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Abstract

Most existing methods do not explicitly formulate the

mutual guidance between vision and language. In this work,

we propose a bi-directional relationship inferring network

(BRINet) to model the dependencies of cross-modal infor-

mation. In detail, the vision-guided linguistic attention is

used to learn the adaptive linguistic context correspond-

ing to each visual region. Combining with the language-

guided visual attention, a bi-directional cross-modal atten-

tion module (BCAM) is built to learn the relationship be-

tween multi-modal features. Thus, the ultimate semantic

context of the target object and referring expression can be

represented accurately and consistently. Moreover, a gated

bi-directional fusion module (GBFM) is designed to inte-

grate the multi-level features where a gate function is used

to guide the bi-directional flow of multi-level information.

Extensive experiments on four benchmark datasets demon-

strate that the proposed method outperforms other state-of-

the-art methods under different evaluation metrics.

1. Introduction

Referring image segmentation is a challenging task that

has emerged in recent years. It helps to understand the rela-

tionship between language and vision. Unlike the simplic-

ity of traditional semantic segmentation whose each pixel

needs to be assigned a specific semantic category label, re-

ferring image segmentation requires a deeper understanding

of image. In order to segment the region that best match-

es the referring expression, referring image segmentation

needs to take into account appearance attributes, actions, s-

patial relationships, as well as some other cues contained in

the expression. For example, if the expression is ‘A man

sitting on the right is wearing a black suit’, we need an al-

gorithm that not only distinguishes all the instances in the

image, but also locates the most suitable one, according to
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Figure 1: Bi-directional relationship inferring network. The

blue dotted line represents the relationship modeling between each

word. The green solid line represents the bi-directional interaction

between language and vision, and the purple solid line represents

the internal relationship of visual features. Given a referring ex-

pression and a query image, the bi-directional cross-modal atten-

tion module constructs the cross-modal relationship between lin-

guistic and visual information, which makes the network pay more

attention to the target object pointed by the referring expression.

the semantic meaning of the sentence.

Recently, the rapid development of convolutional neural

network (CNN) and recurrent neural network (RNN) has

greatly promoted the research progress of both computer

vision and natural language processing. The most perva-

sive solution of referring image segmentation is to extract

the visual and linguistic features by the CNN and the RN-

N, respectively. These features are then fused to gener-

ate the final pixel-wise segmentation mask. Some meth-

ods [14, 23, 20, 28] directly concatenate the two kinds of

features and then infer the target object depending on the

network itself. Due to the powerful learning ability of neu-

ral network, these methods indeed achieve some reason-

able performance. However, they implicitly assume that

each word contributes equally to each visual region with-

out considering the interaction between linguistic and vi-

sual features, which often results in some inaccurate target

localization. Later, some works either brutally model the

relationships between the vision-word mixed features in a

fully-connected manner [38] or only unidirectionally utilize

the linguistic attention to formulate the cross-modal rela-
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tionship [31, 3]. All of them do not explicitly characterize

the mutual guidance between the visual and linguistic fea-

tures yet, thereby weakening the contextual consistency of

linguistic and visual region in the feature space.

To this end, we propose a bi-directional relationship in-

ferring network (BRINet) to effectively capture the depen-

dencies of multi-modal features under the guidance of both

language and vision. First, we construct a vision-guided lin-

guistic attention module (VLAM) to learn the adaptive lin-

guistic context for each visual region. Second, a language-

guided visual attention module (LVAM) utilizes the learned

linguistic context to guide the learning of spatial dependen-

cies between any two positions of the visual features. As

shown in Fig. 1, by the mutual learning between different

modalities, the proposed model enriches the contextual rep-

resentation of the target region. Therefore, the target region

can be highlighted more consistently with the help of refer-

ring expression. This apparently allows us to consider more

complex and non-sequential dependencies between visual

regions and words. Finally, we design a gated bi-directional

fusion module (GBFM) to guide the network in carrying out

the top-down and bottom-up multi-level information aggre-

gation selectively.

Our main contributions are listed as follows:

• We propose a novel bi-directional cross-modal atten-

tion module (BCAM) that uses both visual and lin-

guistic guidances to capture the dependencies between

multi-modal features. As a result, it can better realize

the compatibility between language and visual region.

• We introduce a gated bi-directional fusion module (G-

BFM) as an assistant to flexibly incorporate the multi-

level cross-modal features, which helps the network to

further refine the segmentation result.

• BCAM and GBFM are integrated into the BRINet. Ex-

tensive experiments on four large-scale datasets show

that the proposed method outperforms other state-of-

the-art approaches across different metrics.

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation has achieved remarkable success

in recent years. Most state-of-the-art methods use the struc-

tures of fully convolutional network (FCN) [24] to generate

the pixel-wise prediction in an end-to-end manner. Sub-

sequently, many FCN-based works are proposed to alle-

viate the loss of details caused by the continuous down-

sampling and enhance the multi-scale context aggregation.

PSPNet [42] utilizes a pyramid pooling module to gather

some different region-based multi-scale contexts. Deeplab-

v2 [4] and Deeplabv3 [5] employ the atrous spatial pyramid

pooling to enlarge the receptive field and embed the multi-

scale contextual information. Some works [29, 1, 8] investi-

gate the encoder-decoder structures and utilize the low-level

features to complement the detailed information for more

accurate prediction. Ding et al. [8] aggregate the context

contrasted features to focus on the local information. Li et

al. [21] use an interconnected LSTM chains to combine the

multi-scale feature maps and contexts in a bi-directional and

recurrent manner. DANet [11] adopts the position and chan-

nel attention to learn the spatial and channel interdependen-

cies, respectively. Our method also considers the context

combination of the different types and multiple scales of

features for completely segmenting the target region.

2.2. Referring Localization and Segmentation

The goal of referring image localization is to localize an

object based on a natural language expression. In [27, 15,

26], they propose a model to maximize the matching score

between the target object and the given expression. Some

recent methods [39, 33, 37] attempt to decompose the ex-

pression into different components and use these compo-

nents to model the relationship between objects. Referring

image segmentation aims to generate a precise segmenta-

tion mask instead of a bounding box for the image region

by the describe of language expression. This task is first

proposed in [14], which directly concatenates both visual

and linguistic features to generate the final mask. In [23],

a two-layered LSTM network is utilized to separately in-

fer the tiled multi-modal feature of each visual region in a

sequential manner. RRNet [20] adapts convolutional LST-

M [36] to gradually fuse the pyramid features. DMNet [28]

concatenates the word-specific multi-modal features in a

recurrent manner. All the referring segmentation methods

mentioned above follow a ‘concatenation-convolution’ pro-

cedure to characterize the cross-modal knowledge. Howev-

er, the relationship between linguistic and visual informa-

tion is not explicitly modeled. Later, KWANet [31] extracts

key words to suppress the noise in the referring expression

and highlight the target object. CSANet [38] designs a self-

attention mechanism to model the visual attention of each

word. While STEP [3] considers an image-to-word atten-

tion to compute the relevance between each word and each

visual region, and also employs the resulted heatmap to re-

currently guide the target segmentation. Nevertheless, these

methods only realize unidirectional relationship modeling

among different modalities. In this work, we have built a

bi-directional guidance mechanism between linguistic and

visual features so that they can better adapt to each other.

2.3. Attention Mechanism

Attention mechanism is widely applied in many

tasks [32, 35, 25, 33, 43, 2, 30, 34, 41]. Deng et al. [7]

introduce a co-attention mechanism to learn the adaptive
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Figure 2: The overall framework of our method, where Resnet-101, shown on the top middle of the figure, encodes the feature of input

image. LSTM, shown on the middle left, encodes each word in the referring expression. The bi-directional cross-modal attention module,

denoted as BCAM, is used to modeling the relationship of multi-modal features. The gated bi-directional fusion module, denoted as

GBFM, receives the ultimate multi-modal features from different levels to produce the final segmentation mask.

relationship between linguistic and regional features. Shi

et al. [31] design a word attention to re-weight the impor-

tance between each word and image region. While Wang et

al. [33] propose a graph attention to represent inter-object

relationships. Yang et al. [37] construct a language-guided

high-order visual relation graph among all the objects. Li

et al. [19] employ a question-adaptive attention to mod-

el the multi-type relations of objects, which can learn an

adaptive region representation. Different from the previous

works, we extend the cross-modal attention mechanism to

the task of referring image segmentation, and design a bi-

directional attention to enhance the semantic consistency of

feature representation.

3. The Proposed Method

The overall architecture of the proposed method is illus-

trated in Fig. 2. Given an image and its referring expression,

we first use DeepLab ResNet-101v2 [4] and LSTM [13]

to extract visual and linguistic features, respectively. Then

the concatenated visual, linguistic and spatial features are

fed into the bi-directional cross-modal attention module (B-

CAM) to model the relationships between multi-modal fea-

tures. These relationships are used to update the contextual

representation of the target object. Next, we use ASPP [4]

to learn the multi-scale information of the updated features.

Finally, the features of three levels are adaptively aggregat-

ed by the gated bi-directional fusion module (GBFM) to

produce the final prediction mask.

3.1. Vision­Guided Linguistic Attention

For a given expression L = {lt}
T
t=1, we use an LST-

M [13] to represent the context of each word. The context

of word lt is denoted as ht ∈ R1000, where ht is the hidden-

state vector after running the LSTM through the first t word

of L. There is a fact that the importance of each word in

the sentence to the i-th feature region vi is different. If

we treat these language features equally and use them to

guide image segmentation directly, some noise may be in-

troduced to make the network produce an erroneous predic-

tion. Thus we introduce a vision-guided linguistic attention

module (VLAM) to adaptively establish the relationship be-

tween the linguistic context and each visual region. The re-

lationship between the i-th feature region and the t-th word

is defined as follows:

v1i = Wv1vi

αi,t = v1i
T
ht

α̃i,t =
exp(αi,t)∑T

t=1 exp(αi,t)
,

(1)
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Figure 3: Bi-directional cross-modal attention module. R: Re-

shape; FC: Fully connected layer; S: Softmax; VLAM: Vision-

guided linguistic attention module; VLAM: Language-guided vi-

sual attention module. Adaptive linguistic context c is used as a

guide to model the relationship between input features v. With

the vi as the center, the softmax function is used to normalize the

relationship weight between vi and all feature regions.

where vi is the concatenation of the visual feature Ii ∈ RCI ,

the final hidden state hT ∈ R1000 and the spatial feature

si ∈ R8, i.e., vi = [Ii, hT , si], where [·, ·] represents the

concatenation operation. CI represents the number of chan-

nels of the visual feature map. The spatial feature si fol-

lows the design of [14]. Wv1 ∈ R1000×(CI+1000+8) are the

learnable parameters, which aim to map vi into the same di-

mension of ht. α̃i,t is the normalized attention score, which

represents the importance of the t-th word to the i-th fea-

ture region. Thus, the new linguistic context ci for the i-th

feature region can be calculated as follows:

ci =

T∑

t=1

α̃i,tht. (2)

3.2. Language­Guided Visual Attention

Contextual information is essential for referring image

segmentation, which helps the network locate and segment

the object region accurately. To model contextual relation-

ship across different regions, we design a language-guided

visual attention module (LVAM) that leverages the region-

adaptive linguistic features to compute their affinities.

For feature vector vi, the normalized relationship

weighted between itself and j-th region vj is defined as fol-

lows:

v2j = Wv2vj

λi,j = Wλ[tanh(Wcci +Wṽ2v2j )]

λ̃i,j =
exp(λi,j)∑N

j=1 exp(λi,j)
,

(3)

where Wv2 ∈ R1000×(CI+1000+8), Wc ∈ R500×1000,

Wṽ2 ∈ R500×1000 and Wλ ∈ R1000 are the learnable pa-

rameters. ci defined in Eq. 2,N is the number of pixels.

λ̃i,j is the importance of the j-th feature towards the i-th

feature region. Based on the this process, we establish the

dependencies of all regions in the image. Therefore, on the

next stage, we use these relationships to update the visual

feature representation,

v3j = Wv3vj , v4i = Wv4vi

ṽi = Wṽ[

N∑

j=1

(λ̃i,jv
3
j ), ci] + v4i ,

(4)

where Wv3 , Wv4 ∈ R1000×(CI+1000+8) and Wṽ ∈
R1000×2000 are the learnable parameters. Fig. 3 shows the

detailed structures of VLAM and LVAM, which constitute

the cross-modal attention module.

3.3. Gated Bi­directional Fusion

Previous works [29, 1, 8] on semantic segmentation

demonstrate that the encoder-decoder structure can inte-

grate the multi-level features to further refine the segmen-

tation mask. Inspired by them, we introduce a gated bi-

directional fusion module (GBFM), which detailed archi-

tecture is shown in Fig. 2. We define the output of ASPP

as F = {fi}
5
i=3, which corresponding to Res3, Res4 and

Res5, respectively. {fi}
5
i=3 have the same channel num-

ber and resolution. We use both bottom-up and top-down

manners to guide the multi-level feature fusion gradually.

In the bottom-up pathway, we expect that the higher-

level features provide the global and semantic guidance to

the lower-level ones. The process is shown as follows:

fU
34 = GU

3,4 ⊗ f3 + f4, fU
45 = GU

4,5 ⊗ f4 + f5

fU
fuse = GU

34,45 ⊗ fU
34 + fU

45,
(5)

where ⊗ is the element-wise product. GU is the gate func-

tion, which is used to control the information flow. The gate

function can be calculated as follows:

GU
i,j = Sig(Conv(Cat(fi, fj))), (6)

where Cat(·, ·) represents the concatenation operation a-

long the channel axis. Conv denotes a 3×3 convolutional

layer. Sig denotes the element-wise sigmoid function.

In the top-down pathway, we hope that the lower-level

features provide the local and fine guidance to the higher-

level ones. The process is shown as follows:

fD
fuse = (f3 +GD

3,4 ⊗ f4) +GD
34,45 ⊗ (f4 +GD

4,5 ⊗ f5),

(7)

where ⊗ and GD have the same meaning as the symbols in

Eq. 5. Similarly, the gate function can be calculated using
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*
ReferIt UNC UNC+ G-Ref

test val testA testB val testA testB val

LSTM-CNN [14] 48.03 - - - - - - 28.14

RMI+DCRF [23] 58.73 45.18 45.69 45.57 29.86 30.48 29.50 34.52

DMN [28] 52.81 49.78 54.83 45.13 38.88 44.22 32.29 36.76

KWA [31] 59.19 - - - - - - 36.92

RRN+DCRF [20] 63.63 55.33 57.26 53.95 39.75 42.15 36.11 36.45

MAttNet [39] - 56.51 62.37 51.70 46.67 52.39 40.08 -

lang2seg [6] - 58.90 61.77 53.81 - - - -

CMSA+DCRF [38] 63.80 58.32 60.61 55.09 43.76 47.60 37.89 39.98

STEP [3] 64.13 60.04 63.46 57.97 48.19 52.33 40.41 46.40

Ours 63.11 60.98 62.99 59.21 48.17 52.32 42.11 47.57

Ours+DCRF 63.46 61.35 63.37 59.57 48.57 52.87 42.13 48.04

Table 1: Quantitative results of overall IoU on four datasets.‘-’ denotes no available results. DCRF means DenseCRF [18] post-processing.

Image the excited person in white
on the left boy is she happy

girl with black shirt and jean
capris in the center front row left in white person patterns on dress

Image larger food sliced piece of bread or cake piece at 12 o clock small piece

Image larger food sliced piece of bread or cake piece at 12 o clock small piece

Figure 4: Visual examples of referring image segmentation by the BRINet.

GD
i,j = Sig(Conv(Cat(fi, fj))). Finally, the fusion feature

can be obtained by

ffinal = Conv(fU
fuse + fD

fuse), (8)

which is used to calculated the final prediction.

4. Experiments

4.1. Datasets

To evaluate the performance of our model, we use

four referring image segmentation datasets: UNC [40],

UNC+ [40], Google-Ref [27] and ReferIt [16].

UNC: The UNC dataset is based on MS COCO [22]

dataset using a two-player game [16]. It contains 19,994

images with 142,209 expressions referring for 50,000 seg-

mented image regions. More than one object of the same

category appears in each image.

UNC+: The UNC+ dataset consists of 141,564 language

expressions for 49,856 objects in 19,992 images. Similar

to the UNC dataset, its images and referring expressions

are also selected from MS COCO [22]. However, there is

a restriction of this dataset that no words in the referring

expressions indicate location. Namely, the expression of

the objects only describe the appearance information.

Google-Ref: Google-Ref is built on top of MS CO-

CO [22] dataset. There are 104,560 expressions referring

to 54,822 objects in 26,711 images. All annotations of this

dataset are collected on Mechanical Turk instead of using

a two-player game. Each image contains 2 to 4 objects of

the same category, and the average length of referring ex-

pressions is 8.43 words. Thus, the referring expressions are

longer and the descriptions are richer.

ReferIt: The ReferIt dataset is composed of 130,525 ex-

pressions referring to 96,654 object regions in 19,894 im-
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Method prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 overall IoU

val

Baseline 56.50 48.31 37.55 23.21 4.95 52.26

BCAM w/o language 59.23 51.36 40.95 26.35 6.15 53.91

BCAM w/o VLAM 62.47 54.41 42.96 27.00 6.03 55.14

BCAM 65.53 57.46 46.85 30.42 7.28 56.76

BRINet w/o Gate 69.54 62.51 52.57 35.35 9.91 59.59

BRINet w/ left 70.89 64.27 54.62 37.62 10.51 60.32

BRINet w/ right 71.20 64.36 55.22 38.16 10.65 60.55

BRINet 71.83 65.05 55.64 39.36 11.21 61.35

f4 + f5 70.69 63.83 53.61 36.81 9.78 60.09

ConvLSTM 69.61 62.67 52.82 36.26 9.34 58.78

BRINet w/o SP 67.81 60.84 51.08 65.48 9.78 58.91

testA

Baseline 59.61 51.00 40.39 25.76 5.69 54.24

BCAM w/o language 62.52 55.10 44.79 29.34 6.77 55.52

BCAM w/o VLAM 65.12 55.65 45.27 29.40 6.20 56.40

BCAM 68.84 61.06 49.96 32.01 7.55 59.04

BRINet w/o Gate 72.54 65.58 54.75 36.43 9.42 61.50

BRINet w/ left 74.70 68.08 57.52 39.19 9.97 62.80

BRINet w/ right 75.08 68.59 58.55 40.09 10.29 62.99

BRINet 75.09 68.29 58.37 41.01 10.96 63.37

f4 + f5 74.19 67.46 57.38 38.22 9.83 62.25

ConvLSTM 72.67 65.83 55.54 37.97 9.60 60.75

BRINet w/o SP 71.95 65.15 54.96 37.94 9.65 61.95

testB

Baseline 54.09 45.69 35.84 23.00 6.73 50.84

BCAM w/o language 56.29 48.24 38.21 25.20 7.73 52.28

BCAM w/o VLAM 57.64 49.50 39.57 25.91 7.99 52.17

BCAM 61.00 52.38 42.43 28.64 9.36 54.12

BRINet w/o Gate 66.24 58.63 49.64 35.64 12.60 57.81

BRINet w/ left 67.05 59.84 51.13 37.33 13.17 58.13

BRINet w/ right 66.95 59.71 50.79 37.31 13.76 58.50

BRINet 68.38 61.77 52.76 38.14 14.33 59.57

f4 + f5 66.99 60.08 50.64 35.90 13.19 57.91

ConvLSTM 65.77 58.33 49.74 35.56 12.99 56.56

BRINet w/o SP 63.32 55.76 46.61 33.46 11.72 56.18

Table 2: Ablation study on the UNC val, testA and testB datasets.

ages. ReferIt is collected from the IAPR TC-12 [9] dataset.

The foreground regions consist of objects and stuff (e.g.,

ground, mountain and sky), and the expressions are usually

shorter and more succinct than the other datasets.

4.2. Implementation Details

Given an input image, we resize and zero-pad it to

320×320. The DeepLab ResNet-101v2 [4] is used as vi-

sual feature extractor in this work. Similar to all previ-

ous methods, this network is pretrained on the Pascal VOC

dataset [10]. This is because that all previous methods pre-

train their models on the Pascal VOC. We use the outputs of

the DeepLab blocks Res3, Res4 and Res5 as the inputs for

our module and use the notations vi (i ∈ 3, 4, 5) to denote

the corresponding features. The resolution of each feature

map vi is 40×40.

Following [23, 20], the size of each LSTM cell is set

to 1000. The maximum length of language expression is

20. In other words, we keep only the first 20 words of each

expression. This is because most of the language expres-

sions on the benchmark datasets are shorter than the prede-

fined maximum length, which ensures the integrity of the

input sentence in most cases. Similar to the implementation

of [14], we concatenate an 8-D spatial coordinate feature to

further enhance the spatial information of vi.

Our network is trained by an end-to-end strategy and

chooses Adam [17] optimizer with an initial learning rate

of 0.00025. The weight decay and batch size are 0.0005

and 1, respectively. The initial learning rate gradually de-

creases by a polynomial decay with power of 0.9. For a fair

comparison, all the final predicted segmentation masks are

refined by DenseCRF [18].

Metrics: Following the previous work [20, 23, 31, 38],

we use two typical metrics to evaluate the segmentation ac-

curacy: Overall Intersection-over-Union (Overall IoU) and

Precision@X. The Overall IoU metric calculates the ratio

4429



Query: “main guy on the tv”

Query expression: woman black shirt

Image baseline BCAM w/o language BCAM BRINet GT

Figure 5: Visual examples of the proposed modules.

Length 1-5 6-7 8-10 11-20

G-Ref

R+LSTM [23] 32.29 28.27 27.33 26.61

R+RMI [23] 35.34 31.76 30.66 30.56

Ours 51.93 47.55 46.33 46.49

Length 1-2 3 4-5 6-20

UNC

R+LSTM [23] 43.66 40.60 33.98 24.91

R+RMI [23] 44.51 41.86 35.05 25.95

Ours 65.99 64.83 56.97 45.65

Length 1-2 3 4-5 6-20

UNC+

R+LSTM [23] 34.40 24.04 19.31 12.30

R+RMI [23] 35.72 25.41 21.73 14.37

Ours 59.12 46.89 40.57 31.32

Length 1 2 3-4 5-20

ReferIt

R+LSTM [23] 67.64 52.26 44.87 33.81

R+RMI [23] 68.11 52.73 45.69 34.53

Ours 75.28 62.62 56.14 44.40

Table 3: IoU for different length referring expressions on

Google-Ref, UNC, UNC+ and ReferItGame.

of the total intersection regions and the total union region-

s between the predicted mask and the ground truth. The

second metric calculates the percentage of the images with

IoU higher than the threshold X during the testing process,

where X ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

4.3. Performance Comparison

We compare the proposed method with some state-of-

the-art methods, including LSTM-CNN [14], RMI [23],

DMN [28], KWA [31], RRN [20], MAttNet [39],

lang2seg [6] CMSA [38], and STEP [3].

Quantitative Evaluation: The segmentation perfor-

mance (IoU) of these methods on all datasets is summa-

rized in Tab. 1. We observe that the proposed method out-

performs the other approaches across different datasets, e-

specially on the G-Ref. G-Ref is more complicated than

the other datasets, because of its longer expressions for ob-

ject referral. Our method outperforms the second best by

20.16%. It is worth noting that the two methods, MAt-

tNet and lang2seg, use Mask R-CNN [12] to pre-process

and post-process images when segmenting images. Mask

R-CNN itself can better locate and segment all targets in

the image, which obviously contributes much to the perfor-

mance improvement. This actually indicates that the de-

signed end-to-end method has significant performance ad-

vantage over these methods. In addition, the referring ex-

pression in the UNC+ dataset does not include the words

that indicate spatial or location information, which puts for-

ward higher demand upon the comprehension ability of the

appearance of objects. The significant improvement on the

UNC+ dataset shows that the BRINet can more comprehen-

sively understand the semantics of objects.

We further study the relationship between the segmenta-

tion performance and the referring expressions length. We

divide the expression into four groups according to [23], and

the segmentation results of each group are shown in Tab. 3.

The BRINet outperforms the other methods on all groups.

Qualitative Evaluation: Fig. 4 shows some represen-

tative results and visualization examples of linguistic atten-

tion to exhibit the superiority of the proposed method. It can

be seen that our method can accurately segment the target

object region, even when the lengths of referring expres-

sion are various and the scenes are complex. Besides, Our

method is also robust to the referring image segmentation

without location or spatial information in referring expres-

sion (row 2).

4.4. Ablation Study

The proposed framework is mainly composed of two

modules, including BCAM and GBFM. To further in-

vestigate the relative contribution of each components in

BRINet, we conduct a series of experiments on the UNC
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Query expression: white dog

Query expression: left player in back

Image baseline BCAM w/o language BCAM BRINet GT

Figure 6: Segmentation heatmaps of the proposed modules.

dataset. We also verify the impact of 8-D spatial coordinates

on performance (BRINet w/o SP). The detailed experimen-

tal results are shown in Tab. 2.

Effectiveness of BCAM: We remove BCAM and G-

BFM from the BRINet shown in Fig. 2 to build the base-

line network. In Tab. 2, we gradually analyze BCAM

without language guidance (BCAM w/o language), BCAM

without VLAM (BCAM w/o VLAM) and the complete B-

CAM schemes, whose mechanisms realise the visual self-

attention, the plain language-guided relationship inference

and the adaptive language-guided relationship inference re-

spectively. BCAM w/o language scheme indicates that the

relationship modeling between features is beneficial to en-

hance the segmentation results. Experimental comparisons

between BCAM w/o VLAM and the complete BCAM fur-

ther verify that the adaptive linguistic features are beneficial

to learn the relationship between visual features.

Effectiveness of GBFM: The gated bi-directional fusion

module (GBFM) consists of two components: the bottom-

up and top-down information fusion modules. Here, we

compare the results of the direct summation of multi-level

features (BRINet w/o Gate), the top-down fusion (BRINet

w/ left), the bottom-up fusion (BRINet w/ right) and the full

BRINet on UNC dataset. As shown in Tab. 2, we can find

that both top-down and bottom-up message passing models

controlled by the gate function can effectively improve per-

formance and the full BRINet achieves the best results. In

addition, we analyze the influence of the number of scales,

where ‘BRINet w/o Gate’ means that only feature f5 is used,

while ‘BRINet’ adopts three scales f3 + f4 + f5. The results

of f4 + f5 are also given.

We compare GBFM with ConvLSTM in Tab. 2. The

latter formulates the input-to-state and state-to-state tran-

sitions. It mainly models the long-range dependancies via

the cascaded structure. While GBFM aims to model multi-

level feature fusion, which utilizes two pyramidally stacked

structures to achieve the vertically skipping layer fusion and

the horizontally bi-directional information fusion. More-

over, the latter requires much more complicated computa-

tion and parameters (4 times) than the former.

Some visual results in Fig. 5 and Fig. 6 demonstrate

the benefits of each module. Among them, the visual-

ization heatmaps are generated by the same technique as

in [20, 38], which normalizes the strongest activated chan-

nel of the last feature map and up-samples it back to the

same size of the input image. These figures show that the

guidance mechanism can help achieve high-level contextual

consistency between the referring expression and the target

region. By the mutual guidance of BCAM and the feature

refinement of GBFM, the network eliminates the influence

of ambiguous objects and produces a good result.

5. Conclusion

In this paper, we propose a novel bi-directional relation-

ship inferring network (BRINet) for referring image seg-

mentation. It consists of the bi-directional cross-modal at-

tention module (BCAM) and the gated bi-directional fusion

module (GBFM). BCAM realizes the mutual guidance be-

tween linguistic and visual features, which encourages the

accurate and consistent semantic representations between

the referring expression and the target object. GBFM is

used to adaptively filter information between features of d-

ifferent levels. The gate can control the information flow

to better integrate multi-level cues. The experimental re-

sults on four datasets demonstrate that the proposed method

achieves state-of-the-art performance.
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