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Bi-Iterative Least-Square Method
for Subspace Tracking

Shan Ouyang, Member, IEEE, and Yingbo Hua, Fellow, IEEE

Abstract—Subspace tracking is an adaptive signal processing
technique useful for a variety of applications. In this paper, we
introduce a simple bi-iterative least-square (Bi-LS) method, which
is in contrast to the bi-iterative singular value decomposition
(Bi-SVD) method. We show that for subspace tracking, the Bi-LS
method is easier to simplify than the Bi-SVD method. The linear
complexity algorithms based on Bi-LS are computationally more
efficient than the existing linear complexity algorithms based on
Bi-SVD, although both have the same performance for subspace
tracking. A number of other existing subspace tracking algo-
rithms of similar complexity are also compared with the Bi-LS
algorithms.

Index Terms—Adaptive signal processing, bi-iteration, low-rank
approximation, projection approximation, QR decomposition, sin-
gular value decomposition, subspace tracking.

I. INTRODUCTION

A. Need for Subspace Tracking

THE subspace of a vector sequence is well known for its
importance in a wide range of signal processing applica-

tions, such as frequency estimation, target localization, channel
estimation, multiuser detection, and image feature extraction,
just to name a few. Let be a sequence of
vectors, each of which is -dimensional. The span of this vector
sequence can be divided into a principal subspace and a minor
subspace, and these two subspaces are orthogonal complement
of each other. The minor subspace can be computed uniquely
from the corresponding principal subspace, and vice versa. By
subspace, we will refer to the principal subspace of a vector se-
quence unless mentioned otherwise.

The computation of the principal subspace can be done by
computing the singular value decomposition (SVD) of the ma-
trix that consists of the above vectors as columns (or rows).
However, the computational cost is high. Assuming , the
number of required flops is in the order of , i.e., . In
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this paper, a flop is a complex multiplication and a complex ad-
dition. We use flop counts as a key measure of complexity of an
algorithm, although many other parameters, such as parallelism
and memory requirement, are also important in practice. If the
dimension of the subspace is much smaller than , faster al-
gorithms are available that require flops. For a review
of such algorithms, see the work by Comon and Golub [9].

In adaptive applications, a vector sequence may change fre-
quently with time, and furthermore, a new vector sequence may
overlap significantly with an old vector sequence. Spending

flops for each vector sequence can still be too costly.
To obtain more efficient algorithms, one idea is that the sub-
space of an old vector sequence should be used to compute
the subspace of a new vector sequence. Many researchers have
attempted this idea. Unfortunately, it seems true that if the
exact subspace of each new vector sequence is desired, then the
computational order cannot be made less than , even if
the exact subspace of the old vector sequence is known and the
new vector sequence differs from the old only by one vector.

An alternative is that some error is tolerated, and the problem
of subspace computation is reformulated as subspace estima-
tion. This is the approach on which we will focus in this paper.
Indeed, when a new vector sequence differs from its previous
vector sequence by only one vector, the error in the estimated
subspace of the new vector sequence can be made small with al-
gorithms of the complexity , or even . Efficient
algorithms that estimate the subspace of each vector sequence
in an adaptive and efficient fashion are collectively called sub-
space tracking algorithms. The complexity or
is a linear complexity as it is called a linear function of .

B. Power Family

Linear complexity subspace tracking algorithms have been an
active research topic for many years. Recent reviews of linear
complexity algorithms are available in the work by DeGroat et
al. [10] and Hua et al. [18]. It is an interesting observation that
most (if not all) of the high accuracy linear complexity algo-
rithms belong to a family of power-based algorithms or, simply,
the power family [18]. A key feature of the power family is that
the primary new information in the updated subspace comes
from multiplying the old subspace matrix by the underlying
new data. The power family includes the Oja algorithm [23],
the PAST algorithm [33], the NIC algorithm [22], the Bi-SVD
algorithm [30], and many other variations [4], [5], [11], [12],
[24], [28].

Oja’s subspace algorithm is also a gradient-based neural net-
work algorithm [32]. The convergence property of a general-
ized Oja subspace algorithm with an arbitrarily small step size

1053-587X/$20.00 © 2005 IEEE



OUYANG AND HUA: BI-ITERATIVE LEAST-SQUARE METHOD FOR SUBSPACE TRACKING 2985

is established in [7]. The Oja algorithm is perhaps the simplest
in computation among all linear complexity algorithms, but the
accuracy of the Oja algorithm is highly sensitive to the chosen
step size, and it is difficult to choose a proper step size to guar-
antee both small misadjustment and fast convergence [6].

The PAST algorithm, which was developed by Yang [33], has
the computational complexity and has a guaran-
teed stability due to its power-based nature [18]. The PAST al-
gorithm does not guarantee the orthonormality of the estimated
subspace matrix [18], although the orthonormality may be de-
sired in some applications [21].

The NIC algorithm introduced in [22] is a generalization of
the PAST algorithm. The leakage factor inherent in the NIC al-
gorithm ensures the orthonormality of the subspace matrix after
a number of iterations [14]. Alternatively, an explicit orthonor-
malization at each iteration can be carried out for the PAST al-
gorithm, which results in the OPAST algorithm [1].

An efficient method to guarantee orthonormality is to apply
QR decomposition whenever necessary in an algorithm. The
QR decomposition is a tool very commonly used in matrix
computations [13]. A QR-based subspace tracking algorithm is
Karasalo’s algorithm [20], which has the complexity .
Replacing a small-dimensional SVD in Karasalo’s algorithm by
a transposed QR iteration, a TQR-SVD subspace tracking algo-
rithm is developed in [11], which has the same complexity order
as Karasalo’s algorithm. Based on the URV decomposition
due to Stewart [28], a fast subspace tracking (FST) algorithm
is developed by Rabideau in [24], which has the complexity

. Based on the bi-iterative QR decomposition for SVD
computation [27], the Bi-SVD subspace tracking algorithm
proposed by Strobach [30] has the complexity order .
It is implied in [30] that the Bi-SVD algorithm outperforms all
its related predecessors. Note that the Bi-SVD algorithm uses
an alternating power iteration and, hence, belongs to the power
family.

C. Choice of Windows

The output of a subspace tracking algorithm directly depends
on the data window that is either explicitly or implicitly ex-
ploited by the algorithm. The data window defines the actual
(or effective) vector sequence under consideration. Two types
of windows have been used for subspace tracking, which are
known as exponential window and sliding rectangular window.
Most of the existing subspace tracking algorithms are designed
for exponentially windowed data. For an exponentially win-
dowed data matrix, a rank-one update of the underlying covari-
ance matrix is required for each new data vector, which leads
to simple subspace tracking algorithms. On the other hand, for
a sliding-windowed data matrix, a rank-two update of the un-
derlying covariance matrix is required for each new data vector,
which involves more computations than for the exponentially
windowed data. A sliding window also requires more memory
than an exponential window. Recently, a number of sliding-rect-
angular-window-based subspace tracking algorithms have been
investigated, e.g., see Badeau et al. [2], [3], Real et al. [25],
and Strobach [29]. A motivation for using a sliding window is
that the resulting algorithms have a faster convergence speed,
as recently shown by Badeau et al. We will confirm that the

convergence speed is governed by the effective window length
and the shape of the window affects the sharpness of the con-
verging edge. In particular, a sliding rectangular window causes
a sharper converging edge than an exponential window.

D. Key Contribution of This Paper

We revisit a bi-iterative least-square (Bi-LS) method that
computes the optimal low-rank matrix approximation. Since
the optimal low-rank matrix approximation carries all the
information of the (principal) subspace of the underlying vector
sequence, the Bi-LS method is naturally useful for subspace
tracking. The Bi-LS method is different from the Bi-SVD
method [8], the latter of which has served as the fundamental
basis of several other subspace tracking algorithms. We show
that for developing efficient subspace tracking algorithms, the
Bi-LS method provides a more convenient framework than
the Bi-SVD method. As a result, the linear complexity Bi-LS
algorithms are computationally more efficient than the linear
complexity Bi-SVD algorithms, although both have the same
accuracy for subspace tracking.

The rest of this paper is organized as follows. In Section II,
we review the Bi-SVD method. In Section III, we present the
Bi-LS method based on the QR decomposition. In Section IV,
we derive several linear-complexity subspace tracking algo-
rithms based on the Bi-LS method. We also consider a hybrid
window, i.e., a sliding exponential window. In Section V, the
performance of the Bi-LS subspace tracking algorithms for
tracking abrupt changes is demonstrated and compared with
those of other algorithms with comparable complexity. Sec-
tion VI concludes this paper.

II. REVIEW OF BI-ITERATIVE SINGULAR

VALUE DECOMPOSITION

Before introducing the Bi-LS method, we first review the
bi-iterative SVD (Bi-SVD) method [8], [27], which led to the
subspace tracking algorithms shown in [3], [29], [30].

Consider a data matrix . The dominant singular
values and the dominant singular vectors of can be com-
puted by the bi-iterative method listed in Table I. It is known
[8], [27] that the columns of converge to the
dominant left singular vectors, the columns of
converge to the dominant right singular vectors, and each of

and converges (in absolute value) to the
diagonal matrix of the dominant singular values of .

For subspace tracking, the data matrix at time may be
updated with an exponential window as follows:

(1)

where is an exponential forgetting factor, and
is the new data vector. Alternatively, the data matrix may
be updated with a sliding rectangular window as follows:

(2)

To reduce the computational burden, we can use only one
iteration for each new data vector, or equivalently, we replace the
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TABLE I
BI-SVD METHOD FOR SVD COMPUTATION

TABLE II
BASIC BI-SVD ALGORITHM FOR SUBSPACE TRACKING

iteration index in Table I by the discrete time index , which
leads to the basic Bi-SVD subspace tracking algorithm given
in Table II. The basic Bi-SVD subspace tracking algorithm has
the computational complexity for each iteration. Note
that because only one iteration is allowed for each new data
vector, only an estimate of the principal singular vectors and
the principal singular values is obtained at any time .

As mentioned earlier, in order to develop linear complexity
algorithms, some approach of approximations is necessary.
Such a approach of approximations is as follows. At each
iteration, we partition a power-based estimate of the desired
subspace matrix into two components: “innovation” and “prop-
agation”. The innovation depends on a new data vector, and the
propagation does not. Then, a proper approximation is applied
to the propagation. The choice of such an approximation has
a major effect on the performance of the resulting algorithm.
One such approximation is called low-rank approximation, as
described next.

From the first step in Table II, we can express a low-rank
approximation to as

(3)

where denotes the optimal rank- approximation of
, and the right-hand-side terms are suboptimal rank-

approximations. With the above suboptimal rank- approxima-
tion, Strobach [30] developed a fast exponential-window-based
Bi-SVD subspace tracking algorithm (Bi-SVD1) with the
computational complexity per iteration.

From the second step in Table II, we can express another low-
rank approximation to as

(4)

Using this approximation, a fast sliding-window-based Bi-SVD
subspace tracking algorithm is recently shown by Badeau et al.
[3], which has the computational complexity .

In fact, the above two low-rank approximations are actually
equivalent. From the second step in Table II, we have

(5)

Postmultiplying both sides of (5) by

(6)

Therefore, the above two low-rank approximations yield the
same result. Note also from (6) that since is lower tri-
angular and is upper triangular,

, i.e., . This is a draw-
back for the Bi-SVD method.

III. Bi-ITERATIVE LEAST-SQUARE METHOD

The optimal low-rank (rank- ) approximation to can be
expressed as the solution to the following minimization:

(7)

where , and . Some of the (nonunique)
optimal minimizers and can be obtained by the iterative-
quadratic-minimum-distance (IQMD) [15] method or the alter-
nating power (AP) [16] method:

(8)

where . It is known [15],
[16] that with a weak condition on the initial matrix and
the data matrix , the product of from (8) glob-
ally and exponentially converges to the optimal rank- approx-
imation of . Moreover, the global convergence of the AP
method is generally not affected, even if is chosen as
an arbitrary nonsingular matrix [16].

Similar to the Bi-SVD method, let us write the QR decompo-
sition of and as

(9)

Substituting and
into the right-hand side of (8) yields

(10)

where, for simplicity, the choice
is used. This QR-decomposition-based iterative method for
optimal low-rank matrix approximation to is summarized
in Table III, which we now call the bi-iterative least-square
(Bi-LS) method to highlight a contrast against the Bi-SVD
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TABLE III
METHOD FOR OPTIMAL LOW-RANK MATRIX APPROXIMATION

TABLE IV
BASIC BI-LS ALGORITHM FOR SUBSPACE TRACKING

method shown earlier. It is obvious that the principal column
span of is given by the column span of at convergence
and the principal column span of is given by the column
span of at convergence. If only one iteration is allowed
for each new data vector, we have the basic Bi-LS algorithm
for subspace tracking, as shown in Table IV. The basic Bi-LS
algorithm has the complexity .

On one hand, we observe that the Bi-LS method is seem-
ingly more complicated than the Bi-SVD method since in the
second step of the iteration, the Bi-LS method needs to compute

additional matrix multiplication. On the other hand, we
expect the Bi-LS method to have a higher degree of flexibility
for subspace tracking than the Bi-SVD method. This is because
the latter is meant to yield the principal singular vectors and
the principal singular values, which are more than the optimal
low-rank matrix approximation.

A unique property of the Bi-LS method is that from (10)

(11)

As will be seen, this property is very useful for developing fast
subspace tracking algorithms. The above property, together with
(9), also implies that

(12)

It can be shown (see the Appendix) that for the Bi-LS
method, the upper triangular matrix becomes the
identity matrix at the convergence of subspace. Hence, from

, we may use the approximation
to develop more efficient algorithms. More

details on this will be shown later.
It is easy to verify that for the Bi-LS method, con-

verges to a product of the matrix of the left principal singular
vectors and an unitary rotation matrix , and
converges to a product of the matrix of the right principal sin-
gular vectors and another unitary rotation matrix .
Both and depend on the initialization .
Each of and , when desired, can be computed from
the SVD of the matrix , which obviously does not
affect the complexity order of the Bi-LS method, provided that

is smaller than . If the matrix of the principal left
(or right) singular vectors is explicitly required, then the multi-
plication (or ) would cost an addi-
tional (or ) flops, but the largest singular values of
the underlying data matrix can be approximated by the
singular values of the upper triangular matrix with
a negligible cost.

IV. FAST BI-LS ALGORITHMS FOR SUBSPACE TRACKING

In this section, we derive several linear complexity Bi-LS al-
gorithms for subspace tracking.

A. Bi-LS-1 Algorithm

We first define a hybrid data window as follows:

(13)

where , and . Note that if ,
(13) reduces to the sliding window (2). If , (13) is a sliding
exponential window used in [19]. We may also choose
for a sliding exponential window.

1) Updating : We now refer to the basic Bi-LS algo-
rithm shown in Table IV. By post-multiplying both sides of (13)
by , we can show that

(14)

where , and
.

As mentioned before, a key step in developing linear com-
plexity algorithms is to apply a proper approximation to the
propagation, which in the current case is the lower matrix on
the right-hand side of (14). By the first step in Table IV, we have

(15)

Applying the low-rank approximation (3) to , we obtain

(16)

where (12) has been employed. Since both and
are upper triangular matrices, the product of
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and is still an upper triangular ma-
trix. This implies that does not affect the matrix

. Furthermore, according to a previous discussion,
may be approximated by an identity matrix. Therefore,

(16) can be simplified to

(17)

or

(18)

In the Appendix, we explain the difference between the ap-
proximation (17) used here for Bi-LS and some similar approx-
imations previously mentioned for Bi-SVD.

Substituting (17) into (14) yields the following update:

(19)

Thus, dropping the last row of both sides of (19) yields

(20)

where . Define the matrix

(21)

and define the -dimensional vector . Then,
(20) can be expressed compactly as

(22)

where .

Notice the alternative expression .
This enables us to decompose the vector into two compo-
nents:

(23)

where is orthogonal to the span of . Substituting
(23) into (22) yields

(24)

where denotes the norm of the vector
is a sequence of orthonormal Givens rotations, and is an

upper-triangular matrix that satisfies

(25)

Clearly, (24) suggests a QR decomposition of . The desired
orthonormal matrix can be obtained from the following
recursion:

(26)

where the symbol denotes a column vector of no interest.
Note that (25) reveals a special updating problem of the form

“upper triangular plus rank one”. This special updating problem
can be solved simply by Givens plane rotations. Alterna-
tively, (25) may be rewritten as

(27)

A two-step strategy [13] can be employed to triangularize the
form of “upper triangular plus rank one” on the right side of
(27). Let us set

The first step constructs such that

Hence, is upper Hessenberg. For example, if ,
we have

This step involves Givens rotations, as embodied in .

Since is now upper Hes-
senberg, the second step is to find rotations in such that
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Therefore, in (26) can be computed recursively and re-
quires only flops.

2) Updating : We now consider the following iden-
tity:

(28)

According to the second step in Table IV, we get

(29)

Premultiplying both sides of (29) by and employing
(14) yields

(30)

which confirms (11). However, the inner structure shown in (30)
will be useful next.

We decompose the vector into two components:

(31)

where is orthogonal to the span of . Substi-
tuting the representation and the low-rank approximation
(18) into (29) yields

(32)

Let . By (30), we can simplify (32) to yield

(33)

where consists of Givens rotations such that

(34)

The desired orthonormal matrix can be updated recur-
sively from the following:

(35)

This updating operation requires flops due to rotations.
In addition, let

(36)

Since is the upper triangular matrix, the vector is
easy to be solved by only back substitution opera-
tions.

3) Summary of the Bi-LS-1 Algorithm: Finally, a complete
quasicode of the Bi-LS-1 algorithm is summarized in Table V.
Note that a minor computational cost of and is not counted
in the Table. This algorithm has a principal computational com-
plexity of iterations. Basically, updating
the left subspace requires flops, and updating the right sub-
space requires vectors.

B. Bi-LS-2 Algorithm

This algorithm is a slight variation of the Bi-LS-1 algorithm.
We observe that (33) can be rewritten as

(37)

where the two matrices on the right are orthogonal to each other.
In other words, the column span of is decomposed into the
old subspace span and the rank-one innovation span

. This suggests the following short-cut:

(38)

where, however, the columns of are no longer or-
thonormal. Since the above shortcut yields a major reduction
of computations (i.e., a reduction of 3 flops), we list the
resulting algorithm as the Bi-LS-2 algorithm in Table VI. The
Bi-LS-2 algorithm requires a principal computational com-
plexity of flops.

C. Bi-LS-3 Algorithm

We first observe that a major complexity component of the
previous Bi-LS algorithms comes from updating the left sub-
space matrix through (25) and (26). For applications
where one is only interested in the right subspace (or the row
span) of , updating the left subspace is simply an extra
burden. We show next that this extra burden can be removed
if an exponential window is used.

With an exponential window, we now have the following up-
date scheme of the data matrix

(39)

Similar to (14), we now have

(40)
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TABLE V
BI-LS-1 ALGORITHM: USING HYBRID WINDOW. THE COMPLEXITY IS 6Nr+9Lr+6r +O(r).GGG (t) IS A SEQUENCE OF 2r GIVENS ROTATIONS, ANDGGG (t)

IS A SEQUENCE OF r GIVENS ROTATIONS

TABLE VI
BI-LS-2 ALGORITHM: USING HYBRID WINDOW. THE RIGHT SUBSPACE BASIS VECTORS ARE NOT ORTHONORMAL. THE COMPLEXITY IS

3Nr + 9Lr + 5r + O(r).GGG (t) IS A SEQUENCE OF 2r GIVENS ROTATIONS
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TABLE VII
BI-LS-3 ALGORITHM: USING EXPONENTIAL WINDOW. TRACKING THE RIGHT SUBSPACE. THE COMPLEXITY IS 6Nr + 3:5r + O(r). GGG (t)

IS A SEQUENCE OF r GIVENS ROTATIONS

Substituting (17) into (40) yields

(41)

Thus, we have

(42)

where is a sequence of orthonormal Givens rotations
such that

(43)

According to the second step in Table IV and similar to the
derivation of in Section IV-A, we have

(44)

where

(45)

which replaces the original form . We have
now completely avoided the computation of the left subspace
matrix .

To ensure the orthonormalization of , we should use
(35) instead of (38) to update .

Table VII summarizes the above algorithm as the Bi-LS-3
algorithm, which tracks the right subspace using the exponential
window. The principal complexity of this algorithm is

.

D. Bi-LS-4 Algorithm

This is a variation of the Bi-LS-3 algorithm. To further reduce
the complexity, we can use (38) instead of (35) to update .
Of course, the columns of are no longer orthonormal. The
principal complexity is now . Table VIII
summarizes this algorithm as the Bi-LS-4 algorithm.

E. Comparison of the Bi-LS Algorithms and Others

Table IX compares the complexity of all the Bi-LS algorithms
and other fast algorithms. We see that most of the other algo-
rithms only track a single side (right) subspace due to the expo-
nential window used. Our new algorithms Bi-LS-1 and Bi-LS-2
are capable of obtaining both subspaces at a relatively low cost.
The Bi-LS-3 and Bi-LS-4 algorithms can be employed to ex-
tract a single side subspace at an even lower cost.

The complexity of the Bi-LS-4 algorithm is comparable with
that of the PAST algorithm [33] and the NIC algorithm [22].
The PAST algorithm appears to be the fastest algorithm with
a guaranteed stability. With a singular value decomposition of
the upper triangular matrix , the Bi-LS-4 algorithm allows
us to track (estimate) the principal right singular vectors and
the corresponding singular values of at an additional cost

. For the PAST and NIC algorithms, the principal
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TABLE VIII
BI-LS-4 ALGORITHM: USING EXPONENTIAL WINDOW. TRACKING THE RIGHT SUBSPACE WITHOUT ORTHONORMALIZATION. THE COMPLEXITY IS

3Nr + 2:5r + O(r). GGG (t) IS A SEQUENCE OF r GIVENS ROTATIONS

TABLE IX
COMPARISON OF LINEAR COMPLEXITY SUBSPACE TRACKING ALGORITHMS. NOTE THAT N IS THE DIMENSION OF THE RIGHT SUBSPACE, L IS THE

DIMENSION OF THE LEFT SUBSPACE, AND r IS THE RANK OF THE DESIRED SUBSPACE

right singular vectors and the corresponding singular values of
can be done similarly.

V. PERFORMANCE ILLUSTRATION

A. Effect of Windows on Subspace Tracking

We measure the accuracy of an estimated subspace at time
by the maximum principal angle [13] between the estimated

subspace and the exact subspace at the time . The exact sub-
space is computed by performing a full SVD on at each .

There are three windows considered in this paper: the hybrid
window, the sliding window, and the exponential window. To
show the window effects, we consider the estimated right sub-
spaces by the Bi-LS-1 algorithm and the Bi-LS-3 algorithm. The
Bi-LS-1 algorithm applies to both the hybrid window and the

sliding window , and the Bi-LS-3 algorithm is
meant for the exponential window.

We construct the input vector
(with ) from the time se-

ries , where

The estimated subspace at time under consideration is given
by the one-dimensional subspace spanned by .

Fig. 1 compares the transient patterns of the maximum prin-
cipal angle caused by three different windows. For the sliding
window, we have . For the hybrid window, we have

and . For the exponential window,
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Fig. 1. Effect of windows on the subspace tracking performance.

we also have . With the same , the hy-
brid window (with an exponentially decaying factor) always has
an effective window length that is less than that of the sliding
window. This is consistent with the transient widths as observed
from the figure, i.e., the sliding window causes a longer transient
width than the hybrid window (with the same ). Note that a
transient width is the interval between a rising (diverging) edge
and a corresponding falling (converging) edge in the figure. The
chosen value of is actually given by an approximate effec-
tive window length of exponentially decaying window. There-
fore, as we can observe from the figure, the overall transient
width caused by the exponential window is about the same as
that by the sliding window, but the sliding window causes a
sharper converging edge than the exponential window, which
is also consistent with intuition. The converging edge caused by
the hybrid window is actually (slightly) less sharp than that by
the sliding window, which is, again, as expected. The diverging
edge caused by the sliding window has a larger delay than the
other two windows. The explanation is that the other two win-
dows put more weights on the new sample vectors, and hence,
their estimated subspace is more likely to be disturbed by the
new samples that deviate significantly from the original sub-
space.

B. Performance Illustration of the Bi-LS Algorithms and
Other Algorithms

The test data are now chosen to be the same as in [31]:

which is a sum of complex exponentials plus white noise (with
SNR dB). Here, we consider . The two frequen-
cies change abruptly at two different time instants. The first fre-
quency varies from Hz to Hz at
and the second from Hz to Hz at

. As in the previous case, the maximum principal angle
[13] is used to measure the performance of subspace tracking,
but in addition, the two estimated frequencies are obtained from

Fig. 2. Maximum principal angles of several orthonormal subspace
algorithms. Note that the Bi-SVD1 and the OPAST are overlapping.

the estimated subspace at each value of . The frequency esti-
mation method is the ESPRIT/MatrixPencil method [17], [26].

We first consider five subspace tracking algorithms: the
Bi-LS-1 algorithm, the SWASVD3 algorithm [3], the Bi-SVD-1
algorithm [30], the FAST algorithm [25], and the OPAST al-
gorithm [1]. Among them, the SWASVD3 and the FAST are
based on sliding rectangular window, whereas the Bi-SVD-1
and the OPAST are based on the exponential window. All these
algorithms produce orthonormal subspace basis vectors. For all
algorithms, we choose , and .

Fig. 2 shows the subspace tracking performance of the five
algorithms. Bi-LS-1 has the shortest transient width largely be-
cause the sliding exponential window used has the shortest ef-
fective duration. The performances of Bi-SVD-1 and OPAST
are almost identical, both of which use the same exponential
window. Since the effective window length for Bi-SVD-1 and
OPAST is longer than that for Bi-LS-1, the transient width of
the former two is longer than that of the latter. SWASVD3 uses
a sliding rectangular window of length equal to the effective
window length of the exponential window used by Bi-SVD-1
and OPAST. The transient width of SWASVD3 is about the
same as that of Bi-SVD-1 and OPAST, although SWASVD3 has
a sharper converging edge. The FAST algorithm does not per-
form as well as the other four. Note that unlike the other four,
the FAST algorithm does not belong to the power family.

Fig. 3 shows the frequency tracking performance of the five
algorithms. What is interesting here is that the estimated fre-
quencies by each algorithm all have a smooth transition between
the old and the new. Otherwise, the patterns we see from Fig. 3
are basically consistent with the patterns we see from Fig. 2.
We stress here that for each algorithm, the transient width can
be varied by varying and/or .

We next consider Bi-LS-2, Bi-LS-4, PAST [33], and
SW-PAST [2]. All of these four algorithms yield the
nonorthonormal subspace matrix. Bi-LS-4 and PAST use
exponential window, Bi-LS-2 uses sliding exponential window,
and SW-PAST uses sliding window. Once again, we choose

, and for all algorithms.
Fig. 4 shows the subspace tracking performance of the

above four algorithms, and Fig. 5 shows the frequency tracking
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Fig. 3. Frequency tracking performance of several orthonormal subspace
algorithms. Note that the Bi-SVD1 and the OPAST are overlapping.

Fig. 4. Maximum principal angles of several nonorthonormal subspace
algorithms. Note that the Bi-LS-4 and the PAST are overlapping.

performance of the same algorithms. As expected, the tran-
sient widths shown in the figures are governed by the effective
window length. We also see that Bi-LS-4 and PAST have almost
identical performances. Furthermore, Bi-LS-2, as shown in
Figs. 4 and 5, has the same performance as Bi-LS-1, as shown
in Figs. 2 and 3 (in terms of the accuracy of both estimated
subspace and estimated frequencies).

In Fig. 6, we compare the tracking performance of two
bi-iterative sliding window subspace algorithms. One comes
from the Bi-LS-1 algorithm by setting (referred
to as Bi-LS-SW), and the other is the sliding window adap-
tive SVD algorithm (SWASVD3) [3]. As expected, the two
sliding window subspace algorithms have the same tracking
performances. However, our algorithm (Bi-LS-SW) is compu-
tationally more efficient than SWASVD3, i.e., Bi-LS-SW has
the complexity of , but SWASVD3 has the
complexity of .

VI. CONCLUSION

We have introduced the bi-iterative least-square (Bi-LS)
method based on the QR decomposition and compared this
method with the bi-iterative singular value decomposition

Fig. 5. Frequency tracking performance of several nonorthonormal subspace
algorithms. Note that the Bi-LS-4 and the PAST are overlapping.

Fig. 6. Comparison of the tracking performances of the Bi-LS-1 algorithm
with a sliding rectangular window (referred to as Bi-LS-SW) and the sliding
rectangular window adaptive SVD (SWASVD3) algorithm shown in [3]. (a)
Maximum principal angles. (b) Estimated frequencies. The two algorithms have
identical performances, although the complexities are significantly different.

(Bi-SVD) method. The Bi-LS method is designed to con-
struct the optimal low-rank approximation of a matrix, but
the Bi-SVD method is designed to compute more than that.
Both methods can be adopted for subspace tracking. We have
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shown that for subspace tracking, more efficient algorithms
can be derived from the Bi-LS method than from the Bi-SVD
method, although both methods have the same accuracy of
subspace tracking. We have derived several Bi-LS subspace
tracking algorithms of varied complexities. These algorithms
are new additions to a family of power-based subspace tracking
algorithms, many of which have excellent performances.

APPENDIX

ON THE VALIDITY OF (17)

We first explain that while (17) is a good approximation for
Bi-LS, it is not for Bi-SVD. Note that the approximation in (17)
is the same as the following so-called “projection approxima-
tion” by Yang:

(46)

The corresponding low-rank approximation used by Strobach
[30] is

(47)

where describes a
so-called “gap” between and . With
the approximation (47), a linear complexity Bi-SVD algo-
rithm, of the complexity , is developed in [30]. By
further assuming that , Strobach [30] pro-
posed a ultra fast Bi-SVD algorithm with the complexity

. Researchers (e.g., [3]) have observed that this ultra
fast Bi-SVD algorithm has a poor performance. In Section II,
we have shown that or, equivalently,

for the Bi-SVD method even at the con-
vergence of subspace. On the other hand, (17) holds well for
the Bi-LS method, i.e., holds for the
Bi-LS method at the convergence of subspace. To explain this
further, let us assume that has a constant row span and a
constant column span. Then, we can write the SVD of as

, where the
first term is principal, and the second term is minor. Now, let us
assume a convergence of subspace, i.e., ,
where is an orthonormal matrix.

Following the basic Bi-LS method in Table IV, we
have

, where the last expression is the QR de-
composition determined by and

. Here, is another orthonormal
matrix. Then, we have

, where , and .
Therefore, .

We now follow the basic Bi-SVD method in Table II. The
first step leads to the same result as for the Bi-LS method,
but at the second step, we have

,
where the last term is the QR decomposition defined by

and . Here,
denotes another orthonormal matrix. It is easy to verify

Fig. 7. Tracking performance of the Bi-SVD3 algorithm [30] for subspace
tracking. (a) Estimated frequencies. (b) Maximum principal angle.

Fig. 8. Tracking performance of the modified Bi-SVD3 algorithm. (a)
Estimated frequencies. (b) Maximum principal angle.

that . This is an SVD of the
asymmetric upper triangular matrix . Therefore, in
general, , and hence, .

The negative impact of for the Bi-SVD3
algorithm [30] is confirmed by the simulation results shown in
Fig. 7. The configuration of the simulation is the same as that of
Section V-B. It can be seen that the Bi-SVD3 algorithm is very
unstable.

However, we can make a simple modification to the Bi-SVD3
algorithm to improve its performance. Referring to [30], we can
replace (24) of the Bi-SVD1 in Table II with (21b). Keep in mind
that for the Bi-SVD1 algorithm, in Table II should not be
removed from (34) in [30]. Although in (34) is
not an upper triangular matrix, we may take its upper triangular
part with little performance penalty. The modified Bi-SVD3 al-
gorithm has a principal complexity . Fig. 8
shows the simulation results of the modified Bi-SVD3 algo-
rithm, which performs much better than the original.
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