

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 21, 2022

Bi-level image compression with tree coding

Martins, Bo; Forchhammer, Søren

Published in:
Proceedings of the Data Compression Conference

Link to article, DOI:
10.1109/DCC.1996.488332

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Martins, B., & Forchhammer, S. (1996). Bi-level image compression with tree coding. In Proceedings of the Data
Compression Conference (pp. 270-279). IEEE. https://doi.org/10.1109/DCC.1996.488332

https://doi.org/10.1109/DCC.1996.488332
https://orbit.dtu.dk/en/publications/fd8b97fc-8243-4fd7-890d-4237f1c61f93
https://doi.org/10.1109/DCC.1996.488332

Bi-level Image Compression with Tree Coding

Bo Martins and Smen Forchhammer
Dept. of Telecommunication, 343, Technical University of Denmark

DK-2800 Lyngby, Denmark
phone: f45 4525 2525, e-mail: bm@tele.dtu.dk and sf@tele.dtu.dk

Abstract

Presently, tree coders are the best bi-level image coders. The current IS0
standard, JBIG, is a good example. By organising code length calculations
properly a vast number of possibie models (trees) can be investigated within
reasonable time prior to generating code. Three general-purpose coders are
constructed by this principle. A multi-pass free tree coding scheme produces
superior compression results for all test images. A multi-pass fast free template
coding scheme produces much better results than JBIG for difficult images, such
as halftonings. Rissanen's algorithm 'Context'is presented in a new version that
without sacrificing speed brings it close to the multi-pass coders in compression
performance.

1 Introduction
Predictive coding usually means determining the state of the current unknown symbol,
Ut, and coding with the probability estimate of that state. Symbol probabilities of
different states are usually treated as independent and the symbols being generated
in a given state are considered independent of one another - the model becomes a
collection of independent Bernoulli sources often arranged in a tree structure. The
assumptions of independance are questionable with real image data, nonetheless very
good results in terms of compression ratio have be achieved. The baseline JBIG [3]
is one such coder. Tree coding fundamentally consists of four parts: 1) Choosing
the template/tree pixels and possibly ordering them, 2) Calculating the probability
estimate during coding (determining the coding depth of the tree), 3) Updating the
statistics tree(s) during coding, 4) Performing the arithmetic coding.
In this paper zt denotes the t th pel relative to raster scan order. The unknown
symbol at time tt, zttl, is also denoted ut or U. Xt , and U are stochastic variables.
An ordered set of symbols, . . c k , is denoted CO".

2 Fast Bernoulli Code Length Calculation
In coding schemes where we investigate different tree models we often wish to calculate
the code length of the events directly from the counts. Let !(no, nl IS) denote the code
length of a binary string with no zeroes and n1 ones using a Bernoulli model where

270 1068-0314/96$5.00 0 1996 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:20:14 UTC from IEEE Xplore. Restrictions apply.

271

the prior initially is beta-distributed with the nuisance parameters 60 = 61 = 6. We
have:

The value of S is optimized to 0.45 in [3] for a large number of bi-level images. S = 0.5
minimizes the stochastic complexity relative to the class of all prior distributions [8].
The sequential estimator that corresponds to this expression is:

To make a fast calculation of l(no, nll6) we use a table, Tz, to look up the value for
no < N A n1 < N . (N = 100 is suitable). For larger values of no and/or n1 we use
Stirling's formula to approximate the value:

(no + n1 + 26 - 0.5) ln(n0 + nl + 26)
-(no + 6 - 0.5) ln(n0 + 6)
-(nl + 6 - 0.5) ln(n1 + 6) + [I if no 2 N and n1 2 N
Tl(nl) + (no + 6 - 0.5)ln noiri226
+(nl + 6)(ln(no + n1 + 26) - 1) + (2 if no 2 N and n1 < N
Tl(no) + (nl + 6 - 0.5) In "O:1";r6
+(no + G)(ln(no + n1 + 26) - 1) + & if no < N and n1 2 N
Tz(no, ni) if no < N and n1 < N

(3)

a are constants. Tl(n) tabelizes l (n , 016). and (2 = -In m where (1 = -In m
3 Free Template Tree Coding

3.1
By free k-order template tree coding we understand coding with a balanced tree
of depth k of the form Ut given Ct. The code length of the image ZT is given by
ET='=, L(U~~(C;-')~), where the 2-th context bit is a static function of the past: (CZ), =
s,(Xt-l, . . . , Xt-K). In its simplest form free template tree coding involves a ranking
of the past:

Coding of the Data and the Tree

(CJt = Xt-,(,) (4)

The tree structure of a free template tree requires little coding. For a tree of depth k ,
we need to transmit k and r (0) . . . r (k - 1). Each of the numbers r(z) may be indexed
with something like 11-13 bits, i.e. virtually nothing. We shall not consider this cost
in the following. Related work for free template tree coding is given in [2] [l].

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:20:14 UTC from IEEE Xplore. Restrictions apply.

272

Figure 1: Search area for context pels. Definition of absolute and relative coordinates.

3.2 Determination of the Ranking - Greedy Build-up of Tem-
plate

3.2.1 Full Search
Pure free template tree coding with a tree of depth k means using the leaves as the
coding states. The kth context bit, Ck, may be chosen among a number of candidates
(Figure I) {A , ... AN,}, N, = h . (2w + 1) + w. The code length that would result
from picking A3 may be calculated as follows:

$2 1

L (~ T) = E ‘(nolck-za3, nI\c:-2a, IS) (5)
,k-2=0k-2 al=O

0 0

To calculate the code length for a large number of possible kth order tree codings we
only need a single pass of the data, updating a (large) table as we go along. With
Eq. 3 it becomes feasible to calculate the code length for a number of candidates since
all that is required is a collection of statistics. Still, the full search speed is poor
and its memory consumption substantial. We seek means to trade off compression
ratio for speed in the template selection phase and for the memory requirement. We
assume a limited memory for the statistics tables(&) which we use to pick the next
context pixel. The balanced tree coding reported here still requires enough memory
to buffer the entire image.

3.2.2

A greedy search for a (k+l)’th context bit requires a memory of 2k+2N,~sizeof(counterr
bytes. Therefore, we choose N, to be inversely proportional to k for k > k,h. Which
pels should remain depends on the type of image. For most images the pels can be
ranked according to their 1-norm distance to U with good results. By a more complex
scheme graphics arts halftonings stand to gain approximately 5 per cent extra.

Limiting the candidate list for new context pixels

3.2.3

If a context coder is faced with an unknown halftoning it is important that the search
area for context pixels contains at least one grid intersection and preferably more.
For clustered dot halftonings we cannot count on the grid being placed in a specific
position, hence, the search area should initially be dense and quite large. The initial
number of candidates i s therefore substantial.
The time for performing a greedy search for a (k + 1)’th context bit is (with the
fast calculation of ‘(no, n I l S)) approximately the time it takes to collect statistics:

Limiting the number of pixels (subsampling)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:20:14 UTC from IEEE Xplore. Restrictions apply.

273

k 0 1 2 3 4 5 6 7 8 9 1 0 1 1 > 1 1
k s 5 5 5 5 5 5 5 4 3 2 1 1 0

Table 1: A subsampling scheme. k, = 0 means 'no subsampling'

T(N,K1 + K z . k) , K1 and Kz are constants with respect to N , and T . To reduce
this time we replace T with n (k) , basing the choice of the (k + 1)'th context pel on
a subset of the image. One way to implement this is to cut out what is supposedly
a representative part of the image. This procedure is extremely sensitive to insta-
tionarities so in our work we therefore choose to emulate coding of pels which are
scattered over the entire image. A simple way to control the fraction of pels to code
as well as a fast way of calculating the position of them is to pick the sample pels of a
subsampling of the image but letting them stay in their original context. Subsampling
in two dimensions is described in [12](ch. 2, M. Vetterli): points on the input lattice
(ml, m2) are associated with points on a subsampling lattice (111, u2) We only consider
scaled hexagonal subsampling of the form 6. By hexagonal subsampling the smallest
2-norm distance between samples is maximal. The risk of using a regular subsamplin
pattern on halftonings is reduced with hexagonal subsampling compared to a (faster7
scheme where ml and m2 are separable.

When using subsampling there's a definite risk that the initialization cost of the bigger
tree will outweight the reduction in entropy, so that the tree building terminates
prematurely. To see this consider the asymptotic expression for the difference of the
initialization cost (model cost) of balanced trees of depth k + 1 and k , respectively:
A I , 11 (zk - 2";) logn. The entropy difference is A H , = (H(UIC,k+') - H(UlC,k))n.
When subsampling, n is less than the number of pels of the image, T , the effect
being that not enough weight is being put on the entropy differences when making
the expansion decision by PMDL (see Sect. 6) based on n. The equations indicate
that we might use another criterion for expanding the tree than the PMDL principle.
In theory we might estimate A I , and AH,, calculate A I , and AH, by compensating
with and E , respectively, and accept expansion iff AHT - AIT > 0. In practice,
the asymptotic expressions cannot be carried that far, especially not when we choose
a model based on all the data - the initialization cost expression is amiss. To avoid
premature termination of the tree building, we instead decrement the subsampling
constant, IC,, with the tree order, I C . We use the subsampling scheme of table 1. The
subsampling scheme is guided by an attempt to keep the variance of the estimate
of H(UIC,k+') the same as that of the estimate of H(UIC,k) (we choose n(k + 1) N

n(IC)fi) while taking into account the experimental fact that H(UJCk+l) - H(UJC,k)
is a decreasing function of k , implying that subsampling can be coarser for small values
of k . As n = & there is no need to make k, any larger than 5 for very small values of
IC. Table 2 shows the impact of this subsampling scheme. It is pleasing to notice that
the tree building stopped too early for those images only that do not benefit from
free template tree coding opposed to JBIG coding with its default 3-line template. A
simple coding scheme that covers the entire test set is to try out free template tree
building with the suggested subsampling scheme. If the tree construction terminates
while n = T , we use the found template in the coding of the data - if not we code
with the default JBIG 3-line template.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:20:14 UTC from IEEE Xplore. Restrictions apply.

274

1-norm 2-norm

Figure 2: Ranking of the past. The 10 first pixels of smallest 2-norm constitute the 3-line
JBIG template with default positioning of the AT pixel.

3.3 Non-leaf coding
The template was picked so as to optimize leaf coding with the balanced tree of
depth k , so this is an obvious and a fast choice. We do, however, have several other
choices: Context Tree Weighting (CTW) [11], Context [5] [6] [9], and leaf coding with
a sub-tree.
In [lo] it is proven that a minimum redundancy estimator for a source within the
class of FSMX-sources (of maximal depth k and a fixed ordering of the past symbols)
is obtained by CTW. CTW has some implementational defects, that makes it an
order of magnitude slower than 'Context'. It follows from [11] that CTW (quickly)
converges to a particular sub-tree of the balanced tree. It therefore seems a better
use of encoding time to find this sub-tree. Algorithm 'Context' presents one solution
- it is treated later on. Leaf coding with a sub-tree cuts off initialization costs of
the balanced tree while maintaining acceptable speed. For the test images a new
'Context' version improves the compression results by 1-5 per cent depending on k
and the type of image while leaf coding with a sub-tree improves the coding by 1-3
per cent depending on the order. Encoding speed suffers substantially.

4 Free Tree Coding

4.1 Coding of the data
By free tree coding we understand coding of Ut given Ct. The code length of the image
ZT is given by L(utJ(&')t). The i-th context bit is a time varying function as
it depends on ch-': (C,)t = sl(Xt-l,...,Xt-~,(cb-')t). Free tree coding leaves the
problem of determining k+. Ordinardy we shall choose to code with a leaf.

(CZh = xt-r((c;-l)t) (7)
An (unrealistically small) example is given in Figure 3. The coordinates (j1 , jZ) that
identify the splittings are relative to the position of U (Figure 1).

4.2 Coding of the tree
The cost of coding the free tree may be very large and the free tree algorithm must
therefore balance the gain in coding the identity of another splitting with the lessened
cost of coding the data when the splitting is given.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:20:14 UTC from IEEE Xplore. Restrictions apply.

275

Figure 3: Free tree for c04a200 (with b = 4000 bits). The cost of coding the data is 493328
bits (Cr = 8.32). The cost of coding the (anonymous) tree structure is 25 bits, to code the
identity of the 12 splittings we use 12 .11 bits. The codestring for the (anonymous) tree
structure is 1111000100111100010100100.

The free tree is unbalanced, so besides the identity of the splittings, we need to code
the (anonymous) tree structure itself. To do so we adopt the procedure of [4]:
We create a binary string y to describe the anonymous tree structure where y3 equals
0 if node no. j is a leaf. The nodes of the tree are visited from root to leaf, left to
right. Consider the example of fi ure 3 - the nodes are visited as follows: root --+ 0

Let the number of leaves in the tree be denoted m+ 1, then the total number of nodes
is 2m + 1 and the number of splitting nodes (internal nodes) is m.
A rough estimate for the cost of coding the tree is formed by the case where we do
not compress it at all: To code y we require 2m + 1 bits. The identity of a splitting
requires log[Iw + h(2w + 1)11 bits per. splitting. With a suitable prefix code and
w = h = 23 the cost of coding a splitting becomes N 2 j + 1 bits. It is clear that
both y?"+l and the string of identities, zy, may be compressed by a universal code.
Indeed, the best coding in terms of compression ratio requires an interaction between
the procedure of building the tree and of coding y;"" and i;". However, simulating
smaller (optimistic) tree coding costs does not affect the code length of the data
much, so what may be gained by this very complex tree coding scheme is basically a
reduction of the tree coding costs which constitute only about 5 per cent of the total
code length. The simplest way to control the growth of the tree is to assume a fixed
cost, b, of coding a splitting. To increase speed one may very well choose a larger
value of b than 2 j + 3 as the most compression is usually obtained with the first few
branches of the big coding tree. The example of figure 3 illustrates this point: a free
tree with as few as 13 leaves can compress c04a200 8.32 times.

+ 00 + 000 + 0000 + 0001 + 801 --+ 010 -+ 011 --+ 1 aso.

5 Free Tree Coding Without Explicit Coding of
the Tree

In the previous section we considered coding of the data as a two-step procedure where
we transmit the tree first and the data next. Can we do better by a procedure where
both coder and decoder build the tree as they go along? This question relates to the
fundamental problem of when to choose some model. Our results show that in order

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:20:14 UTC from IEEE Xplore. Restrictions apply.

276

ksh = 12
Image

k,h = 6

sola400
s02a400
s03a400
s04a400
s04b400
s04d400
s05a400
s06a400
s07a400
s08a400
so9a400
slOa400
cola200
c02a200
c03a200
c04a200
c05a200
c06a200
c07a200
c08a200
a80c

No subs. subs.
Mci = 32M

bits
82294

101742
936140
310177
276651
265127
215808

1054812
153440
30450

544079
65583
98607
54998

141268
296148
163745
80193

384521
91761

2529636

No subs.
bits I C, C,

162.46
131.40
14.28
20.28
22.74
23.73
61.95
12.67
87.13

306.70
1.93

365.74
41.64
74.65
29.06
13.86
25.07
51.20
10.68
44.74
11.81

96883
115384

1050527
329684
302783
277102
235646

1236790
172631
38026

553197
85987

117173
60782

163132
379601
190899
90333

426998
104942

3056190

Mc+ = 0.5M

137.99
115.87
12.73
19.08
20.78
22.70
56.73
10.81
77.44

245.59
1.90

278.95
35.04
67.55
25.17
10.82
21.51
45.45
9.62

39.12
9.78

2:08:53
2:09:04
2:10:53
1:01:13
1:01:08
1:01:05
2 : 0 8 : 3 6
2:11:33
2:09:06
1:30:02

11:14
3:52:55

39:41
39:19
39:28
40:14
39:24
39:18
39:59

, 39:12
4:56:44

97011
115660

1056234
332964
306675
276634
235856

1290013
172631
39030

556449
89632

117359
60801

163344
385027
191973
90440

426998
104803

3158518

1067570
333284
304199
285802
239870

1362140
175720
40968

576837
95636

400237

3308654

-
1:43
1:43
6:32
2:41
2:38
2:44
5:25
6:14
6:08
4:41

28
12:12

27
30
52

1:46
31
39
31
31

14:09

Free tree

Table 2: Multi-pass results. Initial search area:(h, w) = (16,16), limitation of search area
(1-norm) for k > ksh. A stroke in the subsampling column indicates that the expansion of
the tree stopped when k , > 0. Free tree expansion cost: b = llbits. Time:(h:m:s)

to match let alone beat the multi-pass coding schemes we cannot use the predictive
minimum description length principle because statistics are too thin at the proper
time of decision. This leaves us only with a weighting approach which is disregarded
because of the huge number of possible tree structures.

6 Context Variants
Balanced tree coding means coding with a leaf. Algorithm context provides the means
to adaptively select that subtree of the larger statistics tree that provides the best
coding. Algorithm context applies to any kind of tree.
By context coding we understand coding of Ut given C,. The code length of the image
ZT is given by ET='=, L (U ~ ~ (& - ') ~) . The definition of the 2-th context bit is irrelevant,
whereas the computation of kt is important.
A number of context variants have been identified [5] [6] [9]. They are all based
on the predictive minimum description length principle (PMDL) [7]: having collected
statistics for a number of models and computed the code length of the data given each
model, we choose to code U with the probability estimate of the one model that has

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:20:14 UTC from IEEE Xplore. Restrictions apply.

277

done best in the past. With statistics being collected in the nodes of a tree, the model
selection problem is one of choosing a particular node in that path, P , of the tree that
defines the current context. The context schemes [5] [6] [9] only consider father-son
comparisons; they require that one stores at each son node the floating point account
of the difference in code length between the father model and the son model. The
incidents in the account are the events that occured in both father and son. We may
view this in another way (one that avoids the need for storing floating point accounts
in the tree):
Let the length of P be denoted 1 (in practical applications 1 has some maximal value).
A father-son PMDL-optimal (FSPMDL-optimal) selection of the coding node may
be done in at most 1 steps: Compute the FSPMDL-optimal context in longer and
longer subpaths of P , naming the FSPMDL-optimal contexts C*(l), C*(2), . . . , C*(Z)
and their values c*(l), c*(2), . . . , c*(Z). Let the value of the context which corresponds
to the subpath of length s be named cg. Now we declare C*(s) = C,S-' if

and C,"-' = C,S-l and terminate the search otherwise. If the search did not terminate
before depth 1, C," = CA.
The FSPMDL scheme produces poor results (compared to JBIG) because it ignores
the fact that for usual images U is always strongly correlated with its neighbours; the
algorithm should not be so hestitant in climbing the tree (in the beginning). Gilbert
Furlan ([9]) saw this and initializes the code length difference between some node
and its father by a positive amount (5 bits). The PMDL principle tells us to use
the father node when the difference is negative, so the sons are given an edge by the
initialization. The updating of the statistics tree becomes slow in Furlans algorithm
as 1 code lengths have to be calculated after having observed U .
Our bid for an improved baseline version of 'Context' (we name it Full fath Algorithm
- Context-Baseline) is an 1-step algorithm to perform the selection of one of the nodes.
(In our implementation 1 has some not-too-large maximal value). We compute the
'optimal' context in longer and longer subpaths of P , naming the 'optimal' contexts
C*(l), C*(2), . . . , C'(1) and their values c*(l), c*(2), . . . , c*(l) . Let the value of the
context which corresponds to the subpath of length s be named c;. Now we declare
C*(s) = C*(s - 1) if

.e(nolc;, n11c;IS) + qnolC*(.) - nolc;, %Ic'(s) - nllc;IS) > [(nolc*(s), nllc*(s)lS) (9)

and C*(s) = C; otherwise. In the end we set Ct-' = C*(l).
The idea is to look further down in the path than the first place a father beats the son.
If the statistics of some node S further down P is sufficiently different we should use
that node as the coding node rather than the so far best. By constructing a brother
to S by collapsing the tree we are not seriously burdening the sons model by model
costs, which is what makes the algorithm work. The main advantage of this context
version is that we do not suffer badly from arranging the context poorly. If we have a
'noise' context bit in the path P the original father-son scheme stumbles far too long
at the father node. A constant bias cannot solve this problem. For all three schemes
'noise' context bits seriously reduce performance because statistics are weakened. In
our context version updating the statistics tree requires little time whereas finding
the coding node is the time critical part.
After this paper went to review we have abandoned the baseline algorithm mainly in
order to increase speed. The elements in the improved algorithm (FPAC-F) which
amount to a 10-fold increase in speed are 1) Checking for best context only once
in a while. 2) Local adaptivity by deminishing counts. 3) Typical prediction. 4)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:20:14 UTC from IEEE Xplore. Restrictions apply.

278

107.87
11.39
13.52
13.88
16.36
48.86
7.85

72.42
190.34

1.79
212.98
34.14
59.15
23.13
9.32

19.61
40.63
9.14

35.33
7.19

Image

sola400
s02a400
s03a400
s04a400
s04b400
s04d400
s05a400
s06a400
s07a400
s08a400
s09a400
s10a400
cola200
c02a200
c03a200
c04a200
c05a200
c06a200
c07a200
c08a200
a80c

115960 1:48:19 115283 1:48:54
1033176 1:53:42 1036842 1:53:52
515455 45:58 520204 45:56
470134 46:47 713211 46:53
327222 45:30 329117 45:42
240805 1:50:26 242707 1:50:37

1238323 1:48:34 1270465 1:49:00
170874 1:20:55 173429 1:51:04
36573 1:14:45 37141 1:15:32

585543 6:11 567031 6:15
87721 3:20:00 84410 3:19:45

113899 33:44 114685 33;45
60930 32:55 59297 33:06

160428 34:08 161789 34:Oi
388871 33:42 397442 33:37
190032 33:52 193250 33:51
88687 32:59 88274 33:lO

418549 33:48 418601 33:48
107010 33:47 106225 33:50

4996276 4:05:41 5055356 4:07:20

JBIG I FPAC-R

--
r, bvtes

13850
15523

146766
129707
159412
120418
34576

256091
24067
6125

74429
13861
14828
8675

22094
54477
25988
12662
56474
14369

695790

b
120.66
107.66
11.39
6.06
4.93
6.53

48.33
6.53

69.44
190.59

1.76
216.31
34.61
59.16
23.23
9.42

19.75
40.53
9.09

35.72
5.37

-

-

Ada
bytes
13724
15493

146774
58153
56651
48069
34206

212874
23076
6133

73075
14078
15033
8677

22187
55048
26168
12633
56179
14525

519853

C, I bits I time I bits 1 time
121.77 I 98108 I 1:53:12 1 98830 f 1:52:4i

Table 3: JBIG and Context results. Search area: (h , w) = (16,16). JBIG - Adaptive: The
adaptive template pixel is determined as the best 10th template pixel in a 10th order free
template tree coding where the 9 first template pixels are chosen as the fixed template pixels
of the 3-line JBIG template. Context: coding with different default orderings of the causal
pels. Time:(h:m:s)

A new growth rule for the context tree. For clustered dot halftonings we crea.te a
pixel ordering using the knowledge of & (and &). With this pixel ordering FPAC-F
(or FPAC-B) can compete in compression performance with the adaptive template
compression scheme.

6.1 Comments on the Results
The test images which are used in this paper are mainly the Stockholm(JB1G) test
set and the (ambigous) CCITT test set; a80c (6144 . 4864 pels) is a test image for
the graphics arts in Scandinavia. The images contain scanned text, line art, and
halftonings. For the clustered dot halftonings VI and & span the halftoning screen.
The simple halftonings are s04a400 (K N (4,0), I$ N (0,4)), s04b400 (& N (5,0),
I$ N (0,5)), and s04d400 (& N (3,0), & N (0,3)). The troublesome halftonings
are the mixture image s06a400 (K (4,0), VZ Y (0,4)), the error diffusion s09a400,
and the clustered dot halftoning a80c (6 13i (-11,5.5), & N (5.5,ll)). Except for
JBIG where code is generated using a QM-coder the listed code lengths are ideal
(calculated). Using the arithmetic coder of [7] the actual length of the generated

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:20:14 UTC from IEEE Xplore. Restrictions apply.

279

code is usually something like 100 bits more than the ideal code length. Arithmetic
encoding/decoding is very much faster than other parts of the algorithms (-2 seconds
for a CCITT image). All algorithms are implemented in C on a HP 755 computer.

7 Conlusion
We have considered three general purpose schemes of predictive coding. Free tree cod-
ing produces superior compression results for all types of images, but the technique is
too slow for practical purposes. Free template coding gives substantial improvements
over JBIG for halftonings and moderate improvements for images of dense printing.
Two techniques for speeding up free template tree encoding have been presented, de-
coding is almost JBIG-fast. A general purpose one-pass codec of good compression
performance has been established by a new version of algorithm context - the default
pixel ordering should be by 1-norm.

References
[l] R. Arps, T. Friedman, and R. Pasco. Optimizing Models for Data Compression

using the MDL Principle and Stochastic Complexity. In Proc. of 'I990 Picture
Coding Symposium', Cambridge, MA, Mar. 1990. Session 5.6.

[a] S. Forchhammer and U. Skands. Adaptive Compression of Bi-level halftone im-
ages using the JBIG arithmetic coder. Technical Report IT-135, Institute of
Telecommunication, Technical University of Denmark, Febr. 1993.

[3] JBIG. Progressive Bi-level Image Compression. ISO/IEC International Standard
11544, 1993.

[4] R. Nohre. Some Topics in Descriptive Complexity. PhD thesis, Linkoping Uni-
versity, 1993. Linkoping Studies in Science and Technology. Diss. No. 330.

[5] J. Rissanen. A Universal Data Compression System. IEEE Tr. Inform. Theory,
IT - 29(5), Sept. 1983.

[6] J. Rissanen. Complexity of Strings in the Class of Markov Sources. IEEE Tr.
Inform. Theory, IT - 32(4), July 1986.

[7] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, 1989.

[8] J. Rissanen. Fisher Information and Stochastic Complexity. Accepted to Tr.
Inform. Theory, 1994.

[9] J. Rissanen. Noise Separation and MDL Modeling of Chaotic Processes. In
P. Grassberger and J.-P. Nadal, editors, From Statistical Physics to Statistical
Inference and Back. Kluwer, London, 1994.

[lo] Y. Shtarkov. Switching Discrete Sources and its Universal Encoding. Problemy
Peredachi Informatsii, 28(3):95-111, July-Sept. 1992. Eng. transl. pp. 282-296.

[ll] F. Willems, Y. Shtarkov, and T. Tjalkens. Context Tree Weighting: A Sequential
Universal Source Coding Procedure for FSMX Sources. In IEEE Symp. Infor-
mation Theory, page 59, 1993.

[12] J. W. Woods. Subband Image Coding. Kluwer, 1991.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:20:14 UTC from IEEE Xplore. Restrictions apply.

