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ABSTRACT For large-scale Unmanned Aerial Vehicle (UAV), it is a challenging problem to automatically

generate an optimal path considering the multi-constraints. In order to improve the efficiency and optimality

of conventional A∗ algorithm, Bi-directional adaptive A∗ algorithm is proposed in this paper. Regarding

to the defect of expansion efficiency for conventional A∗ algorithm based on multi-direction, directional

search strategy is adopted to improve the efficiency of expansion process and guarantee the smooth of the

path. Adaptive step strategy and adaptive weight strategy are used to improve the exploration speed and

the accuracy of the proposed algorithm. By adopting bi-directional search strategy, the exploration ability

of the algorithm can be improved in some complex environment. Finally, rewiring process is introduced to

optimize the path length. The simulation for UAV path planning under the multi-constraints conditions is

carried out and the simulation results show that Bi-directional adaptive A∗ algorithm has the superiority in

run time and path quality.

INDEX TERMS A∗ algorithm, adaptive strategy, unmanned aerial vehicle, path planning.

I. INTRODUCTION

Large-scale Unmanned Aerial Vehicle (UAV) [1] has good

performance in terms of mobility and maneuverability under

the complex environment. As the development of the smart

devices and the algorithm, large-scale UAV is widely used in

various fields, such as search and rescue [2], coastal mon-

itoring [3], surveillance system [4], and so on. As the key

technology of the large-scale UAV, path planning algorithm

has recently gained great attention in the study of aerospace

control community. At present, the primary algorithms of

the path planning can be divided into two fields: traditional

path planning algorithm and swarm intelligence optimiza-

tion algorithm [5]. Artificial potential field algorithm [6]

and simulated annealing [7] belong to the former, which

are simplicity of operator and easy to use. However above

algorithms have the problem of local minima.With the devel-

opment of swarm intelligence technology, population-based

evolutionary algorithms have made great progress in recent
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years [8], [9]. Common swarm intelligence optimization

algorithms include Ant Colony Optimization (ACO) [10],

Particle Swarm Optimization (PSO) [11], and Genetic algo-

rithm(GA) [12]. Swarm intelligence optimization algorithms

can efficiently solve the path planning problem with good

robustness. However, according to the evolution principle

of swarm intelligence optimization algorithms, algorithms

with more uniform initial swarm distribution are easier to

obtain global optimal solution [13], which means that the

optimization effect of those algorithms relies on the initial

distribution of the swarm. In order to avoid the local minima

and reduce the dependence of the initial swarm, the sampling-

based algorithms (e.g., rapidly-exploring random tree star

(RRT∗) [14], A∗ algorithm [15]) are introduced to provide

a better solution for UAV path planning problem.

Among them, the path generated by A∗ algorithm based on

graph search can converge to the optimal solution. However,

the path quality generated by A∗ algorithm is to a great extent

depends on the number of candidate nodes in the expansion

process, thus, A∗ algorithm converges to optimal solution

very slowly due to the inefficient node expansion process.
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Based on the conventional A∗ algorithm, a lot of works

have been done by the researchers. Aimed at the dynamic

obstacles, constrained A∗ algorithm [16] generated the safer

path by creating a circular boundary for ship as a safety

distance. However, constrained A∗ algorithm does not take

into account the smoothness of the path, which means the

path generated by them cannot meet the curvature constraint

of ship. Considering the issue of path smooth, finite angle

A∗ algorithm [17] explored more candidate nodes in node

expansion process, which provided more abundant turning

points for unmanned surface vehicles. In order to obtain

a shorter and smoother path, the pre-processing stage and

the post-processing stage were introduced into work [18]

to reduce the redundant nodes. Meanwhile, the cost of the

path generated by work [18] was optimized by reducing

the local path cost. Smoothed A∗ algorithm [19] generated

the path without ‘jags’ and redundant waypoints by adopting

cubic spline interpolation and three path smoothers. Despite,

the node expansion efficiency of the above-mentioned algo-

rithms is low due to the node expansion process of them

are similar with the conventional A∗ algorithm. Furthermore,

additional smoothing optimization process leads to longer

running time.

In order to improve the efficiency of node expansion and

the convergence speed of the algorithm, researchers altered

the node expansion process. By introducing difference engine

into the node expansion process, work [20] proposed an

improved differential A∗ algorithm for manipulator. Com-

pared with conventional A∗ algorithm the reconfigurability

and real-time capability of differential A∗ algorithm was

superior. Word [21] proposed a multi-direction A∗ algorithm

for ship which could generate the path similar with the real

cases. Experimental result showed that multi-direction A∗

algorithm could enhance path safety to a large degree and

improve efficiency in node expansion process by adding the

penalty model into the conventional A∗ algorithm. Similarly,

using amodified node evaluation function, the path created by

light-assisted A∗ algorithm [22] could bypass the obstacles

towards the goal in complex-shaped obstacles environment.

Due to the efficient nodes expansion process, the convergence

rate of light-assisted A∗ algorithm was improved. However

above algorithms are barely considering the physical con-

straint of the machine which is not suitable for the actual

motion.

Aimed at the problem of large-scale UAV path planning in

complex environment, Bi-directional adaptive A∗ algorithm

is proposed in this paper. In order to solve the defect of

the inefficient node expansion for A∗ algorithm, directional

search strategy is introduced into the proposed algorithm

to generate the path which meet the constraint of the UAV

attitude angle. Adaptive step strategy adjusts dynamically the

step of A∗ algorithm by estimating the environment around

the current node to improve the convergence rate. According

to the flight demands of the UAV [23], the evaluation function

is modified to generate the path which is far from obstacles

and has the safe altitude. Adaptive weight strategy is used

to balance the convergence rate and the path quality during

the planning. Furthermore, the rewiring process is adopted to

reduce the redundant nodes and the path cost. Comprehen-

sively, comparing with the work [19] Bi-directional adaptive

A∗ algorithm can converge to the optimal path faster.

Nomenclature

P(n) = (xn, yn, zn) Waypoint coordinate

θ , φ Pitch angle, yaw angle

φmax Maximum yaw angle

θmax Maximum pitch angle

T r = (xr0, y
r
0, z

r
0,R

r ) The r th radar.

f (P(n)) Total cost

g(P(n)), h(P(n)) A∗ algorithm parameters

Pinit, Pgoal Initial node and goal node

Deff effective radius of the obstacle

L, Lmax , Lmin Step of the algorithm

A∗
a, A

∗
b The path generated by algorithm

S Space environment

Sobs Obstacle area

Sfree Obstacle-free area

The main contributions of the paper are as follows: Firstly,

several improvements for A∗ algorithm, namely directional

search strategy, adaptive step strategy, adaptive weight strat-

egy, bi-directional search strategy, rewiring process, are pro-

posed and analyzed in this paper. Secondly, compared with

conventional A∗ algorithm and Smoothed A∗ algorithm,

Bi-directional adaptive A∗ algorithm has the better perfor-

mance in convergence speed and solution optimality. Thirdly,

Bi-directional adaptive A∗ algorithm can plan a collision-

free path, which meets UAV attitude angle and altitude

constraints.

This paper is divided into following sections: Section II

introduces the UAV physical constraint, and environmen-

tal representation. In Section III, the improvements and

the procedure of Bi-directional adaptive A∗ algorithm are

given. Section IV follows up with theoretical analysis of

our proposed algorithm. Simulation results and comparison

under different scenarios are introduced in Section V. Finally,

conclusions are drawn in Section VI.

II. PROBLEM DEFINITION

A. PHYSICAL CONSTRAINTS

In order to obtain a feasible path, the following physical

constraints need to be satisfied when UAV is in operation.

1) THE CONSTRAIN OF MAXIMUM YAW ANGLE

The maximum yaw angle is used to limit the turning angle of

the UAV. Let P(n) = (xn, yn, zn) denote waypoint coordinate.

Let pn = (xn − xn−1, yn − yn−1, zn − zn−1) denote the path

vector between waypoints P(n) = (xn, yn, zn) and P(n−1) =

(xn−1, yn−1, zn−1). Maximum yaw angle is represented by

φmax . Yaw angle of UAV shouldmeet the following condition,

cosφmax ≤
pTn pn+1

|pn| |pn+1|
(1)
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2) THE CONSTRAIN OF MAXIMUM PITCH ANGLE

The maximum pitch angle is used to restrict the climb/dive

angle of the UAV. Let θmax denote maximum pitch angle.

Pitch angle of the UAV should meet the following condition,

tanθmax ≥
|Zn − Zn−1|

|pn|
(2)

B. ENVIRONMENTAL MODEL

In military applications, UAV not only needs to avoid the

threat of the mountain, but also needs to stay away from

radar, thus radar threat as obstacle is introduced into this

paper. Let T r = (xr0, y
r
0, z

r
0,R

r ) denote the r th radar. As an

omnidirectional detection device, the mathematical model of

radar is simplified to the follow,

(x − xr0)
2
+ (y− yr0)

2
+ (z− zr0)

2
= (Rr )2 (3)

where (xr0, y
r
0, z

r
0) is the center location coordinate of the r th

radar, Rr is the effective radius of the r th radar.

It is necessary for UAV path planning algorithm to consider

the effects of physical constraint and the threat to improve

stability and safety of the UAV, thus distance cost, obstacle

threat, altitude, and so on, are integrated into Bi-directional

adaptive A∗ algorithm.

III. BI-DIRECTIONAL ADAPTIVE A∗ ALGORITHM

A. A∗ ALGORITHM

As a heuristic method, A∗ algorithm based on the evalua-

tion function seeks the shortest path consisted by a finite

set of waypoints Pinit,P (1) , · · · ,Pgoal between the initial

node Pinit and the goal node Pgoal. During each iteration,

A∗ algorithm calculates total cost f (P(n)) for each node P(n),

where f (P(n)) is calculated by the follow equation:

f (P(n)) = g(P(n)) + h(P(n)) (4)

where g(P(n)) denote the distance cost from the current node

P(n) to the initial node Pinit, h(P(n)) is the estimated cost of

the path from the current node P(n) to the goal node Pgoal.

In order to obtain the shortest path between the initial node

and the goal node, A∗ algorithm seeks the node owning the

minimum f (P(n)) value at each iteration process. And that

process will continue till the algorithm returns an available

path.

B. DIRECTIONAL SEARCH STRATEGYA

Based on the difference of candidate nodes number in the

exploration process, conventional A∗ algorithm based on the

grid method can be divided into 4-direction A∗ algorithm, 8-

direction A∗ algorithm as follow in Fig.1. As the number of

candidate nodes increases, the performance ofmulti-direction

A∗ algorithm can be improved in the yaw angle. However,

due to more candidate nodes are available, multi-direction A∗

algorithm will inevitably increase computation and sacrifice

memory.

Multi-direction A∗ algorithm is advantageous to improve

the exploration ability; however, the invalid candidate nodes

FIGURE 1. Multi-direction A∗ algorithm.

would increase the computational time. Therefore, a more

efficient extension method needs to be introduced to reduce

the computation. Combining the direction vector from the

current node to the goal node in obstacle-free space with

constrain of pitch angle θ and yaw angle φ of the UAV,

the candidate nodes of the current node can be confirmed by

directional search strategy.

It can be seen from Fig.2, the candidate nodes obtained by

directional search strategy are distributed on the arc surface

which satisfy the constrain of UAV pitch angle θ and yaw

angle φ. Directional search strategy not only guarantees the

exploration ability of the proposed algorithm, but improves

the efficiency of seeking candidate nodes. Due to the con-

strains of UAV pitch angle θ and yaw angle φ are considered

in directional search strategy, the extra smoothing process is

not necessary for the path generated by it.

FIGURE 2. Directional search strategy.

C. ADAPTIVE STEP STRATEGY

Conventional A∗ algorithm connects the current node P(n)

and the child node Pchild(n) with fixed short step, which

could delay the convergence of it in obstacle-free. In order

to overcome this defect, an adaptive step strategy is proposed

in this paper to adaptively adjust step while the current node

is under the different environment, such as obstruction area

and safe area.

The calculation equation of adaptive step strategy is shown

below:

L =

{

Lmax −
Deff
2∗D

D ≥ Deff

Lmin + Lmin∗
D
Deff

D < Deff

(5)

where L is the step, Lmax and Lmin represent the maximum

step and the minimum step, respectively, let D denote the
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distance between the current node to its nearest obstacle.Deff

is the effective radius of the obstruction. As shown in Fig.3,

when the UAV is far from the obstacle, the UAV is considered

as in the safe area (D ≥ Deff). In this case, the large step is

allowed to accelerate convergence. As shown in Fig.4, if the

UAV is estimated in the area of obstruction (D < Deff),

the small step size is used to guarantee the granularity of the

path.

FIGURE 3. UAV in the safe area.

FIGURE 4. UAV in the obstruction area.

D. EVALUATION FUNCTION

Considering the special constraint of the UAV, such as dis-

tance cost, collision-free path and safe flight altitude, g(P(n))

is modified to the following:

g(P(n)) = ω1gobs(P(n)) + ω2galt(P(n)) + ω3gcost(P(n))

(6)

where gobs(P(n)) represent the cost from the current position

P(n) to its nearest obstacle, galt(P(n)) is the flight altitude

cost from the current position P(n) to the reference altitude,

gcost(P(n)) denote the Euclidean distance cost from the cur-

rent position P(n) to the initial node Pinit. ω1, ω2, and ω3 are

the weight of each parameter, respectively.

Different from the conventional A∗ algorithm, heuristic

function h(P(n)) is calculated in terms of Manhattan dis-

tance [24] instead of Euclidean metric in this paper, due to the

optimization effect is different when the adopted geometric

measurement of heuristic function h(P(n)) is different. It can

be seen from Fig.5(a), heuristic function h(P(n)) based on

Euclidean distance will explore more space, which sacri-

fices the memory. Meanwhile the expensive square root in

Euclidean metric increases the computation. On the contrary,

heuristic function h(P(n)) based on Manhattan distance con-

ducts more accurate space exploration with less redundant

FIGURE 5. The path under different heuristic function.

nodes. Manhattan distance adopted by this paper guarantees

the efficiency of our proposed algorithm and the path quality.

h (P (n)) =
∣

∣Px (n) − Pgoal_x
∣

∣ +
∣

∣Py (n) − Pgoal_y
∣

∣

+
∣

∣Pz (n) − Pgoal_z
∣

∣ (7)

where (Px (n) ,Py (n) ,Pz (n)) denote the coordinate of node

P(n), (Pgoal_x,Pgoal_y,Pgoal_z) is the coordinate of goal node

Pgoal.

E. ADAPTIVE WEIGHT STRATEGY

When the weight of h(P(n)) is smaller, A∗ algorithm

approaches to Dijkstra algorithm, which seeks the shortest

path from the initial node Pinit to the goal node Pgoal by

conduct abundant space exploration with slower convergence

speed. When the weight of g(P(n)) is smaller, A∗ algorithm

translates into Best-First-Search algorithm (BFS), finding a

path quickly, however this path is not the optimal for UAV.

Thus, A∗ algorithm based on the Dijkstra algorithm and

the BFS algorithm can balance the rate of convergence and

the quality of the path by adjusting the weight of g(P(n)) and

h(P(n)) dynamically. The evaluation function of our proposed

algorithm is calculated by the following:

f (P(n)) = ωgg(P(n)) + ωhh(P(n)) (8)

where ωg and ωh are the weight factor of g(P(n)) and h(P(n)),

respectively.

The calculation equations for ωg and ωh are as follow:

ωh =







ωmax D ≥ Deff

ωmax − (ωmax − ωmin) ∗ (1 −
D

Deff
) D < Deff

(9)

ωg = 1 − ωh (10)

where ωmax and ωmin are respectively the maximum and

minimum preset value for ωh.

It can be seen from Equ. (9), the value of ωh will be set as

the maximum value to accelerate the rate of convergence in

the obstacle-free area (D ≥ Deff). Meanwhile, according to

Equ. (10), ωg will be set as the minimum value to avoid the

useless exploration. When UAV drive into the obstacles area

(D < Deff), accurate space exploration is needed to generate

a high-quality path. Therefore, the value of ωg is adaptively

increased to find an optimal path in obstacles area.
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FIGURE 6. Schematic diagram of rewiring process.

F. BI-DIRECTIONAL SEARCH STRATEGY

In order to improve the exploration ability of the A∗ algo-

rithm, bi-directional search strategy is introduced into our

proposed algorithm which performs both forward and reverse

searches at the same time. When the forward search path A∗
a

rooted at the initial node Pinit and the reverse search path A∗
b

initialized at the goal node Pgoal explore the same child node,

algorithm returns a feasible path.

G. REWIRING PROCESS

The path generated by the above path exploration strategy

consists of a number of short line segments linking a mass

of path nodes, might including redundant nodes. In order

to reduce the path length and the useless turning nodes,

the rewiring process is introduced in this paper to delete the

redundant nodes.

For each optimization process, rewiring process checks

all path nodes successively in a groups of three continuous

path nodes and above three continuous nodes are named as

follows, (1) let node A denote the current checking node;

(2) let node B denote the child node of the current checking

node A in path set; (3) let node C denote the child node

of the node B. If nodes A, B, and C satisfy Equ. (11) and

Equ. (12), the original path A − B − C will turns into A − C,

and the redundant node B will be removed. Fig.6 illustrates

the principle of the rewiring process.

A− C ∩ Sobs = ∅ (11)

‖C-A‖ ≤ ‖C-B‖ + ‖B-A‖ (12)

where Sobs denote the obstacle area, ‖•‖ is the Euclidean

norm, ‖C-A‖ represent the Euclidean distance between C to

A. ‖C-B‖ and ‖B-A‖ are the same definition as above.

Fig.6 illustrate how this method works, where

A − B − C − D is the path to be optimized, A − C − D is the

optimized path. Clearly, invalid turning node B increases path

length and the instability of the UAV, thus, rewiring process is

proposed to optimize the path in distance cost and the angular

variation of the UAV.

H. ALGORITHM PROCESS

The detailed steps of Bi-directional adaptive A∗ algorithm are

given in this section.

Step 1: Initialize three-dimensional solution space. Con-

struct radars by Equ. (3) and set the initial position and the

goal position for UAV. Set the algorithm parameters. Initialize

close list and open list.

TABLE 1. Pseudo code of the bi-directional adaptive A∗ algorithm.

Step 2: The node in the open list with the minimum value

f (·) is marked as the current node by the calculation of

Equ. (8). If current nodes of A∗
a and A

∗
b are accessible for each

other, then return a feasible path and go to Step 6.

Step 3: Remove current node from open list and add it to

close list. Calculate successor node by the directional search

strategy and adaptive step strategy.

Step 4: If successor node is absent in the open list, add

it into the open list. Set the current node as its father node

and calculate {g (P(n)) , h (P(n)) , f (P(n))} by Eqs. (6)∼(8),

respectively. Return to Step 2.

Step 5: If successor node is present in the open list and the

cost is less than the current node cost, update cost of successor

node. Return to Step 2.

Step 6: The optimal path is returned by the rewiring

process.

IV. ANALYSIS

A. PROBABILISTIC COMPLETENESS

Let Dak (p) denote the random variable of the minimum dis-

tance from node p ∈ Sfree to the latest node of the first pathA
∗
a,
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FIGURE 7. Simulation map.

where A∗
a is defined as above. d

a
k (p) is the value of the random

variableDak (p), where k is the number of iterations, Sfree is the

obstacle-free space. Similarly, let Dbk (p) denote the random

variable of the minimum distance from node p ∈ Sfree to the

latest node of the second path A∗
b and A

∗
b is defined as above.

dbk (p) is the value of the random variable Dbk (p). Dk (pa, pb) is

the random variable of the minimum distance from path A∗
a

to path A∗
b, where pa and pb is the latest nodes of path A

∗
a and

path A∗
b, respectively. dk (pa, pb) is the value of the random

variable Dk (pa, pb).

Theorem: Bi-directional adaptive A∗ algorithm is a prob-

abilistically complete algorithm. For any space S, when the

number of iterations approach infinity, the distance between

pa and pb is less than a constant ε. Thus, the probability of

searching a path goes to one.

lim
k→∞

P (dk (pa, pb) < ε | pa, pb ∈ Sfree) = 1 (13)

Proof: Let Oka(pa) denote the closed ball of radius

ε > 0 centered at pa ∈ A∗
a in kth iteration. Similarly, Okb(pb)

represent the closed ball of radius ε > 0 centered at pb ∈ A∗
b

in kth iteration.

Oka (pa) :Oka,ε := {p ∈ S| ‖p− pa‖ ≤ ε} (14)

Okb (pb) :Okb,ε := {p ∈ S| ‖p− pb‖ ≤ ε} (15)

Let Ȯka (pa) denote the intersection of the closed ball

Oka (pa) and the obstacle-free space Sfree. Ȯ
k
b (pb) is defined

as same as the Ȯka (pa).

Ȯka(pa) = Oka(pa) ∩ Sfree (16)

Ȯkb(pb) = Okb(pb) ∩ Sfree (17)

For the kth iteration, it is assumed that the latest node of

the path A∗
a is outside the ball Ȯ

k
b(pb).

Ȯkb(pb) ∩ A∗
a = ∅ (18)

Similarly, let us assume that the second path A∗
b and the ball

Ȯka(pa) have no intersection,

Ȯka(pa) ∩ A∗
b = ∅ (19)

For the next iteration, due to the node exploration process

adopts the directional search strategy, path A∗
a is expanded

toward the direction of the latest node of the path A∗
b. The

mean of Dak+1(pb) is given by following,

E(Dak+1(pb)) < E(Dak (pb)) (20)

Similarly, the directional search strategy act on the second

path A∗
b. The mean of Dbk+1(pa) is expressed below,

E(Dbk+1(pa)) < E(Dbk (pa)) (21)

One can see from Equ. (20) and Equ. (21) that, for the k +

1th iteration, the distance between the path A∗
a and the path

A∗
b will decreases.

dk+1(pa, pb) < dk (pa, pb) (22)

Thus, as the number of iterations k goes to infinity, the

probability of searching a path goes to one.

lim
k→∞

P (dk (pa, pb) < ε | pa, pb ∈ Sfree) = 1 (23)

V. SIMULATION RESULTS

In order to evaluate the performance of our proposed

algorithm, several comparisons are carried out among

Bi-directional adaptive A∗ algorithm (BAA∗), Smoothed A∗

algorithm (SA∗), and Conventional A∗ algorithm (CA∗) in

this section. Three different maps in Fig.7 are used to test the

performance of BAA∗, where radars are added as the threaten

area in the maps. The characteristic parameters of BAA∗ are

shown in Table 2. The parameters of the threaten area are

given in Table 3.

TABLE 2. Characteristic parameters of BAA∗.

TABLE 3. Parameters of the threaten area.
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FIGURE 8. Simulation results of CA∗.

FIGURE 9. Simulation results of SA∗.

FIGURE 10. Simulation results of BAA∗.

FIGURE 11. Simulation results of BAA∗ in vertical view.

The simulation results of above algorithm running in three

different maps are shown in Fig.8-11, where the simulation

results of BAA∗ are shown in different visual angles. The data

of simulation results are illustrated in Table 4. Furthermore,

the data of attitude angle for these different A∗ algorithm are

given and analyzed below, meanwhile the altitude compari-

son of them are also carried out. The related results of attitude

angle and altitude are shown in Tables 5 and Fig.12-16.

A. OPTIMALITY COMPARISON

It can be seen from Table 4, the algorithm optimality includes

the path cost, computational time and the number of the

search grids, where the distance cost represents the basic

performance of the algorithm, computational time and the

TABLE 4. Simulation result data.

number of the search grids represent the computing power

of the algorithm.

The simulation results of CA∗ in different environ-

ments are shown in Fig.8. Based on the 8-direction grid

search strategy, CA∗ explores a mass of candidate nodes

(Nodes = 44, 40, 42), which sacrifices the memory and

decreases the convergence speed (Time = 50.308, 50.854,

53.541). Meanwhile, the path generated by CA∗ climbs over

the obstacles to avoid the collision. Due to the climb process

of the UAV, the path cost can be increased (Path Cost =

51.455, 59.094, 55.351) which lead to the increase in fuel

consumption of UAV.

As seen from Fig.9, comparing with the CA∗, SA∗ can

generate smoother path with less jags which improve the
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FIGURE 12. Yaw angle change of UAV.

FIGURE 13. Pitch angle change of UAV.

FIGURE 15. The maximum flight altitude of three different algorithms in different maps.

FIGURE 16. The flight altitude standard deviation of three algorithms in different maps.

stability of the UAV. It can be seen from Table 4, by using

refining path smoother, the redundant nodes are removed

(Nodes = 22, 16, 22) which reduces the path cost (Path

Cost = 49.624, 52.796, 54.003) and the demand of

the memory. However, the extra smoothing processes of

SA∗ increases the computational time which reduces the

real-time performance of the SA∗ (Time = 55. 233, 57.154,

57.051).
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FIGURE 14. Comparison of angle sum.

The results of BAA∗ are shown in Fig.10-11 in different

perspective. Comparing with SA∗, the extra smoothing pro-

cess is not necessary for BAA∗ due to the directional search

strategy based the attitude angle of the UAV. By adopting

the adaptive step strategy and the adaptive weight strategy,

BAA∗ extends quickly in the obstacle-free area to accelerate

the convergence rate of algorithm (Time = 20.376, 21.742,

22.695) and accurately explores in the obstacles area to obtain

the shortest path. Finally, the rewiring process is used to

reduce the redundant nodes (Nodes = 14, 14, 22) and the

path cost is decreased further (Path Cost = 46.223, 49.560,

49.056).

B. ATTITUDE ANGLE COMPARISON

As the change of attitude angle is closely related to the UAV

stability and is a main index of path quality for UAV, attitude

angle comparisons among different A∗ algorithm are given

and analyzed with the combination of Fig.12-14 and tables 5.

It can be seen from Fig.12-13, since only the basic require-

ments of UAV path planning, such as obstacle avoidance and

distance cost, are considered, the yaw angle of CA∗ inevitably

exceeds the constraint whenUAVavoids obstacles. The larger

attitude angle change leads to the instability and insecurity

of UAV. Comparing with CA∗, the attitude angle of the path

created by SA∗ is optimized by introduced three individual

path smoothers. But there are some unbearable jags in the

path while the UAV passes by the threat.

Thanks to the introduction of attitude angle constraint

during the exploration process, the path generated by BAA∗

satisfies the angle constraint of UAV, which guarantees the

stability during flight. Let γya and γpa represent the sum of

UAV yaw and pitch angle change, respectively. γya and γpa
are calculated by the follow,

γya =
∑V

v=1
γy_a(v) (24)

γpa =
∑V

v=1
γp_a(v) (25)

where V denote the number of attitude angle change, γy_a and

γp_a denote the set of yaw and pitch angle, respectively.

It can be seen from Table 5 and Fig.14, compared with

CA∗, the sum changes of yaw angle are reduced by 72.210%,

73.187%, and 48.300% while BAA∗ is run in map1, map2,

and map3, respectively. For the pitch angle, compared with

TABLE 5. Comparison of attitude angle sum of the different algorithms.

CA∗, the path generated by BAA∗ in three different maps

reduce it by 66.558%, 70.301%, and 48.109%, respectively.

C. ALTITUDE COMPARISON

It can be seen from Fig.15, due to altitude constraint is not

introduced in CA∗, the climbing process is used to avoid

obstacles. The maximum altitude of CA∗ in map1, map2,

and map3 reach to 4.1km, 3.1km, and 3.1km, respectively.

Further, flight altitude standard deviations (SD) is shown

in Fig.16, which reflects the stationarity of the UAV during

the flying process. The flight altitude standard deviations of

CA∗ is 1.076km, 1.048km, and 0.873km in three different

maps respectively, which means the paths generated by CA∗

are unstable. Meanwhile, too much energy is wasted during

the climbing process. Similarly, for SA∗, the maximum alti-

tude in map1, map2, and map3 is 4.1km, 3.1km, and 3.1km,

respectively. However, due to the cubic spline interpolation

function is introduces into SA∗, the standard deviations of

flight altitude are 0.994km, 0.747km, and 0.779km, which

means the stability and smoothness of the path. However,

similar to the conventional A∗, the node growth process of

SA∗ also ignores the altitude limitation of UAV, resulting in

the path generated by SA∗ has the climbing process to avoid

the obstacles.

By introducing the information of the obstacles and the

altitude limit into the evaluation function, the path generated

by BAA∗ can bypass the obstacles without the climbing pro-

cess. As shown in Fig.15, the maximum altitude of the path

in map1, map2, and map3 is 1.661km, 2.357km, 1.807km,

respectively. And the standard deviations of flight altitude

are 0.698km, 0.709km, 0.530km, which guarantees the safety

and the stability of the UAV.

VI. CONCLUSION

A novel path planning algorithm based on A∗ algorithm

underling multi-constraints is proposed in this paper namely

Bi-directional adaptive A∗ algorithm. The directional search

strategy, adaptive step strategy, modified evaluation function,

adaptive weight strategy, bi-directional search strategy, and

rewiring process are respectively introduced and analyzed in

this paper. The main findings are summarized as follows:

(1) Due to the adoption of the directional search strategy

based on the attitude angle, the proposed algorithm generates

the path meeting the constraint condition of large-scale UAV

and increases the rate of convergence comparing with other

A∗ algorithm. (2) Adaptive step strategy and the adaptive
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weight strategy are used to balance exploration speed and

the path planning quality by analyzing the environmental

conditions of the current node. (3) The altitude limitation and

the obstacles information are introduced into the evaluation

function to create the safety path. (4) Rewiring process is

used to reduce the redundant nodes which decreases the path

cost further. In order to verify the feasibility of Bi-directional

adaptive A∗ algorithm, the proof of probabilistic complete-

ness is given in section IV. The simulation comparison results

given in section V indicate that comparing with conventional

A∗ algorithm and smoothed A∗ algorithm [19], Bi-directional

adaptive A∗ algorithm has superiorities for path planning

problem of large-scale UAV in term of the path quality and

the rate of convergence.
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