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BI-FACTOR AND SECOND-ORDER COPULA MODELS FOR ITEM RESPONSE DATA
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Bi-factor and second-order models based on copulas are proposed for item response data, where the
items are sampled from identified subdomains of some larger domain such that there is a homogeneous
dependence within each domain. Our general models include the Gaussian bi-factor and second-order
models as special cases and can lead to more probability in the joint upper or lower tail compared with
the Gaussian bi-factor and second-order models. Details on maximum likelihood estimation of parameters
for the bi-factor and second-order copula models are given, as well as model selection and goodness-of-fit
techniques. Our general methodology is demonstrated with an extensive simulation study and illustrated
for the Toronto Alexithymia Scale. Our studies suggest that there can be a substantial improvement over
the Gaussian bi-factor and second-order models both conceptually, as the items can have interpretations of
discretized maxima/minima or mixtures of discretized means in comparison with discretized means, and
in fit to data.

Key words: Bi-factor model, conditional independence, limited information, second-order model, tail
dependence/asymmetry, truncated vines.

Psychological scales and educational tests are developed to measure a particular construct by
selecting items from several identified domains (Gibbons et al. 2007). For example, a questionnaire
or instrument, used in psychometrics to assess abstract concepts, such as the well-being has a large
number of itemsor questions that are sampled fromseveral subdomains such as depression, anxiety
and stress. This special classification of items in educational assessments is termed ‘testlets’
(Wainer and Kiely 1987). It is essential to investigate the factorial structure, as implementing
unstructured factor models on testlet-based items could result in biased estimates and a poor fit
(Wang and Wilson 2005; DeMars 2006; Zenisky et al. 2002; Sireci et al. 1991; Lee and Frisbie
1999; Wainer and Thissen 1996).

To account for the homogeneous dependence in several subdomains of some larger domain,
Gibbons and Hedeker (1992) and Gibbons et al. (2007) proposed bi-factor models for binary
and ordinal items, respectively. They consist of a common factor, that is linked to all items, and
non-overlapping group-specific factors. The common factor explains the dependence between all
the items, while the group-specific factors explain the dependence amongst items within each
domain or group. The items are assumed to be independent given the group-specific and common
factors.

An alternative way of modelling items that are split into several domains is via the second-
order model (e.g., de la Torre and Song 2009; Rijmen 2010), where items are indirectly mapped to
an overall (second-order) factor via non-overlapping group-specific (first-order) factors. Second-
order models are suitable when the first-order factors are associated with each other, and there is a
second-order factor that accounts for the relations among the first-order factors. The second-order
model can be described as an independent clusters factor model (McDonald 1999) with a single
second-order factor.
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The bi-factor and the second-order models are not generally equivalent (Yung et al. 1999;
Gustafsson andBalke 1993;Mulaik andQuartetti 1997; Rijmen 2010), unless proportionality con-
straints are imposed by using the Schmid–Leiman transformation method (Schmid and Leiman
1957). More importantly, both models are restricted to the MVN assumption for the latent vari-
ables, which might not be valid. Nikoloulopoulos and Joe (2015) emphasized that if the ordinal
variables in item response can be thought of as discretization of latent random variables that
are maxima/minima or mixtures of means, then the use of factor models based on the MVN
assumption for the latent variables could provide poor fit. In the context of item response data,
latent maxima, minima and means can arise depending on how a respondent considers specific
items. An item might make the respondent think about M past events which, say, have values
W1, . . . ,WM . In answering the item, the subject might take the average, maximum or minimum
of W1, . . . ,WM and then convert to the ordinal scale depending on the magnitude. The case of a
latent maxima/minima can occur if the response is based on a best or worst case.

Nikoloulopoulos and Joe (2015) have studied factor copula models for item response where
for the first factor there are bivariate copulas that couple each item to the first latent variable, and
for the second factor there are copulas that link each item to the second latent variable conditioned
on the first factor (leading to conditional dependence parameters), etc. They have shown that there
is an improvement on the factor models based on the MVN assumption for the latent variables
both conceptually and in fit to data. This improvement relies on the aforementioned reasons,
i.e., items can have more probability in joint upper or lower tail than would be expected with
a discretized MVN or items can be considered as discretized maxima/minima or mixtures of
discretized means rather than discretized means. When all the bivariate copulas are bivariate
normal (BVN), then the resulting model is the same as the discretized MVN model with a p-
factor correlation matrix (Maydeu-Olivares 2006), also known as the p-dimensional normal ogive
model (Jöreskog and Moustaki 2001). For example, the 1-factor copula model with BVN copulas
is the same as the variant of Samejima’s (1969) graded response IRT model, known as normal
ogive model (McDonald 1997) with an 1-factor correlation matrix. We refer to Nikoloulopoulos
and Joe (2015, Section 2.3) for further details and explanations on the normal ogive models as
special cases of factor copula models.

In this paper, we propose copula extensions for bi-factor and second-order models. The
construction of the bi-factor copula model exploits the use of bivariate copulas that link the items
to the common and group-specific factors. Note that if there is only one group of items, then the bi-
factor model reduces to the two-factor copula model in Nikoloulopoulos and Joe (2015). Similarly
with the bi-factor copulamodel, we also use bivariate copulas to construct the second-order copula
model. In this case, there are bivariate copulas that link the items to the group-specific factors,
and also bivariate copulas that link the group-specific to the second-order factor. To account for
the dependence between the items and group-specific factors, each group of variables in fact is
modelled using the one-factor copula model proposed by Nikoloulopoulos and Joe (2015). In
addition, if there is only one group of items, then the second-order copula model reduces to the
one-factor copula model. Hence, the proposed models contain the one- and two-factor copula
models in Nikoloulopoulos and Joe (2015) as special cases, while allowing flexible dependence
structure for both within- and between-group dependence. As a result, the models are suitable for
modelling a high-dimensional item response classified into non-overlapping groups.

The proposed copula constructions are truncated vine copula models (Brechmann et al. 2012)
that involve both observed and latent variables. Joe et al. (2010) have shown that by choosing
bivariate linking copulas appropriately, truncated vine copula models can have a wide range
of asymmetric dependence as well as tail dependence (dependence among extreme values) and
different lower/upper tail dependence parameters for each bivariate margin. Hence, the bi-factor
and second-order copulamodels will be useful when the items havemore probability in joint upper
or lower tail than would be expected with a discretized MVN. If the bivariate linking copulas are
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BVN, then the Gaussian bi-factor and second-order models are special cases of our constructions
which are the discrete counterparts of the structured factor copula models Krupskii and Joe (2015)
where dependence and tail properties are obtained.

The remainder of the paper proceeds as follows: Section 1 introduces the bi-factor and second-
order copula models for item response and discusses their relationship with the existing models.
Estimation techniques and computational details are provided in Sect. 2. Section 3 proposes
simple diagnostics based on semi-correlations and a heuristic method to select suitable bivariate
copulas and build plausible bi-factor and second-order copula models. Section 4 summarizes
the assessment of goodness of fit of these models using the M2 statistic of Maydeu-Olivares
and Joe (2006), which is based on a quadratic form of the deviations of sample and model-
based proportions over all bivariate margins. Section 5 contains an extensive simulation study
to gauge the small-sample efficiency of the proposed estimation, investigate the misspecification
of the bivariate copulas, and examine the reliability of the model selection and goodness-of-fit
techniques. Section 6 presents an application of our methodology to the Toronto Alexithymia
Scale. In this example, it turns out that our models, with linking copulas selected according to the
items being discretized latent minima or mixtures of discretized means, provide better fit than the
Gaussian bi-factor and second-order models. We conclude with some discussion in Sect. 7.

1. Bi-factor and Second-Order Copula Models

LetY11, . . . ,Yd11
︸ ︷︷ ︸

1

, . . . ,Y1g, . . . ,Ydgg
︸ ︷︷ ︸

g

, . . . ,Y1G , . . . ,YdGG
︸ ︷︷ ︸

G

denote the item response variables

classified into the G non-overlapping groups. There are dg items in group g; g = 1, . . . ,G, j =
1, . . . , dg and collectively there are d = ∑G

g=1 dg items, which are all measured on an ordinal
scale; Y jg ∈ {0, . . . , K − 1}. Let the cutpoints in the uniform U (0, 1) scale for the jg’th item be
a jg,k , k = 1, . . . , K − 1, with a jg,0 = 0 and a jg,K = 1. These correspond to a jg,k = �(α jg,k),
where α jg,k are cutpoints in the normal N (0, 1) scale.

The bi-factor and second-order factor copula models are presented in Sects. 1.1 and 1.2,
respectively. Section 1.3 discusses their relationship with the existing Gaussian bi-factor and
second-order models, and Sect. 1.4 provides the bivariate linking copulas we consider along with
their properties.

1.1. Bi-factor Copula Model

Consider a common factorV0 andG group-specific factorsV1, . . . , VG ,whereV0, V1, . . . , VG
are independent and standard uniformly distributed. Let Y jg be the j th observed variable in group
g, with y jg being the realization. The bi-factormodel assumes that Y1g, . . . , Ydgg are conditionally
independent given V0 and Vg , and that Y jg in group g does not depend on Vg′ for g �= g′. Figure
1 depicts a graphical representation of the model.

The joint probability mass function (pmf) is given by:

π(y) = Pr(Y jg = y jg; j = 1, . . . , dg, g = 1, . . . ,G)

=
∫

[0,1]G+1

G
∏

g=1

dg
∏

j=1

Pr(Y jg = y jg|V0 = v0, Vg = vg)dv1 · · · dvGdv0.

According to Sklar’s theorem (1959), there exists a bivariate copula CYjg,V0 such that Pr(Y jg ≤
y jg, V0 ≤ v0) = CYjg,V0

(

FYjg (y jg), v0
)

, for v0 ∈ [0, 1], where CYjg,V0 is the copula that links
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Figure 1.
Graphical representation of the bi-factor copula model with G group-specific factors and a common factor V0.

the item Y jg with the common factor V0, FYjg is the cumulative distribution function (cdf) of Y jg;
note that FYjg is a step function with jumps at 0, . . . , K − 1, i.e., FYjg (y jg) = a jg,y jg+1. Then, it
follows that,

FYjg |V0(y jg|v0) := Pr(Y jg ≤ y jg|V0 = v0) = ∂

∂v0
CYjg,V0

(

a jg,y jg+1, v0
)

.

For shorthand notation, we let CYjg |V0
(

a jg,y jg+1|v0
) = ∂

∂v0
CYjg,V0

(

a jg,y jg+1, v0
)

.
The observed variables also load on the group-specific factors; hence to account for this

dependence, we let CYjg,Vg |V0 be a bivariate copula that links the item Y jg with the group-specific
factor Vg given the common factor V0. Hence,

Pr(Y jg ≤ y jg|V0 = v0, Vg = vg) = ∂

∂vg
Pr(Y jg ≤ y jg, Vg ≤ vg|V0 = v0)

= ∂

∂vg
CY jg,Vg |V0

(

FYj g|V0(y jg|v0), vg
) = CYjg |Vg;V0

(

FYj g|V0(y jg|v0)|vg
)

.

To this end, the pmf of the bi-factor copula model takes the form

π(y) =
∫

[0,1]G+1

G
∏

g=1

dg
∏

j=1

{

CYjg |Vg;V0
(

FYjg |V0(y jg|v0)|vg
)

− CYjg |Vg;V0
(

FYjg |V0(y jg − 1|v0)|vg
)

}

dv1 · · · dvGdv0

=
∫ 1

0

G
∏

g=1

{∫ 1

0

dg
∏

j=1

[

CYjg |Vg;V0
(

FYjg |V0(y jg|v0)|vg
)

− CYjg |Vg;V0
(

FYjg |V0(y jg − 1|v0)|vg
)

]

dvg

}

dv0

=
∫ 1

0

G
∏

g=1

{∫ 1

0

dg
∏

j=1

[

CYjg |Vg;V0
(

CYjg |V0(a jg,y jg+1|v0)|vg
)
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− CYjg |Vg;V0
(

CYjg |V0(a jg,y jg |v0)|vg
)

]

dvg

}

dv0

=
∫ 1

0

G
∏

g=1

{∫ 1

0

dg
∏

j=1

fY jg |Vg;V0(y jg|vg, v0)dvg
}

dv0. (1)

It is shown that the pmf is represented as an one-dimensional integral of a function which is in
turn a product of G one-dimensional integrals. Thus, we avoid (G + 1)-dimensional numerical
integration.

In addition to the computational advancements the proposed model offers, it can provide,
with appropriately chosen linking copulas, more probability in joint upper or lower tail than
would be expected with a discretized MVN. The bi-factor copula can be explained as a 2-
truncated vine. d-dimensional vine copulas can cover flexible dependence structures through
the specification of d bivariate marginal copulas at level 1 and d(d − 1)/2 bivariate condi-
tional copulas at higher levels (Nikoloulopoulos et al. 2012). For the d-dimensional bi-factor
copula, the pairs at level 1 are Y jg, V0 for g = 1, . . . ,G, j = 1, . . . , dg , the pairs at level 2
are Y jg, Vg|V0 for g = 1, . . . ,G, j = 1, . . . , dg , and for higher levels the (conditional) copula
pairs are set to independence. That is the bi-factor copula has d bivariate copulas CYjg,V0 that
link Y jg, g = 1, . . . ,G, j = 1, . . . , dg with V0 in the 1st level of the vine, d bivariate copulas
CYjg,Vg |V0 that link Y jg, g = 1, . . . ,G, j = 1, . . . , dg with Vg, g = 1, . . . ,G given V0 in the
2nd level of the vine, and independence copulas in all the remaining levels of the vine (truncated
after the 2nd level). From results in Joe et al. (2010) and Krupskii and Joe (2015), upper or lower
tail dependent copulas in levels 1 and 2 will lead to items that have more probability in joint upper
or lower tail than would be expected with a discretized MVN.

For the parametric version of the bi-factor copula model, we let CYjg,V0 and CYjg,Vg |V0 be
parametric copulas with dependence parameters θ jg and δ jg , respectively.

1.2. Second-Order Copula Model

Assume that for a fixed g = 1, . . . ,G, the items Y1g, . . . ,Ydgg are conditionally independent
given the first-order factors Vg ∼ U (0, 1), g = 1, . . . ,G and that V = (V1, . . . , VG) are con-
ditionally independent given the second-order factor V0 ∼ U (0, 1). That is the joint distribution
of V has an one-factor structure. We also assume that Y jg in group g does not depend on Vg′ for
g �= g′. Figure 2 depicts the graphical representation of the model.

The joint pmf takes the form

π(y) =
∫

[0,1]G

{ G
∏

g=1

dg
∏

j=1

Pr(Y jg = y jg|Vg = vg)

}

cV(v1, . . . , vG)dv1 · · · dvG;

cV is the one-factor copula density (Krupskii and Joe 2013) of V, viz.

cV(v1, . . . , vG) =
∫ 1

0

G
∏

g=1

cVg,V0(vg, v0)dv0,

where cVg,V0 is the bivariate copula density of the copula CVg,V0 linking Vg and V0.
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Figure 2.
Graphical representation of the second-order copula model with G first-order factors and one second-order factor V0.

Letting CYjg,Vg be a bivariate copula that joins the item Y jg and the group-specific factor Vg
such that

FY jg |Vg (y jg |vg) := Pr(Y jg ≤ y jg |Vg = vg) = ∂

∂vg
CY jg,Vg

(

a jg,y jg+1, vg
) = CYjg |Vg

(

a jg,y jg+1|vg
)

,

the pmf of the second-order copula model becomes

π(y) =
∫ 1

0

∫

[0,1]G

{ G
∏

g=1

dg
∏

j=1

(

CYjg |Vg
(

a jg,y jg+1|vg
) − CYjg |Vg

(

a jg,y jg |vg
)
)
}

×
{ G

∏

g=1

cVg,V0
(

vg, v0
)

}

dv1 · · · dvGdv0

=
∫ 1

0

{ G
∏

g=1

∫ 1

0

[ dg
∏

j=1

(

CYjg |Vg
(

a jg,y jg+1|vg
) − CYjg |Vg

(

a jg,y jg |vg
)
)
]

cVg,V0
(

vg, v0
)

dvg

}

dv0

=
∫ 1

0

{ G
∏

g=1

∫ 1

0

[
dg
∏

j=1

fY jg |Vg (y jg |vg)
]

cVg,V0
(

vg, v0
)

dvg

}

dv0. (2)

Similarly with the bi-factor copula model, the pmf is represented as an one-dimensional integral
of a function, which is in turn a product of G one-dimensional integrals.

In addition to the computational advancements, the second-order model offers, it can provide,
with appropriately chosen linking copulas, more probability in joint upper or lower tail than
would be expected with a discretized MVN. The second-order copula can be explained as an
1-truncated vine. For the d-dimensional second-order copula, the pairs at level 1 are Y jg, Vg for
g = 1, . . . ,G, j = 1, . . . , dg and V0, Vg for g = 1, . . . ,G, and for higher levels the (conditional)
copula pairs are set to independence. That is the second copula has d bivariate copulasCYjg,Vg that
link Y jg, g = 1, . . . ,G, j = 1, . . . , dg with Vg, g = 1, . . . ,G and G bivariate copulas CVg,V0
that link Vg, g = 1, . . . ,G with V0 in the 1st level of the vine, and independence copulas in all
the remaining levels of the vine (truncated after the 1st level). Joe et al. (2010) have shown that in
order for a vine copula to have tail dependence for all bivariate margins, it is only necessary for
the bivariate copulas in level 1 to have tail dependence and it is not necessary for the conditional
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bivariate copulas in levels 2, . . . , d to have tail dependence. Hence, upper or lower tail dependent
copulas in level 1 will lead to will lead to items that have more probability in joint upper or lower
tail than would be expected with a discretized MVN.

For the parametric version of the second-order copula model, we let CYjg,Vg and CVg,V0 be
parametric copulas with dependence parameters θ jg and δg , respectively.

1.3. Special Cases

In this subsection, we show what happens when all bivariate copulas are BVN. Let Z jg be
the underlying continuous variable of the ordinal variable Y jg , i.e., Y jg = y jg if α jg,y jg ≤ Z jg ≤
α jg,y jg+1 with α jg,K = ∞ and α jg,0 = −∞.

For the bi-factor model, if CYjg,V0(·; θ jg) and CYjg,Vg |V0(·; δ jg) are BVN copulas,

CYjg |Vg;V0(CYjg |V0(a jg,y jg+1|v0)|vg) = �

⎛

⎝

α jg,y jg+1 − θ jg�
−1(v0) − δ jg

√

1 − θ2jg�
−1(vg)

√

(1 − θ2jg)(1 − δ2jg)

⎞

⎠ .

Hence, the pmf for the bi-factor copula model in (1) becomes:

π(y) =
∫ 1

0

G
∏

g=1

{∫ 1

0

dg
∏

j=1

[

�

⎛

⎝

α jg,y jg+1 − θ jg�
−1(v0) − δ jg

√

1 − θ2jg�
−1(vg)

√

(1 − θ2jg)(1 − δ2jg)

⎞

⎠

−�

⎛

⎝

α jg,y jg − θ jg�
−1(v0) − δ jg

√

1 − θ2jg�
−1(vg)

√

(1 − θ2jg)(1 − δ2jg)

⎞

⎠

]

dvg

}

dv0

=
∫ ∞

−∞

G
∏

g=1

{∫ ∞

−∞

dg
∏

j=1

[

�

⎛

⎝

α jg,y jg+1 − θ jgz0 − δ jg

√

1 − θ2jgzg
√

(1 − θ2jg)(1 − δ2jg)

⎞

⎠

−�

⎛

⎝

α jg,y jg − θ jgz0 − δ jg

√

1 − θ2jgzg
√

(1 − θ2jg)(1 − δ2jg)

⎞

⎠

]

φ(zg)dzg

}

φ(z0)dz0.

This model is the same as the Gaussian bi-factor model (Gibbons and Hedeker 1992; Gibbons et
al. 2007) with stochastic representation

Z jg = θ jg Z0 + γ jg Zg +
√

1 − θ2jg − γ 2
jgε jg, g = 1, . . . ,G, j = 1, . . . , dg, (3)

where γ jg = δ jg

√

1 − θ2jg and Z0, Zg, ε jg are iid N (0, 1) random variables. The parameter θ jg

of CYjg,V0 is the correlation of Z jg and Z0, and the parameter δ jg of CYjg,Vg |V0 is the partial
correlation between Z jg and Zg = �−1(Vg) given Z0 = �−1(V0).

It implies that the underlying random variables Z jg’s have a multivariate Gaussian distribu-
tion where the off-diagonal entries of the correlation matrix have the form θ j1gθ j2g + γ j1gγ j2g

and θ j1g1θ j2g2 for j1 �= j2 and g1 �= g2, respectively. For the Gaussian bi-factor model to be iden-
tifiable, the number of dependence parameters has to be 2d − N1 − N2, where N1 and N2 is the
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number of groups that consist of 1 and 2 items, respectively. For a group g of size 1 with variable
j , Zg is absorbed with ε jg because γ jg would not be identifiable. For a group g of size 2 with
variable indices j1, j2, the parameters γ j1g and γ j2g appear only in one correlation; hence, one of
γ j1g, γ j2g can be taken as 1 without loss of generality. For the bi-factor copula with non-Gaussian
linking copulas, near non-identifiability can occur when there are groups of size 2; in this case,
one of the linking copulas to the group latent variable can be fixed at comonotonicity.

For the Gaussian second-order model, let Z0, Z ′
1, . . . , Z

′
G be the dependent latent N (0, 1)

variables, where Z0 is the second-order factor and Z ′
g = βg Z0 +

√

1 − β2
g Zg is the first-order

factor for group g. That is, there is an one second-order factor Z0, and the first-order factors
Z ′
1, . . . , Z

′
G are linear combinations of the second-order factor, plus a unique variable Zg for

each first-order factor. The stochastic representation is (Krupskii and Joe 2015):

Z jg = β jg Z
′
g +

√

1 − β2
jgε jg

Z ′
g = βg Z0 +

√

1 − β2
g Zg, g = 1, . . . ,G, j = 1, . . . , dg,

or

Z jg = β jgβg Z0 + β jg

√

1 − β2
g Zg +

√

1 − β2
jgε jg, g = 1, . . . ,G, j = 1, . . . , dg. (4)

Hence, this is a special case of (3) where θ jg = β jgβg and γ jg = β jg

√

1 − β2
g .

1.4. Other Choices of Parametric Bivariate Copulas

In line with Nikoloulopoulos and Joe (2015), we use bivariate parametric copulas that can
be used when considering latent maxima, minima or mixtures of means. For different dependent
items based on latent maxima or minima, multivariate extreme value and copula theory (e.g.,
Joe 1997) can be used to select suitable copulas that link observed to latent variables. Copulas
that arise from extreme value theory have more probability in one joint tail (upper or lower) than
expected with a discretized MVN distribution or a MVN copula with discrete margins. If item
responses are based on discretizations of latent variables that are means, then it is possible that
there can bemore probability in both the joint upper and joint lower tail, comparedwith discretized
MVN models. This happens if the respondents consist of a ‘mixture’ population (e.g., different
locations or genders). From the theory of elliptical distributions and copulas (e.g., McNeil et al.
2005), it is known that the multivariate Student-t distribution as a scale mixture of MVN has more
dependence in the tails. Extreme value and elliptical copulas can model item response data that
have reflection asymmetric and symmetric dependence, respectively.

A bivariate copula C is reflection symmetric if its density satisfies c(u1, u2) = c(1− u1, 1−
u2) for all 0 ≤ u1, u2 ≤ 1. Otherwise, it is reflection asymmetric often with more probability in
the joint upper tail or joint lower tail. Upper tail dependence means that c(1−u, 1−u) = O(u−1)

as u → 0 and lower tail dependence means that c(u, u) = O(u−1) as u → 0. If (U1,U2) ∼ C for
a bivariate copulaC , then (1−U1, 1−U2) ∼ ̂C , where ̂C(u1, u2) = u1+u2−1+C(1−u1, 1−u2)
is the survival or reflected copula of C ; this “reflection” of each uniformU (0, 1) random variable
about 1/2 changes the direction of tail asymmetry.

After briefly providing definitions of tail dependence and reflection symmetry/asymmetry,
we provide below the bivariate copula choices we consider:
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• The extreme value Gumbel copula with cdf

C(u1, u2; θ) = exp
[

−
{

(− log u1)
θ + (− log u2)

θ
}1/θ]

, θ ≥ 1.

Amodelwith bivariateGumbel copulas has latent (ordinal) variables that can be considered
as (discretized) maxima, and there is more probability in the joint upper tail as the Gumbel
copula has reflection asymmetry and upper tail dependence.

• The survival Gumbel (s.Gumbel) copula with cdf

C(u1, u2; θ) = u1 + u2 − 1

+ exp
[

−
{
(− log(1 − u1)

)θ + (− log(1 − u2)
)θ

}1/θ]

, θ ≥ 1.

A model with bivariate s.Gumbel copulas has latent (ordinal) variables that can be con-
sidered as (discretized) minima, and there is more probability in the joint lower tail as the
s.Gumbel copula has reflection asymmetry and lower tail dependence.

• The elliptical bivariate tν copula with cdf

C(u1, u2; θ) = T2

(

T−1(u1; ν),T−1(u2; ν); θ, ν
)

, −1 ≤ θ ≤ 1,

where T(; ν) is the univariate Student t cdf with (non-integer) ν degrees of freedom, and
T2 is the cdf of a bivariate Student-t distribution with ν degrees of freedom and correlation
parameter θ . A model with bivariate tν copulas has latent (ordinal) variables that can be
considered as mixtures of (discretized) means, since the bivariate Student-t distribution
arises as a scale mixture of bivariate normals. A small value of ν, such as 1 ≤ ν ≤ 5, leads
to a model with more probabilities in the joint upper and joint lower tails compared with
the BVN copula as the tν copula has reflection symmetric upper and lower tail dependence.

The BVN and tν are comprehensive copulas, i.e., they interpolate between countermono-
tonicity (perfect negative dependence) to comonotonicity (perfect positive dependence), but the
Gumbel copulas interpolates between independence and perfect positive dependence. Neverthe-
less, negative dependence or interpolation between perfect negative dependence and independence
can be obtained from the Gumbel copulas by considering reflection of one of the uniform random
variables on (0, 1). If (U1,U2) ∼ C for a bivariate copula C with positive dependence, then

• (1 − U1,U2) ∼ ̂C (1), where ̂C (1)(u1, u2) = u2 − C(1 − u1, u2) is the 1-reflected copula
of C with negative lower-upper tail dependence;

• (U1, 1 − U2) ∼ ̂C (2), where ̂C (2)(u1, u2) = u1 − C(u1, 1 − u2) is the 2-reflected copula
of C with negative upper-lower dependence.

Negative upper-lower tail dependence means that c(1−u, u) = O(u−1) as u → 0+ and negative
lower-upper tail dependence means that c(u, 1 − u) = O(u−1) as u → 0+ (Joe 2011). The
proposed models can provide, with linking copulas that allow for negative (tail) dependence,
negative (tail) dependence between the observed variables as the dependence between the observed
and latent variables is inherited to the dependence amongst the observed variables.

In Fig. 3, to depict the concepts of refection symmetric or asymmetric tail dependence, we
show contour plots of the corresponding copula densities with standard normal margins and
dependence parameters corresponding to Kendall’s τ value of 0.6 in absolute value. To make
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the models comparable, we convert the BVN/tν and (reflected) Gumbel copula parameters to
Kendall’s τ ’s via

τ(θ) = 2

π
arcsin(θ) (5)

and

τ(θ) =
{

1 − θ−1, C, ̂C
θ−1 − 1, ̂C (1), ̂C (2) , (6)

respectively. Sharper corners (relative to ellipse) in Fig. 3 indicate tail dependence.
The Kendall’s tau parameters, which are strictly increasing functions of the copula param-

eters, account for the dependence dominated by the middle of the data, and they are expected
to be similar among different families of bivariate copulas. However, the tail dependence varies
and it is a property to consider when choosing among different families of bivariate copulas
(Nikoloulopoulos and Karlis 2008).

2. Estimation and Computational Details

For the set of all parameters, let θ = (a, θ g, δg) for the bi-factor copula model and
θ = (a, θ g, δ) for the second-order copula model, where a = (a jg,k : j = 1, . . . , dg, g =
1, . . . ,G, k = 1, . . . , K − 1), θ g = (θ1g, . . . , θ jg, . . . , θdgg : g = 1, . . . ,G), δg =
(δ1g, . . . , δ jg, . . . , δdgg : g = 1, . . . ,G) and δ = (δ1, . . . , δG). The dimension of a, θ g , δg
and δ are d(K − 1), d, d and G, respectively. Hence, the dimension q of θ is d(K + 1) and
dK + G for the bi-factor and second-order copula model, respectively.

With sample size n and data y1, . . . , yn , the joint log-likelihood of the bi-factor and second-
order copula is

�(θ; y1, . . . , yn) =
n

∑

i=1

logπ(yi ; θ). (7)

with π(yi ; θ) as in (1) and (2), respectively. Maximum likelihood (ML) estimation, i.e., maxi-
mization of (7), is numerically possible but time-consuming for large d because the large number
of univariate cutpoints and dependence parameters. Hence, we approach estimation using the two-
step Inference Function of Margins (IFM) method (Joe and Xu 1996; Joe 1997). Joe (2005) has
established its asymptotic efficiency and has shown that can efficiently, in the sense of computing
time and asymptotic variance, estimate the univariate and dependence parameters.

In the first step of the IFM, the univariate parameters, i.e., the cutpoints, are estimated using the
univariate sample proportions. The univariate cutpoints for the j th item in group g are estimated as
â jg,k = ∑k

y=0 p jg,y , where p jg,y , y = 0, . . . , K −1 for g = 1, . . . ,G and j = 1, . . . , dg are the
univariate sample proportions. In the second step of the IFMmethod, the joint log-likelihood in (7)
is maximized over the copula parameters with the cutpoints fixed as estimated at the first step. That
is for i = 1, . . . , n we start from a d-variate sample yi11, . . . , yid11, . . . , yi1G , . . . , yidGG from
which d estimators F11(yi11), . . . , Fd11(yid11), . . . , F1G(yi1G), . . . , FdGG(yidGG) are obtained.
We use these estimators, i.e., the cutpoints, to transform the yi11, . . . , yid11, . . . , yi1G , . . . , yidGG
sample to a uniform sample α̂11,yi11+1, . . . , α̂d11,yid11+1, . . . α̂1G,yi1G+1, . . . , α̂dGG,yidGG+1 on

[0, 1]d and then fit the factor copula model at the second step. Hence, the IFM approach can
be regarded as a two-step approach on the original data or simply as the standard one-step ML
method on the transformed (copula) data. Note also in passing that compared to the ML, the IFM
method is not as punishing for misspecification of the dependence structure (Joe and Xu 1996;
Xu 1996).

For the bi-factor copula model, numerical evaluation of the joint pmf can be achieved with
the following steps:
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1. Calculate Gauss–Legendre quadrature (Stroud and Secrest 1966) points {vq : q =
1, . . . , nq} and weights {wq : q = 1, . . . , nq} in terms of standard uniform.

2. Numerically evaluate the joint pmf

∫ 1

0

G
∏

g=1

{ ∫ 1

0

dg
∏

j=1

fY jg |Vjg;V0(y jg|vg, v0)dvg
}

dv0

in a double sum

nq
∑

q1=1

wq1

G
∏

g=1

{ nq
∑

q2=1

wq2

dg
∏

j=1

fY jg |Vjg;V0(y jg|vq2 , vq1)
}

.

For the second-order copula model, numerical evaluation of the joint pmf can be achieved
with the following steps:

1. Calculate Gauss–Legendre quadrature points {vq : q = 1, . . . , nq} and weights {wq :
q = 1, . . . , nq} in terms of standard uniform.

2. Numerically evaluate the joint pmf

∫ 1

0

{ G
∏

g=1

∫ 1

0

[
dg
∏

j=1

fY jg |Vg (y jg|vg; θ jg)
]

cVg,V0
(

vg, v0; δg
)

dvg

}

dv0

in a double sum

nq
∑

q1=1

wq1

{ G
∏

g=1

nq
∑

q2=1

wq2

[
dg
∏

j=1

fY jg |Vg (y jg|vq2|q1; θ jg)
]
}

,

where vq2|q1 = C−1
Y jg |Vg;V0(vq2 |vq1; δg). Note that the independent quadrature points

{vq1 : q1 = 1, . . . , nq} and {vq2 : q2 = 1, . . . , nq} have been converted to dependent
quadrature points that have an one-factor copula distribution CX (·; δ).

The estimated copula parameters can be obtained by using a quasi-Newton (Nash 1990)
method applied to the logarithm of the joint likelihood. With Gauss–Legendre quadrature, the
same nodes and weights are used for different functions; this helps in yielding smooth numerical
derivatives for numerical optimization via quasi-Newton. Our comparisons show that nq = 25
quadrature points are adequate with good precision.

3. Bivariate Copula Selection

In the following subsections, we describe simple diagnostics based on semi-correlations and
a heuristic method that automatically selects the bivariate parametric copula families that build
either the bi-factor or the second-order copula model.

Choices of copulas with upper or lower tail dependence are better if the items have more
probability in joint lower or upper tail than would be expected with the BVN copula. This can be
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shown with summaries of polychoric correlations in the upper and lower joint tail (Kadhem and
Nikoloulopoulos 2021). In the context of items that can be split into G non-overlapping groups,
such that there is homogeneous dependence within each group, it is sufficient to (a) summarize
the average of the polychoric semi-correlations for all pairs within each of the G groups and for
all pairs of items, and (b) not mix bivariate copulas for a single factor; hence, for both the bi-factor
and second-order copula models we allow G + 1 different copula families, one for each group
specific factor Vg and one for V0.

Wedistinguish the simple descriptives, i.e., the semi-correlations, from the heuristic algorithm
and model fitting. On the one hand, the descriptive statistics can suggest more probability to the
lower or upper tail for many pairs of items, but bi-factor and second-order copula models with
asymmetrical dependence can be used to check whether the two tails are significantly different.

3.1. Simple Diagnostics Based on Semi-correlations

Consider again the underlying N (0, 1) latent variables Z jg’s of the ordinal variables Y jg’s.
The correlations of Z jg’s in the upper and lower tail, hereafter semi-correlations, are defined as
(Joe 2014, p. 71):

ρ+
N = Cor

(

Z jg, Z j ′g′ |Z jg > 0, Z j ′g′ > 0
)

(8)

=
∫ ∞
0

∫ ∞
0 z1z2φ(z1)φ(z2)c

(

�(z1),�(z2)
)

dz1dz2 −
(

∫ ∞
0 zφ(z)

(

1 − C2|1
(

0.5|�(z)
)
)

dz

)2

/C(0.5, 0.5)

∫ ∞
0 z2φ(z)

(

1 − C2|1
(

0.5|�(z)
)
)

dz −
(

∫ ∞
0 zφ(z)

(

1 − C2|1
(

0.5|�(z)
)
)

dz

)2

/C(0.5, 0.5)

;

ρ−
N = Cor

(

Z j1g, Z j2g |Z j1g < 0, Z j2g < 0
)

=
∫ 0
−∞

∫ 0
−∞ z1z2φ(z1)φ(z2)c

(

�(z1),�(z2)
)

dz1dz2 −
(

∫ 0
−∞ zφ(z)C2|1

(

0.5|�(z)
)

dz

)2

/C(0.5, 0.5)

∫ 0
−∞ z2φ(z)C2|1

(

0.5|�(z)
)

dz −
(

∫ 0
−∞ zφ(z)C2|1

(

0.5|�(z)
)

dz

)2

/C(0.5, 0.5)

.

From the above expressions, it is clear that the semi-correlations depend only on the copula C

of
(

�(Z jg), �(Z j ′g′)
)

;C2|1 is the conditional copula cdf. For the BVN and tν copulas ρ−
N = ρ+

N ,

while for the Gumbel and s.Gumbel copulas ρ−
N < ρ+

N and ρ−
N > ρ+

N , respectively. The sample
versions of ρ+

N , ρ−
N for item response data are the polychoric correlations in the joint lower and

upper quadrants of Y jg and Y j ′g′ (Kadhem and Nikoloulopoulos 2021).

3.2. Selection Algorithm

We propose a heuristic method that selects appropriate bivariate copulas for each factor
of the bi-factor and second-order copula models. It starts with an initial assumption, that all
bivariate linking copulas are BVN copulas, i.e. the starting model is either the Gaussian bi-factor
or second-order model, and then, sequentially other copulas with lower or upper tail dependence
are assigned to the factors where necessary to account for more probability in one or both joint
tails. The selection algorithm involves the following steps:

1. Fit the bi-factor or second-order copula model with BVN copulas.
2. Fit all the possible bi-factor or second-order copula models, iterating over all the cop-

ula candidates that link all items Y jg’s in group g or each group-specific factor Vg ,
respectively, to V0.
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3. Select the copula family that corresponds to the lowest Akaike information criterion
(AIC), that is, AIC = −2 × � + 2 × #copula parameters.

4. Fix the selected copula family that links the observed (bi-factormodel) or latent (second-
order model) variables to V0.

5. For g = 1, . . . ,G:

(a) Fit all the possible models, iterating over all the copula candidates that link all the
items in group g to the group-specific factor Vg .

(b) Select the copula family that corresponds to the lowest AIC.
(c) Fix the selected linking copula family for all the items in group g with Vg .

For vine copula models (bi-factor and second-order copula models are vine copula models
that involve both observed and latent variables), Dissmann et al. (2013) also found that bivariate
copula selection based on AIC seems to be better than even using bivariate goodness-of-fit tests.
The goodness-of-fit procedures involve a global distance measure between the model-based and
empirical distribution; hence, they might not be sensitive to tail behaviours and are not diagnostics
in the sense of suggesting improved parametric models in the case of small p-values (Joe 2014,
p. 254). A smaller AIC indicates a model that better approximates both the dependence structure
of the data and the strength of dependence in the tails.

4. Goodness of Fit

We will use the limited information M2 statistic proposed by Maydeu-Olivares and Joe
(2006) to evaluate the overall fit of the proposed bi-factor and second-order copula models.
The M2 statistic is based on a quadratic form of the deviations of sample and model-based
proportions over all bivariate margins. For the bi-factor and second-order copula models with
parameter vector θ of dimension q, let π2(θ) = (

π̇1(θ)
, π̇2(θ)

)
 be the column vector of the

univariate and bivariate model-based marginal probabilities that do not include category 0 with
sample counterpart p2 = (ṗ


1 , ṗ

2 )
. The total number of the univariate and bivariate residuals

(

p2 − π2(θ̂)
)
 is

s = d(K − 1) +
(

d

2

)

(K − 1)2,

where d(K − 1) is the dimension of the univariate residuals and
(d
2

)

(K − 1)2 is the dimension of
the bivariate residuals excluding category 0.

With a sample size n, the limited-information M2 statistic is given by

M2 = M2(θ̂) = n
(

p2 − π2(θ̂)
)
C2(θ̂)

(

p2 − π2
(

θ̂)
)

,

with

C2(θ) = �−1
2 − �−1

2 �2(�


2 �−1

2 �2)
−1�


2 �−1
2 = �

(c)
2

([�(c)
2 ]
�2�

(c)
2

)−1[�(c)
2 ]
,

where�2 = ∂π2(θ)/∂θ
 is an s×q matrix of full column rank q with the first-order derivatives of
the univariate and bivariate marginal probabilities with respect to the estimated model parameters
(in the Supplementary Tables 1–5 of the electronic supplementary material, we provide details on
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the calculation of these derivatives), �(c)
2 is an s × (s − q) orthogonal complement to �2 of full

column rank s − q, such that [�(c)
2 ]
�2 = 0 and �2 is the asymptotic s × s covariance matrix

of
√
n
(

p2 − π2(θ̂)
)
.

The asymptotic covariance matrix �2 can be partitioned according to the partitioning of p2
into �11 = √

nAcov(ṗ1), �21 = √
nAcov(ṗ2, ṗ1) and �22 = √

nAcov(ṗ2), where Acov(·)
denotes asymptotic covariance matrix. The elements of �11, �21 and �22 involve up to the
4-dimensional probabilities as shown below:

√
nAcov(p j1,y1 , p j2,y2) = π j1 j2,y1y2 − π j1,y1π j2,y2√
nAcov(p j1 j2,y1y2 , p j3,y3) = π j1 j2 j3,y1y2y3 − π j1 j2,y1y2π j3,y3√
nAcov(p j1 j2,y1y2 , p j3 j4,y3y4) = π j1 j2 j3 j4,y1y2y3y4 − π j1 j2,y1y2π j3 j4,y3y4 ,

where π j,y = Pr(Y j = y), π j1 j2,y1y2 = Pr(Y j1 = y1,Y j2 = y2), π j1 j2 j3,y1y2y3 = Pr(Y j1 =
y1,Y j2 = y2,Y j3 = y3), and π j1 j2 j3 j4,y1y2y3y4 = Pr(Y j1 = y1,Y j2 = y2,Y j3 = y3,Y j4 = y4).

The limited information statistic M2 under the null hypothesis has an asymptotic distribution
that is χ2 with s − q degrees of freedom as the IFM estimate θ̂ is

√
n-consistent.

5. Simulations

An extensive simulation study is conducted to (a) gauge the small-sample efficiency of the
IFM estimation method and investigate the misspecification of the bivariate pair-copulas, (b)
examine the reliability of using the heuristic algorithm to select the true (simulated) bivariate
linking copulas, and (c) study the small-sample performance of the M2 statistic.

We randomly generate 1000 datasets with samples of size n = 500 or 1000 and d = 16
items, with K = 3 or K = 5 equally weighted categories, that are equally separated into
G = 4 non-overlapping groups from the bi-factor and second-order copula model. In each
simulated model, we use different linking copulas to cover different types of dependence. To
make the models comparable, we convert the BVN/tν and Gumbel/s.Gumbel copula parameters
to Kendall’s τ ’s via the relations in (5) and (6), respectively. For the bi-factor copula models,
we set τ(θ g) = (0.45, 0.55, 0.65, 0.75) and τ(δg) = (0.30, 0.35, 0.40, 0.50) for g = 1, . . . , 4.
For the second-order copula models, we set τ(θ g) = (0.4, 0.5, 0.6, 0.7) for g = 1, . . . , 4 and
τ(δ) = (0.30, 0.35, 0.40, 0.45).

TheKendall’s tau parameters τ(θ g) and τ(δg) as described above are common for each group;
hence, Table 1 (Table 2) contains the group estimated average biases, root mean square errors
(RMSE), and standard deviations (SD), scaled by n, for the IFM (ML) estimates under different
pair-copulas from the bi-factor and second-order copula models. In the true (simulated) models,
the linking copulas are Gumbel copulas. Given the large number of cutpoints as the number of
categories K increases, for ML estimation we restrict ourselves to K = 3 categories.

Conclusions from the values in the tables are the following:

• IFM with the true bi-factor or second-order model is highly efficient according to the
simulated biases, SDs and RMSEs.

• The IFM estimates of τ ’s are not robust under bivariate copula misspecification and their
biases increasewhen the assumed bivariate copula has tail dependence of opposite direction
from the true bivariate copula. For example, in Table 1 the scaled biases for the IFM
estimates increase substantially when the linking copulas are the s.Gumbel copulas.
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Table 2.
Small sample of size n = 500 simulations (103 replications) from the bi-factor and second-order copula models with
Gumbel copulas and group estimated average biases, root mean square errors (RMSE), and standard deviations (SD),
scaled by n, for the ML estimates under different pair-copulas from the bi-factor and second-order copula models.

Bi-factor copula model
τ(θg), g = 1, . . . , 4 τ(δg), g = 1, . . . , 4

0.45 0.55 0.65 0.75 0.30 0.35 0.40 0.50

nbias
BVN 1.63 1.81 1.97 1.48 6.35 7.47 7.78 7.37
Gumbel 0.37 0.35 0.28 0.36 0.83 1.01 1.65 3.72
s.Gumbel 12.16 11.06 8.60 5.62 4.49 4.20 2.91 3.30
t5 3.18 4.14 4.51 4.54 6.80 7.73 7.80 5.95

nSE
BVN 14.86 13.53 12.20 11.07 30.16 31.51 32.84 41.35
Gumbel 15.08 13.80 12.32 10.96 29.60 31.36 32.85 43.02
s.Gumbel 15.47 13.75 12.15 10.95 33.85 35.76 40.00 57.10
t5 15.19 13.70 12.13 10.77 31.04 32.03 32.90 40.13

nRMSE
BVN 14.95 13.65 12.36 11.17 30.82 32.40 33.78 42.01
Gumbel 15.09 13.81 12.33 10.97 29.62 31.38 32.90 43.19
s.Gumbel 19.68 17.64 14.89 12.31 34.15 36.02 40.13 57.20
t5 15.53 14.31 12.94 11.69 31.78 32.96 33.84 40.57

Second-order copula model
τ(δ) τ (θg), g = 1, . . . , 4

0.30 0.35 0.40 0.45 0.40 0.50 0.60 0.70

nbias
BVN 6.05 5.84 5.86 6.35 0.32 0.65 0.46 0.55
Gumbel 0.03 0.15 0.26 2.02 0.25 0.66 1.11 2.20
s.Gumbel 27.15 27.05 27.08 27.02 12.33 12.24 11.14 8.77
t5 8.36 8.80 9.30 9.89 3.29 3.62 4.57 3.60

nSE
BVN 22.88 25.09 25.09 27.34 16.81 16.43 17.01 20.99
Gumbel 22.50 24.71 25.44 27.70 16.92 16.73 17.54 21.52
s.Gumbel 25.77 27.19 27.12 29.78 17.63 16.55 16.47 18.18
t5 23.45 25.55 25.64 27.75 17.28 16.68 17.25 20.70

nRMSE
BVN 23.67 25.76 25.77 28.07 16.81 16.45 17.02 21.00
Gumbel 22.50 24.71 25.44 27.77 16.93 16.75 17.58 21.64
s.Gumbel 37.44 38.35 38.33 40.21 21.53 20.63 19.91 20.20
t5 24.89 27.02 27.27 29.46 17.59 17.08 17.86 21.02

• IFM is not as punishing for bivariate copula misspecification as ML estimation. For exam-
ple, the scaled biases for the ML estimates are even larger when the bivariate linking
copulas are misspecified to the s.Gumbel copulas.

To examine the reliability of using the heuristic algorithm to select the true (simulated)
bivariate linking copulas, samples of size 500 were generated from various bi-factor and second-
order copula models. Table 3 presents the number of times that the true (simulated) bivariate
linking copulas were chosen over 1000 simulation runs. It is revealed that the model selection
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Table 4.
Small sample of size n = {500, 1000} simulations (103 replications) from bi-factor and second-order copula models and
the empirical rejection levels at α = {0.20, 0.10, 0.05, 0.01}, degrees of freedom (df), mean and variance.

Bi-factor copula model M2

Copula n K df Mean Variance α=0.20 α=0.10 α=0.05 α=0.01

BVN 500 3 448 449.0 912.8 0.206 0.100 0.060 0.016
5 1888 1885.5 4858.3 0.210 0.117 0.065 0.024

1000 3 448 448.7 879.0 0.192 0.097 0.051 0.020
5 1888 1886.5 4332.5 0.202 0.108 0.064 0.015

Gumbel 500 3 448 449.9 887.3 0.216 0.111 0.053 0.011
5 1888 1886.6 4709.7 0.225 0.126 0.070 0.015

1000 3 448 448.9 864.0 0.201 0.102 0.050 0.015
5 1888 1888.6 4332.1 0.226 0.107 0.069 0.014

t5 500 3 448 448.7 907.3 0.202 0.088 0.048 0.018
5 1888 1886.6 4479.4 0.204 0.107 0.053 0.017

1000 3 448 448.6 834.9 0.184 0.090 0.050 0.014
5 1888 1890.3 4008.5 0.218 0.103 0.052 0.015

Second copula model M2

Copula n K df Mean Variance α=0.20 α=0.10 α=0.05 α=0.01

BVN 500 3 460 462.2 1001.2 0.220 0.113 0.055 0.016
5 1900 1903.5 3736.2 0.214 0.112 0.052 0.010

1000 3 460 461.3 1023.9 0.220 0.109 0.064 0.013
5 1900 1906.5 3918.2 0.230 0.130 0.068 0.012

Gumbel 500 3 460 464.5 1011.3 0.233 0.117 0.073 0.024
5 1900 1909.2 5099.8 0.245 0.129 0.064 0.008

1000 3 460 461.9 871.2 0.203 0.106 0.049 0.009
5 1900 1908.5 3977.0 0.239 0.129 0.067 0.015

t5 500 3 460 465.3 1362.4 0.247 0.145 0.091 0.039
5 1900 1904.7 3740.6 0.226 0.113 0.050 0.010

1000 3 460 461.8 900.1 0.214 0.108 0.055 0.010
5 1900 1908.1 3864.9 0.229 0.131 0.072 0.015

algorithm performs extremely well for various bi-factor and second-order copulas models with
different choices of linking copulas as the number of categories K increases. For a small K
dependence in the tails cannot be easily quantified. Hence, for example, when the true copula is
the t5 which has the same upper and lower tail dependence, the algorithm selected either t5 or
BVN which has zero lower and upper tail dependence, because both copulas provide reflection
symmetric dependence.

To check whether the χ2
s−q is a good approximation for the distribution of the M2 statistic

under the null hypothesis, samples of sizes 500 and 1000 were generated from various bi-factor
second-order copula models. Table 4 contains four common nominal levels of the M2 statistic
under the bi-factor and second-order copula models with different bivariate copulas. As can be
seen in the table, the observed levels of M2 are close to the nominal α levels and remain accurate
even for extremely sparse tables (d = 16 and K = 5).

6. Application

TheTorontoAlexithymia Scale (TAS) is themost utilizedmeasure of alexithymia in empirical
research (e.g., Bagby et al. 1994; Taylor et al. 2003; Parker et al. 2003; Gignac et al. 2007; Reise
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Table 5.
Average observed polychoric correlations and semi-correlations for all pairs within each group and for all pairs of items
for the Toronto Alexithymia Scale (TAS), along with the corresponding theoretical semi-correlations for BVN, t5, Frank,
Gumbel , and survival Gumbel (s.Gumbel) copulas.

All items Items in group 1 Items in group 2 Items in group 3
ρN ρ−

N ρ+
N ρN ρ−

N ρ+
N ρN ρ−

N ρ+
N ρN ρ−

N ρ+
N

Observed 0.17 0.21 0.20 0.34 0.36 0.29 0.42 0.37 0.40 0.19 0.26 0.29
BVN 0.17 0.07 0.07 0.34 0.16 0.16 0.42 0.21 0.21 0.19 0.08 0.08
t5 0.17 0.23 0.23 0.34 0.31 0.31 0.42 0.35 0.35 0.19 0.24 0.24
Gumbel 0.17 0.05 0.22 0.34 0.11 0.37 0.42 0.14 0.43 0.19 0.05 0.24
s.Gumbel 0.17 0.22 0.05 0.34 0.37 0.11 0.42 0.43 0.14 0.19 0.24 0.05

et al. 2013; Tuliao et al. 2020; Carnovale et al. 2021) and is composed of d = 20 items. The
aforementioned works suggest that the items measure 3 facets of alexithymia, namely Difficulty
Identifying Feelings (DIF; d1 = 7 items), Difficulty Describing Feelings (DDF; d2 = 5 items),
Externally Oriented Thinking (EOT; d3 = 8 items), where each facet represents different non-
overlapping items. Therefore, a 3-factor model was initially called, but given the hypothesized
association among the three facets of the alexithymia construct, oblique (correlated) factor or
bi-factor models have been used (e.g., Bagby et al. 1994; Parker et al. 2003; Gignac et al. 2007).
Tuliao et al. (2020) has demonstrated that a bi-factor model outperforms any other competing
factor model for the TAS scale. To this end, recent studies adopted the bi-factor structure for the
TAS scale (e.g., Carnovale et al. 2021) and further supported a general alexithymia factor and
group-specific factors (DIF, DDf and EOT) that account for homogeneous dependence amongst
the non-overlapping items. Note also in passing that estimating a 3-factor or an oblique 3-factor
model is computationally demanding as it requires 3-dimensional integration. This is not case
for the bi-factor or second-order (an oblique 3-factor model where the group-specific factors are
linked to another latent variable via a 1-factor model) models. In spite of the fact they involve
G + 1 = 4 latent variables, only require one-dimensional integrals of a function which in turn is
a product of 3 one-dimensional integrals.

We use a dataset of 1925 university students from the French-speaking region of Belgium
(Briganti and Linkowski 2020). Students were 17 to 25 years old, and 58% of them were female
and 42% were male. They were asked to respond to each item using one of K = 5 categories:
“1 = completely disagree”, “2 = disagree”, “3 = neutral, “4 = agree”, “5 = completely agree”.
The dataset and full description of the items can be found in the R package BGGM (Williams
and Mulder 2020).

For these items, a respondent might be thinking about the average “sensation” of many past
relevant events, leading to latent means. That is, based on the item descriptions, this seems more
natural than a discretized maxima or minima. Since the sample is a mixture (male and female
students), we can expect a priori that a bi-factor or second-order copula model with tν copulas
might be plausible, as in this case the items can be considered as mixtures of discretized means.

In Table 5, we summarize the averages of polychoric semi-correlations for all pairs within
each facet of alexithymia and for all pairs of items along with the theoretical semi-correlations in
(8) under different choices of copulas. For a BVN/tν copula, the copula parameter is the sample
polychoric correlation, while for a Gumbel/s.Gumbel copula the polychoric correlation was con-
verted to Kendall’s tau with the relation in (5) and then from Kendall’s τ to Gumbel/s.Gumbel
copula parameter via the functional inverse in (6). The summary of findings from the diagnostics
in the table show that the items appear to be a mixed selection between discretized means and
minima. For the indicators of the DIF factor (items in group 1) there is more correlation in the
joint lower tail, i.e., the items are based on discretizations of latent variables that are minima and
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have more probability in the joint lower tail, suggesting the use of s.Gumbel linking copulas when
modelling the responses to these items. All the other items have stronger correlation in both the
joint upper and joint lower tail than with the BVN, i.e., the items are based on discretizations of
latent variables that are means and have more probability in both the joint lower and upper tail,
suggesting the use of tν bivariate linking copulas as the respondents consist of a “mixture” popula-
tion (different genders), Hence, a bi-factor or second-order copula model with the aforementioned
linking copulas might provide a better fit than the (Gaussian) models with BVN copulas.

Then, we fit the bi-factor and second-order models with the bivariate copulas selected by
the heuristic algorithm in Sect. 3.2. For a baseline comparison, we also fit their special cases;
these are the one- and two-factor copula models where we have also selected the bivariate copulas
using the heuristic algorithm proposed by Kadhem and Nikoloulopoulos (2021). To show the
improvement of the copula models over their Gaussian analogues, we have also fitted all the
classes of copula models with BVN copulas. The fitted models are compared via the AIC, since
the number of parameters is not the same between the models. In addition, we use Vuong’s test
(Vuong 1989) to show if (a) the best fitted model according to the AICs provides better fit than
the other fitted models and (b) a model with the selected copulas provides better fit than the one
with BVN copulas. The Vuong’s test is the sample version of the difference in Kullback–Leibler
divergence between two models and can be used to differentiate two parametric models which
could be non-nested. For the Vuong’s test we provide the 95% confidence interval of the test
statistic (Joe 2014, p. 258). If the interval does not contain 0, then the best fitted model according
to the AICs is better if the interval is completely above 0. To assess the overall goodness-of-fit of
the bi-factor and second-order copula models, we use the M2 statistic, along with the Root Mean
Square Error of Approximation based on M2 (Maydeu-Olivares and Joe 2014), viz.

RMSEA2 =
√

Max

(

M2 − d f

n × d f
, 0

)

.

Table 6 gives the AICs, the 95% CIs of Vuong’s tests and the M2 statistics for all the fitted
models. The best fitted model, based on AIC values, is the bi-factor copula model obtained from
the selection algorithm. The best-fitted bi-factor copula model results when we use s.Gumbel for
the DIF factor, t3 for both the DDF and EOT factors and t2 for the common factor (alexithymia).
This is in line with the preliminary analyses based on the interpretations of items as mixtures of
means and the diagnostics in Table 5. The proposed model selection algorithm has selected the
tν copula that has the same lower and upper tail dependence for the common and all the group
specific factors except the group specific factor in group 1 for which the survival Gumbel copula
has been selected. For the items in group 1, the largest difference ρ̂−

N − ρ̂+
N = 0.07 is found

showing more dependence in the lower tail and the fact that for this group the survival Gumbel
copula is selected it shows that this difference is statistically significant. No other difference
is statistically significant. It is revealed that the DIF items and DIF factor are discretized and
latent minima, respectively, as the participants seem to reflect that they “disagree” or “completely
disagree” having difficulty identifying feelings. From the Vuong’s 95% Cls and M2 statistics, it
is shown that factor copula models provide a big improvement over their Gaussian analogues and
that the selected bi-factor copula model outperforms all the fitted models.

The highly statistical significant M2 statistics are not surprising since one should expect
discrepancies between the postulated parametric model and the population probabilities, when
the sample size or dimension is sufficiently large (Maydeu-Olivares and Joe 2014) as in our case;
none should expect a model with 3000 df to fit exactly. To further show that the fit has been
improved we have calculated the maximum deviations of observed and model-based counts for
each bivariate margin, that is, Dj1 j2 = nmaxy1,y2 |p j1, j2,y1,y2 − π j1, j2,y1,y2(θ̂)|. In Table 6, we
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Table 6.
AICs, Vuong’s 95% CIs, and M2 statistics for the 1-factor, 2-factor, bi-factor and second-order copula models with BVN
copulas and selected copulas, along with the maximum deviations of observed and expected counts for all pairs within
each group and for all pairs of items for the Toronto Alexithymia Scale.

1-factor 2-factor Bi-factor Second-order
BVN Selected BVN Selected BVN Selected BVN Selected

AIC 107135.8 105504.0 106189.5 103893.5 105507.7 103200.9 105878.6 104133.7
Vuong’s 95% CIa (0.35,0.50) (0.53,0.69) (0.51,0.69) (0.38,0.52)
Vuong’s 95% CIb (0.93,1.13) (0.55,0.67) (0.69,0.88) (0.13,0.23) (0.51,0.69) (0.61,0.80) (0.21,0.29)
M2 14723.8 9865.0 9195.7 7383.7 11664.7 6381.5 13547.1 7341.2
df 3020 3020 3001 3000 3000 3000 3017 3017
RMSEA2 0.045 0.034 0.033 0.028 0.039 0.024 0.043 0.027

Maximum discrepancy

Items in Group 1 71 63 71 60 69 55 70 61
Items in Group 2 112 98 113 83 77 48 84 55
Items in Group 3 87 74 81 52 80 45 82 53
All items 112 98 113 83 80 55 84 61

aSelected factor copula model versus its Gaussian special case.
bSelected Bi-factor copula model versus any other fitted model.

summarize the averages of these deviations for all pairs within each group and for all pairs of
items. Overall, themaximumdiscrepancies have been sufficiently reduced in the selected bi-factor
model.

Table 7 gives the copula parameter estimates inKendall’s τ scale and their standard errors (SE)
for the selected bi-factor copula model and the Gaussian bi-factor model as the benchmark model.
The SEs of the estimated parameters are obtained by the inversion of the Hessian matrix at the
second step of the IFMmethod. These SEs are adequate to assess the flatness of the log-likelihood.
Proper SEs that account for the estimation of cutpoints can be obtained by jackknifing the two-
stage estimation procedure. The loading parameters (τ̂ ’s converted to BVN copula parameters via
the functional inverse in (5) and then to loadings using the relations in Section 2.3) show that the
common alexithymia factor is mostly loaded on DIF and DDF items, suggesting that items in the
domains DIF and DDF are good indicators for alexithymia. The items in the EOT although they
loaded on the EOT latent factor, they had poor loadings in the common alexithymia factor.

7. Discussion

For items from several domains, we have proposed bi-factor and second-order copula mod-
els where we replace BVN distributions, between observed and latent variables, with bivariate
copulas. Our copula constructions include the Gaussian bi-factor and second-order models as
special cases and can provide a substantial improvement over the Gaussian models based on AIC,
Vuong’s and goodness-of-fit statistics. Hence, superior statistical inference for the loadings can be
achieved. We have demonstrated that the Kendall’s τ ’s or loading parameters are not robust under
bivariate linking copula misspecification and their biases increase when the assumed bivariate
copula has tail dependence of opposite direction from the true bivariate copula.

The improvement relies on the fact that when we use appropriate bivariate copulas other
than BVN copulas in the construction, there is an interpretation of latent variables that can be
maxima/minima or mixture of means instead of means. The bi-factor and second-order copula
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models, if other thanBVNcopulas are called, have a latent structure that is not additive as in (3) and
(4), respectively. The bi-factor copula (dependence) parameters are interpretable as dependence of
an observed variable with the common factor, or conditional dependence of an observed variable
with the group-specific latent variable given the common factor, i.e., the bi-factor copula model
permits conditional dependence within identified subsets of items.

Both the bi-factor and second-order copula models lead to substantial simplification of the
joint likelihood. The joint pmfs in (1) and (2) reduce to one-dimensional integrals of a function
which in turn is a product of G one-dimensional integrals. Hence, the evaluation of the joint
likelihood requires only low-dimensional integration, as in the one- and two-factor copulamodels,
regardless of the dimension G + 1 of the factors. This is an advantage over the p-factor (p > 2)
copula models where the joint pmf requires p-dimensional integration and becomes intractable as
the number of factors increases. Hence, the proposed structured multidimensional factor models
provide parsimonious factor solutions without any computational deficiencies as in the p-factor
copula models when p increases.

We have proposed a numerically stable likelihood estimation technique based on Gauss–
Legendre quadrature. The use of independent Gauss–Legendre quadrature points for this kind
of models has been proposed in Krupskii and Joe (2015). For the bi-factor copula models for
item response the integrants are bounded and thus independent Gauss–Legendre points are fine.
For the second-order copula models for item response the integrants can be unbounded as copula
densities can be unbounded, hence we have proposed the novel use of dependent Gauss–Legendre
quadrature points that have an 1-factor copula distribution.

Building on the models proposed in this paper, there are several extensions that can be
implemented. The adoption of the structure of the Gaussian tri-factor and third-order models
(e.g., Rijmen et al. 2014), to account for any additional layer of dependence, is feasible using the
notion of truncated vine copulas that involve both observed and latent variables.

Software

R functions for estimation, simulation, model selection and goodness-of-fit of the bi-factor and
second-order copulamodels are part of theR packageFactorCopula (KadhemandNikoloulopou-
los 2022). All the analyses presented in Sect. 6 are given as code examples in the package.
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