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Abstract

In Bennett et al. [BGG reciprocity for current algebras, Adv. Math. 231 (2012), 276–305]
it was conjectured that a BGG-type reciprocity holds for the category of graded
representations with finite-dimensional graded components for the current algebra
associated to a simple Lie algebra. We associate a current algebra to any indecomposable
affine Lie algebra and show that, in this generality, the BGG reciprocity is true for the
corresponding category of representations.

Introduction

Macdonald polynomials are families of polynomials that depend on several parameters and are
associated to affine roots systems or, equivalently, to indecomposable affine Lie algebras g. They
encode a wealth of information at the intersection of combinatorics, algebraic geometry, and
representation theory. In particular, it is known that, for g twisted or simply-laced untwisted
and after a certain specialization of the parameters, nonsymmetric Macdonald polynomials are
the Demazure characters for the level one highest weight g-representations [Ion03, San00]. The
corresponding statement for the remaining affine Lie algebras is generally false.

In this paper, on one hand, we shall be concerned, for any indecomposable affine Lie
algebra g, with a uniform representation-theoretical interpretation of the symmetric Macdonald
polynomials after the specialization of parameters alluded to above, and, on the other hand, with
establishing a link between combinatorial and algebraic properties of Macdonald polynomials
and representation theory. The interpretation is in the context of the representation theory
of the current algebra Cg which is defined, up to the scaling operator of g, as the special

(hyperspecial if g is of type A
(2)
2n ) maximal parabolic subalgebra k of g. The current algebra Cg has

a natural grading that arises from the action of the scaling operator of g. We shall be interested
in a category of graded representations of Cg; from this point of view k is a more canonical
object as it contains both Cg and the scaling operator and a k-representation is essentially a
graded Cg-representation. The relevant category for us is denoted by kF and has as objects the
representations of k with finite-dimensional eigenspaces for the scaling operator. For instance,
the k-stable Demazure modules of the highest weight g-representations are objects in this
category, making it clear that kF is not a semi-simple category. From this point of view, the
specialized symmetric Macdonald polynomials are graded characters of certain universal objects
in kF, called local Weyl modules (Theorem 4.2).

In the light of this representation-theoretical interpretation, our goal is to establish for

kF an analogue of the reciprocity result proved by Bernstein–Gelfand–Gelfand [BGG76] for the
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category O of a simple complex Lie algebra L. The reciprocity was conjectured in [BCM12] for
current algebras associated to untwisted affine Lie algebras and it was proved there for the current

algebra of type A
(1)
1 and later in [BBCKL14] for the current algebra of type A

(1)
n . In this paper,

we give a uniform proof of this conjecture for all indecomposable affine Lie algebras g. Our
argument rests on the observation in [BBCKL14, § 3.10] that the BGG reciprocity statement
for the category kF follows from the graded character equality of the objects that appear in
the statement. In [BBCKL14], the necessary graded character equality was established using a
Cauchy kernel expansion that does not exist beyond type A. To address this impediment, we
introduce a new scalar product (3.8) on a relevant ring of characters and show that the specialized
symmetric Macdonald polynomials normalized by their square norms with respect to this scalar
product are the graded characters of a second family of universal objects in kF, called global Weyl
modules (Proposition 4.3). Using these facts, the BGG reciprocity statement ultimately becomes
the manifestation of a simple scalar product identity for specialized Macdonald polynomials
(Proposition 3.4).

We present below a brief account of the BGG reciprocity statement and its proof.
Recall that the BGG reciprocity for the category O of L describes the relationship between

the following objects in O: the simple objects V (λ) (parametrized by elements of the dual of a
fixed Cartan subalgebra of L), their projective covers P (λ) (which are indecomposable objects
in O), and a third family M(λ) of indecomposable objects, called Verma modules. The Verma
modules are crucial for our understanding of the category O but the categorical properties
that distinguish them seem to be elusive. The projective covers of simple objects have a finite
filtration by Verma modules and the Verma modules have finite length and therefore admit a
Jordan–Hölder series. The BGG reciprocity states that the filtration multiplicity of a Verma
module M(µ) in the projective cover P (λ) is equal to the Jordan–Hölder multiplicity of V (λ)
in M(µ).

The simple objects of kF are parametrized by pairs (λ, k) where λ varies over an index set of
irreducible finite-dimensional representations of the Levi factor g̊ of k (a simple Lie algebra) and
k varies over the integers. For the moment, to avoid unravelling more structure and introducing
more notation, we will denote them by V (λ, k) and denote their projective cover by P (λ, k).
The analogues in kF of the Verma modules are called global Weyl modules and denoted by
W (λ, k). This concept was defined in [CP01] for untwisted affine Lie algebras; we give here a
uniform construction for all affine Lie algebras. A second family of indecomposable objects in kF
consists of the unique maximal finite-dimensional quotients of W (λ, k) in kF; these are denoted
by Wloc(λ, k) and called local Weyl modules. A deep result in the theory is the freeness of W (λ, k)
as a module over a certain polynomial algebra Aλ. This allows us, for example, to relate in a
precise way the graded g̊-characters of W (λ, r) and Wloc(λ, r).

There are similarities but also significant differences, not only between the categories O and

kF, but also between the structure of the Verma modules and that of the global Weyl modules.
One complication is the fact that global Weyl modules are not of finite length. Nevertheless,
there exists a BGG-type reciprocity in this context (Theorem 4.7): any P (λ, k) has a filtration
by global Weyl modules, and the filtration multiplicity of W (µ, s) in P (λ, k) is equal to the
Jordan–Hölder multiplicity of V (λ, k) in Wloc(µ, s).

The proof follows the strategy laid out in [BBCKL14]. For any object M in kF one can
construct a more or less canonical descending filtration and a direct sum of global Weyl modules
that surjects onto grM , the graded object associated to the filtration. To show that this
construction, when applied to P (λ, k), produces a bijection between the appropriate direct sum
of global Weyl modules and grP (λ, k) it is enough to compare their graded g̊-characters and
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it can be seen that, in fact, the equality of multiplicities in the BGG reciprocity statement

implies that P (λ, k) has a filtration by global Weyl modules. Taking into account the fact

that the graded g̊-characters of local and global Weyl modules can be expressed in terms of

specialized symmetric Macdonald polynomials, we establish the equality of multiplicities in

the BGG reciprocity statement as a consequence of a scalar product identity for specialized

Macdonald polynomials.

In conclusion, we point out that the conventional definition of the current algebra is as

follows. The current algebra L[t] associated to a simple complex Lie algebra L is the Lie

algebra of polynomial maps C → L. It can be identified with the C-vector space L ⊗C C[t]

with Lie bracket the C[t]-bilinear extension of the Lie bracket of L. The current algebras L[t] are

isomorphic (as Lie algebras) with the algebras Cg for g an untwisted indecomposable affine Lie

algebra. A twisted current algebra is conventionally defined as a fixed point subalgebra of L[t]

under an automorphism induced by a non-trivial outer automorphism of L. With the exception

mentioned below, the twisted current algebras are isomorphic to the algebras Cg for g a twisted

indecomposable affine Lie algebra. For L of type A2n, the fixed point construction corresponds

to a special, but not hyperspecial, maximal parabolic subalgebra of g of type A
(2)
2n and it is hence

different from our algebra Cg. The theory of local and global Weyl modules for the hyperspecial

maximal parabolic in type A
(2)
2n is developed in [CIK14]. The validity of the freeness property

of the global Weyl modules for the hyperspecial maximal parabolic subalgebra indicates that

perhaps there must be a more general and coherent theory of local and global Weyl modules

extending beyond the usual map algebras or equivariant map algebras studied, for example, in

[CFK10, NSS12, FMS14].

1. Affine Lie algebras

1.1 Hereafter, unless otherwise specified, all vector spaces are complex vector spaces and ⊗
stands for ⊗C.

1.2 We refer to [Kac90] for the general theory of affine Lie algebras. Let A = (aij)06i,j6n be an

indecomposable affine Cartan matrix, S(A) the Dynkin diagram, and (a0, . . . , an) the numerical

labels of S(A) in Table Aff from [Kac90, pp. 54–55]. We denote by (a∨0 , . . . , a
∨
n) the labels of

the dual Dynkin diagram S(tA) which is obtained from S(A) by reversing the direction of all

arrows and keeping the same enumeration of the vertices. The associated finite Cartan matrix

is Å = (aij)16i,j6n. Note that a∨0 = 1 for all indecomposable affine Cartan matrices while a0 = 1

in all cases except for A = A
(2)
2n for which a0 = 2.

1.3 Let (h, R,R∨) and (̊h, R̊, R̊∨) be realizations of A and Å, respectively, and let g and g̊ be the

associated affine and finite-dimensional simple Lie algebras, respectively. We can arrange that

h̊ ⊂ h, R̊ ⊂ R and that g̊ is a Lie subalgebra of g. The subspaces h and h̊ are the corresponding

Cartan subalgebras, and R, R̊ are the root systems corresponding to (g, h) and (̊g, h̊), respectively,

and we have

g = h⊕
⊕
α∈R

gα, g̊ = h̊⊕
⊕
α∈R̊

g̊α. (1.1)

We refer to [Kac90] for the details of this construction.
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1.4 Fix a Borel subalgebra h ⊂ b of g and the corresponding Borel subalgebra h̊ ⊂ b̊ of g̊.
For later use, we denote the corresponding nilpotent radicals by n and n̊, respectively. Let R+

and R̊+ be the set of roots of (b, h) and (̊b, h̊), respectively. With the notation R− := −R+ and
R̊− = −R̊+ we have

R = R+ ∪R−, R̊ = R̊+ ∪ R̊−. (1.2)

Let {αi}06i6n be the basis of R determined by R+ and let {α∨i }06i6n ⊂ h be the corresponding set

of coroots. The basis of R̊ determined by R̊+ is {αi}16i6n and {α∨i }16i6n ⊂ h̊ are the associated
coroots.

1.5 The center of g is one-dimensional and is spanned by the canonical central element

K = a∨0α
∨
0 + · · ·+ a∨nα

∨
n ∈ h. (1.3)

Fix d ∈ h such that α0(d) = 1 and αi(d) = 0 for 1 6 i 6 n; d is called the scaling element
and is unique modulo the subspace spanned by K. With this notation, we have the following
decomposition

h = h̊⊕ CK ⊕ Cd. (1.4)

Let

δ = a0α0 + · · ·+ anαn ∈ R+ (1.5)

be the positive non-divisible null-root in R. For 1 6 i 6 n, define Λi ∈ h̊∗ by Λi(α
∨
i ) = δi,j , for

1 6 j 6 n, where δi,j is Kronecker’s delta symbol. The element Λi is the fundamental weight of
g̊ corresponding to α∨i . We also define Λ0 ∈ h∗ by Λ0(α∨i ) = δ0,i, for 0 6 j 6 n, and Λ0(d) = 0.
The element Λ0 is the fundamental weight of g corresponding to α∨0 .

We have

h∗ = h̊∗ ⊕ Cδ ⊕ CΛ0. (1.6)

An important role is played by the root

θ = a1α1 + · · ·+ anαn ∈ R̊+. (1.7)

This is the highest root of R̊ if g is untwisted or of type A
(2)
2n , and is the dominant short root

otherwise.

1.6 We will add R as a subscript whenever we refer to the real form of h or h∗ spanned by the
simple coroots and d, or by the simple roots and Λ0, respectively. A similar convention applies
for h̊ and h̊∗.

The following defines the non-degenerate normalized standard bilinear form ( , ) on h∗R:

(αi, αj) := d−1
i aij , 0 6 i, j 6 n, (Λ0, αi) := δi,0a

−1
0 and (Λ0,Λ0) := 0, (1.8)

with di := aia
∨−1
i . In particular, we have

(δ, h̊∗R) = 0, (δ, δ) = 0 and (δ,Λ0) = 1. (1.9)

The corresponding isomorphism ν : hR → h∗R sends α∨i to diαi, K to δ, and d to a0Λ0. We will
routinely identify elements via ν and regard, for example, coroots and coweights as elements
of h∗R.
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1.7 With respect to ( , ), the real roots of R have three possible lengths if g is of type A
(2)
2n ,

n > 2, the same length if the affine Dynkin diagram is simply laced, and two possible lengths
otherwise. We denote the set of short roots by Rs, the set of long roots by R`, and, for g of

type A
(2)
2n , denote the set of medium length roots by Rm. To avoid making the distinction later

on, if there is only one root length we consider all real roots to be short. Similar notation and
conventions apply to R̊.

Observe that

(θ, θ) = 2a0 and max
α∈R

(α, α) = 2r (1.10)

where r is the numerical label of Table Aff r in [Kac90] corresponding to the Dynkin diagram
of g. For any α ∈ R, it is convenient to consider the integer

rα := max

{
(α, α)

2
, 1

}
. (1.11)

The imaginary roots of R are

Rim = (Z\{0})δ,

while the real roots are

Rre := 1
2(R̊+ (2Z + 1)δ) ∪ (R̊+ 2Zδ) if A = A

(2)
2 ,

Rre := 1
2(R̊` + (2Z + 1)δ) ∪ (R̊s + Zδ) ∪ (R̊` + 2Zδ) if A = A

(2)
2n , n > 2,

Rre := (R̊s + Zδ) ∪ (R̊` + rZδ) otherwise.

The positive affine roots can be described as R+ = Rre,+ ∪Rim,+ where Rim,+ = Z>0δ, and

Rre,+ = 1
2(R̊+ + (2Z>0 + 1)δ) ∪ 1

2(R̊− + (2Z>0 + 1)δ) ∪ (R̊+ + 2Z>0δ) ∪ (R̊− + 2Z>0δ) for A
(2)
2

Rre,+ = 1
2(R̊+

` + (2Z>0 + 1)δ) ∪ 1
2(R̊−` + (2Z>0 + 1)δ) ∪ (R̊+

s + Z>0δ) ∪ (R̊−s + Z>0δ)

∪ (R̊+
` + 2Z>0δ) ∪ (R̊−` + 2Z>0δ) for A

(2)
2n , n > 2

Rre,+ = (R̊+
s + Z>0δ) ∪ (R̊−s + Z>0δ) ∪ (R̊+

` + rZ>0δ) ∪ (R̊−` + rZ>0δ) otherwise.

Let {Λi}16i6n and {Λ∨i | Λ∨i = d−1
i Λi, 1 6 i6 n} be the fundamental weights and fundamental

coweights of g̊, respectively. The weight and root lattices of g̊ are denoted by P̊ and Q̊ and the
lattice spanned by {α∨i | 1 6 i 6 n}, is denoted by Q̊∨. The root lattice of g is denoted by Q. For
us, the relevant set of weights of g is the integral lattice spanned by {Λi}06i6n and a−1

0 δ, which

we denote by P . We have P = P̊ ⊕ ZΛ0 ⊕ Za−1
0 δ, while Q = Q̊ ⊕ Zδ unless g is of type A

(2)
2n

in which case Q̊⊕Zδ ⊂ Q is a sub-lattice of index two. To be able to have uniform statements in
certain situations we need to consider the lattice Q ⊂ h̊∗R, defined as the orthogonal projection of

Q ⊂ h∗R onto h̊∗R. The lattice Q equals Q̊ unless g is of type A
(2)
2n for which Q̊ ⊂ Q is a sub-lattice

of index two. The set of dominant and anti-dominant weights of g̊ is denoted by P̊+ and P̊−,
respectively; the set of dominant elements of P of g is denoted by P+. Define Q̊+ and Q

+
as the

cone spanned by R̊+ inside Q̊ and, respectively, Q.

1.8 Given α ∈ Rre and x ∈ h∗ let

sα(x) := x− 2(x, α)

(α, α)
α. (1.12)

1269

https://doi.org/10.1112/S0010437X14007908 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007908


V. Chari and B. Ion

The affine Weyl group W is the subgroup of GL(h∗R) generated by all sα (the simple reflections

si = sαi , 0 6 i 6 n, are enough). The finite Weyl group W̊ is the subgroup generated by
s1, . . . , sn. The bilinear form on h∗R is equivariant with respect to the affine Weyl group action.
Both the finite and the affine Weyl group are Coxeter groups and they can be abstractly defined
as generated by s1, . . . , sn, respectively s0, . . . , sn, and the following relations:

(a) reflection relations: s2
i = 1;

(b) braid relations: sisj · · · = sjsi · · · (there are mij factors on each side, mij being equal to
2, 3, 4, 6 if the number of laces connecting the corresponding nodes in the Dynkin diagram
is 0, 1, 2, 3 respectively).

For x ∈ h∗ we denote by W (x) and W̊ (x) the orbit of x under the action of W and W̊ , respectively.
Let M ⊂ h̊∗R be the lattice generated by W̊ (a−1

0 θ). The affine Weyl group contains the finite
Weyl group and a normal abelian subgroup isomorphic to M . We will denote the latter by τ(M)
and its elements by τµ, µ ∈ M . The action by conjugation of W̊ on τ(M) and the usual action

of W̊ on M ⊂ h̊∗R are related by
ẘτµẘ

−1 = τẘ(µ). (1.13)

This allows W to be presented as a semidirect product W ∼= W̊ nM .
For any real number s, the subset h∗s = {x ∈ hR | (x, δ) = s} is an (affine) hyperplane of h∗R,

called the level s of h∗R. We have

h∗s = h∗0 + sΛ0 = h̊∗R + Rδ + sΛ0. (1.14)

The action of W preserves each h∗s and we can identify each level canonically with h∗0 and obtain
an (affine) action of W on h∗0. If si ∈ W is a simple reflection, write si(·) for the usual (level
zero) action of si on h∗0 and si〈·〉 for the affine action of si on h∗0 corresponding to the level one
action. For example, the level zero action of s0 and τµ is

s0(x) = sθ(x) + (x, θ)a−1
0 δ,

τµ(x) = x− (x, µ)δ,
(1.15)

and the level one action of the same elements is

s0〈x〉 = sθ(x) + (x, θ)a−1
0 δ − α0,

τµ〈x〉 = x+ µ− (x, µ)δ − 1
2 |µ|

2δ.
(1.16)

The level one action on h∗0 induces an affine action of W on h̊∗R. As a matter of notation, we

write w · x for the level one affine action of w ∈W on x ∈ h̊∗R. For example,

s0 · x = sθ(x) + a−1
0 θ,

τµ · x = x+ µ.
(1.17)

The fundamental alcove is defined as

C := {x ∈ h̊∗R | (x+ Λ0, α
∨
i ) > 0, 0 6 i 6 n}. (1.18)

We remark that
P+

1 := (P̊ ∩ C) + Λ0 (1.19)

is the set of level one dominant weights of g and that

OP̊ := P̊ ∩ C (1.20)

is a set of representatives for the level one W orbits on P̊ .
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If we examine the orbits of the level zero action of the affine Weyl group W on the real affine
roots Rre we find the following:

(a) if g is not of type C
(1)
n there are as many orbits as root lengths;

(b) if g is of type C
(1)
n then there are three orbits:

W (α1) = R̊s + Zδ, W (αn) = R̊` + 2Zδ and W (α0) = R̊` + (2Z + 1)δ.

1.9 For Λ ∈ P+, let V (Λ) be the unique irreducible highest weight g-module with highest weight
Λ. For each w ∈ W and Λ ∈ P+ the weight space V (Λ)w(Λ) is one-dimensional. The b-module
generated by V (Λ)w(Λ) depends only on w(Λ) and is denoted by D(w(Λ)). These modules are
called Demazure modules and they are finite-dimensional vector spaces. The eigenspaces of the
scaling element d define a canonical Z-grading on the Demazure modules. Replacing Λ with
Λ + sa−1

0 δ produces modules that differ only in the d action: the grading of one is a shift of the
other. In this paper, we are concerned with the Demazure modules of g associated to a level one
dominant weight. Since

P+
1 = (P̊ ∩ C) + Λ0, (1.21)

the level one Demazure modules are of the form D(λ+ sa−1
0 δ+ Λ0) with λ ∈ P̊ . As these are the

only Demazure modules we will be concerned with, to keep the notation as simple as possible,
we will use D(λ+ sa−1

0 δ) to refer to D(λ+ sa−1
0 δ + Λ0).

To a Demazure module D(w(Λ)) we can associate its character

χ(D(w(Λ))) = e−Λ0
∑
Υ∈P

dimC(D(w(Λ))Υ) · eΥ. (1.22)

For λ ∈ P̊+, let V̊ (λ) be the unique highest weight g̊-module with highest weight λ. The
Demazure modules in V̊ (λ) are defined in an analogous way and will be denoted by D̊(µ), where
µ ∈ W̊ (λ). If w◦ denotes the longest element of W̊ , then D̊(w◦(λ)) coincides with the highest
weight module V̊ (λ).

1.10 We shall say that g is an affine Lie algebra of type I if it is indecomposable and either a
simply-laced untwisted affine Lie algebra or a twisted affine Lie algebra. We shall say that g is
an affine Lie algebra of type II if it is an indecomposable, non-simply-laced, untwisted affine Lie
algebra.

The type I algebras are distinguished by certain special properties and we list those which
are most relevant for our study. They are precisely the indecomposable affine Lie algebras for

which α0 is a short root. Further, M = P̊ if g is of type A
(2)
2n and M = Q̊ otherwise. The set of

non-zero elements of OP̊ is empty if g is of type A
(2)
2n and is the set of minuscule weights of g̊

otherwise.
The root system R̊ determines the affine Lie algebra g of type I uniquely except when g is

of type A
(2)
2n−1 or A

(2)
2n in which case R̊ is of type Cn. A faithful invariant in this sense is

R̄ = {α|̊h | α ∈ R} ⊂ h̊∗ (1.23)

which is again a root system, possibly non-reduced. We have R̄ = R̊ in all cases except for g of

type A
(2)
2n for which R̄ is BCn, the unique irreducible non-reduced root system of rank n. The

correspondence between the set of type I affine Lie algebras g and the set of irreducible (possibly
non-reduced) root systems R̄ is bijective. The lattice Q is precisely the lattice spanned by R̄.
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2. Current algebras

2.1 An important Lie algebra is the maximal standard parabolic subalgebra of g corresponding
to the Dynkin diagram of g̊. The center of g splits over this maximal parabolic and for this reason
it is preferable to work with the maximal parabolic modulo the center. Therefore, let

k = (̊h⊕ Cd)⊕
⊕
α∈R+

gα ⊕
⊕
α∈R̊−

gα. (2.1)

Let us also establish the following notation: Rk = R+ ∪ R̊−, R−k = Rk\R+
k , R+

k = Rre,+
k ∪Rim,+,

and

Rre,+
k = (1

2(R̊+ + (2Z + 1)δ) ∪ (R̊+ + Zδ)) ∩Rre,+ if A = A
(2)
2 ,

Rre,+
k = (1

2(R̊+
` + (2Z + 1)δ) ∪ (R̊+ + Zδ)) ∩Rre,+ if A = A

(2)
2n , n > 2,

Rre,+
k = (R̊+ + Zδ) ∩Rre,+ otherwise.

Define
nre
k =

⊕
α∈Rre,+

k

gα ⊂ nk =
⊕
α∈R+

k

gα ⊃ nim =
⊕
k∈Z>0

gkδ, n̄k =
⊕
α∈R−k

gα. (2.2)

The current algebra is defined as the ideal of k described as

Cg = h̊⊕
⊕
α∈R+

gα ⊕
⊕
α∈R̊−

gα. (2.3)

Note that nk = nre
k ⊕ nim and Cg = n̄k ⊕ h̊⊕ nim ⊕ nre

k . The scaling element d acts both on k and
Cg inducing Lie algebra Z>0-gradings. The degree zero Lie subalgebras are k(0) = g̊ ⊕ Cd
and Cg(0) = g̊, respectively. The subspaces consisting of strictly positive homogeneous
components are ideals denoted by k+ and Cg+, respectively. Therefore, the following short
exact sequences split as k-modules:

0 → k+ → k → k(0) → 0, 0 → Cg+ → Cg → Cg(0) → 0. (2.4)

For later use we denote by π : k → k(0) the canonical surjection and by ϑ : k(0) → k the canonical
injection (a splitting of π); they are Lie algebra morphisms.

Remark 2.1. The current algebra is typically defined in the literature as follows. Let L denote
a simple Lie algebra and σ a diagram automorphism of L whose order we denote by m. Recall
that there is a bijective correspondence between (isomorphism classes of) indecomposable affine
Lie algebras g and pairs (L, σ), and under this correspondence g̊ is isomorphic to the fixed point
Lie subalgebra Lσ. In fact, the Kac label for the Dynkin diagram of g is X(m) where X is the
Dynkin type of L. Given an indeterminate t, the Lie algebra L[t] is defined as the vector space
L ⊗ C[t] with Lie bracket given by [x ⊗ f, y ⊗ g] = [x, y] ⊗ fg for x, y ∈ L and f, g ∈ C[t]. The
automorphism σ can be extended to L[t] by σ(x⊗f(t)) := σ(x)⊗f(e−2πi/mt). The fixed point Lie
subalgebra L[t]σ is called a current algebra in the literature. The Lie algebras Cg and L[t]σ are

isomorphic in all cases with the exception of g of type A
(2)
2n . In this situation, L[t]σ corresponds

to the special, not hyperspecial, standard maximal parabolic subalgebra of g and, furthermore,
Cg corresponds to the hyperspecial standard maximal parabolic subalgebra k of g (see [Tit79]).

Therefore, for g of type A
(2)
2n all the concepts discussed in this section are considered here for the

first time.
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2.2 Let M be a k-module. Since the central element is not contained in k the relevant set of
integral weights is Pk = P̊ ⊕ a−1

0 Zδ. We denote by P+
k the subset of dominant elements of Pk;

more precisely, P+
k = P̊+ ⊕ a−1

0 Zδ. We say that M is a weight k-module if

M =
⊕
Λ∈Pk

MΛ, (2.5)

where MΛ = {m ∈M | h ·m = Λ(h)m,∀h ∈ h̊⊕ Cd} is the weight space of M corresponding to
Λ. Denote by wt(M) the set of weights for which the weight spaces are non-zero. Note that the
weight k-modules have a canonical Z-grading given by the eigenspaces of d.

We have a corresponding notion of weight Cg-module where the set indexing the weights is
P̊ and the abelian subalgebra is h̊; in other words, a weight g̊-module. The set of weights with
non-zero weight spaces for the weight Cg-module M is denoted by ẘt(M). We use the same
notation for any weight g̊-module.

As is well known, for λ ∈ P̊+ we have ẘt(V̊ (λ)) = W̊ ({µ ∈ P̊+ | λ− µ ∈ Q̊+}). Again, to be
able to write some uniform statements we also need to consider the set

wt(V̊ (λ)) = W̊ ({µ ∈ P̊+ | λ− µ ∈ Q+})

which is identical to ẘt(V̊ (λ)), unless g is of type A
(2)
2n .

2.3 We define the following two categories. The first category, denoted by CgF
Z, has as objects

the Z-graded weight Cg-modules with finite-dimensional graded components; the morphisms
are maps of Z-graded Cg-modules. The second category, denoted by kF, has as objects the
weight k-modules such that the eigenspaces of d are finite dimensional; the morphisms are maps
of k-modules. For current algebras, the homological properties of the category CgF

Z were first
studied in [CG07], and the interest in these properties gradually emerged from a long sequence
of developments that started with [Cha86, CP01] as a category relevant to the structure of
the category of finite-dimensional representations of (quantum) affine Lie algebras; it is also the
natural context for certain questions in mathematical physics.

Let ∗ : kF → kF be the following duality functor. If M is an object in kF then M∗ is the
k-submodule of HomC(M,C) which is spanned by the linear duals of the d-eigenspaces of M ;
for morphisms f : M → N , f∗ : N∗ → M∗ is the restriction to N∗ of HomC(·,C)(f). It is a
straightforward check to see that ∗2 is naturally isomorphic to the identity functor of kF.

Proposition 2.2. The categories CgF
Z and kF are isomorphic.

Proof. The relevant functors relating the two categories,

F : kF → CgF
Z, G : CgF

Z
→ kF, (2.6)

are defined as follows. The functor F remembers only the Cg-module structure and the Z-grading
induced by the action of d. The functor G extends the Cg-module structure to a k-module
structure by letting d act as multiplication by m on the mth graded component of a Cg-module.
It is straightforward to verify that the two functors are inverse to each other. 2

Many of the concepts that have been studied in the context of the current algebra and the
category CgF

Z can, thanks to Proposition 2.2, be naturally studied in the context of the maximal
parabolic algebra and the category kF and we adopt this point of view in this paper.
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2.4 Let k(0)F be the category with objects that are k(0)-modules such that the eigenspaces of
d are finite dimensional; the morphisms are morphisms of k(0)-modules. Another description
of this category would be as the category of graded g̊-modules with finite-dimensional graded
components. It is a semi-simple category and its simple objects are the irreducible highest weight
modules with highest weight of the form λ + kδ ∈ P+

k ; we denote such modules by V̊ (λ + kδ).

An alternative description of V̊ (λ+kδ) would be as the graded g̊-module whose unique non-zero
homogeneous component is V̊ (λ) in degree a0k. Note that V̊ (λ + kδ) are projective objects
in k(0)F.

The Lie algebra homomorphism π : k → k(0) induces the pull-back functor

π∗ : k(0)F → kF. (2.7)

The map ϑ : k(0) → k gives rise to the usual induction and restriction functors

indk
k(0) : k(0)F → kF, reskk(0) : kF → k(0)F, (2.8)

where indk
k(0)M = U(k)⊗U(k(0)) M . Recall that indk

k(0) is a left adjoint for reskk(0).

For all α ∈ R̊ let xα ∈ g̊α be such that the set {xα | α ∈ R̊}∪ {α∨i | 1 6 i 6 n} is a Chevalley
basis of g̊.

Proposition 2.3. Up to isomorphism, the following hold:

(i) π∗V̊ (λ+ kδ), λ+ kδ ∈ P+
k , are the simple objects in kF;

(ii) indk
k(0) V̊ (λ+ kδ) is the projective cover of its unique simple quotient π∗V̊ (λ+ kδ).

Proof. This is part of Propositions 1.3 and 2.1 in [CG07]. We briefly sketch the argument for
the reader’s convenience.

For the first part, we note that since k is graded by Z>0, the action of k can only raise degree
and therefore a non-homogeneous module has proper submodules. Since homogeneous objects
are finite-dimensional g̊-modules our claim follows.

For the second part, indk
k(0) being a left adjoint is right exact and sends projective objects to

projective objects. Therefore, indk
k(0) V̊ (λ+ kδ) is projective. The kernel of the epimorphism

indk
k(0) V̊ (λ+ kδ) → π∗V̊ (λ+ kδ) (2.9)

is k+U(k+)⊗V̊ (λ+kδ) which can be seen to be a superfluous submodule of U(k)⊗U(k(0)) V̊ (λ+kδ)

because 1⊗U(k(0)) V̊ (λ+ kδ) generates it. If

indk
k(0) V̊ (λ+ kδ) → π∗V̊ (µ+mδ), (2.10)

with µ+mδ 6= λ+ kδ, is another simple quotient then 1⊗U(k(0)) V̊ (λ+ kδ) must be in the kernel
so the quotient map is trivial. 2

2.5 For λ + kδ ∈ P+
k , let vλ+kδ be a highest weight vector of V̊ (λ + kδ). Then, the simple

k(0)-module V̊ (λ+ kδ) is generated by vλ+kδ with the relations

n̊ · vλ+kδ = 0,

h · vλ+kδ = (λ+ kδ)(h)vλ+kδ, h ∈ h̊⊕ Cd,

x
(λ,α∨)+1
−α · vλ+kδ = 0, α ∈ R̊+.

(2.11)

Writing P (λ+ kδ) = indk
k(0) V̊ (λ+ kδ) and pλ+kδ = 1⊗ vλ+kδ, we observe that the projective

cover P (λ+ kδ) is the k-module generated by pλ+kδ with the same relations.
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2.6 Let 6 be the dominance partial order on P̊+: µ 6 λ if and only if λ − µ ∈ Q+
. Following

[CFK10], we define, for λ+ kδ ∈ P+
k , the global Weyl module W (λ+ kδ) as

W (λ+ kδ) =
P (λ+ kδ)∑

µ 66λ,s∈a−1
0 Z U(k)P (λ+ kδ)µ+sδ

. (2.12)

Proposition 2.4. For λ+ kδ ∈ P+
k , we have:

(i) W (λ+ kδ) is the maximal quotient of P (λ+ kδ) such that ẘt(W (λ+ kδ)) ⊆ wt(V̊ (λ));

(ii) W (λ+kδ) is the maximal quotient of P (λ+kδ) such that ẘt(W (λ+kδ))∩{µ | λ < µ} = ∅;

(iii) W (λ+ kδ) is the k-module generated by an element wλ+kδ with the relations

nre
k · wλ+kδ = 0,

h · wλ+kδ = (λ+ kδ)(h)wλ+kδ, h ∈ h̊⊕ Cd,

x
(λ,α∨)+1
−α · wλ+kδ = 0, α ∈ R̊+;

(2.13)

(iv) dimC(W (λ+kδ)λ+kδ) = 1 and W (λ+kδ) is indecomposable with π∗V̊ (λ+kδ) as its unique
simple quotient.

Proof. The first three statements are consequences of the PBW theorem; see, for example,
[CFK10, Proposition 4] and [BBCKL14, Proposition 3.3, Lemma 3.7] for details. Part (iv) follows
from part (ii) and Proposition 2.3(ii). 2

As a Cg-module, the global Weyl module W (λ + kδ) is the Cg-module generated by the
element wλ+kδ with the relations

nre
k · wλ+kδ = 0,

h · wλ+kδ = λ(h)wλ+kδ, h ∈ h̊,

x
(λ,α∨)+1
−α · wλ+kδ = 0, α ∈ R̊+.

(2.14)

Remark that, as Cg-modules, the global Weyl modules for fixed λ are isomorphic, their
distinguishing property as k-modules being their graded structure.

The global Weyl modules were originally introduced by generators and relations for the
untwisted affine Lie algebras in [CP01] but, as pointed out in [CL06], the definition can be
made for current algebras and all the results go over to the case of the current algebras. The
theory of global Weyl modules for the current algebras associated to twisted affine Lie algebras
is developed in [CIK14].

2.7 Consider the commutative algebra

A = U (̊h⊕ nim) = U

( ⊕
k∈Z>0

gkδ

)
. (2.15)

The scaling element d normalizes h̊⊕ nim and therefore endows A with a canonical Z>0-grading.
Since A is a subalgebra of U(Cg), the enveloping algebra U(Cg) acquires a right A-module

structure. Keeping in mind that the global Weyl module is a cyclic U(Cg)-module, one
can see that the left ideal generated by the relations (2.14) is also a right A-submodule
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(see [CFK10, § 3.4] for details). The annihilator of wλ+kδ in A is a graded ideal of A, independent

of k. With the notation

Aλ = A/AnnA(wλ), (2.16)

we see that the global Weyl module W (λ+kδ) is a U(Cg)−Aλ-bimodule. The graded structure of

W (λ+kδ) is compatible with the grading of A and therefore W (λ+kδ) is a U(k)−Aλ-bimodule.

Theorem 2.5. For λ+ kδ ∈ P+
k , the following hold:

(i) the map

Aλ →

⊕
j∈Z

W (λ+ kδ)λ+jδ =
⊕
j>k

W (λ+ kδ)λ+jδ, a 7→ wλ+kδ · a

is a linear isomorphism;

(ii) W (λ+ kδ) is a finitely generated Aλ-module;

(iii) the algebra Aλ is isomorphic as a graded algebra to the polynomial C-algebra in variables

Ti,r, 1 6 i 6 n, 1 6 r 6 (λ, α∨i ), where Ti,r has degree a0rαi if i < n and degree rαn if i = n.

Proof. Part (i) is immediate from the definition of Aλ. Parts (ii) and (iii) were proved in [CFK10,

Theorem 2] and [CFK10, Theorem 4] for g untwisted. The results were proved in [CIK14,

Theorem 1, Proposition 6.3, Theorem 8] for g twisted. 2

2.8 The local Weyl modules are defined as

Wloc(λ+ kδ,m) = W (λ+ kδ)⊗Aλ
(Aλ/m), (2.17)

where m is a maximal ideal of Aλ. Using Theorem 2.5(ii), we see that the local Weyl modules

are finite dimensional. Their importance in the study of the category of finite-dimensional

U(k)-modules arises from the fact that any finite-dimensional cyclic highest weight U(k)-module

generated by a one-dimensional λ-weight space is a quotient of Wloc(λ,m) for some maximal

ideal m of A (see [CP01, Proposition 2.1] and [CFS08, Lemma 2.5]). The local Weyl module

corresponding to the unique maximal homogeneous ideal of Aλ is an object of kF; we denote this

module by Wloc(λ+ kδ).

Proposition 2.6. For λ+ kδ ∈ P+
k , the following hold:

(i) Wloc(λ+ kδ) is the maximal quotient of P (λ+ kδ) such that ẘt(Wloc(λ+ kδ) ⊆ wt(V̊ (λ))

and dimCWloc(λ+ kδ)λ+jδ) = δj,k for j ∈ a−1
0 Z;

(ii) Wloc(λ+kδ) is a finite-dimensional, indecomposable object of kF with unique simple quotient

π∗V̊ (λ+ kδ);

(iii) Wloc(λ+ kδ)∗ has simple socle soc(Wloc(λ+ kδ)∗) = (π∗V̊ (λ+ kδ))∗;

(iv) Wloc(λ+ kδ) is the k-module generated by an element uλ+kδ with the relations

nk · uλ+kδ = 0,

h · uλ+kδ = (λ+ kδ)(h)uλ+kδ, h ∈ h̊⊕ Cd,

x
(λ,α∨)+1
−α · uλ+kδ = 0, α ∈ R̊+.

(2.18)

Proof. The proof is immediate from Theorem 2.5 and Proposition 2.4. 2
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2.9 The Demazure module D(λ+ sα−1
0 δ), which is usually only a b-module, is a k-module if λ

is an anti-dominant weight. For λ ∈ P̊ we denote by λ̃ the representative in OP̊ of the level one
W orbit of λ.

A fundamental result on local Weyl modules is their connection with Demazure modules. The

following result was proved in [CL06, Corollary 1.5.1] for g of type A
(1)
n , in [FL07, Theorem A]

for g untwisted of type I, and in [FK13, Theorem 5.0.2] for g twisted of type I but not of type

A
(2)
2n and in [CIK14, Theorem 2] for A

(2)
2n .

Theorem 2.7. Let g be an affine Lie algebra of type I and let λ + kδ ∈ P+
k . The local Weyl

module Wloc(λ+ kδ) and the Demazure module D(w◦(λ) + kδ) are isomorphic as k-modules.

Remark 2.8. Theorem 2.7 is not true if g is of type II. In this case, the Demazure module is a
proper quotient of the local Weyl module. Further details may be found in [Nao12].

2.10 The following crucial result was conjectured in [CP01] and proved there for g of type A
(1)
1 ,

in [CL06] for g of type A
(1)
n , in [FL07, Corollary B] for untwisted simply-laced affine algebras,

in [Nao12, Corollary A] for the untwisted non-simply-laced affine Lie algebras, and in [CIK14,
Theorems 3 and 10] for g twisted.

Theorem 2.9. Let λ+ kδ ∈ P+
k and let m be a maximal ideal of Aλ. Then,

dimCWloc(λ+ kδ, m) = dimCWloc(λ+ kδ).

Theorem 2.9 implies that the global Weyl module is a projective Aλ-module. Using Theorem
2.5(iii) and the Quillen–Suslin theorem [Qui76, Sus76] we obtain the following.

Corollary 2.10. The global Weyl module W (λ+ kδ) is a free Aλ-module of finite rank and

Wloc(λ+ kδ)⊗Aλ
∼= W (λ+ kδ)

as graded U(k(0))−Aλ-bimodules.

2.11 For an object M of kF, let head(M) be its maximal semi-simple quotient. The kernel of
the canonical map hM : M → headM is the intersection rad(M) of the maximal k-submodules
of M . Assume that for some positive integers m(λ+ kδ) we have

head(M) =
⊕

λ∈P̊+, k∈a−1
0 Z

π∗V̊ (λ+ kδ)⊕m(λ+kδ). (2.19)

Denote

PM =
⊕

λ∈P̊+, k∈a−1
0 Z

P (λ+ kδ)⊕m(λ+kδ) and WM =
⊕

λ∈P̊+, k∈a−1
0 Z

W (λ+ kδ)⊕m(λ+kδ). (2.20)

Since PM is projective, there is a canonical map h̃M making the following diagram commutative.

PM
h̃M

zz ��
M

hM
// head(M) // 0

The following lemma emulates the result in [BBCKL14, § 4.4].
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Lemma 2.11. With the notation above, h̃M is surjective.

Proof. From the commutativity of the diagram we obtain that rad(M) + h̃M (PM ) = M . Since
rad(M) is superfluous we obtain h̃M (PM ) = M . 2

Definition 2.12. Let M be an object in kF and let λ ∈ P̊+. We say that M is λ-isotypical if
ẘt(M) ⊆ wt(V̊ (λ)) and

head(M) =
⊕

k∈a−1
0 Z

π∗V̊ (λ+ kδ)⊕m(λ+kδ).

Remark 2.13. Alternatively, the second condition in the definition can be substituted with the
condition that M is generated by

⊕
k∈a−1

0 ZMλ+kδ. The direct implication follows from the fact

that

N := U(k) ·
⊕

k∈a−1
0 Z

Mλ+kδ

maps surjectively onto head(M) which implies that N + rad(M) = M and hence N = M since
rad(M) is superfluous. The converse follows from the fact that head(M) would have to be
generated by the same weight spaces. The local and global Weyl modules indexed by λ+ kδ are
examples of λ-isotypical objects.

The following result is implicit in [BBCKL14, §§ 4.3 and 4.5].

Lemma 2.14. If M is λ-isotypical then h̃M factors through WM and

m(λ+ sδ) = dimC Homk(M,π∗V̊ (λ+ sδ))

= dimC Homk(M,Wloc(−w◦(λ)− sδ)∗).

Proof. Let I be an index set and I → Z, i 7→ ki a map such that head(M) =
⊕

i∈I π
∗V̊ (λ+kiδ).

Denote

Mi := h̃M (P (λ+ kiδ)).

Then, the induced map h̃i : P (λ + kiδ) → Mi is a quotient and ẘt(Mi) ⊆ wt(V̊ (λ)). From
Proposition 2.4(i), the map h̃i factors through W (λ+ kiδ). The direct sum of the maps

W (λ+ kiδ) → Mi ↪→ M

is the descent of h̃M . From the surjective maps

WM → M → head(M)

we obtain injections

Homk(head(M), π∗V̊ (λ+ sδ)) → Homk(M,π∗V̊ (λ+ sδ)) → Homk(WM , π
∗V̊ (λ+ sδ)).

From Propositions 2.3(i) and 2.4(iv) we conclude that

dimC Homk(head(M), π∗V̊ (λ+ sδ)) = m(λ+ sδ) = dimC Homk(WM , π
∗V̊ (λ+ sδ)),

which implies that

m(λ+ sδ) = dimC Homk(M,π∗V̊ (λ+ sδ)).
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For the second equality, note that g ∈ Homk(M,Wloc(−w◦(λ) − sδ)∗) is determined
by its restriction to

⊕
i∈IMλ+kiδ and therefore, since

⊕
k∈a−1

0 Z(Wloc(−w◦(λ) − sδ)∗)λ+kδ =

(Wloc(−w◦(λ)− sδ)∗)λ+sδ, by its restriction to Mk+sδ. Consequently, the image of g is contained
in the k-submodule generated by (Wloc(−w◦(λ)− sδ)∗)λ+sδ which, by Proposition 2.6(iii), is

soc(Wloc(−w◦(λ)− sδ)∗) = (π∗V̊ (−w◦(λ)− sδ))∗ ∼= π∗V̊ (λ+ sδ).

Hence, we have

dimC Homk(M,Wloc(−w◦(λ)− sδ)∗) = dimC Homk(M,π∗V̊ (λ+ sδ)),

which is precisely our claim. 2

3. Macdonald polynomials

3.1 For an irreducible affine root system R, Macdonald [Mac00] (for R̄ reduced) and
Koornwinder [Koo92] (for R̄ non-reduced) constructed a family of Weyl group invariant
polynomials which depend rationally on a parameter q and a number of t parameters.

The Koornwinder polynomials depend on five t parameters in rank two or greater and on
four parameters in rank one. We will be interested in the connection between Koornwinder

polynomials and Demazure module characters for g of type A
(2)
2n . For this purpose two of the t

parameters are specialized (see [Ion03, § 3.2]) leaving us with a family of polynomials depending
on a parameter q and as many t parameters as root lengths in R̄, a situation which is consistent
with the dependence of parameters of the Macdonald polynomials.

In establishing the connection between Macdonald and Koornwinder polynomials with
Demazure module characters it is necessary to study the limit of these polynomials as the t
parameters approach infinity. Since it is enough for our purposes, and to avoid introducing
the complex notation necessary to describe the full-parameter objects, we will only work with
Macdonald polynomials for which all the t parameters are set to be equal and with Koornwinder
polynomials for which two of the t parameters are specialized according to [Ion03, § 3.2] and the
remaining ones are set to be equal. In what follows we will leave aside the distinction between
reduced and non-reduced root systems and the fact that we work in a particular situation and
we will call them all Macdonald polynomials.

3.2 Let Fq,t be the field of rational functions in qa
−1
0 and t with rational coefficients and Fq its

subfield of rational functions in qa
−1
0 . The algebra Rq,t = Fq,t[eλ;λ ∈ P̊ ] are the Fq,t-group algebra

of the lattice P̊ , while Rq = Fq[eλ;λ ∈ P̊ ] and R = Q[eλ;λ ∈ P̊ ] is the Fq-group algebra of P̊ and

the Q-group algebra of P̊ , respectively. The elements eλ, λ ∈ P̊ are regarded as characters of the
compact torus h̊R/Q̊

∨ and multiplication is given by eλ · eµ = eλ+µ. For Λ ∈ P̊ ⊕ a−1
0 Zδ define

eΛ ∈ Rq by setting eδ = q−1. In particular, the characters (1.22) of the affine level one Demazure
modules can be regarded as elements of Rq. For any formal expansion f in the characters of the

torus h̊R/Q̊
∨ the coefficient of e0 in the expansion is called the constant term of f and will be

denoted by [f ]. The action of W̊ on P̊ extends linearly to an action of W̊ on Rq,t; we denote the

subalgebra of W̊ -invariants by RW̊q,t and use the corresponding notation for Rq and R.

3.3 The involution of Fq,t which inverts each of the parameters q, t extends to an involution ·
on the algebra Rq,t which sends each eλ to e−λ. Let

∇(q, t) =
∏
α∈R̊−

1− eα

1− t−1eα

∏
α∈Rre,+

1− eα

1− t−1eα
(3.1)
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which should be seen as a formal series in the elements eλ, λ ∈ Q̊ with coefficients in Z[t−1][[q−1]]
(power series in q−1 with coefficients polynomials in t−1). Furthermore, it is both W̊ and · -
invariant.

In the special case when t = qk and k is a positive integer this function was introduced by
Macdonald in [Mac00] and used to define a family of orthogonal polynomials associated to root
systems and depending on the parameters q and t. Note that in this case ∇(q, qk) is given by a
finite product.

The constant term [∇(q, t)] of ∇(q, t) was the subject of conjectures by Macdonald, and
Koornwinder, later to be proved by Cherednik [Che95a] (for reduced R̄) and Gustafson [Gus90]
(for non-reduced R̄) respectively. The Macdonald kernel is defined as

∆(q, t) =
∇(q, t)

[∇(q, t)]
. (3.2)

It is W̊ -invariant, · -invariant, has constant term equal to one, and can be expressed as a formal
series in the characters of h̊R/Q̊

∨ with coefficients Fq,t (see, for example, [Mac03, (5.1.10)]).

For f, g ∈ RW̊q,t define
〈f, g〉q,t := [fḡ∆(q, t)]. (3.3)

This defines a scalar product on RW̊q,t, called the Macdonald scalar product, which is Hermitian
with respect to the involution · .

3.4 An Fq,t-basis of RW̊q,t is given by {mλ}λ∈P̊+ , where

mλ =
∑

µ∈W̊ (λ)

eµ (3.4)

is the W̊ -invariant monomial corresponding to λ.
The symmetric Macdonald polynomials {Pλ(q, t)}λ∈P̊− are uniquely defined by the following

properties:

(a) Pλ −mw◦(λ) ∈
⊕

w◦(λ)>µ∈P̊+ Fq,tmµ;

(b) 〈Pλ, Pµ〉q,t = 0, for λ 6= µ.

In other words, they form a triangular, orthogonal basis of RW̊q,t. Their square norms ‖Pλ‖2q,t
were computed in [Che95a, Theorem 5.1] for R̄ reduced and the conjectured formula in the case
of R̄ non-reduced follows by combining the results of [vD96, § 7.2] and [Sah99, Corollary 7.5],
or from [Sto00]. We refer to [Mac03, § 5.8] for a uniform treatment. To avoid introducing more
notation we refrain from giving the full statement; the norm formula in a limiting case is part
of Theorem 3.3.

As a consequence of the two defining properties of the Macdonald polynomials we
immediately obtain that

Pλ(q, t) = P−w◦(λ)(q, t). (3.5)

3.5 The following result was proved in [Ion03, Theorems 1 and 4.2] for g of type I. In the case
when g is of type II, part (i) follows from the combinatorial formula in [RY11, Theorem 3.4].

Theorem 3.1. Let g be an affine Lie algebra and let λ be an anti-dominant weight. Then:

(i) the limit Pλ(q) = limt→∞ Pλ(q, t) exists;
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(ii) if g is of type I then
Pλ(q) = χ(D(λ)).

Since the polynomials Pλ(q, t) form a basis of RW̊q,t orthogonal with respect to the scalar
product 〈·, ·〉q,t it is natural to ask if such a property holds for the polynomials Pλ(q) with

respect to the space RW̊q and a suitable degeneration of the scalar product 〈· , ·〉q,t as t → ∞.

The definition of the Macdonald scalar product involves the involution · on RW̊q,t, which inverts
the parameter t and hence is inconsistent with taking the limit t →∞. However, we can try to
examine the limit as t →∞ of

〈Pλ(q, t), Pµ(q, t)〉q,t = [Pλ(q, t)Pµ(q, t)∆(q, t)]. (3.6)

The limit as t approaches infinity of Pλ(q, t), Pµ(q, t) and ∆(q, t) exists and equals Pλ(q),
P−w◦(µ)(q) and ∆(q,∞), respectively. This observation leads us to the following construction.

Let ι be the involution of Rq,t which fixes the parameters q and t and, for any weight λ,
sends eλ to e−w◦(λ). We will use the notation f ι := ι(f) for any element f of Rq,t. It is natural

to define the following symmetric scalar product on RW̊q,t. For f and g in RW̊q,t let

〈f, g〉′q,t := [fgι∆(q, t)]. (3.7)

We have proved the following.

Proposition 3.2. The polynomials {Pλ(q, t)}λ∈P̊− form a basis of RW̊q,t which is orthogonal with
respect to the scalar product 〈·, ·〉′q,t. Furthermore, their square norms coincide with the square
norms with respect to the scalar product 〈·, ·〉q,t.

The scalar product 〈·, ·〉′q,t behaves well with respect to taking the limit t →∞. This allows

us to define the following symmetric scalar product on RW̊q . For f and g in RW̊q let

〈f, g〉q := [fgι∆(q,∞)]. (3.8)

As an immediate consequence of Theorem 3.1, Proposition 3.2, and the square norm formulas
for Macdonald polynomials [Che95b, (4.12)] we have the following.

Theorem 3.3. The polynomials {Pλ(q)}λ∈P̊− form a basis of RW̊q which is orthogonal with
respect to the scalar product 〈·, ·〉q. Their square norms are given by

‖Pλ(q)‖2q =

(n−1∏
i=1

−(λ,α∨i )−1∏
j=0

(1− q−(j+1)rαi )

)(−(λ,α∨n)−1∏
j=0

(1− q−(j+1)(rαn/a0))

)
.

3.6 Let us make explicit the ingredients of the scalar product 〈·, ·〉q. Taking the appropriate
limit in the constant term computation [Che95a, Gus90] we obtain

∇(q,∞) =
∏
α∈R̊−

(1− eα)
∏

α∈Rre,+

(1− eα),

[∇(q,∞)] = |W̊ |
(n−1∏
i=1

∞∏
j=1

(1− q−jrαi )−1

)( ∞∏
j=1

(1− q−j(rαn/a0))−1

)
, (3.9)

∆(q,∞) =
1

|W̊ |

(n−1∏
i=1

∞∏
j=1

(1− q−jrαi )
)( ∞∏

j=1

(1− q−j(rαn/a0))

) ∏
α∈R̊−

(1− eα)
∏

α∈Rre,+

(1− eα).

1281

https://doi.org/10.1112/S0010437X14007908 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007908


V. Chari and B. Ion

For f, g ∈ RW̊q denote
〈f, g〉 := [fgι∆(∞,∞)]. (3.10)

Note that when restricted to RW̊ this is the usual scalar product on RW̊ , the representation ring
of g̊. Let us also consider

S(q) :=
∆(q,∞)

∆(∞,∞)
. (3.11)

For λ anti-dominant weight, to be consistent with the limit q →∞ of Pλ(q), we denote by χλ the
character of V̊ (w◦(λ)) which is the irreducible highest weight representation of g̊ with highest
weight w◦(λ). We end this section with the following identity.

Proposition 3.4. Let λ, µ be anti-dominant weights. Then,〈
χλ
S(q)

, Pµ(q)

〉
q

= 〈Pµ(q), χλ〉.

Proof. Straightforward from the definition of the two scalar products. 2

4. BGG reciprocity

4.1 Let M be an object in kF. Following [BBCKL14, § 4.2] we construct a k-module filtration of
M . Let µ0 be a minimal element (with respect to the dominance partial order) of ẘt(M) ∩ P̊+.
For i > 0 choose µi+1 a minimal element in the set Si = {µ ∈ ẘt(M) ∩ P̊+ | µ 66 µj , 0 6 j 6 i}
and define

Mi :=
∑

ν∈Si∪{µi},s∈a−1
0 Z

U(k) ·Mν+sδ. (4.1)

By construction, {Mi}i>0 is a decreasing filtration of M and, since the d-eigenspaces of M
are finite dimensional,

⋂
i>0Mi = 0. Furthermore, for any i > 0, the quotient Mi/Mi+1 is

µi-isotypical. The associated graded module with respect to the filtration {Mi}i>0 is

grM :=
⊕
i>0

Mi/Mi+1. (4.2)

For the following we refer to [BBCKL14, Lemma 4.3]; we include the proof for the reader’s
convenience.

Proposition 4.1. With the notation above, there is a canonical surjective morphism⊕
i>0

WMi/Mi+1
→ grM.

Moreover, WMi/Mi+1
=
⊕

s∈a−1
0 ZW (µi + sδ)m(µi+sδ) with

m(µi + sδ) = dimC Homk(M,Wloc(−w◦(µi)− sδ)∗).

Proof. The result follows from Lemmas 2.11 and 2.14. The only fact requiring justification is
the formula for m(µi + sδ). For this, remark that, taking into account the possible weights of
Wloc(−w◦(µi)−sδ)∗, a map f ∈ Homk(M,Wloc(−w◦(µi)−sδ)∗) must be identically zero on Mi+1.
Therefore, we need to show that m(µi + sδ) = dimC Homk(M/Mi+1,Wloc(−w◦(µi)− sδ)∗). This
will follow if we show that the restriction map

Homk(M/Mi+1,Wloc(−w◦(µi)− sδ)∗) → Homk(Mi/Mi+1,Wloc(−w◦(µi)− sδ)∗)

is bijective.
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The restriction map is injective. Indeed, assume that f ∈ Homk(M/Mi+1,Wloc(−w◦(µi) −
sδ)∗) such that its restriction to Mi/Mi+1 is identically zero. In particular, the image of f does
not contain elements of weight µi+sδ and hence it does not contain (π∗V̊ (−w◦(µi)−sδ))∗. Since
(π∗V̊ (−w◦(µi)− sδ))∗ is the unique simple submodule of Wloc(−w◦(µi)− sδ)∗, the map f must
be identically zero.

The restriction map is also surjective. Indeed, let g ∈ Homk(Mi/Mi+1,Wloc(−w◦(µi)− sδ)∗).
Since P (−w◦(µi)− sδ) is a projective object in kF, P (−w◦(µi)− sδ)∗ is an injective object in kF
and therefore the map

Mi/Mi+1
g //Wloc(−w◦(µi)− sδ)∗ // P (−w◦(µi)− sδ)∗

admits an extension g̃ : M/Mi+1 → P (−w◦(µi)−sδ)∗. Moreover, ẘt(M/Mi+1)∩{ν | µi < ν} = ∅,
and therefore the image of g̃ is contained in W (−w◦(µi) − sδ)∗, which by Proposition 2.4(ii) is
the maximal submodule of P (−w◦(µi)− sδ)∗ satisfying this condition. Furthermore, Mi/Mi+1 is
the µi-isotypical component of M/Mi+1 and since g(Mi/Mi+1) is contained in Wloc(−w◦(µi) −
sδ)∗ so is the image of g̃ because Wloc(−w◦(µi)−sδ)∗ is the maximal submodule of W (−w◦(µi)−
sδ)∗ with a one-dimensional µi-isotypical component. To conclude, g̃ ∈ Homk(M/Mi+1,
Wloc(−w◦(µi)− sδ)∗) and its restriction to Mi/Mi+1 is g. 2

4.2 Whether or not the canonical morphism of Proposition 4.1 is an isomorphism can be
determined by comparing the graded dimensions (with respect to the grading given by the
eigenspaces of the scaling element) of the two objects or, even better, by comparing their
k(0)-characters. For this purpose we collect below some characters which, as in § 3.2, we regard

as elements of RW̊q . From this point of view q−a
−1
0 is capturing the grading.

Theorem 4.2. Let g be an affine Lie algebra and let λ+ kδ ∈ P+
k . Then,

χ(Wloc(λ+ kδ)) = q−kPw◦(λ)(q).

Proof. For g of type I, the claim follows directly from Theorems 2.7 and 3.1(ii). For g of type II,
the claim is proved as follows. First, [Nao12, Theorem 9.2] expresses χ(Wloc(λ)) as the generating
function of a finite graded crystal, whose objects are projected level zero affine Lakshmibai–
Seshadri paths, denoted there by B(λ)cl. Second, [Len12, Theorem 2.6] (see also [LNSSS14,
Proposition 9.8]) expresses Pw◦(λ)(q) as the generating function of another finite graded crystal
called the quantum path model, whose objects are admissible subsets of a lexicographic λ-chain
[LL12], denoted by A(λ). Third, [LNSSS14, Theorem 3.3, Proposition 8.6, Corollary 9.4] provide
an explicit graded crystal isomorphism between B(λ)cl and A(λ). Therefore, Pw◦(λ)(q) and
χ(Wloc(λ)) coincide. 2

Proposition 4.3. Let λ+ kδ ∈ P+
k . Then:

(i) χ(P (λ+ kδ)) = q−kχw◦(λ)/S(q);

(ii) χ(W (λ+ kδ)) = q−kPw◦(λ)(q)/‖Pw◦(λ)(q)‖2q .

Proof. By the PBW theorem, as a k(0)-module P (λ + kδ) is isomorphic to S(k+) ⊗ V̊ (λ + kδ),

where S(k+) is the symmetric algebra of k+. Keeping in mind that we use q−a
−1
0 to capture the

grading, the k(0)-character of S(k+) is easily seen to be(n−1∏
i=1

∞∏
j=1

(1− q−jrαi )
)−1( ∞∏

j=1

(1− q−j(rαn/a0))

)−1( ∏
α∈Rk\(R̊∪R+,im)

(1− eα)

)−1

. (4.3)
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Note that the first two factors account for S(
⊕

α∈Rim,+ gα). Necessary for the identification are
the multiplicities of the imaginary weights which are described, for example, in [Kac90, Corollary
8.3]. The first claim now follows from (3.9) and (3.11).

The last claim follows from Theorem 4.2, Corollary 2.10, and Theorems 2.5(iii) and 3.3. 2

Theorem 4.4. Let λ ∈ P+
k . Then,

⊕
i>0WP (λ+kδ)i/P (λ+kδ)i+1

and grP (λ + kδ) are canonically
isomorphic.

Proof. As remarked above, it is enough to compare the graded characters of the two objects.
The k(0)-character of grP (λ+ kδ) equals the k(0)-character of P (λ+ kδ) which is computed in
Proposition 4.3. Furthermore, using Theorem 3.3, we can expand the character as

χ(P (λ+ kδ)) =
∑
µ∈P̊+

q−k
〈
χw◦(λ)

S(q)
, Pw◦(µ)(q)

〉
q

Pw◦(µ)(q)/‖Pw◦(µ)(q)‖2q .

On the other hand, the character of
⊕

i>0WP (λ+kδ)i/P (λ+kδ)i+1
is∑

i>0

( ∑
s∈a−1

0 Z

m(µi + sδ)q−s
)
Pw◦(µi)(q)/‖Pw◦(µi)(q)‖

2
q .

Starting from Lemma 2.14, using the ind–res adjunction and Proposition 3.4, we obtain that∑
s∈a−1

0 Z

q−sm(µi + sδ) =
∑

s∈a−1
0 Z

q−s dimC Homk(indk
k(0) V̊ (λ+ kδ),Wloc(−w◦(µi)− sδ)∗)

=
∑

s∈a−1
0 Z

q−s dimC Homk(0)(V̊ (λ+ kδ), reskk(0)Wloc(−w◦(µi)− sδ)∗)

=
∑

s∈a−1
0 Z

q−s dimC Homk(0)(reskk(0)Wloc(−w◦(µi)− sδ), V̊ (−w◦(λ)− kδ))

=
∑

s∈a−1
0 Z

q−s dimC Homk(0)(reskk(0)Wloc(µi − sδ), V̊ (λ− kδ))

= q−k
∑

s∈a−1
0 Z

q−s+k dimC Homk(0)(reskk(0)Wloc(µi − sδ + kδ), V̊ (λ))

= q−k〈Pw◦(µi)(q), χw◦(λ)〉

= q−k
〈
χw◦(λ)

S(q)
, Pw◦(µi)(q)

〉
q

.

Therefore,

χ

(⊕
i>0

WP (λ+kδ)i/P (λ+kδ)i+1

)
=
∑
i>0

q−k
〈
χw◦(λ)

S(q)
, Pw◦(µi)(q)

〉
q

Pw◦(µi)(q)/‖Pw◦(µi)(q)‖
2
q .

Comparing this to the character of P (λ+ kδ) and keeping in mind that the canonical map⊕
i>0

WP (λ+kδ)i/P (λ+kδ)i+1
→ grP (λ+ kδ)

is surjective, we conclude that the two characters are equal. Hence, the canonical map is an
isomorphism. 2
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4.3 The following concept was introduced in [BCM12].

Definition 4.5. Let M be an object in kF. We say that M has a filtration by global Weyl
modules if there exists a k-module descending filtration {Mi}i>0 of M such that

⋂
i>0Mi = 0

and for all i > 0 we have a k-module isomorphism

Mi+1/Mi
∼=

⊕
µ+sδ∈P+

k

W (µ+ sδ)m(µ+sδ)

for some non-negative integers m(µ+ sδ).

Remark 4.6. If M has a filtration by global Weyl modules then, for any µ+sδ ∈ P+
k , the k-module

multiplicity of W (µ + sδ) in grM is finite and independent of the filtration. As customary, we
denote this multiplicity by [M : W (µ+ sδ)].

Putting together Theorem 4.4 and Proposition 3.4 we arrive at our main result.

Theorem 4.7. Let λ+kδ ∈ P+
k . The k-module P (λ+kδ) has a filtration by global Weyl modules

and

[P (λ+ kδ) : W (µ+ sδ)] = [Wloc(µ+ sδ) : π∗V̊ (λ+ kδ)].

Theorem 4.7 was conjectured in [BCM12, Conjecture 2.7] for the current algebras L[t], where
L is a simple Lie algebra. Our result shows that the BGG reciprocity holds for the more general
definition of current algebras given in § 2.1. Theorem 4.7 was proved in type A1 in [BCM12,
Theorem 1] by different methods. Overall, our proof follows the structure of the argument in

[BBCKL14, Theorem 3.6] where Theorem 4.7 was proved for g of type A
(1)
n .
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