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Bhageerath—Targeting the near impossible: Pushing the frontiers
of atomic models for protein tertiary structure prediction#
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Abstract. Protein folding, considered to be the holy grail of molecular biology, remains intractable even
after six decades since the report of the first crystal structure. Over 70,000 X-ray and NMR structures are now
available in protein structural repositories and no physico-chemical solution is in sight. Molecular simulation
methodologies have evolved to a stage to provide a computational solution to the tertiary structures of small
proteins. Knowledge base driven methodologies are maturing in predicting the tertiary structures of query
sequences which share high similarities with sequences of known structures in the databases. The void region
thus seems to be medium (>100 amino acid residues) to large proteins with no sequence homologs in the
databases and hence which has become a fertile ground for the genesis of hybrid models which exploit local
similarities together with ab initio models to arrive at reasonable predictions. We describe here the development
of Bhageerath an ab initio model and Bhageerath-H a hybrid model and present a critique on the current status
of prediction of protein tertiary structures.
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1. Introduction

Protein folding, considered to be a challenging task1–3

remains unsolved for the last six decades. It is classified
as an NP complete or NP hard problem.4,5 This notwith-
standing, the dire need for tertiary structures of proteins
in drug discovery and other areas6–8 has propelled the
development of a multitude of computational recipes.
In this article, we focus on ab initio/de novo strategies,
Bhageerath in particular, for protein tertiary structure
prediction.

The ab initio term in the context of protein structure
prediction is used to signify the usage of physics based
all atom molecular mechanics potentials for predicting
the three-dimensional structure of a protein. Molecu-
lar dynamics, Monte Carlo simulations and their vari-
ants are pooled under this category. Molecular dyna-
mics simulations, in particular, have provided extremely
high resolution spatial and temporal data, enhancing
our knowledge and understanding of the protein folding
mechanism. Simulations of biologically relevant pro-
cesses, with atomistic accuracy on timescales beyond
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microsecond are now possible due to advances in soft-
ware and hardware.9

In the year 1975, Levitt and Warshel simulated the
folding of bovine pancreatic trypsin inhibitor (BPTI)
using a simple representation of protein conformation,
energy minimization and thermalization. They suc-
ceeded in ‘renaturing’ the protein from an open fully
extended conformation to a folded native like con-
formation.10 Later in 1977, McCammon, Gelin and
Karplus studied for the first time the dynamics of folded
BPTI in vacuum at a molecular level over a period
of 9.2 picoseconds.11 Since then extensive research
has been carried out in the area of protein folding,
unfolding, dynamics and structure. Table 1, summa-
rizes some major milestones capturing the advance-
ments. In the year 1995, Li and Daggett studied the
structure and dynamics of native chymotrypsin inhibi-
tior 2 with explicit water from a 5.3 ns simulation.12

Insights were gained from 550 ps unfolding simula-
tions of reduced BPTI at high temperature.13 Folding
simulation of small peptide fragments such as beta-turn
in a short linear peptide and β-heptapeptides in aque-
ous solution were performed for 20 ns and 50 ns.18,19

Using a Cray T3E, a massively parallel supercomputer
consisting hundreds of CPUs, Duan and Kollman
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Table 1. Increasing length of simulations with advances in computing resources.

Sl. No. System Length of the simulation Year

1 Bovine Pancreatic Trypsin Inhibitor (BPTI)11 9.2 ps 1977
2 Bovine Pancreatic Trypsin Inhibitor (BPTI)14,15 60 ps,132 ps 1983
3 Bovine Pancreatic Trypsin Inhibitor (BPTI)13 550 ps 1992
4 Apomyoglobin16 350 ps,500 ps 1993
5 Chymotrypsin inhinitor 2 (CI2)12 5.3 ns 1995
6 Staphylococcal protein17 >9 ns 1995
7 Pentapeptide cis-AYPYD18 20 ns 1997
8 β−Heptapeptide19 50 ns 1998
9 Villin headpiece20 1 μs 1998
10 Engrailed Homeodomain21 40 ns,70 ns 2000
11 Protein G22 38 μs 2001
12 Trp cage23 50 ns 2002
13 Trp cage24 ∼100 μs 2002
14 Human Pin1 WW domain mutant, FiP3525,26 10 μs 2009
15 NTL927 1.52 ms 2010
16 FiP35, Villin headpiece28 100 μs 2010

Bovine Pancreatic Trypsin Inhibitor (BPTI) 1 ms

in 1998 reported one of the longest simulations of
that time for a protein in water. They simulated villin
headpiece subdomain (HP-36) for ∼1 μs with ∼3000
water molecules.20 The growing track record of pro-
tein folding simulations in a high performance com-
puting environment stimulated IBM to announce in
December 1999, a five year effort to build a massively
parallel computer ‘Blue Gene’ to study biomolecular
phenomena.29 In 2000, protein unfolding simulations
of Engrailed Homeodomain (En-HD) from Drosophila
melanogaster a 61 residue, mainly α-helical protein
was carried out for a maximum time scale of 70 ns.21

The introduction of distributed computing paved the
way towards achieving longer time scales in the simula-
tions of the dynamics of biomolecules at atomic level.30

The Folding@home project used distributed computing
techniques and a super cluster of thousands of computer
processors to simulate 38 μs of folding time. Folding
of the C-terminal β-hairpin from protein G in atomistic
detail using the GB/SA implicit solvent model at 300 K
was reported.22 Later in 2001 all atom protein structure
prediction using ab initio protein folding simulation
was carried out for trpcage TC5b with extended initial
conformation for a time period of 50 ns at 300 K.23 Simu-
lations for Trp-cage for an aggregate time of ∼100 μs
were performed by the Folding@home project to
capture the rapid relaxation from an extended starting
state to a relaxed unfolded state.24 In 2003, Langevin
dynamics was applied to the physics based united
residue (UNRES) force field to generate trajectories
for seven proteins with an average folding time of the

order of nanoseconds. Folding with Langevin dyna-
mics helped in exploring thousands of folding path-
ways and also enabled predicting not only the native
structure but also the folding scenario of the protein.31

The improved performance of molecular dynamics soft-
wares and computing resources made it possible to
perform multiple microsecond simulations in explicit
solvent environment. Using the high performance com-
puting machines Ensign et al. in 2007 presented large
folding trajectories for villin mutant.32 Freddolino et al.
reported in 2008, a 10 μs trajectory of the fast folding
human Pin1 WW domain mutant Fip35.25,26 A recent
initiative by Folding@home distributed computing plat-
form was successful in performing a large array of dis-
tributed implicit solvent folding simulations of a 39
residue protein NTL9(1–39) using Amber ff96 force
field and accelerated version of GROMACS for GPU
processors for an aggregate time scale of 1.52 ms.27

Crossing the barriers of computational resources, Shaw
et al. developed a special purpose machine christened
‘Anton’, which has greatly accelerated the execution
of simulations and generation of trajectories of 1 ms
length. Such massively parallel specialized machines
have allowed all-atom molecular dynamics simulations
of proteins in an explicit solvent environment at a much
faster rate and 100 times longer time scales.28 Taking
the protein folding in a new direction, researchers at
the University of Washington developed a protein fold-
ing video game Foldit that uses human visual prob-
lem solving and strategy development capabilities with
traditional computing algorithms.33
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Despite the significant advantages and power of
molecular simulations, the field of ab initio protein
folding still faces serious challenges. The huge amount
of sampling space and the deficiencies in potential func-
tions restrict the use of simulations to smaller proteins
and refinement of models produced by low-resolution
methods.34 Increasing availability of experimentally
determined protein structures has inspired the develop-
ment of knowledge based methods for structure pre-
diction. With the exception of ‘pure’ physico-chemical
approaches,35 these methods rely on searching the pro-
tein structure databases and using the available struc-
tural information to predict the tertiary structure of
new sequences. The bi-annual community wide Criti-
cal Assessment of Protein Structure Prediction (CASP)
experiments36,37 classify such methods under the cate-
gory of Template based modelling. The term ab initio
is used in much broader sense in CASP and includes
methods that compare fragments (short stretches) of
query sequence of unknown structure with sequences
in protein structure database (RCSB)38 and assem-
ble atomic models for the whole protein with vary-
ing strategies for dealing with regions with missing
matches. The primary obstacle to these template based
methods is database dependency especially where a
related structural homolog is not available or where the
query sequence presents a totally new fold. Providing
an understanding of the forces driving the protein struc-
ture formation is obviously beyond the purview of these
methods.39

2. Methodology

In a modification of the ab intio procedures delineated
above (called de novo methods which use partial infor-
mation from structural databases) as for instance using
database searches for secondary structures only and no
use of database information for the tertiary structure
prediction, we describe here an improved and computa-
tionally robust version of Bhageerath40 an energy based
software suite for narrowing down the search space of
tertiary structures of small globular proteins. The pro-
tocol comprises eight different computational modules
that form an automated pipeline. Proceeding from the
input amino acid sequence, the software first predicts
the secondary structure information (helix/strand/loop)
along the entire length of the protein. The second mo-
dule creates an atomic-level extended structure using
the secondary structure information. The third mo-
dule generates a large number of trial structures with
a systematic sampling of the conformational space of
loop dihedrals. The number of trial structures genera-
ted is 128(n−1) where ‘n’ is the number of secondary
structural elements and ‘n − 1’ is the number of
loops/junctions between the secondary structural units.
These structures are generated by choosing seven dihe-
drals from each of the loops (three at both ends
and one dihedral from the middle of the loop) and
sampling two conformational states for each dihe-
dral. The generated trial structures are screened in the
fourth module through persistence length, radius of
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Figure 1. The flow of information in Bhageerath web server, starting with the input
sequence from the user to the final prediction of five candidate structures for the native.
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gyration, topological distinctness of generated struc-
tures, inter-atomic distance and Cα loop distance fil-
ters,41 developed for the purpose of reducing the
number of improbable candidates. The resultant struc-
tures are refined to the fifth module by a Monte Carlo
sampling in dihedral space to remove steric clashes and
overlaps involving atoms of main chain and side chains.
In module six, the structures are energy minimized to
further optimize the side chains. Module seven ranks
the structures using an all atom energy based empiri-
cal scoring function42 and selects 100 lowest energy
structures. Module eight reduces the structures selected
in the previous module to five using solvent accessible
surface areas (SASA).43 Short molecular dynamics
simulations with explicit solvent for further refinement
of the five structures is an optional last step. The pro-
tocol has been web-enabled and is freely accessible
at http://www.scfbio-iitd.res.in/bhageerath.40 The flow
chart diagram of Bhageerath is depicted in figure 1.

3. Results and discussion

The Bhageerath methodology has been validated on 80
small globular proteins (<100 amino acids) consisting
of up to five helices and strands with known tertiary
structures. The results obtained for the 80 small globu-
lar proteins with the web server are shown in table 2.
For each of these proteins, a structure within 3–7Å
RMSD (root mean square deviation) of the native has
been obtained in the five lowest energy structures.
Figure 2 shows a superimposition of the lowest RMSD
predicted structure with the native structure for the 80
test proteins.

All the eight modules of the protocol are currently
incorporated on a dedicated 280 AMD Opteron 2.4 GHz
processor cluster. In contrast to typical short return
times (ranging from 1 to 10 min) for receiving results
from comparative (homology based) modelling servers,
the expected prediction time with Bhageerath web
server for small systems (≤3 helices) is ∼ 10 min. The

prediction times in case of Bhageerath depend on the
length of the sequence, number of secondary structural
elements, number of trial structures generated and the
accepted number of trial structures after biophysical
filters which undergo all atom energy processing.

The earlier version of Bhageerath had a limitation of
predicting structures of proteins with not more than 100
amino acids and 2–3 secondary structures. Pushing the
frontiers of the atomic models, we have now developed
a new methodology which can handle proteins with
more than 100 amino acids. The protocol uses a ‘divide
and conquer’ strategy based on the number of sec-
ondary structure elements, wherein the query sequence
is divided into overlapping fragments and five struc-
tures are generated for each fragment with Bhageerath
methodology as described above, followed by a patch-
ing of all the fragments and scoring them with a final
selection of five structures for the overall sequence. This
methodology is under rigorous validation.

4. Development of Bhageerath-H

The major obstacle in the computational structure pre-
diction based on first principles is the conformational
sampling. Sampling the entire conformational space of
the polypeptide starting from a fully extended confor-
mation and selecting a conformation which uniquely
has a lower energy than the non-native conformations
is a daunting task. The Bhageerath can predict struc-
tures of small proteins with an RMSD < 7–10 Å
from the native almost routinely now in an auto-
mated mode, but for larger proteins we envisage
development of an ab initio–homology hybrid methodo-
logy christened Bhageerath-H for tertiary structure
prediction for improved accuracy. In Bhageerath-H
methodology, we identify regions of polypeptide chain
where local sequence similarities are realized, cre-
ate 3D-structural fragments using conventional bioin-
formatics tools, use the ab initio method for regions
with no matches in structural databases, and patch

Table 2. Validation of Bhageerath Protocol on 80 small globular proteins.

No. of secondary Energy rank of lowest
Sl. No. PDBID No. of amino acids structural elements Lowest RMSD (Å) structure in top 5 structures

1 1E0Q 17 2E 2.5 2
2 1B03 18 2E 4.4 2
3 1WQC 26 2H 2.5 3
4 1RJU 36 2H 5.9 4
5 1EDM 39 2E 3.5 2
6 1AB1 46 2H 4.2 5
7 1BX7 51 2E 3.2 4

http://www.scfbio-iitd.res.in/bhageerath
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Table 2. (continued)

No. of secondary Energy rank of lowest
Sl. No. PDBID No. of amino acids structural elements Lowest RMSD (Å) structure in top 5 structures

8 1FME 28 1H,2E 3.7 5
9 1ACW 29 1H,2E 5.3 3
10 1AIL 70 3H 4.4 3
11 1B6Q 56 2H 3.8 5
12 1ROP 56 2H 4.3 2
13 1NKD 59 2H 3.9 1
14 1RPO 61 2H 3.8 2
15 1QR8 68 2H 3.9 4
16 1YRF 35 3H 4.8 4
17 1YRI 35 3H 4.6 3
18 2ERL 40 3H 4 3
19 1RES 43 3H 4.2 2
20 1GVD 52 3H 5.1 4
21 1DFN 30 3E 5 1
22 1Q2K 31 1H,2E 4.8 4
23 1SCY 31 1H,2E 3.1 5
24 1XRX 34 1E,2H 5.6 1
25 1ROO 35 3H 2.8 5
26 1MBH 52 3H 4 4
27 1HDD 57 3H 5.5 4
28 1BDC 60 3H 4.8 5
29 1DF5 68 3H 3.4 1
30 1QR9 68 3H 3.8 2
31 1VII 36 3H 3.7 2
32 1BGK 37 3H 4.1 3
33 1BHI 38 1H,2E 5.3 2
34 1OVX 38 1H,2E 4 1
35 1I6C 39 3E 5.1 2
36 2G7O 68 4H 5.8 2
37 2OCH 66 4H 6.6 3
38 1WR7 41 3E,1H 5.2 2
39 2B7E 59 4H 6.8 4
40 1FAF 79 4H 6.4 4
41 2CPG 43 1E,2H 5.3 2
42 1DV0 45 3H 5.1 4
43 1IRQ 48 1E,2H 5.5 3
44 1GUU 50 3H 4.6 4
45 1GV5 52 3H 4.1 2
46 1PRB 53 4H 6.9 4
47 1DOQ 69 5H 6.8 3
48 1I2T 61 4H 5.4 4
49 2CMP 56 4H 5.6 1
50 1X4P 66 4H 5.2 3
51 1GAB 53 3H 4.9 1
52 1MOF 53 3H 2.9 5
53 1ENH 54 3H 4.6 3
54 1IDY 54 3H 3.6 5
55 1PRV 56 3H 5 5
56 1BW6 56 4H 4.2 1
57 2K2A 70 4H 6.1 1
58 1TGR 52 4H 6.8 2
59 2V75 90 5H 7 3
60 1HNR 47 2E,2H 5.2 2
61 1I5X 61 3H 3.6 3
62 1I5Y 61 3H 3.4 5
63 1KU3 61 3H 5.5 4
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Table 2. (continued)

No. of secondary Energy rank of lowest
Sl. No. PDBID No. of amino acids structural elements Lowest RMSD (Å) structure in top 5 structures

64 1YIB 61 3H 3.5 5
65 1AHO 64 1H,2E 4.5 4
66 2KJF 60 4H 5 4
67 1RIK 29 2E,2H 4.4 4
68 1JEI 53 4H 5.8 5
69 2HOA 68 4H 6.3 4
70 2DT6 62 4H 5.9 3
71 2L37 43 2H 3 1
72 2PMR 76 3H 6.8 2
73 1I2T 61 4H 5.7 2
74 2PM1 30 3E 4.6 4
75 2CJJ 63 3H 5.2 1
76 1WY3 35 3H 5 4
77 1P9I 31 1H 1.7 1
78 3NMD 53 1H 1.9 1
79 2J15 15 2E 2.6 5
80 3E21 40 3H 5.5 5

(E=Strand; H=Helix; RMSD=root mean square deviation from the crystal structure i.e., native reported in RCSB)

Figure 2. The superimposed lowest RMSD structure for the 80 small globular proteins. The PDB
ID’s are shown underneath each structure. The predicted structure is in red colour and the native
(experimentally determined structure) is in blue.



Pushing the frontiers of protein tertiary structure prediction using Bhageerath and Bhageerath-H methods 89

Patching 

Amino acid sequence

Database Search

Set of Hits

Template based modelling 

Check for query coverage of the 
model

Bhageerath ab-initio 
modeling 

Scoring and Ranking Best 5 structures

Figure 3. The flow chart of Bhageerath-H.

them to put together a complete structure for the pro-
teins. Figure 3 shows a flow chart of Bhageerath-H
methodology (http://www.scfbio-iitd.res.in/bhageerath/
bhageerath_h.jsp).

The protocol has been tested on various CASP9 tar-
gets of medium to large size (with more than 200
residues). Table 3 shows the root mean square devia-
tion from the native of the best structures predicted by
Bhageerath-H for five CASP9 targets.

A comparison of the structure predictions by
Bhageerath, Bhageerath-H, Phyre2,44 Zhang-
Server,45,46 Baker–Rosetta47 and HHPredA48 for five
CASP949 targets was carried out (table 4). The table
shows the RMSDs of the predictions by Bhageerath
and Bhageerath-H in CASP9 and post-CASP9 and
the RMSDs of the predictions submitted by four other
servers in CASP9. In four of the five cases (T0538-D1,
T0602-D1, T0605-D1, T0559-D1) Bhageerath was
able to predict a structure within 10 Å RMSD from
the native with target T0643-D1 as an exception. Post

Table 3. Validation of the Bhageerath-H protocol on 5
CASP9 targets.

Sl. No. Target name No. of residues Lowest RMSD (Å)

1 T0515 365 2.7
2 T0518 288 2.5
3 T0524 325 4.3
4 T0597 429 1.9
5 T0607 471 3.8

CASP9, we have incorporated a new version of struc-
ture generator and scoring function in Bhageerath-H,
which has improved the prediction accuracy of the soft-
ware (as seen in column 5). Excluding the templates
with more than 30% similarity, the latest version of
Bhageerath-H is able to predict a structure within 7Å
RMSD from the native for all the 5 targets. In each of
the five illustrative cases, Bhageerath and Bhageerath-
H are able to predict structures with RMSDs compara-
ble to those obtained by some popular servers such as
Phyre2, Zhang-server, Baker-Rosetta and HHPredA.

Thus, for sequences with known sequence homologs,
Bhageerath-H has the potential to predict a structure
with higher resolution, accuracy in less time. This
clearly demonstrates the advantage of hybrid methods
over ab initio methods when a close homolog is avail-
able in the database, but for new sequences with no
available sequence homologs, ab initio/de novo servers
such as Bhageerath are the only alternative. Figure 4
shows a comparison of the structure prediction time and
accuracies of Bhageerath and Bhageerath-H software
suites for small globular proteins.

5. Conclusions

We have described here an all atom energy based com-
putational methodology, Bhageerath for tertiary struc-
ture prediction of small soluble proteins. Results on
80 globular proteins show that Bhageerath web server
predicts one or more candidate structures within an
RMSD of 7Å from the native for proteins with less

http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp
http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp
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Table 4. A comparison of protein tertiary structure prediction accuracies of Bhageerath and Bhageerath-H with Phyre2,
Baker–Rosetta, Zhang-Server and HHpredA software for 5 CASP9 (3 May to 17 July, 2010) targets.

Lowest Lowest Lowest Lowest Lowest Lowest
RMSD (Å) RMSD (Å) RMSD (Å) RMSD (Å) RMSD (Å) RMSD (Å)

prediction by prediction by prediction prediction by prediction prediction
Bhageerath Bhageerath-H by Phyre2 Baker-Rosetta by Zhang- by
post CASP9 post CASP9 in CASP9 Server Server HHpredA

Sl. No. PDBID Residues CASP9 ID (in CASP9) (in CASP9) in CASP9 in CASP9 in CASP9

1 2L09 53 T0538-D1 6.88 (9.02) 1.87# 2.11 2.17 1.39 2.15
2 3NKZ 55 T0602-D1 3.43 (4.71) 2.90 (2.90) 2.14 1.61 1.49 2.14
3 3NMD 49 T0605-D1 1.97 (2.48) 3.80 (16.49) 2.84 1.84 1.97 1.62
4 3NZL 73 T0643-D1 4.81 (10.31) 3.49 (4.59) 5.19 5.68 4.30 8.9
5 2L01 67 T0559-D1 8.33 (8.15) 5.59# 2.88 0.98 1.66 2.19

#These targets were fielded only for server prediction category and not for human expert group in CASP9.
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Figure 4. A comparison of the structure prediction time and accuracy of Bhageerath and
Bhageerath-H software suites for four small globular proteins with <100 amino acids.

than five secondary structural elements. CASP9 results
reflect the potential of the protocol to predict a struc-
ture within 10Å RMSD from the native for sequences
with no known sequence homologs. For proteins with
local sequence and structure matches involving short
fragments, it is expedient to use a hybrid method such
as Bhageerath-H for tertiary structure prediction. In
a nutshell, for small proteins the structure prediction

problem is under control with ab initio methods, and
for larger proteins computational protocols involving
hybrid models are getting better and better.
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