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Bi-level error correction for PacBio long reads

Yuansheng Liu, Chaowang Lan, Michael Blumenstein, and Jinyan Li

Abstract—The latest sequencing technologies such as the Pacific Biosciences (PacBio) and Oxford Nanopore machines can generate
long reads at the length of thousands of nucleic bases which is much longer than the reads at the length of hundreds generated by
lllumina machines. However, these long reads are prone to much higher error rates, for example 15%, making downstream analysis
and applications very difficult. Error correction is a process to improve the quality of sequencing data. Hybrid correction strategies have
been recently proposed to combine lllumina reads of low error rates to fix sequencing errors in the noisy long reads with good
performance. In this paper, we propose a new method named Bicolor, a bi-level framework of hybrid error correction for further
improving the quality of PacBio long reads. At the first level, our method uses a de Bruijn graph-based error correction idea to search
paths in pairs of solid k-mers iteratively with an increasing length of k-mer. At the second level, we combine the processed results
under different parameters from the first level. In particular, a multiple sequence alignment algorithm is used to align those similar long
reads, followed by a voting algorithm which determines the final base at each position of the reads. We compare the superior
performance of Bicolor with three state-of-the-art methods on three real data sets. Results demonstrate that Bicolor always achieves
the highest identity ratio. Bicolor also achieves a higher alignment ratio (> 1.3%) and a higher number of aligned reads than the current
methods on two data sets. On the third data set, our method is closely competitive to the current methods in terms of number of
aligned reads and genome coverage. The C++ source codes of our algorithm are freely available at https://github.com/yuansliu/Bicolor.

Index Terms—error correction, PacBio long reads, de Bruijn graph, multiple sequence alignment

1 INTRODUCTION

HE SECOND generation sequencing technologies, which
Tare high-throughput with low costs and high quality,
have been employed successively in many applications,
including resequencing, de novo sequencing, transcriptome
profiling and metagenomics [1], [2], [3]. However, it pro-
duces relatively short reads—the median length of the
reads produced by Illumina is 100 bp. Short reads largely
decrease the continuity and provide less information to
process the repetitive subsequences [4], thus having dif-
ficulty in assembling. Newer next-generation sequencing
(NGS) technologies [5]], for example the Pacific Biosciences
and Oxford Nanopore platforms, can produce long reads
at the length up to 50,000 bp. The long reads offer much
more information than the short reads to resolve the issue
of complex repetitions. In Pacific Biosciences Real-time Se-
quencer, the higher overall error rate of earlier chemistries,
which is approximately two orders of magnitude than that
of Illumina platforms [6], result in the long reads having
much higher error rates (at least 15%) [7]. The drawback of
extremely high error rates poses a challenge for downstream
analysis and applications [6], [8], [9], [10].

Although many algorithms have been developed for
correcting short reads [6], [11]], [10], these algorithms are not
directly applicable for correcting long reads. This is because
the long reads are dominated by insertion and deletion
(indels) errors—indels are about 15 times more common
than substitution, while the major error type of short reads
is substitution. Recently, several algorithms have been pro-
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posed for long read error correction. These algorithms can
be classified into two categories according to whether or not
short reads are used. The first category is a self-correction
approach, which only uses noisy long reads, including the
methods HGAP [12], Canu [13], and LoRMA [14]. There are
many limitations in the self-correction approach, such as the
required high coverage and the substantial computational
cost [15]. Therefore, the second category called hybrid-
correction have been developed to enhance the performance
of long reads error correction.

The hybrid-correction approach makes use of the short
reads to correct the errors in the long reads. As short reads
have lower error rate (about 1%) than long reads [10], the
short reads provides a good template for the long reads
correction. The hybrid-correction approach has two main
ideas. The first one is that it builds mappings between the
short reads and the long reads, then corrects long reads
through the mapping. For example, pacBioToCA [16] uses
the mapping information to select the overlaps that are
converted into a tiling of short read sequences along each
long read. A new consensus sequence is then generated
for each long read via a multiple-alignment of the tiled
short read sequences [17]. LSC [18] employs a homopoly-
mer compression (HC) transformation prior to the map-
ping. Then, it discovers four types of correction points: HC
points, mismatches, deletions, and insertions. These points
are replaced by their short read consensus sequences. The
method proovread [7] computes the consensus by using
the mapping information and a vote strategy. The nov-
elty of proovread is the iterative correction step, which
consists of three pre-correction and one finishing cycles.
CoLoRMap [15] builds a weighted alignment graph based
on the mapping information. Then, a classical shortest path
algorithm is applied to construct the corrected region with
the minimum edit score. For some regions of a long read
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that are not covered by the short reads, One-End-Anchors
(OEA) are used to expand the corrected regions.

However, these methods map short reads individually
and do not exploit the context in which the short read
occurs [19]. Other methods, such as LoORDEC [20] and Jabba
[19], construct a de Bruijn graph (DBG) from the short reads,
then use sequence alignment algorithms to align the long
reads to the DBG. LoRDEC [20] aligns the long reads to the
DBG by finding an optimal path such as to minimize the edit
distance between two solid k-mers of the long read. Jabba
employs the seed-and-extend strategy to align the long read
to the DBG. These methods have a common limitation that
the quality of the long reads correction heavily depends on
the length of k-mer. If a user sets a large k-mer, only a few
DBGs can be mapped to the long reads. Thus, many wrong
base pairs cannot be corrected. On the other hand, if the user
sets a small k-mer, a lot of DBGs can be mapped to the long
reads, making it difficult to opt the final result.

In this paper, we propose a new method named Bicolor
to improve the quality of long reads. Our method has two
levels of processing. At the first level, we set a strict condi-
tion for the selection of solid k-mers. The selection criteria
overcomes the limitation that the length of k-mer affects on
the quality of mapping the long reads to the DBG. Then the
long reads are iteratively corrected by using several k-mers
of different length. Therefore, we can obtain several pre-
corrected long reads under different initial lengths of k-mer.
At the second level, we utilize the multiple sequence align-
ment (MSA) algorithm to align these similar pre-corrected
long reads [21], and then use a vote algorithm to get the
final corrected long read. The key idea of our method is
to combine the sets of pre-corrected long reads, derived by
using k-mers of different lengths. Experiment results show
that our method achieves better performance than the state-
of-the-art error correction methods.

2 METHODS

Our algorithm Bicolor is a bi-level framework for noisy long
reads error correction. A schematic diagram of Bicolor is
depicted in Fig.

The first level consists of n iterative correctors each using
a k-mer of different length. The iterative corrector iteratively
corrects the noisy long read m times under its initial -
mer. The initial k-mer of this iterative corrector increases
its size k in the subsequent iteration. Thus, we can obtain
n pre-corrected long reads in the first level. Then these
pre-corrected long reads are processed by MSA and a vote
algorithm in the second level. The output of the second level
is the final corrected long reads.

2.1 First level: long read pre-correction

Iterative correction is the core of the first level computation.
Similar iterative approaches has been used for short reads
assembly [22], [23], short reads correction [24], and self-
correction [14]. LoRDEC [20] is modified to an iterative ver-
sion (called iLoREDC) to perform the computation. There
are three main steps in LoRDEC: (1) constructing a DBG
using short reads; (2) determining solid/weak k-mers in
long read; and (3) searching path in the DBG with minimal

2

edit distance between two solid k-mers. The DBG is the core
of most second-generation assemblers such as Velvet [23],
Minia [26]]. DBG connects short reads into a graph. Then
a long read can align to the DBG by finding solid k-mers.
Here, solid k-mers in long reads are preserved as correct
substrings which are assumed to have no errors. We assume
that errors only exist in weak k-mers. Therefore, weak k-
mers can be corrected by searching paths between solid k-
mers.

Let L be a noisy long read, an odd integer k be an initial
length of k-mers and m be the number of iterations. The
procedure of iterative correction by iLoRDEC is as follows:

e Step 1: Use the short reads to build a DBG, where
an edge connects two nodes if their corresponding k-
mers are overlapped by (k — 1) bases. These k-mers
that occur less than s times within the short reads are
filtered out.

e Step 2: Find solid k-mers in a long read L. Given all
k-mers of a long read L, if both the i-th k-mer and
the (i + 1)-th k-mer of L are in the DBG, the i-th
k-mer of L is a solid k-mer, otherwise it is a weak k-
mer. One or more consecutive solid k-mers construct
a solid region and one or more consecutive weak k-
mers form a weak region. Specially, the weak regions
located at the beginning and the end of the long
reads are called the head region or the tail region,
respectively.

o Step 3: Correct weak regions of L. Find a path be-
tween the solid regions of L in the DBG to correct
the weak regions. If several paths are found, the
path with minimal edit distance is selected as the
corrected sequence.

o Step 4: Correct these head and tail regions by search-
ing a path with minimal edit distance to these region-
s.

o Step 5: Use the Dijkstra algorithm to find the shortest
path between the first and the last solid k-mers.

e Step6:Updatem =m —land k =k + 2.

e Step 7:If m > 0, go to Step 1 and use the corrected
sequence as the input. Otherwise, output this correct-
ed sequence. The output of the corrected sequence is
called pre-corrected long read.

Details of Steps 3, 4 and 5 can be seen in [20].
Several modifications are made by iLoRDEC in compar-
ison with LoRDEC:

1) In Step 2, we strengthen the selection of solid k-
mers. By LoRDEC, if the i-th k-mer of L is in the
DBG, it is treated as solid. If we use a large k,
the long read may not contain a solid k-mer. Thus,
the error base-pairs in the long read would not be
corrected. If we set a small %k, the long read can
have many solid k-mers. The long read may be
over-corrected as the repeats of sequence and false
positive of solid k-mers often exist in a long read. To
overcome this issue, we select only the first k-mer as
solid one iff two consequent k-mers of the long read
exist in the DBG. This selection criteria can improve
the reliability of solid k-mers.

2) iLoRDEC only performs one pass in Steps 3, 4 and
5, while LoRDEC performs two passes on two direc-
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Fig. 1. Schematic diagram of our algorithm Bicolor.

tions. LoORDEC corrects the reverse complementary
of the long read and outputs a corrected long read
in the first pass. In the second pass, LoORDEC trans-
forms the corrected long read to its reverse comple-
mentary sequence and corrects this sequence. The
following two reasons motivate Salmela and Rivals
[20] to perform two passes: (1) new solid k-mers are
used as starting nodes in the next pass; (2) different
region’s ending leads to different paths. Actually,
iLoRDEC is an iterative algorithm, new solid k-mers
are used as both starting or ending nodes in the
subsequent rounds of iteration. Therefore, we do
not consider the reverse complementary of the long
read.

We add Steps 6 and 7 to iterate different length k-
mers with m rounds, each round £ is increased by
2.

There are n iterative correctors in the first level. Each
corrector iteratively corrects the long read by using different
initial lengths of k-mer. Therefore, we can obtain n pre-
corrected long reads at this level.

2.2 Second level: MSA-based correction

MSA has been widely used in the current molecular biol-
ogy, such as inferring sequence homology [27], improving
protein secondary structure prediction [28] and conduct-
ing phylogenetic analysis [29]. At the second level of our
correction framework, MSA is used to align those pre-
corrected long reads derived from the first level. The tool
MUSCLE [30] is applied in our implementation. A simple
vote algorithm is subsequently utilized to generate the final
corrected sequence. This simple vote algorithm selects the
most frequent bases as the final result at each position.

For illustration, an example with 4 sequences is depicted
in Fig. 2| where the 4 sequences are 4 pre-corrected long
reads. We use the MUSCLE to align these pre-corrected
long reads. As the second base of S1, 52, and 54 is C and
the second base of S3 is A, the most frequent base in the
second position of these pre-corrected long read is C. Then,
the second base of the final corrected read is C.

3 RESULTS AND ANALYSIS

The correction results and some analysis are presented in
this section. The performance of our proposed algorithm

S1: TCCAAGACCTGCGAA
S2: TCTTAGAATCTGAC
S3: TACTAGACATCCGAA
S4: TCCTAGAAATCGAA
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Fig. 2. An example to illustrate the second level correction.

Bicolor is benchmarked in comparison with three exist-
ing algorithms: LoRDEC [20], CoLoRMap+OEA [15], and
CoLoRMap [15]. As reported in [15]], [20], CoLoRMap and
LoRDEC had achieved comparable performance when com-
paring with pacBioToCA, LSC and proovread. We did not
compare our performance directly with pacBioToCA, LSC
or proovread. All the experiments were conducted on a
computing cluster running Red Hat Enterprise Linux 6.7
(64 bit) with 2 x 2.3 GHz Intel Xeon E5-2695 v3 (14 Cores)
and 128 GB RAM.

3.1

The algorithms are tested on three data sets: a bacteri-
al genome from Escherichia coli (E. coli), two eukaryotic
genomes from Saccharomyces cerevisiae (yeast) and Drosophila
melanogaster (fruit fly). They are benchmark data sets used
in [15]. More details of these data sets are shown in Tab.

Data sets

3.2 Comparison with LoRDEC, CoLoRMap and ColL-
oRMap+OEA

In the performance comparison of Bicolor with algorithms
LoRDEC [20], CoLoRMap [15] and CoLoRMap+OEA [15],
the default parameter settings were used (see Tab. ).
To measure the performance by the correction methods,
we used BLASR [31] to align long reads to the reference
genome. For each read, we store a single best alignment
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TABLE 1
Details of the three benchmark data sets

Bacteria Yeast Fruit fly

Name Escherichia coli Saccharomyces cerevisiae  Drosophila melanogaster
Organism Strain K-12 substr. MG1655  S288C ISO1

Reference sequence  NC_00913 NC_0011{33-48} NT_0337{77-79}, NC_0043{53-54};

NC_001224 NC_0245{11-12}; NT_037436

Genome size 4.6 Mbp 12.2 Mbp 137.6 Mbp

Download from DevNet? DevNet? Bergman Lab*

Number of reads 33,360 261,964 901, 530
PacBio data® Max read length 14,494 30, 164 13,885

Avg read length 2,938 5,891 1,505

Number of bases 98,015,299 1,543,321, 663 1,357,180,677

Accession ID ERR022075° SRR567755 ERX645969°
umina data Number of reads 2,316,614 4,503,422 70,000, 000

Read length 100&102 101 101

Number of bases 233,978,014 454,845, 622 7,070,000, 000

LAll long reads whose length less than 100 bp were filtered out.

2https:/ / github.com /PacificBiosciences/DevNet/wiki/E-coli-K12-MG1655-Hybrid- Assembly

%https:/ / github.com /PacificBiosciences/DevNet/ wiki/Saccharomyces-cerevisiae- W303- Assembly-Contigs
“http:/ /bergmanlab.genetics.uga.edu/data/genomes/2057_PacBio.tgz

®Only a subset of the data was used.

under the options ‘noSplitSubreads -bestn 1’. We then com-
puted the following statistics as metrics:

o Number of aligned reads: the number of long reads that
align to the reference genome.

o Alignment ratio: the ratio between the number of
aligned bases and the total bases of long reads.

e Identity ratio: the ratio between the number of
matched bases and the length of the aligned region
in the reference genome.

o Genome coverage: the proportion of the genome
aligned regions by long reads.

The number of aligned reads measures the throughput
of the correction algorithm. A bigger number of long reads
aligned to the reference genome stands for that more noisy
long reads are corrected. The alignment ratio and the iden-
tity ratio stands for the quantity and quality of the aligned
bases respectively. They together measure the accuracy of
correction. Genome coverage defines the extent to which
the reference genome is covered by the corrected reads. This
evaluation approach has been widely adopted by the state-
of-the-art methods [20], [15], [18], [14].

TABLE 2
Default parameters of the three existing methods

Data set
Metho
LoRDEC [20]

E. coli

-k19-s3-e04-b200-t5
BWA-MEM:-aY-A5-B11-O2,1-E43-k8
-W16-w40-r1-D0-y20-L 30,30 -T 2.5;
Mina: -kmer-size 43 -abundance-n 1
F1=13,ks = 15,k = 17, ks = 19,5 = 3,

e=0.4,b=200,t =5

Yeast Fly

CoLoRMap [15]

Bicolor

m; =3

The comparison results are shown in Tab. 3] On the
data set E. coli, all the methods can achieve a close per-
formance in terms of identity ratio (above 99%), where our
method is the highest. The number of reads aligned back

to the reference genome by Bicolor is at least 471 much
more than the other methods. Compared with LoRDEC and
CoLoRMap, our alignment ratio is improved by 3.2% and
1.7% respectively. While the alignment ratios of LoRDEC
and CoLoRMap even less than that of the original noisy
long reads without any correction.

On the data set yeast, the corrected reads by Bicolor
can align 246,122 of them back to the reference genome.
This number exceeds the other methods by at least 4, 548.
The alignment ratio achieved by Bicolor is 83.442%, which
is 2.7% and 1.3% higher than LoRDEC’s alignment ratio
80.672% and CoLoRMap’s alignment ratio 82.072. Bicolor
also achieved the highest identity ratio 97.969%, which is
higher than LoRDEC’s identity ratio 97.810% and 1.4%
higher than CoLoRMap’s identify 96.515%.

On the third data set fruit fly, the corrected long reads
by Bicolor align less number of reads back to the reference
genome than that of LORDEC, while Bicolor can achieve a
higher alignment ratio and identity ratio. Bicolor has 4413
more number of aligned reads compared with CoLoRMap,
and can also achieve a higher identity ratio. We note that
CoLoRMap can have a 2.1% higher alignment ratio than
Bicolor (37.544% identity ratio). It can be seen that this
data set has many erroneous bases, because there are only
313,989 among 901,530 reads can align to the reference
genome and the raw data has a relative low alignment ratio
(only 37.079%). This has lead to solid k-mers in the long
reads extremely unreliable for correction. Furthermore, the
searched paths in the DBG are far from the expected ones.
On the other hand, CoLoRMap can align short reads to long
reads and dose not rely on solid k-mers. Even more reads are
aligned to the reference genome after correcting by Bicolor,
it achieves lower alignment ratio than that of CoLoRMap. It
is worth of noting that Bicolor achieves the highest identity
ratio.

All the methods have very close performance under the
typical adopted genome coverage (Tab. [). It can be still
understood that CoLoRMap performed best. On the data set
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TABLE 3
Alignment performance by different methods on three data sets

Dataset Method No. of aligned ~ Alignment Identity
reads ratio (%)  ratio(%)
Original* 31,071 88.429 94.799
LoRDEC 30, 837 86.942 99.444
E. coli CoLoRMap 31,018 88.401 99.006
CoLoRMap+OEA 30, 939 87.996 99.119
Bicolor 31,489 90.178 99.467
Original 239,232 80.449 93.079
LoRDEC 240,413 80.672 97.810
Yeast CoLoRMap 241,574 82.072 96.393
CoLoRMap+OEA 241,571 82.070 96.515
Bicolor 246,122 83.442 97.969
Original 313,989 37.079 94.600
LoRDEC 342,800 37.364 97.091
Fly CoLoRMap 337,799 39.630 97.901
CoLoRMap+OEA 337,799 39.629 97.956
Bicolor 342,212 37.544 98.041

*Original is the alignment statistics without being corrected
by algorithm.

E. coli, all the methods can achieve the 100% coverage. On
the data set yeast, CoLoRMap performs slightly better than
LoRDEC and Bicolor. Specifically, the coverage by Bicolor
and LoRDEC are only 0.012% and 0.03% less than that of
CoLoRMap. Also, Bicolor obtains the lowest coverage (i.e.,
93.915%) on the data set fruit fly, which is 0.063% and 0.82%
less than that of LoORDEC and CoLoRMap, whose coverages
are 93.978% and 94.735%, respectively.

TABLE 4
Comparison on genome coverage

Method Data sets
E.coli  Yeast Fly
Original 100 99.793  93.657
LoRDEC 100 99.822  93.978
CoLoRMap 100 99.852  94.735
CoLoRMap+OEA 100 99.852  94.729
Bicolor 100 99.840  93.915
3.3 Performance improvement from LoRDEC to

iLoRDEC

In the first level, we polish LoORDEC to an iterative version.
We compare the performance of iLoRDEC and LoRDEC
in this subsection. In order to compare with LoRDEC, we
perform some experiments on the data set E. coli with
some different parameters. The alignment statistics of long
reads corrected by iLoORDEC with different initial £-mers
and several different numbers of iterative rounds are shown
in Tab. f] In [20], Salmela and Rivals have claimed that
LoRDEC achieve best result (see second row of Tab.
under default parameters. Comparing with the best result
of LoRDEC, we find that iLoRDEC performs better than
LoRDEC under six group parameters. It is worth noting that
iLoRDEC always achieves higher alignment ratio. These
verify the effectiveness of iLoRDEC.

TABLE 5
Alignment statistics of E. coli data corrected by iLoORDEC under
different parameters

Parameters No. of aligned ~ Alignment  Identity
reads ratio (%) ratio(%)
m=1 30,679 87.409 93.296
m =2 30,987 88.382 95.432
k=13 m=3 31,210 89.189 97.190
m=4 31,054 88.308 97.906
m=25 30,816 87.074 98.380
m=1 31,257 89.366 97.456
m=2 30,782 87.071 99.186
k=15 m=3 30,830 87.246 99.377
m=4 30,868 87.464 99.448
m=25 30,942 87.760 99.484
m=1 30,810 87.002 99.329
m=2 30,847 87.066 99.483
k=17 m=3 30,872 87.219 99.517
m=4 30,888 87.305 99.529
m=25 30,898 87.356 99.536
m=1 30,911 87.368 99.264
m =2 30,875 87.115 99.381
k=19 m=3 30,877 87.146 99.401
m=4 30,875 87.175 99.411
m=25 30,876 87.178 99.417

Bold indicates the corresponding value better than that of
LoRDEC.

3.4 Effectiveness of MSA-based correction

After correcting by iLoRDEC, we get n pre-corrected long
reads. Then, MUSCLE is used to align these similar long
reads in the second level. In order to verify the effectiveness
of MSA-based correction, we combine the results, which are
corrected by iLoRDEC with four different initial k-mers (i.e.,
n = 4) and five different numbers of iterative rounds on the
data set E. coli, to obtain final corrected long reads. The
alignment statistics of final corrected results are shown in
Tab. [} Comparing the alignment statistics in Tabs. [f] and
we can see that the results after correcting by MSA are
much better than that of iLoRDEC regarding number of
aligned reads and alignment ratio. In addition, the identity
ratio is very close to the highest identity ratio in Tab.[p} The
results imply that using several sets of pre-corrected long
reads to get the final corrected long reads can enhance the
performance.

3.5 Parameters setting for the optimal time costs

The initial length of k-mer, number of iterative corrector
n and rounds number m at the first level are the most
important parameters in our method Bicolor. Other four pa-
rameters, i.e., the threshold for solid k-mers, the maximum
error rate and branching limit and the number of target k-
mer, inherited from LoRDEC, are set as the default values by
LoRDEC (see Tab.[). If k; is large, many long reads can not
be corrected because they may not contain any solid k-mers.
We suggest that the initial length of £-mer used by iLoRDEC
should be smaller than the default value used by LoRDEC.
But, a smaller k; will result in a DBG of higher complexity,
causing the running time of iLoRDEC much longer. Follow-
ing the instructions of LoRDEC, the initial length of k-mer
is suggested to be within the set {13, 15,17, 19} for bacterial
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TABLE 6
Alignment statistics of long reads corrected by MSA

Parameters No. of aligned  Alignment  Identity
reads ratio (%) ratio(%)

k1 =13,m1 = 1

ko =15,mo =1

kg = 17.ms = 1 31,401 90.006 98.526
ky =19,my =

ki =13,mq =2

ko = 15,mg =2

ks = 17.ms = 2 31,551 90.465 99.360
kg =19,mq4 =2

k1 =13,m; =3

ko = 15, mg =

ks = 17.m3 = 3 31,489 90.178 99.467
kqy =19,my =

k1 =13,m; =

ko = 15,mg =

kg = 17.ms = 4 31,344 89.515 99.503
ks =19, myq =

k1 =13,m; =5

ko =15,m2 =54 193 88.685 99.518

ks =17,m3 =5
ks =19,m4 =5

and eukaryotic species of small genomes. For large-genome
species, we suggest k; € {13,15,17,19,21}. It has been
observed that Bicolor’s performance degrades as iLoORDEC’s
when n = 1. Considering both the vote algorithm and
running time, we suggest n > 3.

Selection of a good number of iterative rounds is tricky.
Fig. 3| shows a trend of the alignment ratios and identity
ratios under four different initial k-mers and five different
numbers of iterative rounds (Tab. |§[) From this figure, we
can see that the alignment ratio can reach to the highest
level when the number of iterative rounds becomes 2. In
addition, as the number of iterative rounds increases from
2 to 5, the alignment ratio is decreased. However, when the
number of iterative rounds is smaller than 4, the alignment
ratio is still relatively high (more than 90%). Thus, if the
best iterative round is less than 4, we can obtain a good
alignment ratio. This figure also indicates that the identity
ratio is proportional to the number of iterative rounds. This
is because the higher the number of iterative rounds is, the
more errors are corrected. However, the identity ratio is not
significantly increased after the number of iterative is set
larger than 3. So we can obtain a better identity ratio if the
iterative round is set larger than 2. Also, the running time
can be significantly longer when the number of iterative
rounds is increased. Therefore, we suggest that the number
of iterative rounds should be less than 5. It is expected that
the correction result should have relatively high alignment
ratio, high identify ratio, and low time consumption. In this
work, we suggest the iterative round as 3 or 4.

At the second level, we set the fastest option ‘-maxiters
1 -diags” of MUSCLE in our experiments since time-
consuming MSA is of high complexity.

3.6 Running time comparison

To compare the running time of these methods, we use
the Linux/Unix time command to record the real time. In

(@) (b)

Fig. 3. Alignment ratio (a) and identity ratio (b) under different iterative
rounds.

our experiments, all cores are used to run the programs.
The running time of these methods is reported in Tab.
LoRDEC is the fastest method. As CoLoRMap is mapping-
based method, thus it is slower than LoRDEC. Especially,
the procedure of OEA is very time-consuming. Bicolor
contains two stages of computation. The first stage has a
number of iLoRDEC. It’s expected that the running time
is many times longer than LoRDEC, even though we did
some improvements. Another reason is that the complexity
of MSA is very high. We used the fastest option of MUS-
CLE, but it still spent much time. Bicolor run faster than
CoLoRMap+OEA only.

TABLE 7
Comparison of running time (minutes) on different data sets

Method Data sets

E.coli Yeast Fly
LoRDEC 5 48 82
CoLoRMap 21 131 400
CoLoRMap+OEA 93 2866 8399
Bicolor 90 1462 1138

4 CONCLUSION

This paper has introduced a bi-level framework for the error
correction of PacBio long reads. At the first level, it utilizes
k-mers of different lengths and an iterative algorithm to
determine multiple sets of preliminarily corrected reads.
Then our method combines these preliminary results by
MSA-based correction at the second level. The performance
evaluation on three benchmark data sets has demonstrated
that our proposed method can achieve the highest identity
ratio in comparison with three state-of-the-art algorithms.
The performance on the alignment ratio has been improved
on the data sets E. coli and yeast. Our method also has
some drawbacks. First, there is a little genome coverage lost
on the data sets yeast and fruit fly. Second, the running
time is longer than the other methods except the OEA
method. Our future work will focus on these areas for speed
improvement.
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