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Abstract 

Presently, tree coders are the best bi-level image coders. The current IS0 
standard, JBIG, is a good example. By organising code length calculations 
properly a vast number of possibie models (trees) can be investigated within 
reasonable time prior to generating code. Three general-purpose coders are 
constructed by this principle. A multi-pass free tree coding scheme produces 
superior compression results for all test images. A multi-pass fast free template 
coding scheme produces much better results than JBIG for difficult images, such 
as halftonings. Rissanen's algorithm 'Context'is presented in a new version that 
without sacrificing speed brings it close to the multi-pass coders in compression 
performance. 

1 Introduction 
Predictive coding usually means determining the state of the current unknown symbol, 
Ut, and coding with the probability estimate of that state. Symbol probabilities of 
different states are usually treated as independent and the symbols being generated 
in a given state are considered independent of one another - the model becomes a 
collection of independent Bernoulli sources often arranged in a tree structure. The 
assumptions of independance are questionable with real image data, nonetheless very 
good results in terms of compression ratio have be achieved. The baseline JBIG [3] 
is one such coder. Tree coding fundamentally consists of four parts: 1) Choosing 
the template/tree pixels and possibly ordering them, 2) Calculating the probability 
estimate during coding (determining the coding depth of the tree), 3) Updating the 
statistics tree(s) during coding, 4) Performing the arithmetic coding. 
In this paper zt  denotes the t th pel relative to raster scan order. The unknown 
symbol at time tt, zttl, is also denoted ut or U. Xt ,  and U are stochastic variables. 
An ordered set of symbols, . . c k ,  is denoted CO". 

2 Fast Bernoulli Code Length Calculation 
In coding schemes where we investigate different tree models we often wish to calculate 
the code length of the events directly from the counts. Let !(no, nl IS) denote the code 
length of a binary string with no zeroes and n1 ones using a Bernoulli model where 
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the prior initially is beta-distributed with the nuisance parameters 60 = 61 = 6.  We 
have: 

The value of S is optimized to 0.45 in [3] for a large number of bi-level images. S = 0.5 
minimizes the stochastic complexity relative to the class of all prior distributions [8]. 
The sequential estimator that corresponds to this expression is: 

To make a fast calculation of l(no, nll6) we use a table, Tz, to look up the value for 
no < N A n1 < N .  ( N  = 100 is suitable). For larger values of no and/or n1 we use 
Stirling's formula to approximate the value: 

(no + n1 + 26 - 0.5) ln(n0 + nl + 26) 
-(no + 6 - 0.5) ln(n0 + 6) 
-(nl + 6 - 0.5) ln(n1 + 6 )  + [I if no 2 N and n1 2 N 
Tl(nl) + (no + 6 - 0.5)ln noiri226 
+(nl + 6)(ln(no + n1 + 26) - 1) + ( 2  if no 2 N and n1 < N 
Tl(no) + (nl + 6 - 0.5) In "O:1";r6 
+(no + G)(ln(no + n1 + 26) - 1) + & if no < N and n1 2 N 
Tz(no, ni)  if no < N and n1 < N 

(3) 

a are constants. Tl(n) tabelizes l ( n ,  016). and (2 = -In m where (1 = -In m 
3 Free Template Tree Coding 

3.1 
By free k-order template tree coding we understand coding with a balanced tree 
of depth k of the form Ut given Ct. The code length of the image ZT is given by 
ET='=, L(U~~(C;-')~), where the 2-th context bit is a static function of the past: (CZ), = 
s,(Xt-l, .  . . , Xt-K). In its simplest form free template tree coding involves a ranking 
of the past: 

Coding of the Data and the Tree 

(CJt = Xt-,(,) (4) 

The tree structure of a free template tree requires little coding. For a tree of depth k ,  
we need to transmit k and r ( 0 ) .  . . r ( k  - 1). Each of the numbers r(z) may be indexed 
with something like 11-13 bits, i.e. virtually nothing. We shall not consider this cost 
in the following. Related work for free template tree coding is given in [2] [l]. 
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Figure 1: Search area for context pels. Definition of absolute and relative coordinates. 

3.2 Determination of the Ranking - Greedy Build-up of Tem- 
plate 

3.2.1 Full Search 
Pure free template tree coding with a tree of depth k means using the leaves as the 
coding states. The kth context bit, Ck, may be chosen among a number of candidates 
(Figure I)  {A ,  ... AN,}, N, = h . (2w + 1) + w. The code length that would result 
from picking A3 may be calculated as follows: 

$2  1 

L ( ~ T )  = E ‘(nolck-za3, nI\c:-2a, IS) (5) 
,k-2=0k-2 al=O 

0 0  

To calculate the code length for a large number of possible kth order tree codings we 
only need a single pass of the data, updating a (large) table as we go along. With 
Eq. 3 it becomes feasible to calculate the code length for a number of candidates since 
all that is required is a collection of statistics. Still, the full search speed is poor 
and its memory consumption substantial. We seek means to trade off compression 
ratio for speed in the template selection phase and for the memory requirement. We 
assume a limited memory for the statistics tables(&) which we use to pick the next 
context pixel. The balanced tree coding reported here still requires enough memory 
to buffer the entire image. 

3.2.2 

A greedy search for a (k+l)’th context bit requires a memory of 2k+2N,~sizeof(counterr 
bytes. Therefore, we choose N, to be inversely proportional to k for k > k,h. Which 
pels should remain depends on the type of image. For most images the pels can be 
ranked according to their 1-norm distance to U with good results. By a more complex 
scheme graphics arts halftonings stand to gain approximately 5 per cent extra. 

Limiting the candidate list for new context pixels 

3.2.3 

If a context coder is faced with an unknown halftoning it is important that the search 
area for context pixels contains at least one grid intersection and preferably more. 
For clustered dot halftonings we cannot count on the grid being placed in a specific 
position, hence, the search area should initially be dense and quite large. The initial 
number of candidates i s  therefore substantial. 
The time for performing a greedy search for a ( k  + 1)’th context bit is (with the 
fast calculation of ‘(no, n I l S ) )  approximately the time it takes to collect statistics: 

Limiting the number of pixels (subsampling) 
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k 0 1 2 3 4 5 6 7 8 9 1 0 1 1 > 1 1  
k s 5 5 5 5 5 5 5 4 3 2 1  1 0 

Table 1: A subsampling scheme. k, = 0 means 'no subsampling' 

T(N,K1 + K z  . k ) ,  K1 and Kz are constants with respect to N ,  and T .  To reduce 
this time we replace T with n ( k ) ,  basing the choice of the ( k  + 1)'th context pel on 
a subset of the image. One way to implement this is to cut out what is supposedly 
a representative part of the image. This procedure is extremely sensitive to insta- 
tionarities so in our work we therefore choose to emulate coding of pels which are 
scattered over the entire image. A simple way to control the fraction of pels to code 
as well as a fast way of calculating the position of them is to pick the sample pels of a 
subsampling of the image but letting them stay in their original context. Subsampling 
in two dimensions is described in [12](ch. 2, M. Vetterli): points on the input lattice 
(ml, m2) are associated with points on a subsampling lattice (111, u2) We only consider 
scaled hexagonal subsampling of the form 6. By hexagonal subsampling the smallest 
2-norm distance between samples is maximal. The risk of using a regular subsamplin 
pattern on halftonings is reduced with hexagonal subsampling compared to a (faster7 
scheme where ml and m2 are separable. 

When using subsampling there's a definite risk that the initialization cost of the bigger 
tree will outweight the reduction in entropy, so that the tree building terminates 
prematurely. To see this consider the asymptotic expression for the difference of the 
initialization cost (model cost) of balanced trees of depth k + 1 and k ,  respectively: 
A I ,  11 (zk - 2";) logn. The entropy difference is A H ,  = (H(UIC,k+') - H(UlC,k))n. 
When subsampling, n is less than the number of pels of the image, T ,  the effect 
being that not enough weight is being put on the entropy differences when making 
the expansion decision by PMDL (see Sect. 6) based on n. The equations indicate 
that we might use another criterion for expanding the tree than the PMDL principle. 
In theory we might estimate A I ,  and AH,, calculate A I ,  and AH,  by compensating 
with and E ,  respectively, and accept expansion iff AHT - AIT > 0. In practice, 
the asymptotic expressions cannot be carried that far, especially not when we choose 
a model based on all the data - the initialization cost expression is amiss. To avoid 
premature termination of the tree building, we instead decrement the subsampling 
constant, IC,, with the tree order, I C .  We use the subsampling scheme of table 1. The 
subsampling scheme is guided by an attempt to keep the variance of the estimate 
of H(UIC,k+') the same as that of the estimate of H(UIC,k) (we choose n(k  + 1) N 

n(IC)fi) while taking into account the experimental fact that H(UJCk+l) - H(UJC,k) 
is a decreasing function of k ,  implying that subsampling can be coarser for small values 
of k .  As n = & there is no need to make k, any larger than 5 for very small values of 
IC. Table 2 shows the impact of this subsampling scheme. It is pleasing to notice that 
the tree building stopped too early for those images only that do not benefit from 
free template tree coding opposed to JBIG coding with its default 3-line template. A 
simple coding scheme that covers the entire test set is to try out free template tree 
building with the suggested subsampling scheme. If the tree construction terminates 
while n = T ,  we use the found template in the coding of the data - if not we code 
with the default JBIG 3-line template. 
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1-norm 2-norm 

Figure 2: Ranking of the past. The 10 first pixels of smallest 2-norm constitute the 3-line 
JBIG template with default positioning of the AT pixel. 

3.3 Non-leaf coding 
The template was picked so as to optimize leaf coding with the balanced tree of 
depth k ,  so this is an obvious and a fast choice. We do, however, have several other 
choices: Context Tree Weighting (CTW) [11], Context [5]  [6] [9], and leaf coding with 
a sub-tree. 
In [lo] it is proven that a minimum redundancy estimator for a source within the 
class of FSMX-sources (of maximal depth k and a fixed ordering of the past symbols) 
is obtained by CTW. CTW has some implementational defects, that makes it an 
order of magnitude slower than 'Context'. It follows from [11] that CTW (quickly) 
converges to a particular sub-tree of the balanced tree. It therefore seems a better 
use of encoding time to find this sub-tree. Algorithm 'Context' presents one solution 
- it is treated later on. Leaf coding with a sub-tree cuts off initialization costs of 
the balanced tree while maintaining acceptable speed. For the test images a new 
'Context' version improves the compression results by 1-5 per cent depending on k 
and the type of image while leaf coding with a sub-tree improves the coding by 1-3 
per cent depending on the order. Encoding speed suffers substantially. 

4 Free Tree Coding 

4.1 Coding of the data 
By free tree coding we understand coding of Ut given Ct. The code length of the image 
ZT is given by L(utJ(&')t). The i-th context bit is a time varying function as 
it depends on ch-': (C,)t = sl(Xt-l,...,Xt-~,(cb-')t). Free tree coding leaves the 
problem of determining k+. Ordinardy we shall choose to code with a leaf. 

(CZh = xt-r((c;-l)t) (7) 
An (unrealistically small) example is given in Figure 3. The coordinates ( j1 , jZ)  that 
identify the splittings are relative to the position of U (Figure 1). 

4.2 Coding of the tree 
The cost of coding the free tree may be very large and the free tree algorithm must 
therefore balance the gain in coding the identity of another splitting with the lessened 
cost of coding the data when the splitting is given. 
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Figure 3: Free tree for c04a200 (with b = 4000 bits). The cost of coding the data is 493328 
bits (Cr = 8.32). The cost of coding the (anonymous) tree structure is 25 bits, to code the 
identity of the 12 splittings we use 12 .11  bits. The codestring for the (anonymous) tree 
structure is 1111000100111100010100100. 

The free tree is unbalanced, so besides the identity of the splittings, we need to code 
the (anonymous) tree structure itself. To do so we adopt the procedure of [4]: 
We create a binary string y to describe the anonymous tree structure where y3 equals 
0 if node no. j is a leaf. The nodes of the tree are visited from root to leaf, left to 
right. Consider the example of fi ure 3 - the nodes are visited as follows: root --+ 0 

Let the number of leaves in the tree be denoted m+ 1, then the total number of nodes 
is 2m + 1 and the number of splitting nodes (internal nodes) is m. 
A rough estimate for the cost of coding the tree is formed by the case where we do 
not compress it at all: To code y we require 2m + 1 bits. The identity of a splitting 
requires log[Iw + h(2w + 1)11 bits per. splitting. With a suitable prefix code and 
w = h = 23 the cost of coding a splitting becomes N 2 j  + 1 bits. It is clear that 
both y?"+l and the string of identities, zy, may be compressed by a universal code. 
Indeed, the best coding in terms of compression ratio requires an interaction between 
the procedure of building the tree and of coding y;"" and i;". However, simulating 
smaller (optimistic) tree coding costs does not affect the code length of the data 
much, so what may be gained by this very complex tree coding scheme is basically a 
reduction of the tree coding costs which constitute only about 5 per cent of the total 
code length. The simplest way to control the growth of the tree is to assume a fixed 
cost, b, of coding a splitting. To increase speed one may very well choose a larger 
value of b than 2 j  + 3 as the most compression is usually obtained with the first few 
branches of the big coding tree. The example of figure 3 illustrates this point: a free 
tree with as few as 13 leaves can compress c04a200 8.32 times. 

+ 00 + 000 + 0000 + 0001 + 801 --+ 010 -+ 011 --+ 1 aso. 

5 Free Tree Coding Without Explicit Coding of 
the Tree 

In the previous section we considered coding of the data as a two-step procedure where 
we transmit the tree first and the data next. Can we do better by a procedure where 
both coder and decoder build the tree as they go along? This question relates to the 
fundamental problem of when to choose some model. Our results show that in order 
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ksh = 12 
Image 

k,h = 6 

sola400 
s02a400 
s03a400 
s04a400 
s04b400 
s04d400 
s05a400 
s06a400 
s07a400 
s08a400 
so9a400 
slOa400 
cola200 
c02a200 
c03a200 
c04a200 
c05a200 
c06a200 
c07a200 
c08a200 
a80c 

No subs. subs. 
Mci = 32M 

bits 
82294 

101742 
936140 
310177 
276651 
265127 
215808 

1054812 
153440 
30450 

544079 
65583 
98607 
54998 

141268 
296148 
163745 
80193 

384521 
91761 

2529636 

No subs. 
bits I C, C, 

162.46 
131.40 
14.28 
20.28 
22.74 
23.73 
61.95 
12.67 
87.13 

306.70 
1.93 

365.74 
41.64 
74.65 
29.06 
13.86 
25.07 
51.20 
10.68 
44.74 
11.81 

96883 
115384 

1050527 
329684 
302783 
277102 
235646 

1236790 
172631 
38026 

553197 
85987 

117173 
60782 

163132 
379601 
190899 
90333 

426998 
104942 

3056190 

Mc+ = 0.5M 

137.99 
115.87 
12.73 
19.08 
20.78 
22.70 
56.73 
10.81 
77.44 

245.59 
1.90 

278.95 
35.04 
67.55 
25.17 
10.82 
21.51 
45.45 
9.62 

39.12 
9.78 

2:08:53 
2:09:04 
2:10:53 
1:01:13 
1:01:08 
1:01:05 
2 : 0 8 : 3 6 
2:11:33 
2:09:06 
1:30:02 

11:14 
3:52:55 

39:41 
39:19 
39:28 
40:14 
39:24 
39:18 
39:59 

, 39:12 
4:56:44 

97011 
115660 

1056234 
332964 
306675 
276634 
235856 

1290013 
172631 
39030 

556449 
89632 

117359 
60801 

163344 
385027 
191973 
90440 

426998 
104803 

3158518 

1067570 
333284 
304199 
285802 
239870 

1362140 
175720 
40968 

576837 
95636 

400237 

3308654 

- 
1:43 
1:43 
6:32 
2:41 
2:38 
2:44 
5:25 
6:14 
6:08 
4:41 

28 
12:12 

27 
30 
52 

1:46 
31 
39 
31 
31 

14:09 

Free tree 

Table 2: Multi-pass results. Initial search area:(h, w) = (16,16), limitation of search area 
(1-norm) for k > ksh. A stroke in the subsampling column indicates that the expansion of 
the tree stopped when k ,  > 0. Free tree expansion cost: b = llbits. Time:(h:m:s) 

to match let alone beat the multi-pass coding schemes we cannot use the predictive 
minimum description length principle because statistics are too thin at  the proper 
time of decision. This leaves us only with a weighting approach which is disregarded 
because of the huge number of possible tree structures. 

6 Context Variants 
Balanced tree coding means coding with a leaf. Algorithm context provides the means 
to adaptively select that subtree of the larger statistics tree that provides the best 
coding. Algorithm context applies to any kind of tree. 
By context coding we understand coding of Ut given C,. The code length of the image 
ZT is given by ET='=, L ( U ~ ~ ( & - ' ) ~ ) .  The definition of the 2-th context bit is irrelevant, 
whereas the computation of kt is important. 
A number of context variants have been identified [5] [6] [9]. They are all based 
on the predictive minimum description length principle (PMDL) [7]: having collected 
statistics for a number of models and computed the code length of the data given each 
model, we choose to code U with the probability estimate of the one model that has 
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done best in the past. With statistics being collected in the nodes of a tree, the model 
selection problem is one of choosing a particular node in that path, P ,  of the tree that 
defines the current context. The context schemes [5] [6] [9] only consider father-son 
comparisons; they require that one stores at each son node the floating point account 
of the difference in code length between the father model and the son model. The 
incidents in the account are the events that occured in both father and son. We may 
view this in another way (one that avoids the need for storing floating point accounts 
in the tree): 
Let the length of P be denoted 1 (in practical applications 1 has some maximal value). 
A father-son PMDL-optimal (FSPMDL-optimal) selection of the coding node may 
be done in at most 1 steps: Compute the FSPMDL-optimal context in longer and 
longer subpaths of P ,  naming the FSPMDL-optimal contexts C*(l), C*(2), . . . , C*(Z) 
and their values c*(l), c*(2), . . . , c*(Z). Let the value of the context which corresponds 
to the subpath of length s be named cg. Now we declare C*(s) = C,S-' if 

and C,"-' = C,S-l and terminate the search otherwise. If the search did not terminate 
before depth 1, C," = CA. 
The FSPMDL scheme produces poor results (compared to JBIG) because it ignores 
the fact that for usual images U is always strongly correlated with its neighbours; the 
algorithm should not be so hestitant in climbing the tree (in the beginning). Gilbert 
Furlan ([9]) saw this and initializes the code length difference between some node 
and its father by a positive amount ( 5  bits). The PMDL principle tells us to use 
the father node when the difference is negative, so the sons are given an edge by the 
initialization. The updating of the statistics tree becomes slow in Furlans algorithm 
as 1 code lengths have to be calculated after having observed U .  
Our bid for an improved baseline version of 'Context' (we name it Full fath Algorithm 
- Context-Baseline) is an 1-step algorithm to perform the selection of one of the nodes. 
(In our implementation 1 has some not-too-large maximal value). We compute the 
'optimal' context in longer and longer subpaths of P ,  naming the 'optimal' contexts 
C*(l), C*(2), . . . , C'(1) and their values c*(l), c*(2), . . . , c*( l ) .  Let the value of the 
context which corresponds to the subpath of length s be named c;. Now we declare 
C*(s) = C*(s - 1) if 

.e(nolc;, n11c;IS) + qnolC*(.) - nolc;, %Ic'(s) - nllc;IS) > [(nolc*(s), nllc*(s)lS) (9) 

and C*(s) = C; otherwise. In the end we set Ct-' = C*(l). 
The idea is to look further down in the path than the first place a father beats the son. 
If the statistics of some node S further down P is sufficiently different we should use 
that node as the coding node rather than the so far best. By constructing a brother 
to S by collapsing the tree we are not seriously burdening the sons model by model 
costs, which is what makes the algorithm work. The main advantage of this context 
version is that we do not suffer badly from arranging the context poorly. If we have a 
'noise' context bit in the path P the original father-son scheme stumbles far too long 
at the father node. A constant bias cannot solve this problem. For all three schemes 
'noise' context bits seriously reduce performance because statistics are weakened. In 
our context version updating the statistics tree requires little time whereas finding 
the coding node is the time critical part. 
After this paper went to review we have abandoned the baseline algorithm mainly in 
order to increase speed. The elements in the improved algorithm (FPAC-F) which 
amount to a 10-fold increase in speed are 1) Checking for best context only once 
in a while. 2) Local adaptivity by deminishing counts. 3) Typical prediction. 4) 
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107.87 
11.39 
13.52 
13.88 
16.36 
48.86 
7.85 

72.42 
190.34 

1.79 
212.98 
34.14 
59.15 
23.13 
9.32 

19.61 
40.63 
9.14 

35.33 
7.19 

Image 

sola400 
s02a400 
s03a400 
s04a400 
s04b400 
s04d400 
s05a400 
s06a400 
s07a400 
s08a400 
s09a400 
s10a400 
cola200 
c02a200 
c03a200 
c04a200 
c05a200 
c06a200 
c07a200 
c08a200 
a80c 

115960 1:48:19 115283 1:48:54 
1033176 1:53:42 1036842 1:53:52 
515455 45:58 520204 45:56 
470134 46:47 713211 46:53 
327222 45:30 329117 45:42 
240805 1:50:26 242707 1:50:37 

1238323 1:48:34 1270465 1:49:00 
170874 1:20:55 173429 1:51:04 
36573 1:14:45 37141 1:15:32 

585543 6:11 567031 6:15 
87721 3:20:00 84410 3:19:45 

113899 33:44 114685 33;45 
60930 32:55 59297 33:06 

160428 34:08 161789 34:Oi 
388871 33:42 397442 33:37 
190032 33:52 193250 33:51 
88687 32:59 88274 33:lO 

418549 33:48 418601 33:48 
107010 33:47 106225 33:50 

4996276 4:05:41 5055356 4:07:20 

JBIG I FPAC-R 

-- 
r, bvtes 

13850 
15523 

146766 
129707 
159412 
120418 
34576 

256091 
24067 
6125 

74429 
13861 
14828 
8675 

22094 
54477 
25988 
12662 
56474 
14369 

695790 

b 
120.66 
107.66 
11.39 
6.06 
4.93 
6.53 

48.33 
6.53 

69.44 
190.59 

1.76 
216.31 
34.61 
59.16 
23.23 
9.42 

19.75 
40.53 
9.09 

35.72 
5.37 

- 

- 

Ada 
bytes 
13724 
15493 

146774 
58153 
56651 
48069 
34206 

212874 
23076 
6133 

73075 
14078 
15033 
8677 

22187 
55048 
26168 
12633 
56179 
14525 

519853 

C, I bits I time I bits 1 time 
121.77 I 98108 I 1:53:12 1 98830 f 1:52:4i 

Table 3: JBIG and Context results. Search area: (h ,  w) = (16,16). JBIG - Adaptive: The 
adaptive template pixel is determined as the best 10th template pixel in a 10th order free 
template tree coding where the 9 first template pixels are chosen as the fixed template pixels 
of the 3-line JBIG template. Context: coding with different default orderings of the causal 
pels. Time:(h:m:s) 

A new growth rule for the context tree. For clustered dot halftonings we crea.te a 
pixel ordering using the knowledge of & (and &). With this pixel ordering FPAC-F 
(or FPAC-B) can compete in compression performance with the adaptive template 
compression scheme. 

6.1 Comments on the Results 
The test images which are used in this paper are mainly the Stockholm(JB1G) test 
set and the (ambigous) CCITT test set; a80c (6144 . 4864 pels) is a test image for 
the graphics arts in Scandinavia. The images contain scanned text, line art, and 
halftonings. For the clustered dot halftonings VI and & span the halftoning screen. 
The simple halftonings are s04a400 (K N (4,0), I$ N (0,4)), s04b400 (& N (5,0), 
I$ N (0,5)), and s04d400 (& N (3,0), & N (0,3)). The troublesome halftonings 
are the mixture image s06a400 (K (4,0), VZ Y (0,4)), the error diffusion s09a400, 
and the clustered dot halftoning a80c (6 13i (-11,5.5), & N (5.5,ll)). Except for 
JBIG where code is generated using a QM-coder the listed code lengths are ideal 
(calculated). Using the arithmetic coder of [7] the actual length of the generated 
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code is usually something like 100 bits more than the ideal code length. Arithmetic 
encoding/decoding is very much faster than other parts of the algorithms (-2 seconds 
for a CCITT image). All algorithms are implemented in C on a HP 755 computer. 

7 Conlusion 
We have considered three general purpose schemes of predictive coding. Free tree cod- 
ing produces superior compression results for all types of images, but the technique is 
too slow for practical purposes. Free template coding gives substantial improvements 
over JBIG for halftonings and moderate improvements for images of dense printing. 
Two techniques for speeding up free template tree encoding have been presented, de- 
coding is almost JBIG-fast. A general purpose one-pass codec of good compression 
performance has been established by a new version of algorithm context - the default 
pixel ordering should be by 1-norm. 
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