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ABSTRACT

We describe a new algorithm, Minesweeper, that is able to satisfy
stronger runtime guarantees than previous join algorithms (collo-
quially, ‘beyond worst-case guarantees’) for data in indexed search
trees. Our first contribution is developing a framework to measure
this stronger notion of complexity, which we call certificate com-

plexity, that extends notions of Barbay et al. and Demaine et al.;
a certificate is a set of propositional formulae that certifies that the
output is correct. This notion captures a natural class of join al-
gorithms. In addition, the certificate allows us to define a strictly
stronger notion of runtime complexity than traditional worst-case
guarantees. Our second contribution is to develop a dichotomy
theorem for the certificate-based notion of complexity. Roughly,
we show that Minesweeper evaluates β-acyclic queries in time lin-
ear in the certificate plus the output size, while for any β-cyclic
query there is some instance that takes superlinear time in the cer-
tificate (and for which the output is no larger than the certificate
size). We also extend our certificate-complexity analysis to queries
with bounded treewidth and the triangle query. We present em-
pirical results that certificates can be much smaller than the input
size, which suggests that ideas in minesweeper might lead to faster
algorithms in practice.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Relational databases
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1. INTRODUCTION
Efficiently evaluating relational joins is one of the most well-

studied problems in relational database theory and practice. Joins
are a key component of problems in constraint satisfaction, arti-
ficial intelligence, motif finding, geometry, and others. This paper
presents a new join algorithm, called Minesweeper, for joining rela-
tions that are stored in order data structures, such as B-trees. Under
some mild technical assumptions, Minesweeper is able to achieve
stronger runtime guarantees than previous join algorithms.

The Minesweeper algorithm is based on a simple idea. When
data are stored in an index, successive tuples indicate gaps, i.e.,
regions in the output space of the join where no possible output
tuples exist. Minesweeper maintains gaps that it discovers during
execution and infers where to look next. In turn, these gaps may
indicate that a large number of tuples in the base relations cannot
contribute to the output of the join, so Minesweeper can efficiently
skip over such tuples without reading them. By using an appropri-
ate data structure to store the gaps, Minesweeper guarantees that
we can find at least one point in the output space that needs to be
explored, given the gaps so far. The key technical challenges are
the design of this data structure, called the constraint data struc-

ture, and the analysis of the join algorithm under a more stringent
runtime complexity measure.

To measure our stronger notion of runtime, we introduce the no-
tion of a certificate for an instance of a join problem: essentially, a
certificate is a set of comparisons between elements of the input re-
lations that certify that the join output is exactly as claimed. We use
the certificate as a measure of the difficulty of a particular instance
of a join problem. That is, our goal is to find algorithms whose
running times can be bounded by some function of the smallest

certificate size for a particular input instance. Our notion has two
key properties:

‚ Certificate complexity captures the computation performed

by widely implemented join algorithms. We observe that the
set of comparisons made by any join algorithm that interacts
with the data by comparing elements of the input relations
(implicitly) constructs a certificate. Examples of such join
algorithms are index-nested-loop join, sort-merge join, hash
join, grace join, and block-nested loop join. Hence, our re-
sults provide a lower bound for this class of algorithms, as



any such algorithm must take at least as many steps as the
number of comparisons in a smallest certificate for the in-
stance.

‚ Certificate complexity is a strictly finer notion of complexity

than traditional worst-case data complexity. In particular,
we show that there is always a certificate that is no larger than
the input size. In some cases, the certificate may be much
smaller (even constant-sized for arbitrarily large inputs).

These two properties allow us to model a common situation in
which indexes allow one to answer a query without reading all of
the data—a notion that traditional worst-case analysis is too coarse
to capture. We believe ours is the first beyond worst-case analysis

of join queries.
Throughout, we assume that all input relations are indexed con-

sistently with a particular ordering of all attributes called the global

attribute order (GAO). In effect, this assumption means that we re-
strict ourselves to algorithms that compare elements in GAO order.
This model, for example, excludes the possibility that a relation
will be accessed using indexes with multiple search keys during
query evaluation.

With this restriction, our main technical results are as follows.
Given a β-acyclic query we show that there is some GAO such
that Minesweeper runs in time that is essentially optimal in the
certificate-sense, i.e., in time Õp|C|`Zq, where C is a smallest cer-
tificate for the problem instance, Z is the output size, and Õ hides
factors that depend (perhaps exponentially) on the query size and at
most logarithmically on the input size.1 Assuming the 3SUM con-
jecture, this boundary is tight, in the sense that any β-cyclic query
(and any GAO) there are some family of instances that require a

run-time of Ωp|C|4{3´ǫ ` Zq for any ǫ ą 0 where Z “ Op|C|q.
For α-acyclic join queries, which are the more traditional notion
of acyclicity in database theory and a strictly larger class than β-
acyclic queries, Yannakakis’s seminal join algorithm has a worst-
case running time that is linear in the input size plus output size (in
data complexity). However, we show that in the certificate world,
this boundary has changed: assuming the exponential time hypoth-
esis, the runtime of any algorithm for α-acyclic queries cannot be
bounded by any polynomial in |C|. In the full version of this pa-
per [37], we show that both worst-case optimal algorithms [38, 50]
and Yannakakis’s algorithm run in timeωp|C|q for β-acyclic queries
on some family of instances.

We also describe how to extend our results to notions of treewidth.
Recall that any ordering of attributes can be used to construct a
tree decomposition. Given a GAO that induces a tree decompo-
sition with an (induced) treewidth w, Minesweeper runs in time
Õp|C|w`1 `Zq. In particular, for a query with treewidth w, there is

always a GAO that achieves Õp|C|w`1 ` Zq. Moreover, we show
that no algorithm (comparison-based or not) can improve this ex-
ponent by more than a constant factor in w. However, our algorithm
does not have an optimal exponent: for the special case of the popu-
lar triangle query, we introduce a more sophisticated data structure

that allows us to run in time Õp|C|3{2 ` Zq, while Minesweeper

runs in time Õp|C|2 ` Zq.

Outline of the Remaining Sections. In Section 2, we de-
scribe the notion of a certificate and formally state our main tech-
nical problem and results. In Section 3, we give an overview of

1The exponential dependence on the query is similar to traditional
data complexity; the logarithmic dependence on the data is an un-
avoidable technical necessity (see Appendix B).

the main technical ideas of Minesweeper, including a complete de-
scription of our algorithm and its associated data structures. In
Section 4, we describe the analysis of Minesweeper for β-acyclic
queries. In Section 5, we then describe how to extend the analy-
sis to queries with low-treewidth and the triangle query. We also
present some empirical results to indicate that the certificate size
may be much smaller than the input size for some graph queries.
In Section 6, we discuss related work. Most of the technical details
are provided in the appendix.

2. PROBLEM AND MAIN RESULT
Roughly, the main problem we study is:

Given a natural join query Q and a database instance I,
compute Q in time f p|C|,Zq, where C is the smallest “cer-
tificate" that certifies that the output QpIq is as claimed by
the algorithm and Z “ |QpIq|.

We will assume that all relations in the input are already indexed.
Ideally, we aim for f p|C|,Zq “ O

(

|C| ` Z
)

. We make this problem
precise in this section.

2.1 The inputs to Minesweeper
We assume a set of attributes A1, . . . ,An and denote the domain

of attribute Ai as DpAiq. Throughout this paper, without loss of
generality, we assume that all attributes are on domainN. We define
three items: (1) the global attribute order; (2) our notation for order;
and (3) our model for how the data are indexed.

The Global Attribute Order. Minesweeper evaluates a given
natural join query Q consisting of a set atomspQq of relations in-
dexed in a way that is consistent with an ordering A1, . . . ,An of
all attributes occurring in Q that we call the global attribute or-

der (GAO). To avoid burdening the notation, we assume that the
GAO is simply the order A1, . . . ,An. We assume that all relations
are stored in ordered search trees (e.g., B-trees) where the search
key for this tree is consistent with this global order. For example,
pA1,A3q is consistent, while pA3,A2q is not.

Tuple-Order Notation. We will extensively reason about the
relative order of tuples and describe notation to facilitate the ar-
guments. For a relation RpAsp1q, . . . ,Aspkqq where s : rks Ñ rns

is such that spiq ă sp jq if i ă j, we define an index tuple x “
px1, ¨ ¨ ¨ , x jq to be a tuple of positive integers, where j ď k. Such
tuples index tuples in the relation R. We define their meaning in-
ductively. If x “ px1q, then Rrxs denotes the x1’th smallest value in
the set πAsp1q

pRq. Inductively, define Rrxs to be the x j’th smallest

value in the set

Rrx1, . . . , x j´1,˚s :“ πA j

(

σAsp1q“Rrx1s,¨¨¨ ,Asp j´1q“Rrx1,...,x j´1spRq
)

.

For example, if RpA1,A2q “
{

p1,1q,p1,8q,p2,3q,p2,4q
}

then Rr˚s “
{1,2}, Rr1,˚s “ {1,8}, Rr2s “ 2, and Rr2,1s “ 3.

We use the following convention to simplify the algorithm’s de-
scription: for any index tuple px1, . . . , x j´1q,

Rrx1, . . . , x j´1,0s “ ´8 (1)

Rrx1, . . . , x j´1, |Rrx1, . . . , x j´1,˚s| ` 1s “ `8. (2)

Model of Indexes. The relation R is indexed such that the val-
ues of various attributes of tuples from R can be accessed using
index tuples. We assume appropriate size information is stored so
that we know what the correct ranges of the x j’s are; for example,



following the notation described above, the correct range is 1 ď
x j ď |Rrx1, . . . , x j´1,˚s| for every j ď aritypRq. With the conven-
tion specified in (1) and (2), x j “ 0 and x j “ |Rrx1, . . . , x j´1,˚s|`1
are out-of-range coordinates. These coordinates are used for the
sake of brevity only; an index tuple, by definition, cannot contain
out-of-range coordinates.

The index structure for R supports the query R.FindGappx,aq,
which takes as input an index tuple x “ px1, . . . , x jq of length 0 ď
j ă k and a value a P Z, and returns a pair of coordinates px´, x`q
such that

‚ 0 ď x´ ď x` ď |Rrpx,˚qs| ` 1

‚ Rrpx, x´qs ď a ď Rrpx, x`qs, and

‚ x´ (resp. x`) is the maximum (resp. minimum) index satis-
fying this condition.

Note that it is possible for x´ “ x`, which holds when a P Rrpx,˚qs.
We assume throughout that FindGap runs in time Opk log |R|q. This
model captures widely used indexes including a B-tree [43, Ch.10]
or a Trie [50].

2.2 Certificates
We define a certificate, which is a set of comparisons that cer-

tifies the output is exactly as claimed. We do not want the com-
parisons to depend on the specific values in the instance, only their
order. To facilitate that, we think of Rrxs as a variable that can be
mapped to specific domain value by a database instance. We use
variables as a perhaps more intuitive, succinct way to describe the
underlying morphisms. These variables are only defined for valid
index tuples as imposed by the input instance described in the pre-
vious section.

A database instance I instantiates all variables Rrxs, where x “
px1, . . . , x jq, 1 ď j ď aritypRq, is an index tuple in relation R. (In
particular, the input database instance described in the previous sec-
tion is such a database instance.) We use RIrxs to denote the instan-
tiation of the variable Rrxs. Note that each such variable is on the
domain of some attribute Ak; for short, we call such variable an Ak-

variable. A database instance I fills in specific values to the nodes
of the search tree structures of the input relations.

Example 2.1. Consider the query Q “ RpAq Z TpA,Bq on the in-

put instance IpNq defined by RIpNq “ rNs and T IpNq “ {p1,2iq | i P
rNs}Y{p2,3iq | i P rNs}. This instance can be viewed as defining the
following variables: Rris, i P rNs, T r1s, T r2s, T r1, is, and T r2, is,
i P rNs. Another database instance J can define the same index
variables but using different constants, in particular, set RJris “
{2i | i P rNs}, T Jr1s “ 2, T Jr2s “ 4, T Jr1, is “ i, and T Jr2, is “
10i, i P rNs.

We next formalize the notion of certificates. Consider an in-
put instance to Minesweeper, consisting of the query Q, the GAO
A1, . . . ,An, and a set of relations R P atomspQq already indexed
consistently with the GAO.

Definition 2.2 (Argument). An argument for the input instance is
a set of symbolic comparisons of the form

Rrxs θ S rys, where R,S P atomspQq (3)

and x and y are two index tuples such that Rrxs and S rys are both
Ak-variables for some k P rns, and θ P {ă,“,ą}. Note that we
allow R “ S . In fact, we need to allow equality constraints between
index tuples from the same relation to guarantee that certificates are
no larger than the input, which is property (ii) below. A database
instance I satisfies an argumentA if RIrxs θ S Irys is true for every
comparison Rrxs θ S rys in the argumentA.

An index tuple x “ px1, . . . , xrq for a relation S is called a full

index tuple if r “ aritypS q. Let I be a database instance for the
problem. Then, the full index tuple x is said to contribute to an out-
put tuple t P QpIq “ ZRPatomspQq RI if pS rx1s,S rx1, x2s, . . . ,S rxsq

is exactly the projection of t onto attributes in S . A collection X

of full index tuples is said to be a witness for QpIq if X has exactly
one full index tuple from each relation R P atomspQq, and all index
tuples in X contribute to the same t P QpIq.

Definition 2.3 (Certificate). An argumentA for the input instance
is called a certificate iff the following condition is satisfied: if I and
J are two database instances of the problem both of which satisfy
A, then every witness for QpIq is a witness for QpJq and vice versa.
The size of a certificate is the number of comparisons in it.

Example 2.4. Continuing with Example 2.1. Fix an N, the argu-
ment {Rr1s “ T r1s, Rr2s “ T r2s} is a certificate for IpNq. For
every database, such as I “ IpNq and J in the example, that satis-
fies the two equalities, the set of witnesses are the same, i.e., the
sets {1,p1, iq} and {2,p2, iq} for i P rNs. Notice we do not need to
spell out all of the outputs in the certificate.

Consider the instance K in which RK “ rNs, T K “ {p1,2iq | i P
rNs}Y {p3,3iq | i P rNs}. While K is very similar to I, K does
not satisfy the certificate since RKr2s , T Kr2s. The certificate also
does not apply to IpN`1q from Example 2.1, since IpN`1q defines
a different set of variables from IpNq, e.g., T r1,N `1s is defined in
IpN ` 1q, but not in IpNq.

Properties of optimal certificates. We list three important
facts about C, a minimum-sized certificate:

(i) The set of comparisons issued by a very natural class of (non-
deterministic) comparison-based join algorithms is a certifi-
cate; this result not only justifies the definition of certificates,
but also shows that |C| is a lowerbound for the runtime of any
comparison-based join algorithm.

(ii) |C| can be shown to be at most linear in the input size no

matter what the data and the GAO are, and in many cases |C|
can even be of constant size. Hence, running time measured
in |C| is a strictly finer notion of runtime complexity than
input-based runtimes; and

(iii) |C| depends on the data and the GAO.

We explain the above facts more formally in the following two
propositions. The proofs of the propositions can be found in Ap-
pendix A.

Proposition 2.5 (Certificate size as run-time lowerbound of com-
parison-based algorithms). Let Q be a join query whose input re-

lations are already indexed consistent with a GAO as described in

Section 2.1. Consider any comparison-based join algorithm that

only does comparisons of the form shown in (3). Then, the set of

comparisons performed during execution of the algorithm is a cer-

tificate. In particular, if C is an optimal certificate for the problem,

then the algorithm must run in time at least Ωp|C|q.

Proposition 2.6 (Upper bound on optimal certificate size). Let Q

be a general join query on m relations and n attributes. Let N be

the total number of tuples from all input relations. Then, no matter

what the input data and the GAO are, we have |C| ď r ¨ N, where

r “ max{aritypRq | R P atomspQq}ď n.

In Appendix A, we present examples to demonstrate that |C| can
vary any where from Op1q to Θp|input-size|q, that the input data
or the GAO can change the certificate size, and that same-relation
comparisons are needed.



2.3 Main Results
Given a set of input relations already indexed consistent with

a fixed GAO, we wish to compute the natural join of these rela-
tions as quickly as possible. As illustrated in the previous section, a
runtime approaching |C| is optimal among comparison-based algo-
rithms. Furthermore, runtimes as a function of |C| can be sublinear
in the input size. Ideally, one would like a join algorithm running
in Õp|C|q-time. However, such a runtime is impossible because for
many instances the output size Z is superlinear in the input size,
while |C| is at most linear in the input size. Hence, we will aim for
runtimes of the form Õpgp|C|q ` Zq, where Z is the output size and
g is some function; a runtime of Õp|C| ` Zq is essentially optimal.

Our algorithm, called Minesweeper, is a general-purpose join al-
gorithm. Our main results analyze its runtime behavior on various
classes of queries in the certificate complexity model. Recall that
α-acyclic (often just acyclic) is the standard notion of (hypergraph)
acyclicity in database theory [1, p. 128]. A query is β-acyclic,
a stronger notion, if every subquery of Q obtained by removing
atoms from Q remains α-acyclic.

Let N be the input size, n the number of attributes, m the number
of relations, Z the output size, r the maximum arity of input rela-
tions, and C any optimal certificate for the instance. Our key results
are as follows.

Theorem 2.7. Suppose the input query is β-acyclic. Then there

is some GAO such that Minesweeper computes its output in time

O
(

2nm2n
(

4r|C| ` Z
)

log N
)

.

As is standard in database theory, we ignore the dependency on
the query size, and the above theorem states that Minesweeper runs
in time Õp|C| ` Zq. For β-acyclic queries with a fixed GAO, our
results are loose; our best upper bound the complexity uses the
treewidth from Section 5.

What about β-cyclic queries? The short answer is no: we cannot
achieve this guarantee. It is obvious that any join algorithm will
take time ΩpZq. Using 3SUM-hardness, a well-known complexity-
theoretic assumption [42], we are able to show the following.

Proposition 2.8. Unless the 3SUM problem can be solved in sub-

quadratic time, for any β-cyclic query Q in any GAO, there does

not exist an algorithm that runs in time Op|C|4{3´ǫ ` Zq for any

ǫ ą 0 on all instances.

We extend our analysis of Minesweeper to queries that have
bounded treewidth and to triangle queries in Section 5. These re-
sults are technically involved and we only highlight the main tech-
nical challenges.

3. THE Minesweeper ALGORITHM
We begin with an overview of the main ideas and technical chal-

lenges of the Minesweeper algorithm. Intuitively, Minesweeper
probes into the space of all possible output tuples, and explores
the gaps in this space where there is no output tuples. These gaps
are encoded by a technical notion called constraints, which we de-
scribe next.

3.1 Notation for Minesweeper
We need some notation to describe our algorithm. Define the out-

put space O of the query Q to be the space O“ DpA1q ˆ DpA2q ˆ
¨ ¨ ¨ ˆ DpAnq, where DpAiq is the domain of attribute Ai. Recall,
we assume DpAiq “ N for simplicity. By definition, a tuple t is an
output tuple if and only if t “ pt1, . . . , tnq P O, and πĀpRqptq P R, for

all R P atomspQq, where ĀpRq is the set of attributes in R.

Constraints. A constraint c is an n-dimensional vector of the
following form: c “ 〈c1, ¨ ¨ ¨ ,ci´1,pℓ,rq, {˚}n´i〉, where c j P NY
{˚} for every j P ri´1s. In other words, each constraint c is a vector
consisting of three types of components:

(1) open-interval component pℓ,rq on the attribute Ai (for some
i P rns) and ℓ,r P NY {´8,`8},

(2) wildcard or ˚ component, and

(3) equality component of the type p P N.

In any constraint, there is exactly one interval component. All com-
ponents after the interval component are wildcards. Hence, we will
often not write down the wildcard components that come after the
interval component. The prefix that comes before the interval com-
ponent is called a pattern, which consists of any number of wild-
cards and equality components. The equality components encode
the coordinates of the axis parallel affine planes containing the gap.
For example, in three dimensions the constraint 〈˚,p1,10q,˚〉 can
be viewed as the region between the affine hyperplanes A2 “ 1
and A2 “ 10; and the constraint 〈1,˚,p2,5q〉 can be viewed as the
strip inside the plane A1 “ 1 between the line A3 “ 2 and A3 “ 5.
We encode these gaps syntactically to facilitate efficient insertion,
deletion, and merging.

Let t “ pt1, . . . , tnq P O be an arbitrary tuple from the output
space, and c “ 〈c1, . . . ,cn〉 be a constraint. Then, t is said to sat-

isfy constraint c if for every i P rns one of the following holds: (1)
ci “ ˚, (2) ci P N and ti “ ci, or (3) ci “ pℓ,rq and ti P pℓ,rq. We
say a tuple t is active with respect to a set of constraints if t does
not satisfy any constraint in the set (Geometrically, no constraint
covers the point t).

3.2 A High-level Overview of Minesweeper
We break Minesweeper in two components: (1) a special data

structure called the constraint data structure (CDS), and (2) an al-
gorithm that uses this data structure. Algorithm 1 gives a high-level
overview of how Minesweeper works, which we will make precise
in the next section.

The CDS stores the constraints already discovered during ex-

ecution. For example, consider the query RpA,Bq,S pBq. If Minesweeper
determines that S r4s “ 20 and S r5s “ 28, then we can deduce that
there is no tuple in the output that has a B value in the open interval
p20,28q. This observation is encoded as a constraint 〈˚,p20,28q〉.
A key challenge with the CDS is to efficiently find an active tuple
t, given a set of constraints already stored in the CDS.

The outer algorithm queries the CDS to find active tuples

and then probes the input relations. If there is no active t, the al-
gorithm terminates. Given an active t, Minesweeper makes queries
into the index structures of the input relations. These queries either
report that t is an output tuple, in which case t is output, or they
discover constraints that are then inserted into the CDS. Intuitively,
the queries into the index structures are crafted so that at least one
of the constraints that is returned is responsible for ruling out t in
any optimal certificate.

We first describe the interface of the CDS and then the outer
algorithm which uses the CDS.

3.3 The CDS
The CDS is a data structure that implements two functions as ef-

ficiently as possible: (1) InsConstraintpcq takes a new constraint
c and inserts it into the data structure, and (2) getProbePointpq re-
turns an active tuple t with respect to all constraints that have been
inserted into the CDS, or null if no such t exists.



Algorithm 1 High-level view: Minesweeper algorithm

1: CDS Ð H Ź No gap discovered yet
2: While CDS can find t not in any stored gap do

3: If πĀpRqptq P R for every R P atomspQq then

4: Report t and tell CDS that t is ruled out
5: else

6: Query all R P atomspQq for gaps around t

7: Insert those gaps into CDS

A1!

A2!

An-1!

An!

=2! =7 ! *

=7 ! * =3! =4 !

(0,7) ! (0,3),(4,8) !

(0,30) ! (0,10) ! (0,12) ! (0,4),(4,9)!

(0,3),(6,9)!

(0,2)..(10,20) !

(1,5) ! (1,5) !

Figure 1: Example of ConstraintTree data structure

Implementation. To support these operations, we implement
the CDS using a tree structure called ConstraintTree, which is
a tree with at most n levels, one for each of the attributes following
the GAO. Figure 1 illustrates such a tree. Each node v in the CDS
corresponds to a prefix (i.e. pattern) of constraints; each node has
two data structures:

(1) v.equalities is a sorted list with one entry per child of v in
the underlying tree. Each entry in the sorted list is labeled with an
element of N and has a pointer to the subtree rooted at the corre-
sponding child. There are two exceptions: (1) if v is a leaf then
v.equalities “ H, and (2) each v has at most one additional child
node labeled with ˚.

(2) v.intervals is a sorted list of disjoint open intervals under
that corresponding attribute. A key property is that given a value u

we can, in logarithmic time, output the smallest value u1 ě u that

is not covered by any interval in v.intervals (via the Next func-

tion). We will maintain the invariant that, for every node v in a
ConstraintTree, none of the labels in v.equalities is contained in
an interval in v.intervals.

The following lemma is straightforward hence we omit the proof.
Note that when we insert a new interval that overlaps existing in-
tervals and/or contains values in equalities, we will have to merge
them and/or remove the entries in equalities; and hence the cost is
amortized.

Proposition 3.1. The operation InsConstraintpcq can be imple-

mented in amortized time Opn logWq, where W is total number of

constraint vectors already inserted.

The key challenge is to design an efficient implementation of
getProbePointpq. In Sections 4 and 5, we analyze getProbePointpq
using properties of the query Q.

3.4 The outer algorithm
Algorithm 2 contains all the details that were missing from the

high-level view of Algorithm 1. The full version contains a com-
plete run of Minesweeper on a specific query along with complete

end-to-end descriptions of two specific queries, which may help
clarify the general algorithm. We prove the following result.

Theorem 3.2. Let N denote the input size, Z the number of output

tuples, m “ |atomspQq|, and r “ maxRPatomspQq aritypRq. Let C

be any optimal certificate for the input instance. Then, the total

runtime of Algorithm 2 is

O
((

4r|C| ` rZ
)

m logpNq
)

` TpCDSq,

where TpCDSq is the total time taken by the constraint data struc-

ture. The algorithm inserts Opm4r|C| ` Zq constraints to CDS and

issues Op2r|C| ` Zq calls to getProbePointpq.

Our proof strategy bounds the number of iterations of the algo-
rithm using an amortized analysis. We pay for each probe point t

returned by the CDS by either charging a comparison in the cer-
tificate C or by charging an output tuple. If t is an output tuple,
we charge the output tuple. If t is not an output tuple, then we ob-
serve that at least one of the constraints we discovered must rule
out t. Recall that each constraint is essentially a pair of elements
from some base relation. If one element from each such pair is not
involved in any comparison in C, then we can perturb the instance
slightly by moving the comparison-free element to align with t.
This means C does not have enough information to rule out t as an
output tuple, reaching a contradiction. Hence when t is not an out-
put tuple, essentially some gap must map to a pair of comparisons.
Finally, using the geometry of the gaps, we show that each compar-
ison is charged at most 2r times and each output tuple is charged
Op1q times. Thus, in total the number of iterations is Op2r|C|`Zq.

When C is an optimal-size certificate, the runtime above is about
linear in |C| ` Z plus the total time the CDS takes. Note, however,
that |C| can be very small, even constant. Hence, we basically shift
all of the burden of join evaluation to the CDS. Thus, one should
not hope that there is an efficient CDS for general queries:

Theorem 3.3 (Limitation of any CDS). Unless the exponential

time hypothesis is wrong, no constraint data structure can process

the constraints and the probe point accesses in time polynomial (in-

dependent of the query) in the number of constraints inserted and

probe points accessed.

In the next sections, we analyze the CDS, specifically the func-
tion getProbePointpq. Our analysis exploits properties of the query
and the GAO for β-acyclic and bounded treewidth queries.

4. β-ACYCLIC QUERIES
We describe how to implement getProbePoint for β-acyclic queries.

In particular, we show that there is some GAO that helps implement
getProbePoint in amortized logarithmic time. Hence, by Theo-
rem 3.2 our running time is Õp|C|`Zq, which we argued previously
is essentially optimal.

4.1 Overview
Recall that given a set of intervals, getProbePoint returns an ac-

tive tuple t “ pt1, . . . , tnq P O, i.e., a tuple t that does not satisfy
any of the constraints stored in the CDS. Essentially, during execu-
tion there may be a large number of constraints, and getProbePoint
needs to answer an alternating sequence of constraint satisfaction
problems and insertions. The question is: how do we split this work
between insertion time and querying time?

In Minesweeper, we take a lazy approach: we insert all the con-
straints without doing any cleanup on the CDS. Then, when the
Minesweeper calls getProbePoint, Minesweeper might have to do
hard work to return a new active tuple, applying memoization along



Algorithm 2 Minesweeper for evaluating the query Q “ ZRPatomspQq RpĀpRqq

Input: We use the conventions defined in (1) and (2)
1: Initialize the constraint data structure CDS “ H
2: While ppt Ð CDS.getProbePointpqq , nullq do

3: Denote t “ pt1, . . . , tnq
4: For each R P atomspQq do

5: k Ð aritypRq;
6: Let ĀpRq “ pAsp1q, . . . ,Aspkqq be R’s attributes, where s : rks Ñ rns is such that spiq ă sp jq for i ă j.

7: For p “ 0 to k ´ 1 do Ź Explore around t in R

8: For each vector v P {ℓ,h}p do Ź ℓ,h are just symbols, and {ℓ,h}0 has only the empty vector
9: Let v “ pv1, . . . ,vpq Ź v j P {ℓ,h},@ j P rps

10: pi
pv,ℓq
R
, i

pv,hq
R

q Ð R.FindGap
(

(

i
pv1q
R
, i

pv1,v2q
R

, . . . , i
pv1,...,vpq
R

)

, tspp`1q

)

Ź Gap around pRri
pvq
R

s, tspp`1qq in R.

11: If R

[

i
phq
R
, i

ph,hq
R
, . . . , i

{h}p

R

]

“ tsppq for all p P raritypRqs and for all R P atomspQq then

12: Output the tuple t

13: CDS.InsConstraint
(

〈t1, t2, . . . , tn´1,ptn ´ 1, tn ` 1q〉
)

14: else

15: For each R P atomspQq do

16: k Ð aritypRq
17: For p “ 0 to k ´ 1 do

18: For each vector v P {ℓ,h}p do

19: If (all the indices i
pv1q
R
, . . . , i

pv1,...,vpq
R

are not out of range) then

20: CDS.InsConstraint
(〈

R

[

i
pv1q
R

]

, . . . ,R

[

i
pv1q
R
, ¨ ¨ ¨ , i

pv1,...,vpq
R

]

,

(

Rri
pv,ℓq
R

s,Rri
pv,hq
R

s
)〉)

21: Ź Note that the constraint is empty if Rri
pv,ℓq
R

s “ Rri
pv,hq
R

s

the way so the heavy labor does not have to be repeated in the fu-
ture. When the GAO has a special structure, this strategy helps keep
every CDS operation at amortized logarithmic time. We first give
an example to build intuition about how our lazy approach works.

Example 4.1. Consider a query with three attributes pA,B,Cq, and
suppose the constraints that are inserted into the CDS are

(i) 〈a,b,p´8,1q〉 for all a,b P rNs,

(ii) 〈˚,b,p2i ´ 2,2iq〉 for all b, i P rNs,

(iii) 〈˚,˚,p2i ´ 1,2i ` 1q〉 for i P rNs,

(iv) and 〈˚,˚,p2N,`8q〉.

There are OpN2q constraints, and there is no active tuple of the
form pa,b,cq for a,b P rNs. Without memoization, the brute-force

strategy will take time ΩpN3q, because for every pair pa,bq P rNs2,
the algorithm will have to verify in ΩpNq time that the constraints
piiq forbid all c “ 2i ´ 1, i P rNs, the constraints piiiq forbid all
c “ 2i, i P rNs, and the constraint pivq forbid c ą 2N.

But we can do better by remembering inferences that we have
made. Fix a value a “ 1,b “ 1. Minesweeper recognizes in OpNq-
time that there is no c for which pa,b,cq is active. Minesweeper
is slightly smarter: it looks at constraints of the type piiq,piiiq,pivq
(for b “ 1) and concludes in OpNq-time that every tuple satisfy-
ing those constraints also satisfies the constraint 〈˚,1,p0,`8q〉.
Minesweeper remembers this inference by inserting the inferred
constraint into the CDS. Then, for a ě 2, it takes only Op1q-
time to conclude that no tuple of the form pa,1,cq can be active.
It does this inference by inserting constraint 〈a,1,p0,`8q〉, which
is merged with piq to become 〈a,1,p´8,`8q〉. Overall, we need

only OpN2q-time to reach the same conclusion as the ΩpN3q brute-
force strategy.

4.2 Patterns
Recall that getProbePoint returns a tuple t “ pt1, . . . , tnq P O

such that t does not satisfy any of the constraints stored in the CDS.
We find t by computing t1, t2, . . . , tn, one value at a time, backtrack-
ing if necessary. We need some notation to describe the algorithm
and the properties that we exploit.

Let 0 ď k ď n be an integer. A vector p “ 〈p1, . . . , pk〉 for which
pi P NY {˚} is called a pattern. The number k is the length of the
pattern. If pi P N then it is an equality component of the pattern,
while ˚ is a wildcard component of the pattern.

A node u at depth k in the tree ConstraintTree can be identified
by a pattern of length k corresponding naturally to the labels on the
path from the root of ConstraintTree down to node u. The pattern
for node u is denoted by Ppuq. In particular, Pprootq “ ǫ, the empty
pattern.

Let p “ 〈p1, . . . , pk〉 be a pattern. Then, a specialization of p is
another pattern p1 “ 〈p1

1
, . . . , p1

k
〉 of the same length for which p1

i
“

pi whenever pi P N. In other words, we can get a specialization of
p by changing some of the ˚ components into equality components.
If p1 is a specialization of p, then p is a generalization of p1. For
two nodes u and v of the CDS, if Ppuq is a specialization of Ppvq,
then we also say that node u is a specialization of node v.

The specialization relation defines a partially ordered set. When
p1 is a specialization of p, we write p1 � p. If in addition we know
p1
, p, then we write p1 ≺ p.
Let Gpt1, . . . , tiq be the principal filter generated by pt1, . . . , tiq in

this partial order, i.e., it is the set of all nodes u of the CDS such
that Ppuq is a generalization of 〈t1, . . . , ti〉 and that u.intervals ,H.
The key property of constraints that we exploit is summarized by
the following proposition.

Proposition 4.2. Using the notation above, for a β-acyclic query,

there exists a GAO such that for each t1, . . . , ti the principal filter

Gpt1, . . . , tiq is a chain.



Recall that a chain is a totally ordered set. In particular, G “
Gpt1, . . . , tiq has a smallest pattern p̄ (or bottom pattern). Note that
these patterns in G might come from constraints inserted from re-
lations, constraints inserted by the outputs of the join, or even con-
straints inserted due to backtracking. Thinking of the constraints
geometrically, this condition means that the constraints form a col-
lection of axis-aligned affine subspaces ofOwhere one is contained
inside another.

We prove Proposition 4.2 using a result of Brouwer and Kolen [15].
The class of GAOs in the proposition is called a nested elimination

order. We show that there exists a GAO that is a nested elimina-
tion order if and only if the query is β-acyclic. We also show that
β-acyclicity and this GAO can be found in polynomial time.

4.3 The getProbePoint Algorithm
Algorithm 3 describes getProbePoint algorithm specialized to β-

acyclic queries. In turn, this algorithm uses Algorithm 4, which is
responsible for efficiently inferring constraints imposed by patterns
above this level. We walk through the steps of the algorithm below.

Initially, let v be the root node of the CDS. We set t1 to the small-
est value that does not belong to any interval stored in v.intervals,
i.e., t1 “ v.intervals.Nextp´1q. We work under the implicit as-
sumption that any interval inserted into ConstraintTree that con-
tains ´1 must be of the form p´8,rq, for some r ě 0. This is
because the domain values are in N. In particular, if t1 “ `8 then
the constraints cover the entire output space O and null can be re-
turned.

Inductively, let pt1, . . . , tiq, i ě 1, be the prefix of t we have built
thus far. Our goal is to compute ti`1. What we need to find is
a value ti`1 such that ti`1 does not belong to the intervals stored
in u.intervals for every node u P Gpt1, . . . , tiq. For this, we call
algorithm 4 that uses Prop. 4.2 to efficiently find ti`1 or return that
there is no such ti`1. We defer its explanation for the moment. We
only note that if such a ti`1 cannot be found (i.e. if ti`1 “ `8
is returned after the search), then we have to backtrack because
what that means is that every tuple t that begins with the prefix
pt1, . . . , tiq satisfies some constraint stored in ConstraintTree. Line
15 of Algorithm 3 shows how we backtrack. In particular, we save
this information (by inserting a new constraint into the CDS) in
Line 15 to avoid ever exploring this path again.

Next Chain Value.. The key to Algorithm 4 is that such a ti`1
can be found efficiently since one only needs to look through a
chain of constraint sets. We write p Ì p1 if p ≺ p1 and there is
no pattern p2 such that p ≺ p2 ≺ p1. Every interval from a node
u P G higher up in the chain infers an interval at a node lower in
the chain. For instance, in Example 4.1, the chain G consists of
three nodes 〈a,b〉, 〈˚,b〉, and 〈˚,˚〉. Further, every constraint of the
form 〈˚,˚,p2i ´ 1,2i ` 1q〉 infers a more specialized constraint of
the form 〈˚,b,p2i ´ 1,2i ` 1q〉, which in turns infers a constraint
of the form 〈a,b,p2i ´ 1,2i ` 1q〉. Hence, if we infer every single
constraint downward from the top pattern to the bottom pattern,
we will be spending a lot of time. The idea of Algorithm 4 is to
infer as large of an interval as possible from a node higher in the
chain before specializing it down. Our algorithm will ensure that
whenever we infer a new constraint (line 13 of Algorithm 4), this
constraint subsumes an old constraint which will never be charged
again in a future inference.

4.4 Runtime Analysis

Lemma 4.3. Suppose the input query Q is β-acyclic. Then, there

exists a GAO such that each of the operations getProbePoint and

Algorithm 3 CDS.getProbePointpq for β-acyclic queries

Input: A ConstraintTree CDS

1: i Ð 0
2: While i ă n do

3: G Ð
{

u P CDS | pt1, . . . , tiq � Ppuq and u.intervals ,H
}

4: If (G “ H) then

5: ti`1 Ð ´1
6: i Ð i ` 1
7: else

8: Let p̄ “ 〈p̄1, . . . , p̄i〉 be the bottom of G

9: Let ū P CDS be the node for which Ppūq “ p̄

10: ti`1 Ð CDS.nextChainValp´1, ū,Gq
11: i0 Ð max{k | k ď i, p̄k , ˚}
12: If (ti`1 “ `8) and i0 “ 0 then

13: Return null Ź No tuple t found
14: else If (ti`1 “ `8) then

15: CDS.InsConstraintp〈 p̄1, . . . , p̄i0´1,p p̄i0
´ 1, p̄i0

` 1q〉q

16: i Ð i0 ´ 1 Ź Back-track
17: else

18: i Ð i ` 1 Ź Advance i

19: Return t “ pt1, . . . , tnq

InsConstraint of ConstraintTree takes amortized time Opn2n logWq,

where W is the total number of constraints ever inserted.

The above lemma and Theorem 3.2 leads directly to one of our
main results.

Corollary 4.4 (Restatement of Theorem 2.7). Suppose the input

query is β-acyclic then there exists a GAO such that Minesweeper

computes its output in time

O
(

2nm2n
(

4r|C| ` Z
)

log N
)

.

In particular, its data-complexity runtime is essentially optimal in

the certificate complexity world: Õp|C| ` Zq.

Beyond β-acyclic queries, we show that we cannot do better
modulo a well-known complexity theoretic assumption.

Proposition 4.5 (Re-statement of Proposition 2.8). Unless the 3SUM

problem can be solved in sub-quadratic time, for any β-cyclic query

Q in any GAO, there does not exist an algorithm that runs in time

Op|C|4{3´ǫ ` Zq for any ǫ ą 0 on all instances.

Comparison with Worst-Case Optimal Algorithms. It
is natural to wonder if Yannakakis’ worst-case optimal algorithm
for α-acyclic queries or the worst-case optimal algorithms of [38]
(henceforth, NPRR) or [50] (henceforth LFTJ) can achieve run-
times of Õp|C| ` Zq for β-acyclic queries. We outline the intuition
about why this cannot be the case.

Yannakakis’ algorithm performs pairwise semijoin reducers. If
we pick an instance where |C| “ opNq such that there is a relation
pair involved each with size ΩpNq, then Yannakakis’s algorithm
will exceed the bound. For NPRR and LFTJ, consider the family
of instances in which one computes all paths of length ℓ (some
constant) in a directed graph G “ pV,Eq (this can be realized by
a “path" query of length ℓ where the relations are the edge set of
G). Now consider the case where the longest path in G has size at
most ℓ´ 1. In this case the output is empty and since each relation
is E, we have |C| ď Op|E|q and by Corollary 4.4, we will run in
time Õp|E|q. Hence, when G has many paths (at least ωp|E|q) of



Algorithm 4 CDS.nextChainValpx,u,Gq, where G is a chain

Input: A ConstraintTree CDS, a node u P G

Input: A chain G of nodes, and a starting value x

Output: the smallest value y ě x not covered by any v.intervals,
for all v P G such that Ppuq � Ppvq

1: If there is no v P G for which Ppuq Ì Ppvq then Ź At the top
of the chain G

2: Return u.intervals.Nextpxq
3: else

4: y Ð x

5: repeat

6: Let v P G such that Ppuq Ì Ppvq
7: Ź Next node up the chain
8: z Ð CDS.nextChainValpy,v,Gq
9: Ź first “free value” ě y at all nodes up the chain

10: y Ð u.intervals.Nextpzq
11: Ź first “free value” ě z at u

12: until y “ z

13: CDS.InsConstraintp〈Ppuq,px ´ 1,yq〉q
14: Return y

length at most ℓ, then both NPRR and LFTJ will have to explore
all ωp|E|q paths leading to an ωp|C|q runtime.

In the full version of this paper, we exhibit a family of β-acyclic
queries and a family of instances that combines both of the ideas
above to show that all the three worst-case optimal algorithms can
have arbitrarily worse runtime than Minesweeper. In particular,
even running those worst-case algorithms in parallel is not able to
achieve the certificate-based guarantees.

5. EXTENSIONS
We extend in two ways: queries with bounded tree width and we

describe faster algorithms for the triangle query.

5.1 Queries with bounded tree-width
While Proposition 2.8 shows that Op|C|4{3´ǫ ` Zq-time is not

achievable for β-cyclic queries, we are able to show the following
analog of the treewidth-based runtime under the traditional worst-
case complexity notion [6, 18].

Theorem 5.1 (Minesweeper for bounded treewidth queries). Sup-

pose that the GAO has an elimination width bounded by w. Then,

Minesweeper runs in time

O

(

m3n34n
(

nmw`18npw`1q|C|w`1 ` Z

)

log N

)

.

In particular, if we ignore the dependence on the query size, the

runtime is Õ
(

|C|w`1 ` Z
)

. Furthermore, if the treewidth of the

input query Q is bounded by w, then there exists a GAO for which

Minesweeper runs in the above time.

The overall structure of the algorithm remains identical to the
β-acyclic case, the only change is in getProbePoint. For general
queries, the getProbePoint algorithm remains similar in structure
to that of the β-acyclic case (Algorithm 3), and if the input query
is β-acyclic (with a nested elimination order as the GAO), then the
general getProbePoint algorithm is exactly Algorithm 3. The new
issue we have to deal with is the fact that the poset G at each depth
is not necessarily a chain. Our solution is simple: we mimic the
behavior of Algorithm 3 on a shadow of G that is a chain and make
use of both the algorithm and the analysis for the β-acyclic case.

Query com-Orkut soc-Epinions1 soc-LiveJournal1
N |C| N |C| N |C|

Star 352M 214K 1.5M 1.1K 207M 172K
3-path 352M 119K 1.5M 0.8K 207M 138K
Tree 469M 2.8M 2M 3.4K 276M 2.7M

Table 1: Input size (N) versus Certificate size (|C|). Units

are Million(M) and Thousand(K). The three graph datasets

are from Orkut, Epinions, and LiveJournal network http:

//snap.stanford.edu/data/.

It is natural to wonder if Theorem 5.1 is tight. In addition to the
obvious ΩpZq dependency, the next result indicates that the depen-
dence on w also cannot be avoided, even if we just look at the class
of α-acyclic queries.

Proposition 5.2. Unless the exponential time hypothesis is false,

for every large enough constant k ą 0, there is an α-acyclic query

Qk for which there is no algorithm with runtime |C|opkq. Further,

Qk has treewidth k ´ 1.

Our analysis of Minesweeper is off by at most 1 in the exponent.

Proposition 5.3. For every w ě 2, there exists an (α-acyclic) query

Qw with treewidth w with the following property. For every possi-

ble global ordering of attributes, there exists an (infinite family of)

instance on which the Minesweeper algorithm takes Ωp|C|wq time.

5.2 An implementation of Minesweeper
With the help of LogicBlox, we implemented Minesweeper in-

side the LogicBlox engine. Our results are preliminary: it is im-
plemented for main memory data and all experiments are run in a
multi-threaded mode. We run three queries: a star query, a small
path query, and a tree query, which are described below, on three
data sets Orkut online social network, Who-trusts-whom network
of Epinions.com, and LiveJournal online social network.

‚ Star query: Q “ R1pAq Z S pA,Bq Z S pA,Cq Z S pA,Dq Z
R2pBq Z R3pCq Z R4pDq.

‚ 3-path query: Q “ S pA,Bq Z S pB,Cq Z S pC,Dq Z R5pAq Z
R6pBq Z R7pCq Z R8pDq.

‚ Tree query: Q “ S pA,Bq Z S pB,Cq Z S pB,Dq Z S pD,Eq Z
R9pAq Z R10pCq Z R11pDq Z R12pEq.

For each query and each dataset, relation S is a graph dataset,
while every Ri relation contains a subset of vertices from that graph
dataset, where every vertex is chosen with a probability 0.001. Ta-
ble 1 shows the input size versus certificate size on different queries
and different graph datasets. The upper bound of the certificate size
is measured by counting the number of FindGap operations during
computing join queries. These numbers show that certificate size is
very small compared to input size and so it indicates that a practical
implementation might be obtained.

5.3 The Triangle Query
We consider the triangle query Q△ “ RpA,Bq Z S pB,Cq Z TpA,Cq

that can be viewed as enumerating triangles in a given graph. Us-
ing the CDS described so far, Minesweeper computes this query in
time Õp|C|2 ` Zq, and this analysis is tight. (A straightforward ap-
plication of our more general analysis given in Theorem 5.1, which
gives Õp|C|3 ` Zq.) The central inefficiency is that the CDS wastes
time determining that many tuples with the same prefix pa,bq have
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been ruled out by existing constraints. In particular, the CDS con-
siders all possible pairs pa,bq (of which there can be Ωp|C|2q of
them). By designing a smarter CDS, our improved CDS explores
Op|C|q such pairs. We can prove the following result.

Theorem 5.4. We can solve the triangle query, Q∆ in time

O
((

|C|3{2 ` Z
)

log7{2 N
)

.

6. RELATED WORK
Our work touches on a few different areas, and we structure the

related work around each of these areas: join processing, certifi-
cates for set intersection, and complexity measures that are finer
than worst-case complexity.

6.1 Join Processing
Many positive and negative results regarding conjunctive query

evaluation also apply to natural join evaluation. On the negative
side, both problems are NP-hard in terms of expression complex-
ity [16], but are easier in terms of data complexity [47] (when the
query is assumed to be of fixed size). They are Wr1s-complete and
thus unlikely to be fix-parameter tractable [31, 41].

On the positive side, a large class of conjunctive queries (and
thus natural join queries) are tractable. In particular, the classes of
acyclic queries and bounded treewidth queries can be evaluated ef-
ficiently [17,26,29,51,52]. For example, if |q| is the query size, N is
the input size, and Z is the output size, then Yannakakis’ algorithm
can evaluate acyclic natural join queries in time Õppolyp|q|qpN log N`
Zqq. Acyclic conjunctive queries can also be evaluated efficiently
in the I/O model [40], and in the RAM model even when there are
inequalities [51]. For queries with treewidth w, it was recognized
early on that a runtime of about ÕpNw`1 `Zq is attainable [18,27].
our result strictly generalizes these results. We able to show that
Yannakakis’ algorithm does not meet our notion of certificate opti-
mality.

The notion of treewidth is loose for some queries. For instance,
if we replicate each attribute x times for every attribute, then the
treewidth is inflated by a factor of x; but by considering all dupli-
cate attributes as one big compound attribute the runtime should
only be multiplied by a polynomial in x and there should not be a
factor of x in the exponent of the runtime. Furthermore, there is
an inherent incompatibility between treewidth and acyclicity: an
acyclic query can have very large treewidth, yet is still tractable. A
series of papers [2,17,26, 29, 30] refined the treewidth notion lead-
ing to generalized hyper treewidth [29] and ultimately fractional

hypertree width [36], which allows for a unified view of tractable
queries. (An acyclic query, for example, has fractional hypertree
width at most 1.)

The fractional hypertree width notion comes out of a recent tight
worst-case output size bound in terms of the input relation sizes [7].
An algorithm was presented that runs in time matching the bound,
and thus it is worst-case optimal in [38]. Given a tree decompo-
sition of the input query with the minimum fractional edge cover
over all bags, we can run this algorithm on each bag, and then Yan-
nakakis algorithm [52] on the resulting bag relations, obtaining a

total runtime of ÕpNw˚
` Zq, where w˚ is the fractional hyper

treewidth. The leap-frog triejoin algorithm [50] is also worst-case
optimal and runs fast in practice; it is based on the idea that we can
efficiently skip unmatched intervals. The indices are also built or
selected to be consistent with a chosen GAO. We are able to show
that neither Leapfrog nor the algorithm from [38] can achieve the
certificate guarantees of Minesweeper for β-acyclic queries.

Notions of acyclicity. There are at least five notions of acyclic
hypergraphs, four of which were introduced early on in database

theory (see e.g, [23]), and at least one new one introduced recently
[21]. The five notions are not equivalent, but they form a strict
hierarchy in the following way:

Berge-acyclicity  γ-acyclicity  jtdb  β-acyclicity  α-acyclicity

Acyclicity or α-acyclicity [11, 12, 25, 28, 35] was recognized early
on to be a very desirable property of data base schemes; in par-
ticular, it allows for a data-complexity optimal algorithm in the
worst case [52]. However, an α-acyclic hypergraph may have a
sub-hypergraph that is not α-acyclic. For example, if we take any

hypergraph and add a hyperedge containing all vertices, we obtain
an α-acyclic hypergraph. This observation leads to the notion of
β-acyclicity: a hypergraph is β-acyclic if and only if every one of
its sub-hypergraph is (α-) acyclic [23]. It was shown (relatively)
recently [39] that sat is in P for β-acyclic CNF formulas and is NP-
complete for α-acyclic CNF formulas. Extending the result, it was
shown that negative conjunctive queries are poly-time solvable if
and only if it is β-acyclic [14]. The separation between γ-acyclicity
and β-acyclicity showed up in logic [20], while Berge-acyclicity is
restrictive and, thus far, is of only historical interest [13].

Graph triangle enumeration. In social network analysis, com-
puting and listing the number of triangles in a graph is at the heart
of the clustering coefficients and transitivity ratio. There are four
decades of research on computing, estimating, bounding, and lower-
bounding the number of triangles and the runtime for such algo-
rithms [5, 33, 34, 46, 48, 49]. This problem can easily be reduced to
a join query of the form Q “ RpA,Bq Z S pB,Cq Z TpA,Cq.

6.2 Certificates for Intersection
The problem of finding the union and intersection of two sorted

arrays using the fewest number of comparisons is well-studied,
dated back to at least Hwang and Lin [32] since 1972. In fact, the
idea of skipping elements using a binary-search jumping (or leap-
frogging) strategy was already present in [32]. Demaine et al. [19]
used the leap-frogging strategy for computing the intersection of
k sorted sets. They introduced the notion of proofs to capture the
intrinsic complexity of such a problem. Then, the idea of gaps and
certificate encoding were introduced to show that their algorithm is
average case optimal.

DLM’s notion of proof inspired another adaptive complexity no-
tion for the set intersection problem called partition certificate by
Barbay and Kenyon in [8, 9], where instead of a system of in-
equalities essentially a set of gaps is used to encode and verify
the output. Barbay and Kenyon’s idea of a partition certificate is
very close to the set of intervals that Minesweeper outputs. In the
analysis of Minesweeper for the set intersection problem, we (im-
plicitly) show a correspondence between these partition certificates
and DLM’s style proofs. In addition to the fact that join queries
are more general than set intersection, our notion of certificate is
value-oblivious; our certificates do not depend on specific values in
the domain, while Barbay-Kenyon’s partition certificate does.

It should be noted that these lines of inquiries are not only of
theoretical interest. They have yielded good experimental results
in text-datamining and text-compression [10].

6.3 Beyond Worst-case Complexity
There is a fairly large body of work on analyzing algorithms with

more refined measures than worst-case complexity. (See, e.g., the
excellent lectures by Roughgarden on this topic [44].) This section
recalls the related works that are most closely related to ours.

A fair amount of work has been done in designing adaptive al-
gorithms for sorting [22], where the goal is to design a sorting al-
gorithm whose runtime (or the number of comparisons) matches a



notion of difficulty of the instance (e.g. the number of inversions,
the length of longest monotone subsequence and so on – the sur-
vey [22] lists at least eleven such measures of disorder). This line
of work is similar to ours in the sense that the goal is to run in time
proportional to the difficulty of the input. The major difference is
that in these lines of work the main goal is to avoid the logarithmic
factor over the linear runtime whereas in our work, our potential
gains are of much higher order and we ignore log-factors.

Another related line of work is on self-improving algorithms of
Ailon et al. [4], where the goal is to have an algorithm that runs on
inputs that are drawn i.i.d. from an unknown distribution and in ex-
pectation converge to a runtime that is related to the entropy of the
distribution. In some sense this setup is similar to online learning
while our work requires worst-case per-instance guarantees.

The notion of instance optimal join algorithms was (to the best
of our knowledge) first explicitly studied in the work of Fagin et
al. [24]. The paper studies the problem of computing the top-k
objects, where the ranking is some aggregate of total ordering of
objects according to different attributes. (It is assumed that the al-
gorithm can only iterate through the list in sorted order of indi-
vidual attribute scores.) The results in this paper are stronger than
ours since Fagin et al. give Op1q-optimality ratio (as opposed to
our Oplog Nq-optimality ratio). On the other hand the results in the
Fagin et al. paper are for a problem that is arguably narrower than
the class we consider of join algorithms.

The only other paper with provable instance-optimal guarantees
that we are aware of is the Afshani et al. results on some geometric
problems [3]. Their quantitative results are somewhat incompara-
ble to ours. On the one hand their results get a constant optimality
ratio: on the other hand, the optimality ratio is only true for order

oblivious comparison algorithms (while our results with Oplog Nq
optimality ratio hold against all comparison-based algorithms).

7. CONCLUSION AND FUTURE WORK
We described the Minesweeper algorithm for processing join

queries on data that is stored ordered in data structures modeling
traditional relational databases. We showed that Minesweeper can
achieve stronger runtime guarantees than previous algorithms; in
particular, we believe Minesweeper is the first algorithm to offer
beyond worst-case guarantees for joins. Our analysis is based on
a notion of certificates, which provide a uniform measure of the
difficulty of the problem that is independent of any algorithm. In
particular, certificates are able to capture what we argue is a natural
class of comparison-based join algorithms.

Our main technical result is that, for β-acyclic queries there is
some GAO such that Minesweeper runs in time that is linear in the
certificate size. Thus, Minesweeper is optimal (up to an Oplog Nq
factor) among comparison-based algorithms. Moreover, the class
of β-acyclic queries is the boundary of complexity in that we show
no algorithm for β-cyclic queries runs in time linear in the certifi-
cate size. And so, we are able to completely characterize those
queries that run in linear time for the certificate and hence are
optimal in a strong sense. Conceptually, certificates change the
complexity landscape for join processing as the analogous bound-
ary for traditional worst-case complexity are α-acyclic queries, for
which we show that there is no polynomial bound in the certifi-
cate size (assuming the strong form of the exponential time hy-
pothesis). We then considered how to extend our results using
treewidth. We showed that our same Minesweeper algorithm ob-
tains Õp|C|w`1 ` Zq runtime for queries with treewidth w. For the
triangle query (with treewidth 2), we presented a modified algo-

rithm that runs in time Õp|C|3{2 ` Zq.

Future Work. We are excited by the notion of certificate-based
complexity for join algorithms; we see it as contributing to an
emerging push beyond worst-case analysis in theoretical computer
science. We hope there is future work in several directions for joins
and certificate-based complexity.

Indexing and Certificates. The interplay between indexing
and certificates may provide fertile ground for further research. For
example, the certificate size depends on the order of attributes. In
particular, a certificate in one order may be smaller than in another
order. We do not yet have a handle on how the certificate-size
changes for the same data in different orders. Ideally, one would
know the smallest certificate size for any query and process in that
order. Moreover, we do not know how to use of multiple access
paths (eg. Btrees with different search keys) in either the analysis
or the algorithm. These indexes may result in dramatically faster
algorithms and new types of query optimization.

Fractional Covers. A second direction is that join processing
has seen a slew of powerful techniques based on increasingly so-
phisticated notions of covers and decompositions for queries. We
expect that such covers (hypergraph, fractional hypergraph, etc.)
could be used to tighten and improve our bounds. For the triangle

query, we have the fractional cover bound, i.e., Õp|C|3{2q. But is
this possible for all queries?
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APPENDIX

A. CERTIFICATES
The full version of this paper contains a handful of examples to

illustrate the subtlties of certificates. For completeness, we include
the following proofs.

A.1 Proof of Proposition 2.5

Proof. To prove this proposition, it is sufficient to show that the
set of comparisons issued by an execution of a comparison-based
algorithm is a certificate. To be concrete, we model a comparison-
based join algorithm by a decision tree. Every branch in the tree
corresponds to a comparison of the form (3). An execution of the
join algorithm is a path through this decision tree, reaching a leaf
node. At the leaf node, the result QpIq is labeled. The label at a
leaf is the set of tuples the algorithm deems the output of the query
applied to database instance I. The collection of comparisons down
the path is an argumentA which we want to prove a certificate.

First, note that for every tuple t “ pt1, . . . , tnq P QpIq, the values
ti have to be one of the values RIrxs for some R P atomspQq. If this
is not the case, then we can perturb the instance I as follows: for
every attribute Ai let Mi be the maximum value occurring in any
Ai-value overall tuples in the input relations. Now, add Mi ` 1 to
every Ai-value. Then, all Ai-values are shifted the same positive
amount. In this new database instance J, all of the comparisons in
the argument have the same Boolean value, and hence the output
has to be the same. Hence, if there was a value ti in some output
tuple not equal to Rrxs, the output would be wrong.

Second, we show that every output tuple can be uniquely identi-
fied with a witness, independent of the input instance I. Recall that
a collection X of (full) index tuples is said to be a witness for QpIq if
X has exactly one full index tuple from each relation R P atomspQq,
and all index tuples in X contribute to the same t P QpIq.

Fix an input instance I and an output tuple t “ pt1, . . . , tnq. Note
as indicated above that the ti can now be thought of as a variable
Rrxs for some index tuple x (not necessarily full) and some relation
R P atomspQq. By definition of the natural join operator, there has
to be a witness X for this output tuple t.

Consider, for example, a full index tuple y “ py1, . . . ,ykq from
some relation S which is a member of the witness X. Suppose the
relation S is on attributes pAsp1q,Asp2q, . . . ,Aspkqq. We show that,

for every j P rks, the argumentA must imply via the transitivity of
the equalities in the argument that S ry1, . . . ,y js “ tsp jq.

Suppose to the contrary that this is not the case. Let V be the set
of all variables transitively connected to the variable S ry1, . . . ,y js
by the equality comparisons inA.

Now, construct an instance J from instance I by doing the fol-
lowing

‚ set RJrxs “ 2RIrxs ` 1 for all variables Rrxs appearing in the
argumentA but Rrxs is not in V .

‚ set RJrxs “ 2RIrxs ` 2 for all variables Rrxs appearing in V .

Then, any comparison between a pair of variables both not in V or
both in V have the same outcome in both databases I and J. For
a pair of variables Rrxs P V and T rys < V the comparison cannot
be an equality from the definition of V , and hence the ă or ą re-
lationship still holds true. This is because if a and b are natural
numbers, then a ă b implies 2a ` 2 ă 2b ` 1 and 2a ` 1 ă 2b ` 2.
Consequently, the instance J also satisfies all comparisons in the
argument A. However, at this point S rys can no longer be con-
tributing to t. More importantly, no full index tuple from S can

http://theory.stanford.edu/~tim/f09/f09.html
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contribute to t in QpJq. Because,

S Jry1, . . . ,y j´1,y j ´ 1s ď 2S Iry1, . . . ,y j´1,y j ´ 1s ` 1

ď 2pS Iry1, . . . ,y j´1,y js ´ 1q ` 1

“ 2S Iry1, . . . ,y j´1,y js ´ 1

“ 2tI
sp jq

´ 1

ă tJ
sp jq
.

(The first inequality is an equality except when y j “ 1.) Similarly,

S Jry1, . . . ,y j´1,y j ` 1s ě 2S Iry1, . . . ,y j´1,y j ` 1s ` 1

ě 2pS Iry1, . . . ,y j´1,y js ` 1q ` 1

“ 2S Iry1, . . . ,y j´1,y js ` 3

“ 2tI
sp jq

` 3

ą tJ
sp jq
.

(Except when y j “ |S ry1, . . . ,y j´1,˚s|, the first inequality is an
equality.) �

A.2 Proof of Proposition 2.6

Proof. We construct a certificate C as follows. For each attribute
Ai, let v1 ă v2 ă ¨¨ ¨ ă vp denote the set of all possible Ai-values
present in any relations from atomspQq which has Ai as an attribute.
More concretely,

{v1,v2, . . . ,vp} :“
⋃

RPatomspQq,AiPĀpRq

πAi
pRq.

For each k P rps, let Tk denote the set of all tuples from rela-
tions containing Ai such that the tuple’s Ai-value is vk. Note that
the tuples in Tk can come from the same or different relations in
atomspQq. Next, add to C at most |Tk| ´ 1 equalities connecting
all tuples in Tk asserting that their Ai-values are equal. (The reason
we may not need exactly |Tk| ´ 1 equalities is because there might
be many tuples from the same relation R that share the Ai-value,
and Ai comes earlier than other attributes of R in the total attribute
order.)

Then, for each k P rps, pick an arbitrary tuple tk P Tk and add
p ´ 1 inequalities stating that t1.Ai ă t2.Ai ă ¨¨ ¨ ă tp.Ai. (De-
pending on which relation tk comes from, the actual syntax for
tk.Ai is used correspondingly. For example, if tk is from the rela-
tion RrA j,Ai,Aℓs, then tk.Ai is actually Rrx j, xis.)

Overall, for each Ai the total number of comparisons we added
is at most the number of tuples that has Ai as an attribute. Hence,
there are at most rN comparisons added to the certificate C, and
they represent all the possible relationships we know about the data.
The set of comparisons is thus a certificate for this instance. �

B. RUNNING TIME ANALYSIS
In this paper, we use the following notion to benchmark the run-

time of join algorithms.

Definition B.1. We say a join algorithm A for a join query Q to
be instance optimal for Q with optimality ratio α if the following
holds. For every instance for Q, the runtime of the algorithm is
bounded by O|Q|pα ¨ |C|q, where O|Q|p¨q ignores the dependence

on the query size and C be the certificate of the smallest size for
the given input instance. We allow α to depend on the input size
N. Finally, we refer to an instance optimal algorithm for Q with
optimality ratio Oplog Nq simply as near instance optimal for Q.

Technically we should be call such algorithms near instance op-

timal for certificate-based complexity but for the sake of brevity we
drop the qualification. Further, we use the term near instance opti-
mal to mirror the usage of the term near linear to denote runtimes
of OpN log Nq.

Next, we briefly justify our definition above. First note that we
are using the size of the optimal certificate as a benchmark to quan-
tify the performance of join algorithms. We have already justified
this as a natural benchmark to measure the performance of join al-
gorithms in Section 2.2. In particular, recall that Proposition 2.5
says that |C| is a valid lower bound on the number of comparisons
made by any comparison-based algorithm that “computes" the join
Q. Even though this choice makes us compare performance of al-
gorithms in two different models (the RAM model for the runtime
and the comparison model for certificates), this is a natural choice
that has been made many times in the algorithms literature: most
notably, the claim that algorithms to sort n numbers that run in
Opn lognq time are optimal in the comparison model. (This has
also been done recently in other works [3, 4].)

Second, the choice to ignore the dependence on the query size is
standard in database literature. In particular, in this work we focus
on the data complexity of our join algorithms.

Perhaps the more non-standard choice is to call an algorithm
with optimality ratio Oplog Nq to be (near) instance optimal. We
made this choice because this is unavoidable for comparison-based
algorithm. In particular, there exists a query Q so that every (de-
terministic) comparison-based join algorithm for Q needs to make
Ωplog N ¨ |C|q many comparisons on some input instance. This fol-
lows from the easy-to-verify fact for the selection problem (given
N numbers a1, . . . ,aN in sorted order, check whether a given value
v is one of them), every comparison-based algorithm needs to make
Ωplog Nq many comparisons while every instance can be “certified"
with constant many comparisons [45, Problem 1(a)]. For the sake
of completeness we sketch the argument below.

Consider the query Q “ RpAq Z S pAq. Now consider the in-
stance where RpAq “ {a1, . . . ,aN } and S pAq “ {v}. Note that for
this instance, we have |C| ď Op1q (and that the output of Q is empty
if and only if v does not belong to {a1, . . . ,aN }). However, given any
sequence of ⌊log N⌋´1 comparisons between (the only) element of
S and some element of R, there always exists two instantiation of
a1, . . . ,aN and v such that in one case the output of Q is empty and
is non-empty in the other case. (Basically, the adversary will al-
ways answer the comparison query in a manner that forces v to be
in the larger half of the “unexplored" numbers.)

Finally, we remark that even though this Ωplog Nq lower bound
on the optimality ratio is stated for the specific join query Q above,
it can be easily extended to any join query Q1 where at least two
relations share an attribute (by “embedding" the above simple set
intersection query Q into Q1).




