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ABSTRACT Virtual network function (VNF) can provide various network services and is widely deployed

in inter-data centers elastic optical networks (Inter-DC EONs). Routing and VNF deployment for VNF

service chain (VNF-SC) in Inter-DC EONs is a very important and well-known NP-hard problem. For this

problem, if determining the number and locations of data centers is additionally considered, it will be more

complicated. In this paper, we investigate a network planning problem in Inter-DC EONs by determining

all these factors, i.e, by determining not only the optimal routing and the optimal VNF deployment for

VNF-SCs, but also the optimal number and locations of data centers. To achieve this purpose, we first

establish a bi-level programming model in which the leader’s objective is to minimize the number of data

centers and find the best locations of data centers so that we can get a balanced VNF deployment on data

centers. To determine the optimal routing and VNF deployment for VNF-SCs, the follower’s objective is to

minimize the maximum index of used frequency slots and the number of used frequency slots. Then, to solve

the proposed model effectively, tailor-made crossover, mutation and local search operators are designed, and

based on these operators, an efficient bi-level hybrid memetic algorithm (BiHMA) is proposed. Finally,

to test the effectiveness of the proposed model and the efficiency of the proposed algorithm, the simulation

experiments are conducted on two widely used networks, and experimental results indicate that the proposed

algorithm has a higher efficiency than compared algorithms.

INDEX TERMS EONs, data centers placement, bi-level optimization, Memetic algorithm.

I. INTRODUCTION

In recent years, service providers are facing the problem

to deploy some new network services flexibly and effec-

tively. To realize this, researchers developed the network

function virtualization (NFV) to satisfy the demands of

users [5], [31], [44]. NFV utilizes virtualization technology

to decouple network functions from dedicated hardware

into virtual network functions so that these functions can

run as software images on commodity hardware as well as

The associate editor coordinating the review of this manuscript and

approving it for publication was Emanuele Crisostomi .

custom-built hardware [6], [11], [13]. With NFV technology,

traditional hardware-based network appliances are replaced

by software-based virtual network functions (VNFs), and

VNFs can be realized on the datacenters (i.e., VNF service

chain, VNF-SC) [10], [46]. The deployment of new net-

work services can be easily realized by routing data traf-

fic through a series of VNFs on datacenters [14], [41].

In general, VNF-SC has many advantages, such as high

bandwidth capacity and low power consumption [32], [47],

[49]. So, VNF-SC is especially beneficial for inter-DC net-

works. However, it is difficult and challenging to use the

VNF-SCs.
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In recent years, some researches have been done on net-

work planning problems using the VNF-SCs, which mainly

focused on the service chain routing and VNF deployment

problem (e.g., [3], [14], [37], [38]). To minimize the sum

of cloud resource, bandwidth and deployment costs, an inte-

ger linear problem is formulated, and an efficient heuristic

approach allowing for a remarkable computational complex-

ity reduction is designed [8]. To minimize the cost of the

VNF deployment in an inter-DC EONs, an integer linear

programming model was first established, and then three

heuristic algorithms were proposed to solve the integer linear

programming model effectively [47]. To minimize the total

cost of the energy consumption and the revenue loss due to

QoS degradation, an efficient algorithm, which is based on

the back-to-back strategy, was designed [37]. To solve service

chain and resource allocation problem, a mixed-integer linear

programmingmodel was proposed [38], and a heuristic-based

algorithm, which consists of two sub-algorithms: one-hop

optimal traffic scheduling algorithm and VNF chain compo-

sition algorithm, was proposed. Literature [9] minimizes the

sum of three cost components include the cloud resource cost,

the bandwidth cost, and the reconfiguration cost, reconfigu-

ration costs are characterized by the revenue loss of a network

operator due to the bit loss. Li and Qian [27] formulated the

VNF deployment problem as an integer linear programming

model and proposed a simulated annealing based heuristic to

get approximate solutions in shorter time. Considering elastic

optical networking and DC capacity constraints, an effec-

tive algorithm based noncooperative mixed-strategy gaming

approach is proposed [7]. For the sake of addressing the

relatively long setup latency and complicated network con-

trol, a provisioning framework with resource pre-deployment

to resolve the aforementioned challenge is designed [25].

The proposed gaming model enables tenants to compete for

VNF-SC provisioning services due to revenue and quality-of-

service incentives and therefore can motivate more reason-

able selections of provisioning schemes. Marouen et al. [29]

proposed an algorithm based on eigenvalue decomposition

for the VNF deployment in EONs for the sake of satisfy-

ing user’s requirements and maximizing provider’s revenue.

To provide an NFV network model suitable for ISP oper-

ations, authors in [1] defined the generic VNF chain rout-

ing optimization problem and devise a mixed integer linear

programming formulation. To improve the overall allocation

performance of deploying service chains with server affinity,

collocation, and latency constraints, a strategy based on graph

partitioning and game theory was proposed [23]. Ahvar et al.

[2] formulated the problem of VNF placement as an inte-

ger linear programming model and proposed a cost-efficient

centrality-based VNF placement algorithm to minimize the

provider cost by determining the optimal number of VNFs

and their locations. In two domain EONs, literature [40]

proposed an integer linear programming model, and designed

two time-efficient heuristic algorithms to minimize the total

resource cost of VNF provisioning. To investigate the impor-

tance and the relation among the link, the server usage in

VNF placement and the path selection, a systematic method

was proposed which can elastically tune the proper link and

server usage of each demand based on network conditions and

demand properties [22]. Tominimize the spectrum and switch

port usage, an integer linear programming model was estab-

lished to solve the resource allocation problem in intra-DC

EONs [33].

Motivation: Existing studies studied the routing and VNF

deployment for VNF-SC, and DC placement problem depen-

dently. In this paper, we investigate a network planning prob-

lem in EONs by considering all these factors, i.e.,we should

determine not only the optimal routing and VNF deployment

scheme for VNF-SC, but also the optimal number and loca-

tion of datacenters. To solve the problem, we should deter-

mine the number and location ode the DC, i.e., DC placement

problem. Then, routing and VNF deployment scheme for

each VNF-SC should be determined. In general, the number

and location of DC has a great effect on the efficiency of

routing and VNF deployment scheme for VNF-SC. Mean-

while, routing and VNF deployment scheme will affect the

load of DC. If the routing and VNF deployment scheme is

optimal, all the VNF can deployed on DCs balanced. How-

ever, the number and location of DC have an effect on the

balance of load in all DCs. So, routing and VNF deployment

scheme can affect the objective of DC placement problem.

DC placement problem and routing and VNF deployment

problem has a priority order, and the two problem can effect

interact on each other. So, DC placement problem and routing

and VNF deployment problem has a hierarchical property.

That is to say, it is necessary to consider the relationship

between routing and VNF deployment problem for VNF-SC

and DC placement problem. That is to say, we should inves-

tigate routing and VNF deployment problem for VNF-SC

and DC placement problem jointly. It is not suitable to solve

this problem with a global constrained optimization model.

Considering the hierarchical property in the process of deter-

mining the optimal routing and VNF deployment as well

as the DC placemen, we establish a bi-level programming

model which can well reflect this hierarchical property and

consider all factors. The major contributions of this study are

summarized as follows:
• We give an effective scheme to determine not only the

optimal routing and VNF deployment for VNF-SCs, but

also the optimal number and locations of datacenters,

i.e., the optimal datacenters placement.

• we establish a bi-level programming model which can

well reflect this hierarchical property in the process of

determining the optimal routing and VNF deployment

as well as the DC placement.

• We design an effective bi-level hybrid memetic algo-

rithm (BiHMA) with a novel encoding scheme and

tailor-made crossover, mutation and local search oper-

ators to solve the proposed model.

The rest of this paper is organized as follows. Descrip-

tion of Bi-level optimization problem and Memetic algo-

rithm are given in section II. Section III describes the
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problem formulation, and establishes the optimizationmodel.

To solve the optimization model effectively, we propose a

memetic algorithm with tailor-made operators in section IV.

To evaluate the algorithm proposed, simulation experiments

are conducted, and the experimental results are analyzed

in Section V. The paper is concluded with a summary in

Section VI.

II. BI-LEVEL OPTIMIZATION PROBLEM AND MEMETIC

ALGORITHM

A. BI-LEVEL OPTIMIZATION PROBLEM

To solve the context of unbalanced economic markets prob-

lem, Von Stackelberg introduced the bi-level mathematical

problem (BLPP), which can be viewed as a static version

of the non-cooperative and two-person-game [35]. Bi-level

mathematical is a technique which can be used to modeling

decentralized decision problem. It consists of the leader-level

and follower-level objectives [21]. If x and y denote the

leader’s decision variables and follower’s decision variables,

generic bi-level mathematical problem can be written as

min
x
U (x, y)

where y is obtained by solving the follower level optimization

problem

min
y
L(x, y)

In this mathematical model, the evaluation of the

leader-level objective function U (x, y) requires solving the

follower-level objective function L(x, y). That is to say, leader

decision maker cannot minimize its objective without the

reactions of the followers considered. There are numerous of

algorithms focusing on solving bi-level mathematical prob-

lem, like methods based on vertex enumeration and meta-

heuristics [20].

B. MEMETIC ALGORITHM

Memetic algorithm, which adds the local search operator to

genetic algorithm, has been proven to be an effective tech-

nique formany hard problems such as production-distribution

planning problems [15], transportation and network design

[45], Scientific workflow scheduling [28], [30], [48], task

scheduling in cloud computing [39], [42], [43]. There are

some conceptions, including encoding, decoding, individual,

population, crossover operator, mutation operator and local

search operator, fitness function etc. To make it more under-

stood easily, we will introduce these conceptions detailed as

follows:

Encoding: Generally speaking, a suitable encoding

scheme, which encodes the solutions in problem domain to

a chromosome, is much more significant. A better encoding

scheme will make the search easier by limiting the search

space and converge to the global optimal solution rapidly.

Decoding: Decoding scheme decodes the chromosome to

a solution in problem domain.

Individual:A chromosome is an individual. That is to say,

an individual can be translated to a solution of the problem.

Population: Memetic algorithm is a swarm intelligence

algorithm. A population includes some individuals. In gen-

eral, the number of individuals in a population is called

population size.

Crossover operator: Crossover is an important operator

in memetic algorithms. It can generate new offspring by

combining two parents. The offspring generated are very

possible to be better than both of the parents if the specific

characteristic of the parents is used.

Mutation operator: Mutation is a operator which can

change some gene values in the parent individual to a new

state. A better mutation operator can produce entirely novel

offspring individuals and improve diversity of the popula-

tion. With these new individuals, the memetic algorithm may

obtain a better solution than the previous one.

Local search operator: Mutation is an essential operator

in memetic algorithm, and it can help the individuals to

escape from the local optimum.

Fitness function: Fitness function is an indicator which

can evaluate quality of the individuals.In general, a fitness

function is derived from the objective function of the opti-

mization model.

III. PROBLEM DESCRIPTION AND MATHEMATICAL

MODELING

A. PROBLEM DESCRIPTION

We use an undirected graph G(V ,E) to denote an EONs,

where V = {v1, v2, · · · , vNV } represents the set of the nodes

in the networkwithNV being the number of nodes and vi is the

i-th optical node, respectively. Each node is a network device

such as gateway, router and switch, etc. E =
{

lij|vi, vj ∈ V
}

represents the set of optical links with lij being the link

between node vi and node vj, and NE is the number of links

in EONs. Each link has NF frequency slots, and the indexs of

frequency slots on each link are 1, 2, · · · ,NF . Now, there are

a set of datacenters to be connected to EONs and some tasks

to be completed in EONS.

To save the cost, our first problem is how to use as small

number of data centers as possible to be connected to nodes

of EONs? and determine which nodes in EONs connecting to

the used data centers.

When the number of used data centers is determined,

we have to select the same number of nodes in EONs to

connect to these used data centers. In general, each selected

node must connect to only one used datacenter (If a selected

node connects to a used datacenter, it can only connect to

this datacenter) and vice versa (one used datacenter must be

connected to only one selected node), i.e., each selected node

must uniquely connect to one used datacenter and each used

datacenter also must be uniquely connected to one selected

node. When a selected node connects to a used datacenter,

it means that the node has all resources and functions of the

datacenter without any cost in EONs. In this way, we can con-

sider this node connecting to a used datacenter as a DC-node

which has all resources and functions of the datacenter
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without any cost. Thus, the EONs with the DC-nodes forms

a new network called Inter-DC EONs.

Each DC-node can realize some virtual network functions

such as firewall, deep package inspection, network monitor-

ing, etc., and other nodes can not realize any of these func-

tions. The set of these virtual network functions is denoted

by VNF =
{

VNF1,VNF2, · · · ,VNFNvnf
}

, where VNFi is the

i-th virtual network function and Nvnf is the number of total

virtual network functions.

For the network Inter-DC EONs, there are some connec-

tion requests. Each connection request corresponds to a task

called a virtual network function service chain denoted as

a VNF-SC. A VNF-SC is such a task, in which we have to

choose a path from a given source node to a given destination

node to send a given data, and choose some DC-nodes in the

path to realize some virtual network functions. To complete

the task, we have to do the following things: 1) select a path

from the source node to the destination node to send the given

data (i.e., select the inter-nodes including the DC-nodes in the

path. This is called path selection); 2) select the frequency

slots in each link of the path to send the given data (this is

called spectrum assignment); 3) assign which DC-nodes in

the path to realize which VNFs (this is called VNF deploy-

ment)? Doing these three things is called one task scheduling.

Nowwe have a set of tasks, i.e., a set of VNF-SCs, denoted

by T = {T1,T2, · · · ,TNT }, where NT is the number of

tasks (VNF-SCs), and Tk is the k-th task (VNF-SC). We can

represent task Tk as Tk = (sk , dk ,VNF
T
k , bk ), where sk

and dk represent that we have to choose a path to send the

given data from the source node sk to the destination node

dk by occupying the some frequency slots in each link of the

path (the bigger the amount of the given data is, the more

the frequency slots will be occupied to send the data), and

VNFTk = {VNFk1 ,VNFk2 , · · · ,VNFkMk } is the set of VNFs to

be realized in task Tk with Mk being the number of VNFs in

VNFTk , i.e., we have to choose some DC-nodes in the selected

path to realize these VNFs. bk = (b0k , b
1
k , · · · , b

Mk

k ) is the

numbers of frequency slots of Tk required to send the given

data, where b0k is the number of frequency slots occupied by

the initial data in Tk . When the initial data for Tk from the

source node is sent to a DC-node which will realize VNFk1
and after VNFk1 is realized on this DC-node, the size of

the data will change and the changed data will occupy b1k
frequency slots. The changed data will continue to be sent

to the next DC-node. Generally, let bmk denote the number of

frequency slots occupied by the changed data after VNFkm is

realized. In addition, we have ∀VNFTk ⊆ VNF(1 ≤ k ≤ NT ).

Thus, the second problem is that: For a set of given tasks,

how to make the task scheduling for these tasks?

By combining the first and second problems, the whole

problem can be seen as a two phase problem and can be

summarized as follows: For the first phase, for a set of given

data centers, we have to use as small number of data centers as

possible and determine the DC-nodes and form the network

Inter-DC EONs (data centers placement). For the second

phase, for a set of given tasks, we have to determine the task

scheduling scheme to schedule all given tasks such that some

objectives are optimal.

Note that in the first phase, if the number of used dat-

acenters (DC-nodes) is large, it will be costly, otherwise,

some VNF-SCs will be blocked. Similarly, the placement of

used datacenters (DC-nodes) can also affect the balance of

VNFs deployment on the DC-nodes. So, the objective in the

first phase is to determine the optimal scheme of datacenter

placement (i.e., to minimize the number of DC-nodes and

find the optimal locations of DC-nodes). In the second phase,

the path selection (routing), VNF deployment and spectrum

assignment will affect the amount of the resource used (i.e.,

the maximum index of used frequency slots and the number

of used frequency slots). To save the resource, the objective

in the second phase is to determine the optimal schemes of

path selection, VNF deployment and spectrum assignment

for all tasks (i.e., to minimize the maximum index of used

frequency slots and the number of used frequency slots).

Since the second phase must be done after the first phase,

and the scheme of the first phase has an effect on the second

phase. That is to say, there is a hierarchical relation between

the first phase and the second phase. So, this problem can

be modelled by a bi-level programming model, and the first

phase and the second phase can be regarded as the leader deci-

sion and the follower decision, respectively. The datacenter

placement can be regarded as the leader’s variable, while the

path selection, spectrum assignment and VNF deployment

can be treated as the follower’s variables.

B. MATHEMATICAL MODELING

In this section, we will set up a bi-level programming model

for the problem.

1) LEADER’S OBJECTIVE

The smaller the number of the used DC-nodes is,the smaller

the cost will be. Thus, one objective of leader is to minimize

the number of used DC-nodes NDC . Let

x = (x1, x2, · · · , xi, · · · , xNV )

be the scheme of datacenter placement, i.e., xi = 1 if and

only if node vi is selected as DC-node (i.e., node vi connects

to a datacenter), otherwise, xi = 0. So, the number of

used datacenters NDC (i.e., the number of DC-nodes.) can be

calculated by

NDC =

NV
∑

i=1

xi.

Also, we have to look for the optimal deployment of VNFs on

the DC-nodes such that the VNFs deployment on DC-nodes

is as most balanced as possible. Let

y = (y1, y2, · · · , yk , · · · , yNT )
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denote the scheme of VNF deployment for all VNF-SCs,

where

yk = (ykim)NDC×Mk

is an NDC × Mk matrix and represents the scheme of VNF

deployment for task Tk , where y
k
im = 1 if and only if VNFkm

in Tk is realized on DC-node vi, otherwise, y
k
im = 0.

The number of VNFs assigned to the i-th DC-node in all

tasks can be calculated by

N i
vnf =

NT
∑

k=1

Mk
∑

m=1

ykim (1)

The total number of VNFs in all VNF-SCs can be calculated

by

NT
vnf =

NDC
∑

i=1

N i
vnf =

NT
∑

k=1

Mk (2)

Thus the average number of VNFs assigned to one DC-node

is
NT
vnf

NDC
. To make the balanced deployment of VNFs in all

DC-nodes, the number of VNFs assigned to each DC-node

should be as close to the average number as possible, i.e., the

variance of these numbers, denoted by Var , should be as small

as possible. It can be calculated by

Var =
1

NDC

NDC
∑

i=1

(

N i
vnf −

NT
vnf

NDC

)2

=
1

N 3
DC

NDC
∑

i=1

(

NDCN
i
vnf − NT

vnf

)2
(3)

So the second objective of the leader is to minimize Var .

Now we have two objectives of leader: minimize NDC and

minimize Var . To make the problem easier, we integrate these

two objectives into one objective. Considering that NDC and

Var are two different measures and on different orders of

magnitudes, we can normalize the them, respectively. Note

that NDC ≤ NV . We can normalize NDC by NDC/NV . Then

we have 0 ≤ NDC/NV ≤ 1.

Also note that when all VNFs in all VNF-SCs are assigned

to one DC-node, Var will arrive at the maximum value

denoted by VAR. We can normalize Var by Var/VAR, where

VAR can be easily calculated by

VAR =

(NDC − 1)
(NT

vnf )
2

N 2
DC

+

(

NT
vnf −

NT
vnf

NDC

)2

NDC

=

(NT
vnf )

2

N 2
DC

(

(NDC − 1) + (NDC − 1)2
)

NDC

=
(NT

vnf )
2
(

N 2
DC − NDC

)

N 3
DC

=
(NT

vnf )
2 (NDC − 1)

N 2
DC

(4)

Thus,

Var

VAR
=

1

N 3
DC

NDC
∑

i=1

(

NDCN
i
vnf − NT

vnf

)2

(NT
vnf )

2(NDC−1)

N 2
DC

=

NDC
∑

i=1

(

NDCN
i
vnf − NT

vnf

)2

NDC (NDC − 1)(NT
vnf )

2

=

NDC

NDC
∑

i=1

(N i
vnf )

2 − 2NT
vnf

NDC
∑

i=1

N i
vnf + (NT

vnf )
2

(NDC − 1)(NT
vnf )

2

=

NDC

NDC
∑

i=1

(N i
vnf )

2 − (NT
vnf )

2

(NDC − 1)(NT
vnf )

2
≤ 1 (5)

Nowwe integrate the two objectives into one to be minimized

as follows

min
x
f (x, y) = min

x

{(

α
NDC

NV
+ β

Var

VAR

)}

(6)

where α and β are two weights to adjust the importance of

the two objectives with 0 ≤ α, β ≤ 1, α + β = 1.

The leader’s decision should be made under some condi-

tions. These conditions constitute the constraints of the leader

level problem as follows:

Constraint (a): The number of DC-nodes should not be

greater than the number of nodes in EONs and not be less

than ndc, where ndc is threshold of the minimum number of

the datacenters, and is given by the experts in advance. That

is

ndc ≤ NDC =

NV
∑

i=1

xi ≤ NV , (7)

2) FOLLOWER’S OBJECTIVE

The smaller the maximum index of used frequency slots

is, the smaller the bandwidth used in the network will be.

Thus, one objective of the follower’s problem is to minimize

maximum index of used frequency slots Nm
F . Let

z = (z1, z2, · · · , zk , · · · , zNT )

be the scheme of path selection for all VNF-SCs, where

zk = (zkij)NV×NV

is an NV × NV matrix and represents the scheme of routing

for VNF-SC Tk , where z
k
ij = 1 if and only if Tk occupies the

lij, otherwise, z
k
ij = 0. Let

w = (w1,w2, · · · ,wNT )

be the scheme of spectrum assignment for all VNF-SCs,

where

wk = (wkuij )NV×NV
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is an NV × NV × NF matrix and represents the scheme of

spectrum assignment for VNF-SC Tk , where w
ku
ij = 1 if and

only if Tk occupies u-th frequency slot fu on the lij, otherwise,

wkuij = 0. So, the maximum index of used frequency slots on

lij of Tk occupied is

zkij(w
k
ij + Dkij + GF − 1)

where wkij is the minimum index of used frequency slots on lij

of Tk occupied, i.e., w
k
ij = argminwkuij =1{u}. GF is the number

of guaranteed frequency slots. Dkij is the number of used

frequency slots on lij of Tk . In our work, we assume that each

frequency slot has the same bandwidth Cfs, and the capacity

of a frequency slot is ML × Cfs, where ML is the bits per

symbol in a specific modulation level. ML can be assigned

as 1, 2, 3 and 4 for differentmodulation level of BPSK,QPSK,

8QAM and 16QAM. If the modulation level of connection

request rk is denoted by MLk , and b
m
k is the the number of

frequency slots occupied by the changed data after VNFkm
realized on link lij. D

k
ij can be calculated by

Dkij =

⌈

bmk
MLk × Cfs

⌉

. (8)

The maximum index of used frequency slots on lij can be

calculate by

max
Tk∈T

{

zkij(w
k
ij + Dkij + GF − 1)

}

The maximum index of used frequency slots N u
m is the maxi-

mum of used frequency slots of all links and can be calculated

by

Nm
F = max

lij∈E

{

max
Tk∈T

{

zkij(w
k
ij + Dkij + GF − 1)

}

}

(9)

The number of used frequency slots of Tk on the links is

Dk =
∑

lij∈E,zkij=1

Dkij (10)

The number of used frequency slots of all the VNF-SC can

be calculated by

N u
F =

∑

Tk∈T

Dk =
∑

Tk∈T







∑

lij∈E,zkij=1

Dkij






(11)

So the second objective of the follower is to minimize N u
F .

Now we have two objectives of leader: minimize Nm
F and

minimize N u
F . Similar to the objective of leader, to make

the problem easier, we integrate these two objectives into

one objective. In addition, Nm
F and N u

F are two different

measures and on different orders of magnitudes, we also can

normalize the them, respectively. Note thatNm
F ≤ NF .We can

normalize Nm
F by Nm

F /NF . Thus, we have 0 ≤ Nm
F /NF ≤ 1.

Since there are NF timesNE frequency slots in this network,

we have N u
F ≤ NF × NE . We can normalize N u

F by N u
F by

N u
F/(NF × NE ). Then we have 0 ≤ N u

F/(NF × NE ) ≤ 1.

Now we integrate the two objectives into one to be mini-

mized as follows

min
y,z,w

g(x, y, z,w) = min
y,z,w

{

γ
Nm
F

NF
+ δ

N u
F

NF × NE

}

(12)

where γ and δ two weights to adjust the importance of the

two objectives, and we have 0 ≤ γ, δ ≤ 1, γ + δ = 1.

The follower’s decision should be made under some con-

ditions. These conditions constitute the constraints of the

follower level problem as follows:

Constraint (b): For each VNF-SC Tk (∀Tk ∈ T ), the links

of Tk selection should include one or more DC-nodes.
∑

zkij=1

xi ≥ 1, ∀Tk ∈ T (13)

Constraint (c): Each VNF of Tk (∀Tk ∈ T ) required only

can be deployed in one DC-node. We can express this con-

straint by
∑

zkij=1

xiy
k
im = 1, ∀Tk ∈ T , VNFkm ∈ VNFTk (14)

Constraint (d): For Tk (∀Tk ∈ T ), the start index of occupied

frequency slots on different links of a path must be identical.

This can be given by

zkijw
k
ij = zki′j′w

k
i′j′ , ∀Tk ∈ T (15)

where lij and li′j′ are the different links in the network.

Constraint (e): For Tk (∀Tk ∈ T ), we must assign several

consecutive frequency slots to it. That is

wkij+D
k
ij+GF−1
∏

u=wkij

wkuij = 1, ∀Tk ∈ T , zkij = 1 (16)

Constraint (f): For any two VNF-SCs Tk and Tk ′ which

occupy the same link lij, if the start frequency slot index of Tk
is smaller than that of Tk ′ , this case is denoted by Tk ≺ Tk ′ .

Then these two VNF-SCs should satisfy

zkijw
k
ij + Bk + GF ≤ zk

′

ij w
k ′

ij , ∀Tk ≺ Tk ′ (17)

IV. PROPOSED ALGORITHM

The problem of datacenter placement, path selection and

VNF deployment for VNF-SC in EONs is a hardest combina-

torial optimization problems. The existing algorithms cannot

be applied directly, and are necessary to make some improve-

ments or revisions. To solve the bi-level programming model

established, we propose an efficient algorithm and denote it

as BiHMA (Bilevel Hybrid Memetic Algorithm).

A. ENCODING

There are four necessary steps to solve the problem: 1) deter-

mining the scheme of the datacenter placement; 2) path selec-

tion (selecting a path for each VNF-SC); 3) VNF deployment;

4) spectrum assignment. In our work, we use greedy strategy

to determine the VNF deployment scheme, and use first fit
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strategy to assign spectra [4], [17]. Thus, we do not encode

in the step of spectrum assignment. So it is necessary and

reasonable to use two populations, i.e., datacenter placement

population, path selection population.

In datacenter placement population, each individual

presents a datacenter placement scheme. We assume that x =

(x1, x2, · · · , xNV ) is an individual in datacenter placement

population. We have xi = 1(1 ≤ i ≤ NV ) if and only if a

datacenter connect to node vi.

Similar to datacenter placement population, each individ-

ual in path selection population presents a path selection

scheme for all the VNF-SC. Qk = {Q1
k ,Q

2
k , · · · ,Q

q
k , · · · ,

Q
NP
k

k } denotes the candidate paths set of VNF-SC Tk which

is calculated by K-Dijkstra allocation in advance, where NP
k

is the number of the candidate paths and Q
q
k is the q-th path.

We assume that h = (h1, h2, · · · , hNT ) is an individual in

path selection population. hk = q if and only if Tk occupies

the path Q
q
k , and we have zkij = 1 for ∀lij in path Q

q
k .

1) POPULATION INITIALIZATION

In routing population initiation algorithm, uniform design

[16], [18], [24], [26], [36], [43] is used to generate the rout-

ing individuals. The two Algorithms have an advantage that

the individuals in initialized virtual nodes mapping popu-

lation and routing population are all the feasible solutions.

To understand Algorithm of routing population initiation

clearly, we first introduce the uniform design method.

Overview of Uniform Design:

To generate points to be uniformly distributed on the exper-

imental domain, uniform design method was developed [16],

[18], [24], [26], [36]. It generates a small number of the

uniformly distributed representative points in a domain by

using a uniform array U (S,H ) = [Ui,j]H×S , where Ui,j
denotes the level of the j-th factor in the i-th combination with

the j-th factor representing the j-th variable and its level being

its value [15].

To construct uniform design array, many methods are pre-

sented [16], [18], [24], [42]. Not only simple but also efficient

method proposed in [24]. Firstly, we construct a hypercube

over an S-dimensional space:

CS = {(c1, c2, · · · , cS )|ai ≤ ci ≤ bi, i = 1, 2, · · · , S}

where ai and bi are the lower and upper bounds of the i-th fac-

tor (i.e., i-th variable), respectively. Then, a hyper-rectangle

is formed between ai and di as follows:

C(d) = {(c1, c2, · · · , cS )|ai≤ci≤di, i=1, 2, · · · , S} ⊂ CS

Finally, H uniformly distributed points are selected ran-

domly from CS . Assuming that H (d) is the number of points

fallen into the hyper-rectangle C(d), and the fraction of

points in C(d) is H (d)/H . As the volume of hypercube CS

is
∏S

i=1 (bi − ai), so the volume of C(d) is
∏S

i=1 (di − ai).

Algorithm 1 Crossover Operator for the Datacenter

Placement Individual

Input: Individual x in the population, minimum number

of datacenters ndc
Output: Offspring xc obtained by crossover operator

1 Two individuals x ′ and x ′′ are selected randomly;

2 Let A = xT x ′ and C = x ′′T x ′,

xA = diag(A),xC = diag(C);

3 for i = 1 to NV do

4 if rand() ≤ 0.5 then

5 xci = xAi
∨

xCi ;

6 else

7 xci = xAi
∧

xCi ;

8 end

9 end

10 if diag((xc)T (xc)) ≤ ndc then

11 Let n′
dc =

∑NV
i=1 x

c
i ;

12 An integer n is generated in [ndc,NV ], n
′ = n− n′

dc;

13 Pos = [ind1, ind2, · · · , indNV−n′
dc
] denotes a index

set that element is 0 in xc;

14 Generate a permutation of Pos randomly, and denote

is as Per , xc
Per(1:n′)

= 1;

15 end

The H uniform distributed points in CS should minimize

sup
x∈CS



















H (d)

H
−

S
∏

i=1

(di − ai)

S
∏

i=1

(bi − ai)



















(18)

Hence, we can map these H points in CS to the problem

domain with S factors and χ levels uniformly, where H is an

odd and H > S. It has been proved that Ui,j can be given by

[16], [18], [24]:

Ui,j = (iσ j−1 mod χ ) + 1 (19)

where σ is a constant related to the number of factors S

and level χ . The H sample points scattered uniformly in the

hypercube can be selected.

B. CROSSOVER OPERATORS

Since two different populations exist, different crossover

operators are presented. Algorithm 1 is used to generate

offspring for the datacenter placement individuals. As shown

in line 1, two individual are selected randomly in datacenter

placement population. Line 2 to line 9 are used to generate a

new individual. Since the new individual may be a infeasible

solution, line 10 to line 15 are used to modified the infeasible

solution as a feasible solution. Offspring for path selection

individuals are generated by Algorithm 2. As shown in line 1,

a individual are selected randomly in path selection popula-

tion. Line 2 to line 5 are used to generate a new individual.

Since the new individual always a feasible solution, there is
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Algorithm 2 Crossover Operator for the Path Selection

Individual

Input: Individual h in the population

Output: Offspring hc obtained by crossover operator

1 An individual h′ = (h′
1, h

′
2, · · · , h′

NT
) is selected in the

population;

2 Let A = hT h′, and C = diag(A)

3 for k = 1 to NT do

4 hk = mod(Ck ,N
P
k ) + 1;

5 end

no need to modify the individual. These two crossover opera-

tors have an advantage that the routing offspring obtained by

it are all the feasible solutions.

C. MUTATION OPERATORS

Similar to crossover operator, there are two different mutation

operators in proposed algorithm, and two mutation opera-

tors designed are shown in Algorithm 3 and Algorithm 4,

respectively. As shown in algorithm 3, line 1 to 3 generate a

new individual by reversing the sequence of the individual.

To improve the search ability of the operator, line 4 to 5

generate a new individual by applying linear conversion.

Line 6 to line 12 are used to modified the infeasible solution

as a feasible solution. Algorithm 4 is the mutation operator

for path selection population. Line to line are used to generate

new individual, it can improve the diversity of the individuals.

Algorithm 3Mutation Operator for the Datacenter Place-

ment Individual

Input: Individual x in the population

Output: Offspring xm obtained by mutation operator

1 for i = 1 to ⌊NV /2⌋ do

2 x ′
i = xNV−i;

3 end

4 An integer p is generated randomly in [1,NV ];

5 Let A = xT x ′, and xm = A(p, :);

6 if
∑NV

i=1 x
m
i < ndc then

7 Let n′
dc =

∑NV
i=1 x

m
i ;

8 An integer n is generated in [ndc,NV ], n
′ = n− n′

dc;

9 Pos = [ind1, ind2, · · · , indNV−n′
dc
] denotes a index

set that element is 0 in xm;

10 Generate a permutation of Pos randomly, and denote

is as Per ;

11 xm
Per(1:n′)

= 1;

12 end

D. LOCAL SEARCH

Two local search operators for datacenter placement individ-

ual and path selection individual are shown in Algorithm 5

and Algorithm 6. Algorithm 5 is the local search operator for

datacenter placement individual. A new individual is generate

Algorithm 4 Mutation Operator for the Path Selection

Individual

Input: Individual h in the population

Output: Offspring h′ obtained by mutation operator

1 for k = 1 to NT do

2 h′
k = NP

k − hk ;

3 end

4 Let A = hT h′, and C = diag(A)

5 for k = 1 to NT do

6 h′
k = mod(Ck ,N

P
k ) + 1;

7 end

by changing the value of gene. Line 7 to line 15 are used

to modified the infeasible solution as a feasible solution.

Similar to the local search operator for datacenter placement

individual, A new path selection individual is generate by

changing the value of gene. Then, the individual is modified

as a feasible solution.

Algorithm 5 Local Search Operator for the Datacenter

Placement Individual

Input: Individual x in datacenter placement population

Output: Offspring x l obtained by local search operator

1 x l = x, NDC =
∑NV

i=1 xi;

2 if NDC = ndc then

3 Pos = [ind1, ind2, · · · , indNV−NDC ] denotes a index

set that element is 0 in x;

4 Generate a permutation of Pos randomly, and denote

is as Per ;

5 num = randint(NV − NDC ); x
l
Per(1:num) = 1;

6 else

7 if rand() ≤ 0.5 then

8 Pos = [ind1, ind2, · · · , indNV−NDC ] denotes a

index set that element is 0 in x;

9 Generate a permutation of Pos randomly, and

denote is as Per ;

10 num = randint(NV − NDC ); x
l
Per(1:num) = 1;

11 else

12 Pos = [ind1, ind2, · · · , indNDC ] denotes a index

set that element is 1 in x;

13 Generate a permutation of Pos randomly, and

denote is as Per ;

14 num = randint(NDC − ndc); x
l
Per(1:num) = 0;

15 end

16 end

V. EXPERIMENTS AND ANALYSIS

To demonstrate the effectiveness and efficiency of the pro-

posed algorithm, several experiments are conducted on two

widely used networks. In section V-A, the parameters used

in the algorithms will be given. Experimental results are

VOLUME 7, 2019 185767



H. Xuan et al.: Bi-Level Programming Model and Algorithm for VNF Deployment With Data Centers Placement

Algorithm 6 Local Search for the Path Selection Individ-

ual

Input: Individual h in path selection population

Output: Offspring hl obtained by local search operator

1 hl = h; num = randint(NV );

2 if rand() ≤ 0.5 then

3 for i = 1 to NV do

4 hlmod(i+num,NV )+1 = hi;

5 end

6 else

7 for i = 1 to NV do

8 hlmod(i+NV−num,NV )+1 = hi;

9 end

10 end

presented in section V-B. Finally, experimental results are

analyzed in section V-C.

A. PARAMETERS SETTING

In the experiments, two widely used networks are used,

i.e., NSFNET with 14 nodes and 21 links and US Back-

bone with 27 nodes and 44 links, respectively [12], [34].

We assume that each frequency slot is 12.5 GHz, i.e., Cfs =

12.5GHz. There are Nvnf = 8 VNFs, and each VNF-SC

has 1-5 VNFs to realize. Each VNF-SC requires frequency

slots satisfy uniform distribution in [5, 10], and Each link has

1000 frequency slots, i.e., NF = 1000. In proposed memetic

algorithm (we denote it as BiHMA), following parameters are

chosen: population size Ps = 100, crossover probability pc =

0.8, mutation probability pm = 0.2, maximum iterations

Gmax = 1000, number of elites is 10.

B. EXPERIMENTAL RESULTS

By our knowledge, there is no existing algorithm focusing

on the problem of datacenter placement, we compare the

proposed algorithm with other two algorithms, which inves-

tigate path selection and VNF deployment for VNF-SC in

EONs. The one is modified by the algorithm proposed in

literature [10](briefly LBA), and the other one is LF-LBA,

which includes least fist strategy and LBA algorithm. In this

way, we can make the comparisons between the proposed

algorithms and these two efficient algorithms. In addition,

to demonstrate the proposed BiHMA can solve the bi-level

optimization model effectively, two recent algorithms, which

denoted by PSO and DE, are selected to compared with

BiHMA. Literature attempts to develop an efficient method

based on particle swarm optimization (PSO) algorithm with

swarm intelligence, and we denote the algorithm as PSO [21].

DE is proposed in literature [19], and use DE for solving bi-

level programming problems with applications In the field

of transportation planning. Fig.1 and Fig.2 show the leader’s

objective obtained in NSFNST topology and US Backbone

topology when α = β = 0.5. Fig.3 and Fig.4 show the

leader’s objective obtained in NSFNST topology and US

FIGURE 1. Leader’s objective obtained in NSFNET topology.

FIGURE 2. Leader’s objective obtained in US Backbone topology.

Backbone topology when γ = δ = 0.5. In each figure,

there are four subfigures, and the experimental results are

obtained with NDC = NV /4, NDC = NV /2, NDC = 3NV /4

and NDC = NV , respectively. In each subfigure, five groups

experimental results are shown. In the five groups experi-

ments, number of VNF-SCs are set as NT = ωNV (NV − 1),

and ω = 0.25, 0.5, 1, 2 and 4, respectively.

To demonstrate the high performance of our model and

algorithm, we conduct another group experiments. In this

experiment, number of datacenters and the location of all

the datacenters are flexible. That is to say, our model and

algorithm can determine the optimal number of datacenters

and the location of the datacenters according to the VNF-SCs.

Fig.5(a) and Fig.6(a) show the leader’s objective obtained in

NSFNST topology and US Backbone topology when α =

β = 0.5. Fig.5(b) and Fig.6(b) show the follower’s objective

obtained in NSFNST topology and US Backbone topology

when γ = δ = 0.5.
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FIGURE 3. Follower’s objective obtained in NSFNET topology.

FIGURE 4. Follower’s objective obtained in US Backbone topology.

FIGURE 5. Objectives obtained in NSFNET topology.

To evaluate the stability of the proposed algorithm and

the compared algorithm, we give the statistical results (Mean

and Standard Deviation) in the two groups experiments with

the different experimental scenes. Since LBA and LF-LBA

are two deterministic algorithms, we not give the statistical

results obtained by these two algorithms. Table 1 shows the

FIGURE 6. Objectives obtained in US Backbone topology.

TABLE 1. Statistical results (Mean and Standard Deviation) of the
Leader’s objective in first experiment instance.

mean and standard deviation results of the leader’s objective

on the two network topologies with different scenes in the

first group experiments. The mean and standard deviation

results of follower’s objective on the two network topologies

with different scenes in the first group experiments are shown

in Table 2. We give the mean and standard deviation results

of the leader’s and Follower’ objective of the second group

experiments in Table 3.

C. EXPERIMENTAL ANALYSIS

In the first group experiments, the leader’s objective obtained

by BiHMA and four compared algorithms (LBA, LF-LBA,

PSO and DE) are shown in Fig.1 and Fig.2. From the

experimental results, we can see that the leader’s objective

obtained by BiHMA are much less than those obtained by
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TABLE 2. Statistical results (Mean and Standard Deviation) of the
Follower’s objective in first experiment instance.

TABLE 3. Statistical results (Mean and Standard Deviation) in second
experiment instance.

the four compared algorithms. Compared algorithms (LBA,

LF-LBA) are not consider the datacenter placement and bal-

anced VNF deployment, our proposed algorithm can deter-

mine the optimal datacenter placement scheme and VNF

deployment scheme. So, the leader’s objective obtained by

BiHMA are much less than those obtained by these two

compared algorithms. An efficient local search operator is

designed, so the BiHMA can obtain a better schemes of dat-

acenter placement and VNF deployment than the compared

algorithms (PSO and DE). As shown in Fig.1 and Fig.2,

leader’s objective obtained by the proposed algorithms are

7.9%-10.5% less than those obtained by the four compared

algorithms when the number of VNF-SCs is 0.25NV (NV −1),

respectively. When the number of VNF-SCs is 4NV (NV −1),

leader’s objective obtained by the proposed algorithms are

12.5%-14.8% less than those obtained by the four compared

algorithms. For the same number of datacenters, we can

see that proposed algorithms can obtain a smaller leader’s

objective than the four compared algorithms with the increase

of the number of VNF-SCs. That is to say, proposed algorithm

can obtain a more balanced VNF deployment than the four

compared algorithms with the increase of the number of

VNF-SCs. For the same number of VNF-SCs, when number

of data centers is NV /4, the leader’s objective obtained by the

proposed algorithms are 4.3%-6.2% less than those obtained

by the four compared algorithms. Leader’s objective obtained

by the proposed algorithms are 6.8%-9.1% less than those

obtained by the four compared algorithms when number

of data centers is NV . That is to say, proposed algorithm

can obtain a more balanced VNF deployment than the four

compared algorithms with the increase of the number of data

centers.

In the first group experiments, the follower’s objective

obtained byBiHMAand four compared algorithms are shown

in Fig.3 and Fig.4. From the experimental results, we can see

that the follower’s objective obtained by BiHMA are much

less than those obtained by the four compared algorithms.

In proposed model, not only is the maximum index of used

frequency slots considered, but also the number of frequency

slots used is taken into account. In addition, proposed algo-

rithm has a higher search ability than the four compared

algorithms and can find the optimal solution. So, the fol-

lower’s objective obtained by BiHMA are much less than

those obtained by the four compared algorithms. As shown

in Fig.3 and Fig.4, follower’s objective obtained by the pro-

posed algorithms are 4.5%-7.2% less than those obtained by

algorithms LBA and LF-LBA, respectively when the num-

ber of VNF-SCs is 0.25NV (NV − 1). When the number of

VNF-SCs is 4NV (NV − 1), follower’s objective obtained by

the proposed algorithms are 11.2%-15.7% less than those

obtained by algorithms LBA and LF-LBA, respectively. For

the same number of datacenters, we can see that proposed

algorithms can obtain a smaller follower’s objective than the

four compared algorithms with the increase of the number

of VNF-SCs. That is to say, proposed algorithm can obtain

a smaller maximum index of used frequency slots and save

more frequency slots used than the four compared algorithms

with the increase of the number of VNF-SCs. For the same

number of VNF-SCs and save network topology, we can find

that the follower’s objective is decreased with the increase of

the number of datacenters. When the number of datacenters

is NV /4, it will result that some links occupied by a large

number of VNF-SCs became key links. So, the frequency

slots used are imbalanced on different links. The VNF-SCs

are deployed on different links balanced when the number
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of datacenters is NV . So, the the maximum index of used

frequency slots and the number of frequency slots used are

small.

In the second group experiments, the number of data-

centers is not fixed in advance, and only the information

of VNF-SCs are given to determine the optimal datacen-

ter placement scheme, path selection and VNF deployment

scheme. In this proposed algorithm, uniform design is used to

generate the population, it can help to improve the homogene-

ity of the individuals. In addition, well-designed and tailor-

made crossover and mutation operators can generate some

better individuals. So, proposed algorithm has a higher search

ability than the two compared algorithms (PSO and DE) and

can find the optimal solution. As shown in the experimen-

tal results, we can sea that BiHMA can obtain the better

leader’s objective and follower’s objective than the compared

algorithms.

Table 1, Table 2 and Table 3 show the statistical results

(mean and standard deviation) on the two network topologies

with two instances. From the statistical results, we can see that

BiHMA is significant better than the compared algorithms.

Not only the statistical results of mean but also the statistical

results of standard deviation are smaller than the compared

algorithms. That is to say, the proposed algorithm can obtain

the better results and stability results than the compared

algorithms. The efficient crossover, and mutation operator in

BiHMA, which can serch the optimal schemes of datacenter

placement and path selection, are designed. So BiHMA can

obtain a better results (Mean) than the compared algorithms

(PSO and DE). In addition, BiHMA includes the efficient

local search operator,which can search the optimal number

and location of the datacenters, optimal path selection. There-

fore, BiHMA can obtain a better results (standard deviation)

than the compared algorithms (PSO and DE).

VI. CONCLUSION

In this paper, we investigate a network planning problem

in Inter-DC EONs by considering all these factors, i.e.,we

should determine not only the optimal routing and VNF

deployment scheme for VNF-SC, but also the optimal num-

ber and location of datacenters. A bi-level programming

model, which includes a leader’ objective and a follower’s

objective, is established to tackle this challenging prob-

lem. To solve the whole model effectively, we proposed

an efficient bi-level hybrid memetic algorithm with tailor-

made crossover operators and mutation operators. To demon-

strate reasonable of the model and high performance of the

designed algorithm, a series of experiments are conducted

with several different scenes. Experimental results demon-

strate that proposed algorithm have a higher performance than

the compared algorithms.
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