgelets, on the other hand, perform best when
dealing with images that are of a predominantly geometric nature, such as
the cameraman, or the circles. This of course was to be expected. Sim-
ilarly, the trouble of wedgelets in dealing with textured regions could be
predicted beforehand. By contrast, contourlets also manage to represent
textured regions to some accuracy, as can be seen in the nonlinear approx-
imation plot for the Barbara image, and in the reconstructions of Baboon
and Barbara in Figures 1.12 and 1.13.

Clearly PSNR is not the only indicator of visual quality. Figures 1.12
and 1.13 present reconstructions of our sample images using 0.01 coeffi-
cients per pixel. We already remarked that contourlets are superior to
wedgelets when it comes to approximating textured regions (cf. Baboon,
Barbara). On the other hand, contourlets produce wavelet-like ringing
artefacts around sharp edges (cf. Cameraman, Circles). Here wedgelets
produce superior results, both visually and in terms of PSNR. As a general
rule, the artefacts due to contourlet truncation are visually quite similar to
wavelet artefacts. On the other hand, typical wedgelet artefacts come in
the form of clearly discernible edges or quantization effects in the represen-
tation of color gradients. To some extent, these effects can be ameliorated
by employing a higher order system, such as platelets.

Summarizing the discussion, the results suggest that contourlets and
wedgelets show improved approximation behaviour in low-bit-rate areas.
Here the improvement is consistent, and somewhat contradictory to the
theoretical results which motivated the design of these systems in the first
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place. Both contourlets and wedgelets are able to well represent the coarse-
scale geometric structures inherent in the image. As more and more details
are required, wedgelets fail to efficiently represent textured regions, while
in the contourlet case the overall redundancy of the contourlet system in-
creasingly deteriorates the performance.

1.4.2 Application to Compression

The capacity to achieve high theoretical rates of approximation is an im-
portant indicator of the potential of the geometrical methods in the field of
image compression. It appears, indeed, that in the case of approximation
of two-dimensional locally smooth functions with regular boundaries,the
rates obtained with wedgelet models are of higher order than those induced
by the classical decomposition framework (Fourier decompositions, wavelet
frames). In particular, classical orthogonal or biorthogonal wavelets were
designed for the optimality in the one-dimensional case. The construction
of bidimensional tensor product wavelets only achieves suboptimal approx-
imation rates for the representation of sharp edges.

As we have already remarked on various occasions, it remains an open
question to decide whether these approximation rates constitute an ade-
quate framework for the case of compression of discrete images. The ex-
periments in Subsection 1.4.1 confirm that due to the discretization effects,
the theoretical approximation rates are not observed in practice, even for
reasonably big sizes of images. On the other hand, for very low bitrates (i.e.
few coefficients), where the discretization effect is negligible, the asymptot-
ical rates do not bring a very relevant information. It is also obvious that
the choice of the L2-error for measuring the distortion also leads to some
undesired artefacts. For instance, this kind of measure also incorporates
some noise inherent to natural images [7], and is thus poorly adapted to
the human visual systems.

The use of wedgelets in the frame of image compression is mainly due
to the work of Wakin [22, 24]. The first attempts are based on a model
mixing cartoon and texture coding [23]. More than for its efficiency, this
method is interesting for the sake of understanding the difficulties occurring
in the coding of wedge representations of images. The heuristic behind
this method consists in considering a natural image as the sum of two
components, one containing the textures, the other one corresponding to
a simple edge cartoon model, containing only the sharp edge information.
Then, a separated coding of each component is performed. The cartoon
component is treated with the help of wedgelet approximation, whereas the
residual error image inferred from this first approximation is coded with
wavelets in a classical way. On the following, we focus on the coding of the
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tree-based wedgelet representation of the cartoon component. The decoder
needs to know the structure of the tree (a node of the tree can be either
a square leaf, a wedge leaf or subdivided), the wedge parameters for the
wedge leaves, and the corresponding quantized optimized constant values
for the selected wedges and squares.

Such a naive coding of a wedgelet decomposition avoids most ringing
artefacts around the edges, but still remains inferior to wavelet coding
(like JPEG2000) in terms of PSNR, mainly because it does not model
the dependencies between neighbouring coefficients, and also because of
redundancies between wavelet and wedgelet representations, inherent to
this scheme.

For the problem of dependencies between different edges, a possible
modelling is the MGM (Multiscale Geometry Model). It relies on a kind
of multiscale Markov model for the structural dependencies between wedge
orientations and positions; indeed they make use of the probabilities of an
angle in a child dyadic square to be selected, conditionally to the optimal
angle selected in the parent dyadic square. Note that this model only
takes into account the Hausdorff distance between the parents-lines and
the children lines. In other words it does not adapt to an image contents,
but it rather is based on an ad hoc assumption concerning the correlation
between geometrical structure of parents and children dyadic squares. This
joint coding of the wedge parameters allows significant coding gains when
compared to an independent coding.

Deriving an efficient compression scheme depends also on the possibil-
ity to prune the tree adequately. In (1.12), the penalization used for the
pruning of the tree corresponds to a balance between the distortion in the
reconstruction of the image and the complexity of the model measured by
the number of pieces retained for the representation of the image. In the
compression context, it is interesting to consider a modified penalization,
which takes into account the coding cost. The problem reduces then to the
minimization of a functional of the form

Hλ,f (g, W ) = ‖f − g‖22 + λ[− log(P (W ))] ,

where P is an entropy measure depending on some probabilistic as-
sumptions on the data. This measure is used for evaluating the amount of
bits required for the coding of the wedge tree and parameters information.

The most interesting method is the W-SFQ (Wedgelet- Space Frequency
Quantization) compression scheme proposed in [24] and based on the use
of wedgeprints. The main difference with the previous scheme consists in
acting directly in the wavelet coefficients domain, instead of the image do-
main. The method is mainly an enhancement of the SFQ scheme, which
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was originally proposed in [27]. SFQ is a zerotree coding where the co-
efficients clustering are optimized according to a rate-distortion criterion.
It is a very efficient method outperforming the standard SPIHT in many
cases, especially for low bitrates. It still suffers, however, from the limits
of zerotree wavelet coders for the coding of significant wavelet coefficients
along edges.

Whereas SFQ considers two possibility for a coded node, either being a
zerotree (all its descendants being considered unsignificant) or a significant,
coded coefficient, W-SFQ introduces a third possibility, a node can be a
wedge, the wavelet coefficients descendants of this node being evaluated
from the optimal wedge function. In other words, W-SFQ is a zerotree
where the clustering of coefficients is more suited to geometry, with the help
of wedge functions. This clustering together with the associated function
is also called wedgeprint. Despite the high coding cost of the wedges, the
coherence is ensured by the rate-distortion optimization: a wedge is only
chosen when its cost remains low towards the gain in distortion. In [24], an
enhanced version of this coding scheme is proposed with some additional
ingredients, allowing larger wedgeprints,

• the use of the MGM model which is an efficient tool to code efficiently
deeper wedge tilings; a more accurate description of the geometry of
a contour than with a single wedgeprint is possible;

• a smoothing parameter for the edges which takes into account blur-
ring artefacts in original image, due to pixelization;

• a specific coding for textures.

With this enhanced version, encouraging results were obtained for some
natural images with poor texture contents (and hence closer to the cartoon
model). For instance, W-SFQ outperforms SFQ at very low bitrate, for
some natural images.

Note that the MGM model in this context remains relatively rudimen-
tary. Indeed it is a non adaptive model. Furthermore there is only up
to bottom correlation (between son and children). One could probably ex-
pect improved compression rates with the help of a modelling of the spatial
correlations between wedge parameters of neighbouring wedgeprints.
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Figure 1.2: IBB North. (a) Original image, (b) wedge reconstruction λ = 0.012,
and (c) with corresponding wedge grid superimposed.
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Figure 1.3: Idealized frequency response of the curvelet system. Fitering using
the scale window wj , followed by filtering with the angular window νj,l, yields the
frequency localization inside the wedge Wj,l. Observe the scaling of the angular
resolution, which doubles at every other dyadic step.

Figure 1.4: A sketch of the three types of curvelet coefficients, where the es-
sential supports of the curvelets are shown as ellipses, with indicated oscillatory
behaviour. From left to right tangential, transversal and disjoint case.

Figure 1.5: Left: The sets Sθ(z) and Ωθ(z). Right: An illustration of the argu-
ment proving (1.15).
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Figure 1.6: Idealized frequency response of the contourlet system. The scaling of
the angular resolution is controlled by employing a suitable directional filterbank.

Figure 1.7: Sample image Circles, decomposed by subsequent bandpass and di-
rectional filtering.
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Figure 1.8: A sample of three contourlets of different scales and orientations;
the grey-scale is manipulated to improve visibility of the different contourlets.
Observe the change in aspect ratios as the scale decreases.

Figure 1.9: Structure of the contourlet decomposition.
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Figure 1.10: Test images; the usual suspects: Barbara (512 × 512), Peppers
(512×512), Cameraman (256×256), Baboon (512×512) and Circles (256×256)
.
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Figure 1.11: Nonlinear approximation behaviour, visualized by plotting coeffi-
cients per pixels against PSNR (db). We compare wavelets (solid), contourlets
(crosses) and wedgelets (dashed), corresponding to the images, from top left to
bottom, Barbara (512 × 512), Peppers (512 × 512), Cameraman (256 × 256),
Baboon (512× 512) and Circles (256× 256).
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Figure 1.12: Sample reconstructions using 0.01 coefficients per pixel, for con-
tourlets (left) and wedgelets (right). Top row: Barbara, with contourlets: 23.89
db, wedgelets: 23.02 db; middle row: Peppers, with contourlets: 28.12, wedgelets:
27.84 db; bottom row: Cameraman, with contourlets: 22.90 db, wedgelets: 23.82
db
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Figure 1.13: Sample reconstructions using 0.01 coefficients per pixel, for con-
tourlets (left) and wedgelets (right). Top row: Baboon, with contourlets: 21.05
db, wedgelets: 20.89 db; bottom row: Circles, with contourlets: 26.56 db,
wedgelets: 34.12 db


