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ABSTRACT

BG is a benchmark that rates a data store for processing
interactive social networking actions using a pre-specified
service level agreement, SLA. An example SLA may require
95% of issued requests to observe a response time faster than
100 milliseconds. BG computes two different ratings named
SoAR and Socialites. In addition, it elevates the amount
of unpredictable data produced by a data store to a first
class metric, including it as a key component of the SLA
and quantifying it as a part of the benchmarking process.

One may use BG for a variety of purposes ranging from
comparing different data stores with one another, evaluat-
ing alternative physical data organization techniques given
a data store, quantifying the performance characteristics of
a data store in the presence of failures (either CP or AP in
CAP theorem), among others. This study illustrates BG’s
first use case, comparing a document store with an industrial
strength relational database management system (RDBMS)
deployed either in stand alone mode or augmented with
memcached. No one system is superior for all BG actions.
However, when considering a mix of actions, the memcached
augmented RDBMS produces higher ratings.

1. INTRODUCTION

Social networking sites such as LinkedIn, Facebook, Twit-
ter (see [35] for a list) are cloud service providers for person-
to-person communication. There are different approaches
to building these sites ranging from SQL to NoSQL, Cache
Augmented SQL [25, 19, 16] (CASQL), graph databases [1]
and others. (See [10] for a survey.) Some provide a tab-
ular representation of data while others offer alternative
data models that scale out [11]. Some may sacrifice strict
ACID [18] properties and opt for BASE [10] to enhance per-
formance. Independent of a qualitative discussion of these
approaches and their merits, a key question is how do these
systems compare with one another quantitatively. BG is a
benchmark designed to answer this question for interactive
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social networking actions that either read or update a very
small amount of the entire dataset [31, 15]. In addition to
traditional metrics such as response time and throughput,
BG quantifies the amount of unpredictable data produced by
a solution. This metric refers to either stale, inconsistent,
or invalid data produced by a data store, see Section 5.

BG emphasizes interactive actions of a social networking
application such as browse a profile, generate a friend re-
quest and accept one, and (not so sociable) practices such
as thaw a friendship and reject a friend request. Table 1
shows the different actions and their overlap with several
popular social networking sites.

BG’s database consists of a fixed number of members with
a registered profile. Its workload generator implements a
closed simulation model with a fixed number of threads T
Each thread emulates a sequence of members performing a
social action shown in Table 1. At any instance in time, an
emulated member who is actively engaged in a social action
is called a socialite. While a database may consist of millions
of members, at most 7" simultaneous socialites issue requests
with BG’s workload generator.

One may use BG to compute either a Social Action Rating
(SoAR) or a Socialites rating of a data store given a prespec-
ified service level agreement (SLA). An SLA requires at least
a percentage of requests to observe a response time equal
to or faster than 8 with the amount of unpredictable data
less than 7 for some fixed duration of time A. For example,
an SLA might require 95% (a=95%) of actions to be per-
formed faster than 100 msec (8=0.1 second) with no more
than 0.1% (7=0.1%) unpredictable data for 1 hour (A=3600
seconds). SoAR pertains to the highest throughput (actions
per second) of a data store that satisfies this SLA. Socialites
is the highest number of threads (largest 7' value) that sat-
isfies this SLA, see Figure 9.a.

BG quantifies the amount of unpredictable data in a sys-
tem at the granularity of a social action. It does so by
considering concurrent socialites and all possible race con-
ditions to compute a range of values for a retrieved data
item, e.g., number of friends for a member’s profile. If a
data store fetches a value that falls outside this range then
it has produced unpredictable data.

BG is inspired by prior benchmarks evaluating cloud ser-
vices such as YCSB [12] and YCSB++ [24], e-commerce
sites [2], and object-oriented [9] and transaction process-
ing systems [17]. Its contributions are two folds. First, it
emphasizes interactive social actions that retrieve a small
amount of data. Second, it promotes the amount of unpre-
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1.a Conceptual data model of BG’s database.
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1.b JSON-Like data model of BG’s database.
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Resources(rid, creatorid, wallUserid, body, doc)

Manipulation{mid, modifierid, rid, resourcecreatorid, timestamp,type,content)

1.c Relational data model of BG’s database.

Figure 1: Conceptual and logical data models of BG’s database.

dictable data produced by a solution as a first class metric
for comparing different data stores with one another. The
value of this metric is impacted by BG’s knobs such as the
exponent of the Zipfian distribution used to generate refer-
enced members and the inter-arrival time between two so-
cialites emulated by a thread. These knobs enable one to
approximate a realistic use case of an application to quan-
tify unpredictable data practically.

BG might be used for a variety of purposes ranging from
comparing different data stores with one another to char-
acterizing the performance of a data store under different
settings: Normal mode of operation with alternative physi-
cal data organizations [7], in the presence of a failure (either
CP or AP in CAP [22]), and when exercising the elasticity
of a data store by adding or removing nodes incrementally.

This paper illustrates BG’s use case by comparing the
following 3 different data stores with one another:

e SQL-X: An industrial strength relational database man-
agement system with ACID properties and a SQL query
interface. Due to licensing restrictions, we cannot re-
veal its identity and name it SQL-X.

e MongoDB version 2.0.6, a document store for storage
and retrieval of JavaScript Object Notations, JSON.
MongoDB is a representative NoSQL system. See [10]
for a survey.

e CASQL: SQL-X extended with memcached server ver-
sion 1.4.2 (64 bit). BG employs Whalin memcached
client versions 2.5.1 to communicate with the mem-
cached server. We configured the Whalin client to
compress (uncompress) key-value pairs when storing
(retrieving) them in (from) memcached.

The rest of this paper is organized as follows. Section 2

presents the conceptual data model of BG and its logical
design for relational and JSON-like data models. Social net-
working actions that constitute BG are detailed in Section 3.
Section 4 describes limitations of a centralized single node
benchmarking framework and presents a parallel implemen-
tation of BG using a shared-nothing architecture. In Sec-
tion 5, we describe how BG quantifies the amount of unpre-
dictable data produced by a data store. A heuristic search
technique to rate data stores is presented in Section 6. Sec-
tion 7 presents related work. Brief conclusions along with
our future research directions are detailed in Section 8.

2. CONCEPTUAL DATA MODEL AND PER-
FORMANCE METRICS

Figure 1.a shows the ER diagram of BG’s database. The
Member entity set contains those users with a registered
profile. It consists of a unique identifier and a fixed number
of string attributes whose length can be adjusted to gener-
ate different member record sizes. In addition, each member
may have either zero or 2 images. With the latter, one is
a thumbnail and the second is a higher resolution image.
Typically, thumbnails are displayed when listing friends of a
member and the higher resolution image is displayed when
a member visits a profile. Thumbnail images are typically
small (in the order of KBs) and their use (instead of larger
images, in the order of tens and hundreds of KBs and MBs)
has a dramatic impact on system performance, see discus-
sions of Section 3.1.

A member may either extend an invitation to or be friends
with another member. Both are captured using the “Friend”
relationship set. An attribute of this relationship set (not
shown) differentiates between invitations and friendships.

A resource may pertain to an image, a posted question,
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Figure 2: Throughput of SQL-X as a function of
T with View Profile action, 12 KB profile image
size, =100 msec, 7=0%, 6=0.27. Confidence ()
is shown in red.

a technical manuscript, etc. These entities are captured in
one set named “Resources”. In order for a resource to ex-
ist, it must be “Owned” by a member, a binary relationship
between a member and a resource. A member may post a
resource, say an image, on the profile of another member,
represented as a ternary relationship between two members
and a resource. (In this relationship, the two members might
be the same member where the member is posting the re-
source on her own profile.) A member (either the owner or
another) may comment on a resource (not shown). A mem-
ber may restrict the ability to comment on a resource only to
her friends. This is implemented using the “Manipulation”
relationship set.

Figures 1.b and 1.c show the logical design of the ER dia-
gram with both MongoDB’s JSON-like and relational data
models. An experimentalist builds a database by specifying
the number of members (M) in the social network, num-
ber of friends per member (@), and resources per member
(p). Some of the relationships might be generated either
uniformly or using a Zipfian distribution. For example, one
may use a Zipfian distribution with exponent (6) 0.27 to
assign 80% of friendships (M x ¢) to 20% of members.

One may specify BG workloads at the granularity of either
an action, a session, or a mix of these two possibilities. A
session is a sequence of actions with e think time between
actions and 1 inter-arrival time between sessions. Table 1
shows BG’s list of actions and its compatibility with several
social networking sites. Due to lack of space, we refer the
interested reader to [5] for sessions and their detail.

Similar to YCSB [12], BG exposes both its schema and its
actions to be implemented by a developer. Thus, a developer
may target an arbitrary data store, specify its physical data
model for the conceptual data model of Figure 1.a, provide
an implementation of the actions of Table 1, and run BG to
evaluate the target data store. As detailed in Section 4, these
functionalities are divided between a Coordinator, named
BGCoord, and N slave processes, named BGClients.

When generating a workload, BG is by default set to
prevent two simultaneous threads from emulating the same
member concurrently. This is to model real life user in-
teractions as closely as possible. An experimentalist may
eliminate this assumption by modifying a setting of BG.

BG rates a system with at least a percentage of actions
observing a response time equal to or less than B with at most
T percentage of requests observing unpredictable data in A
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12,442& (32,452) CASQL
CASQL SQL-X MongoDB

10,000 CASQL MongoDB

MongoDB
CASQL

1,000

100

10

No Image 2KB

Figure 3: SoAR of 3 different system with view
profile and different profile image sizes, M =10,000,
=100 msec, a=95%, e=1¢=0, §=0.27.

time units. For example, an experimentalist may specify a
workload with the requirement that at least 95% (a=0.95)
of actions to observe a response time equal to or less than
100 msec (8=0.1 second) with at most 0.1% (7=0.001) of
requests observing unpredictable data for 1 hour (A=3600
seconds). With such a criterion, BG computes two possible
ratings for a system:

1. SoAR: Highest number of completed actions per sec-
ond that satisfy the specified criterion. Given several
systems, the one with the highest SoAR is desirable.

2. Socialites: Highest number of simultaneous threads
that satisfy the specified SLA. It quantifies the multi-
threading capability of the data store and whether it
suffers from limitations such as the convoy phenom-
ena [8] that diminishes its throughput rating with a
large number of simultaneous requests. Given several
systems, the one with the highest Socialites rating is
more desirable.

These ratings are not a simple function of the average service
time () of a workload. The specified confidence (o), the tol-
erable response time (3), and the amount of unpredictable
data (7) observed from a system impacts its SoOAR and So-
cialites rating. To illustrate, Figure 2 shows the throughput
of SQL-X as a function of the number of threads T for a read
only action, 7=0. We show the different confidence values
for 3=0.1 second. As we increase the number of threads,
the throughput of the system increases. Beyond 4 threads,
a queue of requests forms causing an increase in system re-
sponse time. This is reflected in a lower a value. With
32 threads, almost all (99.94%) requests observe a response
time higher than 100 msec.

3. ACTIONS

This section provides a specification of BG’s social actions,
see Table 1. We present their implementation using SQL-
X, MongoDB, and CASQL; see Section 1 for a description.
Subsequently, Section 3.4 presents 3 workloads consisting of
a mix of actions.

For the first two actions, we present SOAR numbers us-
ing the following SLA: 95% of requests observe a response
time equal to or faster than 100 msec with the amount of
stale data less than 0.1%. Member ids are generated using a
Zipfian distribution with exponent 0.27. Reported numbers
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Resource (DCR) a tweet endation on a video a check-in a link a question

Table 1: Socialite actions and their compatibility with several social networking sites.

were obtained from a dedicated hardware platform consist-
ing of six PCs connected using a gigabit Ethernet switch.
Each PC consists of a 64 bit 3.4 GHz Intel Core i7-2600
processor (4 cores with 8 threads) configured with 16 GB
of memory, 1.5 TB of storage, and one gigabit networking
card. Even though these PCs have the same exact model
and were purchased at the same time, there is some vari-
ation in their performance. To prevent this from polluting
our results, the same one node hosts the different data stores
for all ratings. This node hosts both memcached and SQL-X
to realize CASQL. Either all or a subset of the remaining
5 nodes are used as BGClients to generate requests for this
node. With all reported SoAR values greater than zero, ei-
ther the disk, all cores, or the networking card of the server
hosting a data store becomes fully utilized. When SoAR is
zero, this means the data store failed to satisfy the SLA with
one single threaded BGClient issuing requests, N=T=1.

3.1 View Profile, VP

View Profile (VP) emulates a socialite visiting the profile
of either herself or another member. Its input include the
socialite’s id and the id of the referenced member, U,. BG
generates these two ids using a random number conditioned
using the Zipfian distribution of access with a pre-specified’
exponent (specified by the experimentalist who is bench-
marking a system). Socialite’s id may equal the id of U,
emulating a socialite referencing her own profile. Its output
is the profile information of U,. This includes U,’s attributes
and the following two aggregate information: U,’s number
of friends, U,’s number of resources (e.g., images). If the so-
cialite is referencing her own profile (socialite id equals U,’s
id) then VP retrieves a third aggregate information: U,’s
number of pending friend invitations.

VP retrieves all attributes of U, except U,.’s thumbnail im-
age. This includes U,’s profile image assuming the database
is created with images, see Section 2. An implementation
of VP with the different data stores is as follows. With
MongoDB (SQL-X), it looks up the document (row) corre-
sponding to the specified U, userid. With MongoDB, VP

!The exponent # used in this section is 0.27.

computes the number of friends and pending invitations
by counting the number of elements in pendingFriends and
confirmedFriends arrays, respectively. It counts number of
resources posted on U,’s wall by querying the Resources
collection using the predicate “walluserid = U,’s userid”.
With SQL-X, VP issues different aggregate queries. With
CASQL, VP constructs two different keys using U,.’s userid:
self profile when socialite’s id equals U,’s userid and browse
profile when socialite’s id does not equal U,’s userid. De-
pending on whether socialite’s id equals U, ’s userid, it looks
up the appropriate key in memcached. If a value is returned,
it proceeds to uncompress and deserialize it, producing it as
its output. Otherwise, it performs the same set of steps
as those with SQL-X, computes the final output, serializes
it, and stores it in memcached as the value associated with
the appropriate key. This key-value pair is used by future
references.

Presence of a profile image and its size impact SoAR of
different data stores for VP dramatically [27, 7]. Figure 3
shows the performance of three different systems for a BG
database consisting of no-images, and a 2 KB thumbnail
image with different sizes for the profile image: 2 KB, 12
KB, and 500 KB. These settings constitute the x-axis of
Figure 3. The y-axis reports SOAR of different systems.

With no images, MongoDB provides the best performance,
outperforming both SQL-X and CASQL by almost a factor
of two. With 12 KB images, SoAR of SQL-X drops dramat-
ically from thousands to hundreds®>. With 500 KB image
sizes, SQL-X cannot perform even one VP action per second
that satisfies the 100 msec response time (with 1 thread),
producing a SoAR of zero. SoAR of MongoDB and CASQL
also decrease as a function of larger image size because they
must transmit a larger amount of data to the BGClient us-
ing the network. However, their decrease is not as dramatic
as SQL-X.

CASQL outperforms SQL-X because these experiments
are run with a warm up phase that issues 500,000 requests
to populate memcached with key-value pairs pertaining to

*We use SQL-X with the physical data design shown in Fig-
ure l.c. This design can be enhanced to improve perfor-
mance of SQL-X by ten folds or more. See [7] for details.



different member profiles. Most requests are serviced using
memcached (instead of SQL-X). While this does not payoff®
with small images, with 12 KB and 500 KB image sizes, it
does enhance performance of SQL-X considerably.

3.2 List Friends, LF

List Friends (LF) emulates a socialite viewing either her
list of friends or another member’s list of friends. This ac-
tion retrieves the profile information of each friend. In the
presence of images, it retrieves only the thumbnail image of
each friend. At database creation time, BG empowers an
experimentalist to configure a database with a fixed num-
ber of friends per member (¢). Figure 4 shows SoAR of the
alternative data stores for LF as a function of a different
number of friends (¢) per member. (The median Facebook
friend count is 100 [32, 4].) A larger ¢ value lowers the rating
of all data stores. Overall, CASQL provides the best over-
all performance with 50 and 100 friends per member. Even
though MongoDB performs no joins, its SoAR is zero for all
the examined ¢ values. Below, we describe implementation
details of each system.

SQL-X must join the Friends table with the Members ta-
ble (see Figure 1.c) to compute the socialite’s list of friends.
We assume the friendship relationship between two members
is represented as 1 record* in Friends table, see Figure 1.c.
CASQL caches the final results of the LF action and en-
hances SoAR. of SQL-X by less than 10% with ¢ values of
50 and 100. With ¢=1000, SQL-X slows down considerably
and can no longer satisfy the 100 msec response time re-
quirement. The CASQL alternative is also unable to meet
this SLA because each key-value is larger than 1 MB, the
maximum key-value size supported by memcached. This
renders memcached idle, redirecting all requests issued by
CASQL to SQL-X, producing zero for system SoAR. One
may modify memcached to support key-value pairs larger
than 2 MB (¢=1000 and each thumbnail is 2 KB) to realize
an enhanced SoAR with CASQL.

With MongoDB, an implementation of LF may retrieve
the confirmed friends either one document at a time or as
a set of documents. With both approaches, the BG client
starts by retrieving the confirmedFriends array of the refer-
enced member, see Figure 1.b. With one document at time,
the client processes the array and for each userid, retrieves
the profile document of that member. With a set at a time,
the client provides MongoDB with the array of userids to
retrieve a set containing their profile documents. These two
alternatives cannot satisfy the 100 msec SLA requirement,
producing a SoAR of zero for different values of ¢. With
fewer friends per member, say 10, SoAR of MongoDB is 6
actions per second.

3.3 Other actions

View Friend Requests, VFR: This action retrieves a so-
cialite’s pending friend request. It retrieves the profile in-
formation of each member extending a friend request invi-
tation along with her thumbnail (assuming the database is
configured with images). Both the implementation and the

3There are several suggested optimization to the source code
of memcached to improve its performance [26, 3]. Their
evaluation is a digression from our main focus. Instead, we
focus on the standard open source version 2.5.1 [23].

“See [7] for a discussion of representing friendship as 2
records and its impact on SoAR.
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Figure 4: SoAR of List Friends with 3 different data
stores as a function of number of friends per mem-
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6=0.27.

behavior of SQL-X, MongoDB, CASQL with VFR is similar
to the discussion of LF.

Invite Friend, I'V: This action enables a socialite to invite
another member, say A, of the social network to become her
friend. With MongoDB, this action inserts the socialite’s
userid into A’s array of pendingFriends, see Figure 1.b. With
both SQL-X and CASQL, this operation inserts a row in the
Friends table with status set to “pending”, see Figure 1.c.
CASQL invalidates the memcached key-value pairs corre-
sponding to A’s self profile (with a count of pending invita-
tions) and A’s list of pending invitation. A subsequent VP
invocation that references these key-value pairs observes a
cache miss, computes the latest key-value pairs, and inserts
them in the cache.

Accept Friend Request, AFR: A socialite A uses this ac-
tion to accept a pending friend request from member B of the
social network. With MongoDB, this action inserts (a) A’s
userid in B’s array of confirmedFriends, and (b) B’s userid in
A’s arrays of confirmedFriends, see Figure 1.b. Moreover, it
removes B’s userid from A’s array of pendingFriends. With
both SQL-X and CASQL, this operation updates the “sta-
tus” attribute value of the row corresponding to B’s friend
request to A to “confirmed”, see Figure 1.c. CASQL inval-
idates the memcached key-value pairs corresponding to self
profiles of members A and B, profiles of members A and B
as visited by others, list of friends for members A and B, list
of pending invitations for member A.

Reject Friend Request, RFR: A socialite uses RFR to
reject a pending friend request from a member B. BG as-
sumes the system does not notify Member B of this event.
With MongoDB, we implement RFR by simply removing
B’s userid from the socialite’s array of pendingFriends, see
Figure 1.b. With both SQL-X and CASQL, RFR deletes the
friend request row corresponding B’s friend request to the
socialite, see Figure 1.c. CASQL invalidates the key-value
pairs corresponding to socialite’s self profile and pending
friend invitations from memcached.

Thaw Friendship, TF: This action enables a socialite A
to remove a member B as a friend. With MongoDB, TF
removes A’s userid from B’s array of confirmedFriends and
vice versa, see Figure 1.b. With both SQL-X and CASQL,
TF deletes the row corresponding to the friendship of user
A and B (with status equal to “confirmed”) from Friends
table, see Figure 1.c. CASQL invalidates the key-value pairs
corresponding to list of friends for users A and B, self profile



Database parameters

Number of members in the database.
Number of friends per member.
Number of resources per member.

b@-:

Workload parameters

Total number of sessions emulated by the benchmark.
Think time between social actions constituting a session.
Inter-arrival time between users emulated by a thread.
Exponent of the Zipfian distribution.

> Q

Service Level Agreement (SLA) parameters

Percentage of requests with response time < 3.

Max response time observed by a requests.

Max % of requests that observe unpredictable data.
Min length of time the system must satisfy the SLA.

Environmental parameters

Number of BGClients.
Number of threads.

Nl pawe

Table 2: BG’s parameters and their definitions.

of users A and B, and profiles of users A and B as visited by
other users (because their number of friends has changed).

View Top-K Resources, VTR: When BG populates a
database, it requires each member to create a fixed num-
ber of resources. Each resource is posted on the wall of a
randomly chosen member, including oneself’s wall. View
Top-K Resources (VTR) enables a socialite to retrieve and
display her top k resources posted on her wall. Both the
value of k and the definition of “top” are configurable. Top
may correspond to those resources with the highest number
of “likes”; date of last view/comment (recency), or simply
its ID. At the time of this writing, BG supports the last
one. With MongoDB, VTR queries the Resources collection
in a sorted order to retrieve top k resources owned by the
socialite. With SQL-X and CASQL, VTR queries the Re-
sources table and uses top k ordered using their rid. CASQL
constructs a unique key using the action and socialite userid,
serializes the results as a value, and inserts the key-value pair
in memcached for future reference.

View Comments on Resource, VCR: A socialite dis-
plays the comments posted on a resource with a unique rid
using VCR action. BG generates rids for this action by
randomly selecting a resource owned by a member (selected
using a zipfian distribution). With MongoDB, we looked
into two different implementations. The first implementa-
tion supported the schema shown in Figure 1.b where the
comments for every resource are stored within the manipula-
tion array attribute for that resource. With this implemen-
tation, VCR retrieves the elements of manipulation array
of the referenced resource, see Figure 1.b. The second im-
plementation creates a separate collection for the comments
named Manipulations, see [5]. With this implementation
VCR queries the Manipulations collection for all those doc-
uments whose rid equals the referenced resourceid. (A com-
parison of these alternative physical data designs is a future
research direction.) With SQL-X, VCR employs the speci-
fied identifier of a resource to query the Manipulation table
and retrieve all attributes of the qualifying rows, see Fig-
ure 1.c. CASQL constructs a unique key using rid to look
up the cache for a value. If it observes a miss, it invokes the
procedure for SQL-X to construct a value. The resulting
key-value pair is stored in memcached for future reference.

Post Comment on a Resource, PCR: A socialite uses

BG Very Low  Low High
Social Type (0.1%) (1%) (10%)

Actions Write Write  Write
VP Read 40% 40% 35%
LF Read 5% 5% 5%
VFR Read 5% 5% 5%
IF Write 0.02% 0.2% 2%

AFR Write 0.02% 0.2% 2%
RFR Write 0.03% 0.3% 3%

TF ‘Write 0.03% 0.3% 3%
VTR Read 49.9% 49% 45%
VCR Read 0% 0% 0%
PCR Write 0% 0% 0%
DCR Write 0% 0% 0%

Table 3: Three mixes of social networking actions.

PCR to comment on a resource with a unique id. BG gen-
erates rids by randomly selecting a resource owned by a
member selected using a Zipfian distribution. It generates
a random array of characters as the comment for a user.
The number of characters is a configurable parameter. With
MongoDB, PCR is implemented by either generating an el-
ement for the manipulation array attribute of the selected
resource, see Figure 1.b or generating a document, setting
its rid to the unique identifier of the referenced resource and
inserting it into the Manipulations collection, see [5]. With
SQL-X and CASQL, PCR inserts a row in the Manipulation
table. CASQL invalidates the key-value pair corresponding
to comments on the specified resource id.

Delete Comment from a Resource, DCR: This action
enables a socialite to delete a unique comment posted on one
of her owned resources chosen randomly. With MongoDB,
an implementation of DCR either removes the element cor-
responding to the comment from the manipulation array
attribute of the identified resource, see Figure 1.b or re-
moves the document corresponding to the comment posted
on the referenced resource from the Manipulations collec-
tion, see [5]. With SQL-X and CASQL, DCR deletes a row
of the Manipulation table. CASQL invalidates the key-value
pair corresponding to comments on the specified resource
id.

3.4 Mix of Actions

One may evaluate a data store by specifying a mix of
actions. Three different mixes are shown in Table 3. To
simplify discussion, actions are categorized into read and
write. These mixes exercise friendship write actions that
impact the corresponding read actions such as View Profile,
List Friends, and View Friend Requests. Each mix consists
of a different percentage of write actions, ranging from very
low (0.1%) to high (10%).

We use MongoDB with its strict write concern which re-
quires each write to wait for a response from the server [20].
Without this option, MongoDB would produce stale data
(less than 0.01%).

Figure 5 shows SoAR of the different systems with the 3
mixes for a database with 10,000 members and 100 friends
per member. MongoDB outperforms SQL-X for the differ-
ent mixes by almost a factor of 3. The CASQL is sensitive
to the percentage of write actions as they invalidate cached
key-value pairs, causing read actions to be processed by the
RDBMS. With a very low (0.1%) write mix, CASQL outper-
form MongoDB by more than a factor of 3. With a high per-
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Figure 5: SoAR for 3 mixes of read and write
actions, M=10,000, 12 KB image size, ¢$=100,
p=F=100 msec, =95%, 7=0.01%, e=1=0, §=0.27.

centage of write actions, SoOAR of CASQL is slightly higher
than MongoDB.

4. PARALLELISM

Today’s data stores use techniques that may fully utilize
resources (CPU and network bandwidth) of a single node
benchmarking framework. For example, Whalin client for
memcached (CASQL) is configured to compress key-value
pairs prior to inserting them in the cache. It decompresses
key-value pairs upon their retrieval to provide the uncom-
pressed version to its caller, i.e., BG. Use of compression
minimizes CASQL’s network transmissions and enhances its
cache hit rate by reducing the size of key-value pairs with a
limited cache space. It also causes the CPU of the node ex-
ecuting BG to become 100% utilized for certain workloads.
This is undesirable because the resulting SoAR reflects the
capabilities of the benchmarking framework instead of the
data store.

To address this issue, BG implements a scalable bench-
marking framework using a shared-nothing architecture. Its
software components are as follows:

1. A coordinator, BGCoord, computes SoAR and So-
cialites rating of a data store by implementing both an
exhaustive and a heuristic search technique. Its input
are the SLA specifications and parameters of an experi-
ment, see Table 2. It computes the fraction of workload
that should be issued by each worker process, named
BGClient, and communicates it with that BGClient.
BGCoord monitors the progress of each BGClient pe-
riodically, aggregates their current response time and
throughput, and reports these metrics to BG’s visual-
ization deck for display, see Item 3. Once all BGClients
terminate, BGCoord aggregates the final results for
display by BG’s visualization deck.

2. A BGClient is slave to BGCoord and may perform
three possible tasks. First, create a database. Sec-
ond, generate a workload for the data store that is
consistent with the BGCoord specifications. Third,
compute the amount of unpredictable data produced
by the data store. It transmits key metrics except for
the amount of unpredictable data to BGCoord period-
ically. At the end of the experiment, it computes all
metrics and transmits them to BGCoord.

3. BG visualization deck enables a user to specify pa-
rameter settings for BGCoord, initiate rating of a data
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Figure 6: MongoDB’s Throughput as a function of
T with view profile (VP) action and different num-
ber of BGClients, N. M=10,000, No image, /=100
msec, a=95%, e=¢=0, §=0.27.

store, and monitor the rating process, see Appendix A.

Once BGCoord activates N BGClients, each BGClient
generates its workload independently to enable the bench-
marking framework to scale to a large number of nodes. We
realize this by constructing the physical database of Sec-
tion 2 to consist of IV logical self-contained fragments. Each
fragment consists of a unique collection of members, re-
sources, and their relationships. BG can realize this because
it generates the benchmark database. BGCoord assigns a
logical fragment to one BGClient to generate its workload.
This partitioning enables BG to implement uniqueness of
concurrent socialites, i.e., the same member does not manip-
ulate the database simultaneously. Note that construction
of logical fragments has no impact on the size of the phys-
ical database and its parameter settings such as number of
friendships.

With BG, an experiment may specify a Zipfian distribu-
tion with a fixed exponent and vary the number of BG-
Clients, value of N. BGClients implement a decentralized
Zipfian, D-Zipfian [6], that produces the same distribution
of references with different values of N. This enables us
to compare results obtained with different number of BG-
Clients with one another. We implement D-Zipfian to in-
corporate heterogeneity of nodes (hosting BGClients) where
one node produces requests at a rate faster than the other
nodes. D-Zipfian assigns more load to the fastest node by
assigning a larger logical fragment to it and requiring it to
produce more requests. Hence, the N BGClients complete
issuing requests at approximately the same time. For details
of D-Zipfian, see [6].

Figure 6 shows the throughput of MongoDB as a func-
tion of socialites. Presented results pertain to different num-
ber of BGClients performing view profile (VP) action with
D-Zipfian and exponent 0.27. The Socialites rating is the
length of each curve along the x-axis. While it is 317 with
1 BGClient, it increases 3.2 folds to 1024 with 8 (16) BG-
Clients. A solid rectangular box denotes the SoAR rating
with a given number of BGClients. It also increases as a
function of N; from 15,800 with 1 BGClient to 33,200 with
16 BGClients. With 1 BGClient, client component of Mon-
goDB is limiting the observed ratings. We know it is not the
hardware platform because we can run multiple BGClients
on one node to observe higher ratings. Four physical nodes
are used in the experiments of Figure 6. Both SoAR and
Socialites rating remain unchanged from 8 to 16 BGClients.



Figure 7: A write of D; may overlap the read of D;
in four possible ways.

D-Zipfian ensures the same distribution of requests is gen-
erated with 1 to 16 BGClients.

5. UNPREDICTABLE DATA

Unpredictable data is either stale, inconsistent, or sim-
ply invalid data produced by a data store. For example,
the design of a CASQL may incur dirty reads [19] or suffer
from race conditions that leave the cache and the database
in an inconsistent state [16], a data store may employ an
eventual consistency [33, 30] technique that produces either
stale or inconsistent data for some time [24], and others.
The requirements of an application dictate whether these
techniques are appropriate or not. A key question is how
much unpredictable data is produced by a data store for in-
teractive social networking actions. This section describes
how BG quantifies an answer to this question.

Conceptually, BG is aware of the initial state of a data
item in the database (by creating them using deterministic
functions) and the change of value applied by each update
operation. There is a finite number of ways for a read of
a data item to overlap with concurrent actions that write
it. BG enumerates these to compute a range of acceptable
values that should be observed by the read operation. If a
data store produces a different value then it has produced
unpredictable data. This process is named wvalidation and
its details are as follows.

BG implements validation in an off-line manner after it
rates a data store, preventing it from exhausting the re-
sources of a BGClient. During the benchmarking phase,
each thread of a BGClient invokes an action that generates
one log record. There are two types of log records, a read and
a write log record corresponding to either a read or a write
of a data item. A log record consists of a unique identifier,
the action that produced it, the data item referenced by the
action, its socialite session id, and start and end time stamp
of the action. The read log record contains its observed value
from the data store. The write log contains either the new
value (named Absolute Write Log, AWL, records) or change
(named Delta Write Log, DWL, records) to existing value of
its referenced data item.

The start and end time stamps of each log record iden-
tifies the duration of an action that either read or wrote a
data item. They enable BG to detect the 4 possible ways
that a write operation may overlap a read operation, see
Figure 7. During validation phase, for each read log record
that references data item D;, BG enumerates all completed
and overlapping write log records that reference D; to com-
pute a range of possible values for this data item. If the
read log record contains a value outside of this range then
its corresponding action has observed unpredictable data.
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Figure 8: Percentage of unpredictable data (7) as a
function of the number of threads with memcached
(CASQL). Mixed workload with 10% write actions,
see Table 3. M=10,000, 12 KB image size, $=p=100,
£=100 msec, §=0.27, « is in red.

Log records produced by one BGClient are independent
of those produced by the remaining N — 1 BGClients be-
cause BGCoord partitions members and resources among
the BGClients logically. Thus, there are no conflicts across
BGClients and each BGClient may perform validation in-
dependently to compute number of actions (sessions) that
observe unpredictable data. BGCoord collects these num-
bers from all BGClients to compute the overall percentage
of actions (sessions) that observed unpredictable data.

Depending on the value of A, a BGClient may produce
a large number of log records. These records are scattered
across multiple files. Currently, there are two centralized im-
plementations of the validation phase using interval-trees [13]
as in-memory data structures and a persistent store using a
relational database. The latter is more appropriate when
the total size of the write log records exceeds the available
memory of a BGClient. We also have a preliminary imple-
mentation of the validation phase using MapReduce [14] that
requires the log files to be scattered across a distributed file
system. Below, we describe the centralized implementation
of the validation phase.

Both in-memory and persistent implementations of vali-
dation are optimized for workloads dominated with actions
that read data items [1]. These optimizations are as fol-
lows. First, if there are no update log records then there is
no need for a validation phase; the validation phase termi-
nates by deleting the read log file(s) and reporting 0% unpre-
dictable reads. Second, write log records are processed first
to construct a main memory data structure (independent of
interval-trees or the RDBMS) that maintains each updated
data item and its value prior to the first write log record
and after the last write log record, start time stamp of the
first write log record, and the end time stamp of the last
write log record. This enables BG to quickly process read
log records that either reference data items that were never
updated (do not exist in the main memory data structure),
or were issued before the first or after the last writer (there
is only one possible value for these and available in the main
memory data structure). Third, multiple threads may pro-
cess the read log records by accessing the aforementioned
data structure with no semaphores as they are simply look-
ing up data. This makes the validation phase suitable for
multi-core CPUs as it employs multiple threads to process
the read log files simultaneously.



Figure 8 shows the percentage of unpredictable data pro- Throughput
duced by a CASQL system that employs a time to live 1
(TTL) to maintain its key-value pairs up to date (instead of o
the invalidation discussions of Section 3 that require design, SOAR - —ﬂ
development, debugging, and testing of software). Figure 8
shows the behavior of three different TTL values, 30, 60, and
120 seconds, as a function of the number of BG threads, T'.
We assume 10% of actions are writes (see Table 3). Obtained
results show a higher TTL value increases the likelihood of //Square root function i

both a write causing a key-value pair to become stale and ' >
the stale key-value being referenced. This explains the larger

amount of unpredictable data with higher TTL values. Note

that with the invalidation implementation of Section 3, the RT
amount of observed unpredictable data is less than 0.001% "
in all experiments. This can be reduced to zero by extending
memcached with a race condition prevention technique such
as Gumball [16].

A higher TTL value also enhances performance of CASQL
by increasing the number of references that observe a cache
hit. This is shown with a higher percentage of request
that observe a response time faster than 100 msec () with
T=100: « increases from 79.8% with a 30 second TTL to :

/" Inverse parabola function

T Socialites
9.a Throughput asa functionof T

98.15% with a 2 minute TTL. In essence, a higher TTL value >
enhances performance of CASQL by producing a higher amount T Socialites
of stale data. 9.b Average response time as a functionof T

6. RATING A DATA STORE % Stale Data % Stale Data

Once the BGClient for a data store has been developed
(debugged and tested), IV instances of it are deployed across
one or more servers. Next, BGCoord is provided with the
identity (IP and port) of these BGClient instances and an
SLA consisting of values for «, 8, 7, and A (see Table 2).
BGCoord employs the N BGClients to compute SoAR and

Socialites rating of the data store. It rates a data store by Socialites Socialites 1
Conducting several experiments, each with a fixed number Q¢ Percentage of stale data as a function of T
of threads 7'. These enable BGCoord to compute SoAR and

Socialites rating of the data store. Details are as follows. % of requests with RT<p

Each experiment uses T threads (spread across the N BG-
Clients) to issues actions during A time units. At the end of
the experiment, each BGClient reports its observed number
of unpredictable reads, and the percentage of requests that
observed a response time equal to or faster than 3. This ex-
periments is successful as long as the following® hold true: 1)
with each BGClient, the percentage of unpredictable reads
should be less than or equal to the SLA specified tolerable o
amount of unpredictable reads, and 2) with each BGClient,
the percentage of requests that observe a response time less
than or equal to 3 is greater than or equal to a. Otherwise, T
this experiment has failed to meet the specified SLA. 9.d o as a functionof T
One approach to compute SoAR and Socialites rating of
a data store is to conduct experiments starting with T'=1
and increment T’ by one every time an experiment succeeds.
It would maintain the highest observed throughput and the
highest T" value. And, it terminates once an experiment
fails (see Assumption 1 below) to satisfy the SLA, reporting
the highest observed throughput as SoAR and the largest T
as Socialites rating of the data store. A limitation of this
strategy is that it requires a substantial amount of time.
For example, in Figure 6, MongoDB supports a Socialites
rating of 1000, T=1000. An exhaustive search starting with T

-~

Socialites

Throughput

5 B . . 0.e SoAR search space
We treat each BGClient individually because its fragment

of the social network is independent of others, see Section 4.

Figure 9: Assumptions of BG’s rating technique.



1 thread and assuming A=10 minutes would require almost
7 days.

BGCoord employs heuristic search to expedite rating of
a data store. This expedites rating of a data store by con-
ducting fewer experiments than an exhaustive search. This
technique makes the following 3 assumptions about the be-
havior of a data store as a function of T

1. Throughput of a data store is either a square root func-
tion or a concave inverse parabola of the number of
threads, see Figure 9.a.

2. Average response time of a workload either remains
constant or increases as a function of the number of
threads, see Figure 9.b.

3. Percentage of stale data produced by a data store ei-
ther remains constant or increases as a function of the
number of threads, see Figure 9.c.

These are reasonable assumptions that hold true in most
cases. Below, we formalize the second assumptions in greater
detail. Subsequently, we detail the heuristic for SoAR and
Socialites rating. Finally, we describe sampling using é val-
ues (smaller than A) to further expedite the rating process.

Figure 9.b shows the average response time (RT) of a
workload as a function of 7. With one thread, RT is the
average service time (S) of the system for processing the
workload. With a handful of threads, RT may remain a
constant due to use of multiple cores and sufficient network
and disk bandwidth to service requests with no queuing de-
lays. As we increase the number of threads, RT may in-
crease due to either (a) an increase in S attributed to use
of synchronization primitives by the data store that slow it
down [8, 21], (b) queuing delays attributed to fully utilized
server resources where RT'=5+Q and Q is the average queu-
ing delay, or both. In the absence of (a), the throughput of
the data store is a square root function of T', see Figure 9.a.
In scenario (b), @ is bounded with a fixed number of threads
since BG emulates a closed simulation model where a thread
may not issue another request until its pending request is
serviced. Moreover, as RT increases, the percentage of re-
quests observing an RT lower than or equal to 8 decrease,
see Figure 9.d.

The heuristic search technique to compute Socialites rat-
ing of a data store starts with an experiment using one
thread, T=1. If the experiment succeeds, it doubles the
value of T'. It repeats this process until an experiment fails,
establishing an interval for the value of T. The minimum
value of this interval is the previous value of T that suc-
ceeded and its maximum is the value of T' that failed. The
heuristic performs a binary search of 7' in this interval to
compute the highest T value that enables an experiment to
succeed. This is the Socialites rating of the data store. It is
accurate as long as Assumption 1 is satisfied, see Figure 9.a.

The heuristic to compute SoAR is similar to Socialites
with several key differences. First, BGCoord maintains the
highest observed throughput with each T value, Ar. It stops
doubling T once an experiment produces a throughput lower
than Ar or fails to satisfy the pre-specified SLA as is the case
with the square root curve of Figure 9.a. This is the point
denoted as 2T in Figure 9.e. It may not simply focus on the
interval (T,2T) because the peak throughput might be in
the interval (£,T), see Figure 9.e. Instead, it identifies the
peak throughput as follows. It conducts experiments with
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Figure 10: Number of experiments conducted to
compute SoAR.

T + n threads to determine the slope of the curve in each
direction. If both slopes are negative then T is the peak
and reported as the SoAR of the data store. Otherwise, it
focuses on the interval that contains the peak and performs
a hill climbing process to identify the peak.

The heuristic to compute SoAR visits tens of states even
though SoAR might be in the order of hundreds of millions
of actions per second. To illustrate, we used the following
quadratic function to model throughput of a data store as a
function of the number of threads: throughput=—T"2 + bT.
An experiment employs a fixed number of threads T that
serves as the input to the function to report the observed
throughput (all computed negative values are reset to zero).
The vertex of this function is the maximum throughput,
SoAR, and is computed by solving the first derivative of the
quadratic function: T:%. The heuristic must compute this
value of T as the SoAR of a system modeled using b.

We select different values of b to model diverse systems
whose SoAR varies from 500 to 100 million actions per sec-
ond. Figure 10 shows the number of visited states when
n=1. When SoAR is 100 million, the heuristic conducts 54
experiments to compute the value of T that maximizes the
output of the function. Ten states are repeated from previ-
ous iterations with the same value of T'. To eliminate these,
the heuristic maintains the observed results for the differ-
ent values of T" and performs a look up of the results prior
to conducting the experiment. This reduces the number of
unique experiments to 40. This is 2.6 times the number
of experiments conducted with a system modeled to have
a SoAR of 500 (which is several orders of magnitude lower
than 100 million).

During its search process, BGCoord may run the different
experiments with a shorter duration (§) than A to expedite
the rating process, § < A. Once it identifies the ideal value
of T with ¢ for SoAR (Socialites), it runs a final experiment
with A to compute the final SoAR (Socialites rating) of a
data store. A key question is what is the ideal value of
67 Ideally, it should be small enough to expedite the time
required to rate a data store and, large enough to enable BG
to rate a data store accurately. There are several ways to
address this. For example, one may compare the throughput
computed with § and A for the final experiment and, if
they differ by more than a certain percentage, repeat the
rating process with a larger ¢ value. Another possibility is
to employ a set of values for §: {41, d2,..., §;}. If the highest
two §; values produce identical ratings, then they establish
the value of § for that experiment. The number of § values in



the set should be small enough to render the rating process
faster than performing the search with A.

The value of § is an input to BGCoord. If it is left un-
specified, BG uses A for the rating process. As an example,
numbers of Figure 6 are generated using §=3 minute. The
solid rectangle boxes (SoAR ratings with different ) are
generated using A=10 minutes.

7. RELATED WORK

BG falls in the vector based approach of [28] that models
application behavior as a list of actions and sessions (the
‘vector’) and randomly applies each action to its target data
store with the frequency a real application would apply the
action. The input workload file of BG specifies the frequency
of different actions and session, configuring BG to emulate
a wide range of social networking applications. (See Table 3
for three example mixes.) This flexibility is prevalent with
both YCSB [12] and YCSB++ [24]. In fact, our implemen-
tation of BG employs the core components of YCSB and ex-
tends them with new ones such as the actions of Section 3,
D-Zipfian, BGCoord, and BG’s visualization deck. Those
with hands on experience with YCSB find BG familiar with
the following key modifications and extensions:

1. A more complex conceptual schema specific to social
networks.

2. Simple table operations of YCSB have been replaced
with social actions and sessions.

3. BG consumes an SLA to compute two ratings for a
data store: So0AR and Socialites. If no SLA is specified,
BG execute the same as YCSB.

4. BG quantifies the amount of unpredictable data pro-
duced by a data store.

5. BG employs a shared-nothing architecture and con-
structs self-contained fragments of its database to en-
sure concurrent socialites emulated by independent BG-
Clients are unique, see Section 4. This eliminates the
need for coordination between BGClients during bench-
marking phase, enabling BG to scale to a large number
of nodes.

Some of BG’s extensions to YCSB are similar to those that
differentiate YCSB++ from YCSB. For example, the con-
cept of multiple BGClients managed by BGCoord is similar
to how YCSB++ supports multiple YCSB clients. However,
there are also differences. First, YCSB++ includes mecha-
nisms specific to evaluate table stores such as HBase. These
include function shipping and fine grained access control. In-
stead of these, BG focuses on interactive social networking
actions of Section 3 and their implementation with alter-
native data stores. While extension 5 of BG (see the pre-
vious paragraph) is similar to ingest-intensive extension of
YCSB++, it goes beyond simple ranges that partition data
across multiple nodes: Friendships and resources of mem-
bers are logically partitioned to construct IV self-contained
independent social networks where N is the number of BG-
Clients.

Second, YCSB++ consists of an elegant mechanism to
quantify the inconsistency window: The lag in acknowledged
data store changes that are not seen by other clients for
some time due to use of a weak consistency semantic such

as eventual consistency [33]. BG captures the impact of such
design decisions by quantifying the amount of unpredictable
data. Both metrics are in synergy and may co-exist in a
benchmark.

Finally, while both YCSB and YCSB++ lack the con-
cept of an SLA to rate a data store, SLAs are the essence
of TPC-A/C benchmarks [17]. For example, TPC-A mea-
sures transactions per second (tps) subject to a response
time constraint. BG is similar as it employs SLAs to obtain
its rating. It is different than TPC because it focuses on so-
cial networking actions and incorporates unpredictable data
as a component of SLAs.

8. FUTURE RESEARCH

While there are many data stores, there is a “gaping hole”
with scarcity of benchmarks to substantiate the claims of
these data stores [10]. Social networking companies continue
to contribute data stores to address their requirements for
interactive member actions, e.g., Cassandra and TAO [1] by
Facebook and Voldemort by LinkedIn. BG is a benchmark
to evaluate these alternative implementations and their claims
objectively. The most important feature of BG is its abil-
ity to scale to characterize the performance of a data store
accurately.

Our immediate short term activities are as follows. First,
we are studying alternative physical design of data with both
the relational [7] and JSON-Like models. Second, we are ex-
tending the validation phase of BG to utilize its log records
to compute the lag for an acknowledged update to be vis-
ible to all clients [34]. Third, we are extending BG with
additional interactive actions such as posting and viewing
a tweet with Twitter, newsfeed with Facebook, job change
with LinkedIn [29]. Fourth, we are using BG in a number of
studies to evaluate elasticity of data stores and their behav-
ior in the presence of failures.
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APPENDIX
A. A DEMONSTRATION OF BG

This paper is accompanied with a 10 minute demonstra-

tion of BG using its visualization tool. It highlights the
pitfalls of benchmarking a data store and best practices to
collect accurate ratings. One obtains invalid ratings from a
data store for a variety of reasons ranging from invalid pa-
rameter settings to BGClients becoming fully utilized. We
use the term bottleneck node to refer to a node of the sys-
tem with either a fully utilized CPU, network bandwidth, or
mass storage device (disk or flash). BG’s interface empowers
its users to visualize each participating node and utilization
of its resources to detect bottlenecks, see Figure 11. In ad-
dition, it enables its users to perform the following tasks:
specify values for parameters used to populate a data store,
start loading the data store, specify values for parameters
used to initiate a multi-node BGClient experiment, start rat-
ing a data store and monitor its progress. This tool is useful
for analyzing the SOAR and Socialites rating of a data store
and detecting when the obtained ratings are invalid. The
latter is the center piece of the demonstration.
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Figure 11: BG’s Visualization Deck.



