
Bi-Abductive Inference for Shape and Ordering

Properties

Christopher Curry

School of Computing

and Digital Technologies

Teesside University

Middlesbrough

Tees Valley TS1 3BX, UK

Email: c.curry@tees.ac.uk

Quang Loc Le

School of Computing

and Digital Technologies

Teesside University

Middlesbrough

Tees Valley TS1 3BX, UK

Email: q.le@tees.ac.uk

Shengchao Qin

School of Computing

and Digital Technologies

Teesside University

Middlesbrough

Tees Valley TS1 3BX, UK

Email: s.qin@tees.ac.uk

Abstract— In separation logic, bi-abduction - a combination
of abductive inference and frame inference - is the key enabler
for compositional reasoning, helping to scale up verification
significantly. Indeed, the success of bi-abduction led to the
development of Infer, the tool used daily to verify Facebook’s
codebase of millions of lines of code. However, this success
currently stays largely within the shape domain. To extend
this impact towards the combination of shape and arithmetic
domains, in this work, we present a novel one-stage bi-abductive
procedure for a combination of data structures and ordering
values. The procedure is designed in the spirit of the Unfold-
and-Match paradigm where the inference is utilized to derive
any mismatched portion. We demonstrate our proposal through
several interesting examples to show that it is promising for an
automated verification of heap-manipulating programs.

Index Terms—Bi-abduction, Separation Logic, Specification
Inference.

I. INTRODUCTION

Heap-manipulation is a powerful building block used in

many real-world applications and is frequently utilised in low-

level system software such as device drivers. While useful,

heap manipulation can also be a dangerous technique, one in

which relatively simple faults can cause significant numbers of

issues, ranging from software crashes [1] to security vulnera-

bilities [2]. As a result, ensuring the correctness and safety of

such programs is of great importance, yet such analyses have

been shown to be highly difficult tasks.

In recent years, shape analysis has emerged as a strong

candidate for accomplishing such verification tasks, and with

the integration of separation logic [3], [4] into shape analysis

techniques, an increasing number of advanced and usable tools

are being developed in the area of automatic reasoning about

dynamically allocated heap programs.

One of the most promising techniques currently utilised in

this area is bi-abductive inference [5], [6], [7]. First introduced

in [5], bi-abductive inference, or bi-abduction for short, is the

combination of the abductive inference and frame inference

techniques into a singular analysis. Given two formulas in

separation logic, A and C, bi-abduction aims to identify some

non-trivial terms ?M and ?F such that the entailment

A ∗ [?M] ⊢ C ∗ [?F]

(where ∗ is the separating conjunction) is satisfied.

Bi-abduction has seen a large growth in interest in recent

years due to a number of useful properties of the technique.

First, bi-abductive techniques generally have very low require-

ments placed upon the end-user, with many requiring only the

code of the program to be analysed. Second, bi-abduction is a

compositional analysis: an analysis in which the final output is

the combination of the results of smaller analyses over com-

ponents of the program, typically procedures. Compositional

analyses provide a number of significant benefits, including

high scalability, parallelisation, the ability to undertake incre-

mental analyses and potential support for graceful failure, all

highly desirable properties for an analysis technique. More

recent work has also included advances that support the use

of the technique over near-arbitrary data structures [7], further

improving the usability of the technique. However, while bi-

abduction has proven to be a highly capable approach to

program analysis, the majority of existing implementations

are limited to the shape domain only. This restriction not

only limits the range of inputs that can be supported by the

technique, but also carries the potential risk of imprecision

when used to analyse data structures that have pure constraints

as a component of their design, such as binary search trees or

sorted linked lists. Currently, efforts are being made towards

extending bi-abduction to the combined domain, allowing bi-

abductive techniques to operate over general pure constraints

in addition to those shape properties, with common examples

of investigated pure constraints including size, ordering and

content (bag) properties.

As an example, the technique outlined by Trinh et al [8]

utilises an enrichment-based approach to the identification of

pure constraints, but is fully reliant upon some previous shape

analysis in order to function. This multi-phase approach is

common in the literature of combined domain verification

techniques [9], and while it has been shown to be effective,

the approach is apparently not very efficient. Additionally, by

separating the shape and pure domain, the accuracy of the

final inferred specification would be heavily reliant upon the

accuracy and expressiveness of the shape information deter-

mined in the initial analysis, potentially negatively affecting

x, y, ... ∈ V ar variables

E ::= null | x expressions

V ::= i, j, ... ∈ V alues values

P ::= E=E | E<E simple pure formulae

Π ::= true | P | ¬Π |
∃v.Π | Π ∧Π pure formulae

f, fi, ... ∈ Fields fields

ρ ::= f1 : E1, ..., fk : Ek record expressions

Σ ::= emp | E 7→[ρ]| Σ ∗ Σ |
ls(E,E) | sls(E, x, y, E)

∆ ::= Π ∧ Σ qf symbolic heaps

H ::= ∃
−→
X.∆ symbolic heaps

(a) Grammar Definitions

ls(E1, E2)
def
= E1 = E2 ∧ emp

∨ ∃E′.E1 6= E2 ∧ E1 7→[E′] ∗ ls(E′, E2)

sls(E1, V1, V2, E2)
def
= E1=E2 ∧ V1=V2 ∧ emp

∨ ∃E′, V.V1≤V ∧ E1 6=E2 ∧ E1 7→[E′, V1] ∗ sls(E
′, V, V2, E2)

(b) Predicate Definitions

Figure 1: Language Fragment

the quality of the overall result.

In this work, we outline a novel one-phase bi-abduction

procedure for the combination of shape and ordering prop-

erties. We present a (sub)set of inference rules developed

using the rules of Smallfoot [10] as a starting point and a

novel algorithm to search for a sequence of rule applications,

and demonstrate this initial system over a small number of

examples.

II. PRELIMINARIES

The language used in our work is shown in Figure 1a.

Program variables are defined as italic characters, and refer to

variables originating from within the program itself. Logical

variables are indicated with upper-case letters, such as X , and

refer to variables that appear in the analysis only.

We often omit record fields from the notation where un-

ambiguous: x 7→[n:y, v:z] may be shortened to x 7→[y, z], for

example. We may additionally omit the square brackets around

single-field records, as in x 7→y.

Our language includes inductive definitions describing fun-

damental list structures: ls, representing a simple singly-linked

list, and sls, representing a sorted singly-linked list. The full

definitions may be found in Figure 1b.

A sorted singly-linked list sls(E1, V1, V2, E2) is a sequence

of singly-linked nodes, beginning with node E1 and ending

at some node E2 (non-inclusive), with all values stored in

those nodes obeying an ascending order. In order to simplify

the checking of these structures, the minimum and maximum

values of the list are also tracked inside the predicate, with

the minimum value being V1 and the maximum V2. Note that

V2 is not the value of node E2; rather, V2 would refer to the

value of the final node in the list, which points to E2.

The semantics of this fragment is quite standard, following

from the semantics of separation logic with general inductive

definitions and arithmetic presented in [11].

The semantics is given by a relation s,h |= H that forces

the stack s and heap h to satisfy the constraint H where

h ∈ Heaps, s ∈ Stacks, and H is a formula. Stack and heap

abstractions are defined:

Heaps
def
= Values⇀fin(Fields × Values)N

Stacks
def
= Var → Values

where N is the maximum number of fields.

Note that we preserve s(null) as a special value such that

it is not in any domain of heaps.

s, h |= emp iff dom(h)={}
s, h |= E 7→[fi:vi] iff dom(h)={s(E)}

h(s(E))=((f1, s(E1), ..,
(fN , s(EN)))

s, h |= Σ1 ∗ Σ2 iff ∃h1, h2· h1#h2 and h=h1·h2,
s, h1 |= Σ1 and s, h2 |= Σ2

s, h |= true iff always

s, h |= ∃v.(Π ∧ Σ) iff ∃α · s[v 7→α], h |= Σ and

s[v 7→α] |= Π
s, h |= H1 ∨H2 iff s, h |= H1 or s, h |= H2

where dom(f) is the domain of function f , h1#h2 denotes

disjoint heaps h1 and h2 i.e., dom(h1)∩dom(h2)=∅, and h1·h2

denotes the union of two disjoint heaps. If s is a stack,

v∈Var, v 6∈dom(s) and α∈Values∪Loc, we write s[v 7→α] ≡
s∪{(v, α)}. Note that in a concrete memory model e.g., RAM

model, field names of points-to predicates are transformed

into offsets. Then the pair (fi, s(Ei) (for all i ∈ {1...N})

is interpreted as s(E)+offfi = s(Ei) where offfi is the

corresponding offset of field fi. Entailment H |= H ′ holds iff

for all s and h, we have if s, h |= H then s, h |= H ′.

III. PROOF SEARCH

The core of the proposed bi-abductive procedure is a search

algorithm that, given some starting entailment, scans through

the set of proof rules for a rule that can be applied to the

entailment. Once such a rule is identified, it is applied to

the entailment to obtain some new sub-goals (and possibly

fragments of the frame or anti-frame) until it can make a

decision as to whether or not the entailment holds. All proof

rules in our system are checked and applied in a specific order,

aiming to ensure the process identifies the weakest possible

preconditions and the strongest possible postconditions, while

maintaining the validity of the solutions and forbidding trivial

or false preconditions. The rules are searched in the follow-

ing order:

1) Firstly, Normalization rules are applied exhaustively

to unfold all possible scenarios and transform the an-

tecedent of the input entailment into a normalised form.

2) Secondly, Subtraction rules are applied to match terms

across the antecedent and consequent, removing them

where possible. If heaps in the two sides are empty, the

algorithm returns successfully.

3) Finally, it checks whether or not any Bi-Abduction rules

could be applied to infer an anti-frame and frame. That

is to identify portions of heap and pure information

missing/immutable from the entailment, moving terms

missing from the antecedent to the precondition and

moving immutable terms from the antecedent to the

postconditions. Following this, it repeats the first phase.

The normalization phase is essential for the subsequent two

phases. It ensures that every spatial predicate in a normalized

formula is precise; that is, given that s, h |= H and H is in

normal form, then for any spatial predicate p ∈ H , there exists

one and only one sub-heap h′ ⊆ h such that s, h′ |= p. In turn,

this precision helps to guide the matching and inference rules,

as given a predicate p on one side of a normalized entailment,

there exists one and only one predicate p′ on the other side

such that p and p′ are matched using the rules in the second

phase. Furthermore, if we could not find such a predicate p′ in

the existing entailment, p′ is eventually missing. The inference

rules in the third phase reveal the missing predicates and then

add them back to the entailment. This forms the foundation

for the inference mechanism in our work.

IV. INFERENCE RULES

We now discuss the general design of each of the rule-sets

used in our proof search. A selection of these rules is presented

in Figure 2 for reference1. Several of the rules present in our

system include side conditions that must hold for the rule to

be applied, even if it otherwise matches with the entailment.

These side conditions enforce a number of constraints over the

rules, preventing scenarios such as the inference of directly

contradicting terms or the application of a rule over a state

which does not fully support that application. These conditions

can come in two forms: a discrete constraint preventing a rule

from being applied if it is not met, or the introduction of a

new entailment that must be satisfiable in order for the proof

search to be completed.

A. Normalisation

Before the design of the normalization rules is discussed, we

first present a normalised form that has a precise interpretation

over its heap. For the normal form, we write op(E) to denote

either E 7→[ρ], ls(E,F) or sls(E, V, V ′, F). Furthermore,

the guard G(op(E)) is defined by G(E 7→[ρ])
def
= true,

G(ls(E,F))
def
= E 6=F and G(sls(E, V, V ′, F))

def
= E 6=F . The

normal form itself is defined as follows:

Definition 1 (Normal Form): A formula Π∧Σ is in normal

form (NF for short) if:

1) op(E) ∈ Σ implies G(op(E)) ∈ Π.

2) op(E) ∈ Σ and G(op(E)) ∈ Π imply E 6=null ∈ Π.

3) op1(E1) ∗ op2(E2) ∈ Σ, G(op1(E1)) ∈ Π, and

G(op2(E2)) ∈ Π imply E1 6=E2 ∈ Π.

4) E1=E2 6∈ Π.

1While our system is more comprehensive than presented here, only the
rules utilised in the examples in Section V are included due to spacing
restrictions.

5) E 6=E 6∈ Π.

6) Π is satisfiable.

If ∆ is in NF and for any s and h such that s, h |= ∆,

dom(h) is uniquely defined by s. A bi-abductive entailment is

in NF if its LHS is in NF.

For each of the conditions required for a formula to be in

normal form, there is an associated rule or rules designed to

accomplish this soundly. Rule Node-EX presented in Figure 2

is one such example, designed to ensure that formulas meet

condition 2 of the normal form, explicating the fact that given

a heap h, for any l ∈ dom(h), then l 6= null. Note that the

side condition of the rule prevents the rule from being applied

when there would be no effect.

B. Subtraction Rules

In this section, we present inference rules that match and

subtract predicates on the right-hand side (RHS) against pred-

icates in the LHS until both sides contain the empty heap

emp. These rules are partitioned into three groups: decision

rules when the heaps of both sides are emp; subtraction rules

to match equivalent predicates on the two sides and gener-

alization rules to match different (though similar) predicates

from both sides. The first group contains two axiomatic rules

EMP and IDENT as follows:

[EMP]

Π ∧ emp ∗ [true ∧ emp] ⊢ true ∧ emp ∗ [Π ∧ emp]

[IDENT]

∆ ∗ [true ∧ emp] ⊢ ∆ ∗ [true ∧ emp]

That is, when both sides contain empty heaps, we copy the

pure formula from the LHS as the inferred frame. Similarly,

when two sides contain identical formula, the algorithm ends

the search.

Rules in the second group either subtract pure formulas,

split the entailment in order to subtract identical sub-formulas

from both sides, or handle spatial predicates. The HYPOTHESIS

rule is one such example from the second group, identifying

a set of pure constraints in the consequent that is implied

by the pure constraints in the antecedent and removing it

from the entailment. The predicate-targeting rules aim to

resolve entailments which feature overlapping fragments of

spatial information, with rules such as LS-BASE specializing an

inductive predicate by replacing it with its base case. Rules

such as LS-REC(NODE) and SLS-REC(NODE) match and subtract the

head node of an inductive predicate when it is matched with a

node present in the antecedent, abducing necessary constraints

in the process. These predicate-targeting rules are essentially

unfolding operations over those shape predicates, explicating

the segments that overlap in order to match and remove them

from the entailment.

The final subset of subtraction rules are the generalization

rules. These rules inductively generalize predicates in the LHS

such that the matching between a predicate and a structurally

similar predicate can be successful. As an example, in our

[NODE−EX]
(G(op(E)) ∧ E 6=null ∧∆ ∗ op(E)) ∗ [M] ⊢ ∆′ ∗ [F]

(G(op(E)) ∧∆ ∗ op(E)) ∗ [M] ⊢ ∆′ ∗ [F]
(where E 6=null/∈∆)

[INF−MISSING]
∆ ∗ [M] ⊢ ∆′ ∗ [F] ∆ ∗Q(E,E′) 0 false

∆ ∗ [M ∗Q(E,E′)] ⊢ ∆′ ∗Q(E,E′) ∗ [F]
(where Q(E,E′) is op(E))

[HYPOTHESIS]
Π ∧ Σ ∗ [M] ⊢ Π′′ ∧ Σ′ ∗ [F]

Π ∧ Σ ∗ [M] ⊢ Π′ ∧Π′′ ∧ Σ′ ∗ [F]
(where Π ⇒ Π′)

[LS−BASE]
∆ ∗ [M] ⊢ ∆′ ∗ [F]

∆ ∗ [M] ⊢ ∆′ ∗ ls(E,E) ∗ [F]

[LS−REC(Node)]
∆ ∗ [M] ⊢ ∆′ ∗ ls(E2, E3) ∗ [F]

∆ ∗ E1 7→[E2] ∗ [M] ⊢ ∆′ ∗ ls(E1, E3) ∗ [F]
(where E1 7→[E2] 6∈ ∆′)

[LS−GENERALIZE]
V≤V ′ ∧∆ ∗ [M] ⊢ ∆′ ∗ ls(E2, E3) ∗ [F]

∆ ∗ sls(E1, V, V
′, E2) ∗ [M] ⊢ ∆′ ∗ ls(E1, E3) ∗ [F]

(where sls(E, V, V ′, E′) 6∈ ∆′)

[SLS−REC(Node)]

∆ ∗ [M] ⊢ ∃V2. V1≤V2 ∧∆′ ∗ sls(E2, V2, V3, E3) ∗ [F]

∆ ∗ E1 7→[E2, V1] ∗ [M] ⊢ ∆′ ∗ sls(E1, V1, V3, E3) ∗ [F]
(where E1 7→[E2, V1] 6∈ ∆′)

Figure 2: Subset of Inference Rules

system, a sorted linked list indirectly entails a basic singly-

linked list between the same points due to the fact that by

our definition, all sorted lists are simple singly-linked lists at

the structural level. This fact could be proved by inductively

unfolding both predicates and eliminating the matching nodes.

LS-GENERALIZE fires when a sorted list in the antecedent of the

entailment shares a head node with a simple singly-linked

list on the consequent, and essentially abstracts the ordering

information away from the sorted list, leaving only the spatial

information; a singly-linked list.

C. Bi-abduction Rules

When the search algorithm is stuck at Unfold-and-Match,

our bi-abductive proof technique is invoked. The technique

identifies some fragment of the anti-frame, adds it to the

assumption on the antecedent and repeats the process of

Unfold-and-Match with the now reduced entailment. Once the

procedure is completed, the complete anti-frame is recovered

by combining all of the separate fragments identified during

each stage of the abduction process. The process of frame

inference is performed similarly at the same time.

In order to maintain the validity of the sorted list predicates,

rules targeting sls predicates take additional steps to ensure

that the order of the sorted list is preserved throughout the

application of the rules. In the case of SLS-REC (Node), this

means the identification of a suitable ordering constraints

between the sorted list and the eliminated node. Unlike the

inequality between the two end-points, however, this ordering

constraint is not abduced from the application of the rule,

as it is implicit inside the sorted list predicates throughout.

Instead, the ordering constraint is simply made explicit by

the application of the rule. How this constraint is handled

varies depending on the form of the rule; for SLS-REC (Node), the

ordering constraint simply becomes an additional constraint

in the consequent of the entailment, requiring proof that the

ordering relation is satisfied in order to prove the overall

entailment. The inference of these ordering constraints may

be performed afterwards, if necessary.

While this may initially seem to be a useful aspect in

ensuring the soundness of these rules, this identification of for-

merly implicit ordering constraints has an additional benefit. In

previous works in the area of combined domain bi-abduction,

the handling of complex pure terms, such as ordering, was

typically undertaken partially or fully in a secondary analysis

phase. By completely integrating the pure constraints into the

abduction and entailment rules, we have developed a system

in which the complex pure properties are identified during

the shape analysis, eliminating the need for a subsequent pure

analysis following this initial phase.

Should no other bi-abduction rule be applicable, INF-MISSING

is applied, identifying the missing symbolic heap of the

antecedent and adding it to the anti-frame (its framing counter-

part, INF-EXTRA, though omitted, operates in a similar manner

for the consequent and frame). While this is a typically nec-

essary operation, bulk additions to the anti-frame may result

in the identification of overly-complex specifications, should

the previous rules not be applied. The greater precision of the

earlier rules is therefore preferred. In these two rules, to avoid

inference contradiction, the satisfiability of the solution is

required. The solving of this satisfiability may be implemented

through existing works like [11], [12], [13], [14], [15].

V. WORKING EXAMPLES

We now demonstrate how our technique would be applied

to prove combined-domain entailments. The derivation trees

for these examples may be found in Figure 3.

a) Example 1: We begin by demonstrating the system

on a relatively straightforward example using sorted lists. The

entailment used in this first example,

x 7→[n : x′, v : a] ∗ [?M] ⊢ sls(x, a, b, null) ∗ [?F]

[EMP]
x 6=null ∧ emp ∗ [emp ∧ true] ⊢ true ∧ emp ∗ [x 6=null]

[HYPOTHESIS]

x 6=null ∧ emp ∗ [emp ∧ true] ⊢ ∃a′. a≤a′ ∧ emp ∗ [x 6=null]
[INF-MISSING]

x 6=null ∧ emp ∗ [∃a′.sls(x′, a′, b,null)] ⊢ ∃a′. a≤a′ ∗ sls(x′, a′, b,null) ∗ [x 6=null]
[SLS-REC (Node)]

x 6=null ∧ x 7→[x′, a] ∗ [∃a′.sls(x′, a′, b,null)] ⊢ sls(x, a, b,null) ∗ [x 6=null]
[NODE-EX]

x 7→[x′, a] ∗ [∃a′.sls(x′, a′, b,null)] ⊢ sls(x, a, b,null) ∗ [x 6=null]

(a) Example 1.

[EMP]
i≤j ∧Π ∧ emp ∗ [true ∧ emp] ⊢ true ∧ emp ∗ [Π ∧ i≤j]

[LS-BASE]
i≤j ∧Π ∧ emp ∗ [true ∧ emp] ⊢ ls(null,null) ∗ [Π ∧ i≤j]

[LS-GENERALIZE]
Π ∧ sls(y, i, j,null) ∗ [true ∧ emp] ⊢ ls(y,null) ∗ [Π ∧ i≤j]

[LS-REC (Node)]

Π ∧ x 7→[y] ∗ sls(y, i, j,null) ∗ [true ∧ emp] ⊢ ls(x,null) ∗ [Π ∧ i≤j]

(b) Example 2, where Π ≡ x 6=null ∧ x 6= y ∧ y 6= null.

Figure 3: Derivation Trees for Examples

is a relatively simple entailment that is likely to be encoun-

tered in some form across many example programs. In this

case, for the entailment to be satisfied, the abduction procedure

should identify x as the head of a sorted list and produce an

anti-frame to reflect that.

Our algorithm first normalizes the entailment via the appli-

cation of NODE-EX, identifying the non-null constraint over the

node x. As no further normalization rules can be applied, the

algorithm instead attempts to find an appropriate subtraction

rule. SLS-REC(Node) is the first matching rule, identifying the

overlap between node x in the antecedent and the head of the

sls in the consequent and removing them. The application of

this rule eliminates x from the entailment, selecting the “next”

value of x as the new head and some fresh variable as the

new minimum and identifying an ordering constraint between

this new minimum and the previous one. At this point, no

further normalisation or subtraction rules can be applied to

the entailment, causing the algorithm to invoke the abduction

rules. As the only viable rule, INF-MISSING is applied, identifying

the missing sorted list and adding it to the anti-frame (The

consistency check has been omitted for space). The system

then identifies the existential ordering relation as a hypothesis

and removes it, before finally, EMP is applied, ending the

analysis and introducing the remaining pure information into

the anti-frame.

b) Example 2: Consider the following entailment:

Π ∧ x 7→[n : y] ∗ sls(y,mi,ma,null) ∗ [?M]
⊢ ls(x,null) ∗ [?F]

In this example, the system should identify that the symbolic

heap present on the left-hand side is already sufficient to

describe a null-terminated singly-linked list pointed-to by x.

The primary obstacle in this is the fact that the list segment

pointed by y is represented as a sorted list, necessitating the

use of a generalisation rule. The proof tree for this example

may be found in Figure 3b; we omit the normalisation steps

and compress the identified terms into Π for conciseness.

The system first normalises the entailment before proceed-

ing to subtract node x from the ls predicate through the appli-

cation of LS-REC (Node), leaving the ls and sls predicates the only

remaining spatial formulas. An application of LS-GENERALIZE

then abstracts the sorted list from the antecedent into a simple

list which is then matched against the list in the consequent

and removed, with the resulting ls(null,null) predicate

the only remaining spatial term. This is subtracted via LS-

BASE, reducing the entailment to pure constraints only. Finally,

EMP is applied, adding the remaining pure constraints of the

antecedent to the frame and ending the process. Important to

note is the anti-frame returned by our system; as mentioned

earlier, the existing state is sufficient to satisfy the entailment

and this empty anti-frame accurately reflects this fact.

VI. RELATED WORK

There are a number of works related to our technique. For

classical bi-abduction, Infer [5] remains the most well-known

and is essentially a “pure” implementation of the bi-abduction

technique [5]. Extensions have been made to the tool, but it

remains restricted to shape properties. Some extended versions

of bi-abduction have also been investigated, with the second-

order bi-abduction technique of Le et. al. [7], [16] being one

of the most promising.

In the area of combined domain bi-abduction, there is a

small number of relevant works. One of the earliest in this

area is the work described in [8]. Building upon a set of

shape properties obtained from some previous shape analysis,

the technique introduces and extends the shape predicates

with a set of pure terms representing properties such as

size or order, alongside additional predicates representing

relational information over the structure. A forwards analy-

sis is then undertaken to generate proof obligations for the

relational predicates, which are then finalised via a fixpoint

analysis, producing a precondition ensuring memory safety

and termination. One of the most developed techniques for

combined domain bi-abduction, and close to our own work,

is the work of Qin et al [17]. This technique is also based

around a fixpoint analysis of the target program, abducting

necessary state components in each pass, developing stronger

preconditions until a fixpoint is reached. This stage is guided

through user-defined predicates outlining the expected data

structures encountered, identifying several aspects of the pure

domain in these passes. However, a secondary bi-abductive

inference is still necessary to obtain smaller components of

pure information during the final abstraction phase for each

iteration, and widening operations utilised to accelerate reach-

ing the fixpoint may introduce soundness issues. Nevertheless,

the tool is quite effective, discovering specifications for data

structures involving not only shape information, but size and

bag properties as well. Since it is not truly a single-stage bi-

abductive method as our system is, the performance of the tool

is degraded by the two-phase analysis.

A range of other combined domain analysis techniques exist

in the literature: Thor [9] is capable of handling pure prop-

erties alongside memory safety, able to operate over ordering,

shape, size or depth properties via an additional analysis over

a ”proof program”. Chang et al [18] describe a generalised

framework for shape analysis based around forward abstract

interpretation with additional support for relations between

data values. The venerable TVLA system [19] is capable of

supporting a wide range of structures and properties, including

complex pure properties such as ordering, though is limited

by the lack of support for compositional reasoning. Finally,

techniques based on Forest Automata are also known [20],

though few can operate in the combined domain [21].

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel proof system for the bi-abduction

problem in separation logic for lists with ordering properties.

Our system has been designed based on the Unfold-and-Match

paradigm: given an entailment, it systematically explores all

candidate matching instances of the antecedent and consequent

prior to inferring any missing portion. For future work, we will

implement the proof system for automated program verifica-

tion and may further extend the system with a more expressive

fragment e.g., general inductive definitions with other pure

properties (size, balance, bag/set). Another work would be bi-

abduction to infer error specifications [22] for counterexample

generation [23], [24] and program repair [25].

REFERENCES

[1] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano,
and P. O’Hearn, “Scalable shape analysis for systems code,” in CAV.
Springer, 2008, pp. 385–398.

[2] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy, 2013,
pp. 48–62.

[3] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” in Proceedings of the 17th Annual IEEE Symposium on Logic

in Computer Science. IEEE, 2002, pp. 55–74.

[4] S. S. Ishtiaq and P. W. O’Hearn, “BI as an assertion language for mutable
data structures,” ACM SIGPLAN Notices, vol. 36, no. 3, pp. 14–26, 2001.

[5] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang, “Compositional
shape analysis by means of bi-abduction,” in Proceedings of the 36th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages. ACM, 2009, pp. 289–300.
[6] C. Calcagno and D. Distefano, “Infer: An automatic program verifier for

memory safety of c programs,” in NASA Formal Methods Symposium.
Springer, 2011, pp. 459–465.

[7] Q. L. Le, C. Gherghina, S. Qin, and W.-N. Chin, “Shape analysis via
second-order bi-abduction,” in Computer Aided Verification, A. Biere
and R. Bloem, Eds. Cham: Springer International Publishing, 2014,
pp. 52–68.

[8] M.-T. Trinh, Q. L. Le, C. David, and W.-N. Chin, “Bi-abduction with
pure properties for specification inference,” in Asian Symposium on

Programming Languages and Systems, 2013, pp. 107–123.
[9] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay, “Automatic numeric

abstractions for heap-manipulating programs,” in Proceedings of the

37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, ser. POPL ’10. ACM, 2010, pp. 211–222.
[10] J. Berdine, C. Calcagno, and P. W. Ohearn, “Symbolic execution with

separation logic,” in Asian Symposium on Programming Languages and

Systems. Springer, 2005, pp. 52–68.
[11] Q. L. Le, M. Tatsuta, J. Sun, and W.-N. Chin, “A decidable fragment in

separation logic withinductive predicates and arithmetic,” in Computer

Aided Verification, R. Majumdar and V. Kunčak, Eds. Cham: Springer
International Publishing, 2017, pp. 495–517.

[12] Q. L. Le, J. Sun, and W.-N. Chin, “Satisfiability modulo heap-based
programs,” in Computer Aided Verification, S. Chaudhuri and A. Farzan,
Eds. Cham: Springer International Publishing, 2016, pp. 382–404.

[13] M. Tatsuta, Q. L. Le, and W.-N. Chin, Decision Procedure for Separation

Logic with Inductive Definitions and Presburger Arithmetic. Cham:
Springer International Publishing, 2016, pp. 423–443.

[14] X. Gu, T. Chen, and Z. Wu, “A complete decision procedure for linearly
compositional separation logic with data constraints,” in Automated

Reasoning, N. Olivetti and A. Tiwari, Eds. Cham: Springer International
Publishing, 2016, pp. 532–549.

[15] Z. Xu, T. Chen, and Z. Wu, “Satisfiability of compositional separation
logic with tree predicates and data constraints,” in Automated Deduction

– CADE 26, L. de Moura, Ed. Cham: Springer International Publishing,
2017, pp. 509–527.

[16] Q. L. Le, J. Sun, and S. Qin, “Frame inference for inductive entailment
proofs in separation logic,” in Tools and Algorithms for the Construction

and Analysis of Systems, D. Beyer and M. Huisman, Eds. Cham:
Springer International Publishing, 2018, pp. 41–60.

[17] S. Qin, G. He, W.-N. Chin, F. Craciun, M. He, and Z. Ming, “Auto-
mated specification inference in a combined domain via user-defined
predicates,” Science of Computer Programming, pp. 189–212, 2017.

[18] B.-Y. Chang and X. Rival, “Relational inductive shape analysis,” in
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages. ACM, 2008, pp. 247–260.
[19] M. Sagiv, T. Reps, and R. Wilhelm, “Parametric shape analysis via

3-valued logic,” ACM Transactions on Programming Languages and

Systems, vol. 24, no. 3, pp. 217–298, 2002.
[20] L. Holı́k, M. Hruška, O. Lengál, A. Rogalewicz, J. Šimáček, and

T. Vojnar, “Forester: Shape analysis using tree automata,” in TACAS,
C. Baier and C. Tinelli, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 432–435.

[21] P. A. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C. Q. Trinh, and
T. Vojnar, “Verification of heap manipulating prorams with ordered data
by extended forest automata,” in ATVA 2013, October 15-18, Hanoi,

Vietnam. Springer Berlin/Heidelberg, 2013, pp. 224–239.
[22] Q. L. Le, A. Sharma, F. Craciun, and W.-N. Chin, “Towards complete

specifications with an error calculus,” in NASA Formal Methods, G. Brat,
N. Rungta, and A. Venet, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 291–306.

[23] L. H. Pham, Q. L. Le, Q.-S. Phan, and J. Sun, “Concolic testing heap-
manipulating programs,” in FM 2019, to appear.

[24] L. H. Pham, Q. L. Le, Q.-S. Phan, J. Sun, and S. Qin, “Enhancing
symbolic execution of heap-based programs with separation logic for
test input generation,” in ATVA 2019, to appear.

[25] L. D. X. Bach, Q. L. Le, D. Lo, and C. L. Goues, “Enhancing automated
program repair with deductive verification,” in 2016 IEEE International

Conference on Software Maintenance and Evolution, 2016, pp. 428–432.

